Walker, J.F.; Graczyk, D.J.; Olem, H.
1993-01-01
Nonpoint-source contamination accounts for a substantial part of the water quality problems in many watersheds. The Wisconsin Nonpoint Source Water Pollution Abatement Program provides matching money for voluntary implementation of various best management practices (BMPs). The effectiveness of BMPs on a drainage-basin scale has not been adequately assessed in Wisconsin by use of data collected before and after BMP implementation. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, monitored water quality in the Black Earth Creek watershed in southern Wisconsin from October 1984 through September 1986 (pre-BMP conditions). BMP implementation began during the summer of 1989 and is planned to continue through 1993. Data collection resumed in fall 1989 and is intended to provide information during the transitional period of BMP implementation (1990-93) and 2 years of post-BMP conditions (1994-95). Preliminary results presented for two subbasins in toe Black Earth Creek watershed (Brewery and Garfoot Creeks) are based on data collected during pre-BMP conditions and the first 3 years of the transitional period. The analysis includes the use of regressions to control for natural variability in the data and, hence, enhance the ability to detect changes. Data collected to date (1992) indicate statistically significant differences in storm mass transport of suspended sediment and ammonia nitrogen at Brewery Creek. The central tendency of the regression residuals has decreased with the implementation of BMPs; hence, the improvement in water quality in the Brewery Creek watershed is likely a result of BMP implementation. Differences in storm mass transport at Garfoot Creek were not detected, primarily because of an insufficient number of storms in the transitional period. As practice implementation continues, the additional data will be used to determine the level of management which results in significant improvements in water quality in the two watersheds. Future research will address techniques for including snowmelt runoff and early spring storms.Nonpoint-source contamination accounts for a substantial part of the water quality problems in many watersheds. The Wisconsin Nonpoint Source Water Pollution Abatement Program provides matching money for voluntary implementation of various best management practices (BMPs). The effectiveness of BMP s on a drainage-basin scale has not been adequately assessed in Wisconsin by use of data collected before and after BMP implementation. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, monitored water quality in the Black Earth Creek watershed in southern Wisconsin from October 1984 through September 1986 (pre-BMP conditions). BMP implementation began during the summer of 1989 and is planned to continue through 1993. Data collection resumed in fall 1989 and is intended to provide information during the transitional period of BMP implementation (1990-93) and 2 years of post-BMP conditions (1994-95). Preliminary results presented for two subbasins in the Black Earth Creek watershed (Brewery and Garfoot Creeks) are based on data collected during pre-BMP conditions and the first 3 years of the transitional period. The analysis includes the use of regressions to control for natural variability in the data and, hence, enhance the ability to detect changes. Data collected to date (1992) indicate statistically significant differences in storm mass transport of suspended sediment and ammonia nitrogen at Brewery Creek. The central tendency of the regression residuals has decreased with the implementation of BMPs; hence, the improvement in water quality in the Brewery Creek watershed is likely a result of BMP implementation. Differences in storm mass transport at Garfoot Creek were not detected, primarily because of an insufficient number of storms in the transitional period. As practice implementation continues, the addit
Frasher, Sarah K; Woodruff, Tracy M; Bouldin, Jennifer L
2016-06-01
In efforts to reduce nonpoint source runoff and improve water quality, Best Management Practices (BMPs) were implemented in the Outlet Larkin Creek Watershed. Farmers need to make scientifically informed decisions concerning BMPs addressing contaminants from agricultural fields. The BMP Tool was developed from previous studies to estimate BMP effectiveness at reducing nonpoint source contaminants. The purpose of this study was to compare the measured percent reduction of dissolved phosphorus (DP) and total suspended solids to the reported percent reductions from the BMP Tool for validation. Similarities were measured between the BMP Tool and the measured water quality parameters. Construction of a sedimentation pond resulted in 74 %-76 % reduction in DP as compared to 80 % as predicted with the BMP Tool. However, further research is needed to validate the tool for additional water quality parameters. The BMP Tool is recommended for future BMP implementation as a useful predictor for farmers.
Implementation of a best management practice (BMP) system for a clay mining facility in Taiwan.
Lin, Jen-Yang; Chen, Yen-Chang; Chen, Walter; Lee, Tsu-Chuan; Yu, Shaw L
2006-01-01
The present paper describes the planning and implementation of a best management practice (BMP) system for a clay mining facility in Northern Taiwan. It is a challenge to plan and design BMPs for mitigating the impact of clay mining operations due to the fact that clay mining drainage typically contains very high concentrations of suspended solids (SS), Fe-ions, and [H+] concentrations. In the present study, a field monitoring effort was conducted to collect data for runoff quality and quantity from a clay mining area in Northern Taiwan. A BMP system including holding ponds connected in series was designed and implemented and its pollutant removal performance was assessed. The assessment was based on mass balance computations and an analysis of the relationship between BMP design parameters such as pond depth, detention time, surface loading rate, etc. and the pollutant removal efficiency. Field sampling results showed that the surface-loading rate is exponential related to the removing rate. The results provide the basis for a more comprehensive and efficient BMP implementation plan for clay mining operations.
Forestry BMP Implementation Costs for Virginia
R.M. Shaffer; H.L. Haney; E.G. Worrell; W.M. Aust
1998-01-01
Forestry Best Management Practices (BMPs) are operational techniques used to protect water quality during timber harvesting operations. The implementation cost of BMPs is important to loggers, forest landowners, and the forest industry. This study provides an estimate of BMP implementation cost on a per harvested acre basis for the coastal plain, Piedmont, and...
David Welsch; Roger Ryder; Tim Post
2006-01-01
The specific purpose of the BMP protocol is to create an economical, standardized, and repeatable BMP monitoring process that is completely automated, from data gathering through report generation, in order to provide measured data, ease of use, and compatibility with State BMP programs.The protocol was developed to meet the following needs:? Document the use and...
Regional efforts to promote forestry best management practices: a southern success story
Herb Nicholson; John Colberg; Hughes Simpson; Tom Gerow; Wib Owen
2016-01-01
The Southern Group of State Foresters has a long history of water resource protection efforts, providing leadership in BMP development, improvement, and implementation, enhancing state BMP programs, establishing effective partnerships, and standardizing an approach to consistently monitor implementation across the region.
Sediment associated with forest operations in the Piedmont region
Kristopher R. Brown; W. Michael Aust; Kevin J. McGuire
2013-01-01
Reduced-impact forestry uses best management practices (BMPs) during operations to minimize soil erosion and sediment delivery to streams and to maintain or improve site productivity. However, the efficacy of specific types of BMP implementation is not widely documented. This review synthesizes recent research that investigated contemporary BMP implementation and...
Joan Carlson; Pam Edwards; Todd Ellsworth; Michael Eberle
2015-01-01
The National BMP Program provides National Core BMPs, standardized monitoring protocols to evaluate implementation and effectiveness of the National Core BMPs, and a data management system to store and analyze the resulting monitoring data. BMP evaluations are completed by interdisciplinary teams of resource specialists and include assessments of whether BMP...
Rigge, Matthew B.; Smart, Alexander; Wylie, Bruce K.; de Van Kamp, Kendall
2014-01-01
Various best management practices (BMPs) have been implemented on rangelands with the goals of controlling nonpoint source pollution, reducing the impact of livestock in ecologically important riparian areas, and improving grazing distribution. Providing off-stream water sources to livestock in pastures, cross-fencing, and rotational grazing are common rangeland BMPs that have demonstrated success in drawing livestock grazing pressure away from streams. We evaluated the effects of rangeland BMP implementation with six commercial-scale pastures in the northern mixed-grass prairie. Four pastures received a BMP suite consisting of off-stream water, cross-fencing, and deferred-rotation grazing, and two pastures did not receive BMPs. We hypothesized that the BMPs increased the quantity of riparian vegetation cover relative to the conditions in these pastures during the pre-BMP period and to the two pastures that did not receive BMPs. We used a series of 30-m Landsat normalized difference vegetation index (NDVI) images to track the spatial and temporal changes (1984–2010, n = 24) in vegetation cover, to which NDVI has been well correlated. Validation indicated that the remotely sensed signal from in-channel vegetation was representative of ground conditions. The BMP suite was associated with a 15% increase in the in-channel NDVI (0–30 m from stream centerline) and 18% increase in the riparian NDVI (30–180 m from stream center line). Conversely, the in-channel and riparian NDVI of non-BMP pastures declined 30% and 18% over the study period. The majority of change occurred within 2 yr of BMP implementation. The patterns of in-channel NDVI among pastures suggested that BMP implementation likely altered grazing distribution by decreasing the preferential use of riparian and in-channel areas. We demonstrated that satellite imagery time series are useful in retrospectively evaluating the efficacy of conservation practices, providing critical information to guide adaptive management and decision makers.
Liu, Yaoze; Engel, Bernard A; Flanagan, Dennis C; Gitau, Margaret W; McMillan, Sara K; Chaubey, Indrajeet
2017-12-01
Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP implementation in watershed management projects. Copyright © 2017 Elsevier B.V. All rights reserved.
FRAMEWORK DESIGN FOR BMP PLACEMENT IN URBAN WATERSHEDS
BMP processes into one model is highly desirable To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision support system for placement of BMPs at strat...
FRAMEWORK DESIGN FOR BMP PLACEMENT IN URBAN WATERSHEDS 2005
To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (EPA) began a research project in 2003 to develop a decision support system for selection and placement of BMP/LID at strategic ...
Best management practices (BMPs) are placed in streams or watersheds to mitigate the effects of hydrological, chemical, or physical stressors resulting from anthropogenic activities. However, assessments of BMP effectiveness rarely consider the effects of BMP implementation on th...
Kamp, Kendall Vande; Rigge, Matthew B.; Troelstrup, Nels H.; Smart, Alexander J.; Wylie, Bruce
2013-01-01
Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n = 103) subjectively into three classes; absent (estimated 40% cover; n = 16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l'Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2 152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.
Hall, D.W.; Lietman, P.L.; Koerkle, E.J.
1997-01-01
The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
NASA Astrophysics Data System (ADS)
Rahman, M. S.; Hoover, F. A.; Bowling, L. C.
2017-12-01
Elliot Ditch is an urban/urbanizing watershed located in the city of Lafayette, IN, USA. The city continues to struggle with stormwater management and combined sewer overflow (CSO) events. Several best-management practices (BMP) such as rain gardens, green roofs, and bioswales have been implemented in the watershed, but the level of adoption needed to achieve meaningful impact is currently unknown. This study's goal is to determine what level of BMP coverage is needed to impact water quality, whether meaningful impact is determined by achieving water quality targets or statistical significance. A power analysis was performed using water quality data for total suspended solids (TSS), E.coli, total phosphorus (TP) and nitrate (NO3-N) from Elliot Ditch from 2011 to 2015. The minimum detectable difference (MDD) was calculated as the percent reduction in load needed to detect a significant change in the watershed. The water quality targets were proposed by stakeholders as part of a watershed management planning process. The water quality targets and the MDD percentages were then compared to simulated load reductions due to BMP implementation using the Long-term Hydrologic Impact Assessment-Low Impact Development (LTHIA-LID) model. Seven baseline model scenarios were simulated by implementing the maximum number of each of six types of BMPs (rain barrels, permeable patios, green roofs, grassed swale/bioswales, bioretention/rain gardens, and porous pavement), as well as all the practices combined in the watershed. These provide the baseline for targeted implementation scenarios designed to determine if statistically and physically meaningful load reductions can be achieved through BMP implementation alone.
NASA Astrophysics Data System (ADS)
Liu, Yaoze; Engel, Bernard A.; Flanagan, Dennis C.; Gitau, Margaret W.; McMillan, Sara K.; Chaubey, Indrajeet; Singh, Shweta
2018-05-01
Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water quality models, a high level and forward-looking modeling framework was developed. The components in the framework consist of establishment period efficiency, starting efficiency, efficiency for each storm event, efficiency between maintenance, and efficiency over the life cycle. Combined, they represent long-term efficiency for a specific type of practice and specific environmental concern (runoff/pollutant). An approach for possible implementation of the framework was discussed. The long-term impacts of grass buffer strips (agricultural BMP) and bioretention systems (urban BMP) in reducing total phosphorus were simulated to demonstrate the framework. Data gaps were captured in estimating the long-term performance of the BMPs. A Bayesian method was used to match the simulated distribution of long-term BMP efficiencies with the observed distribution with the assumption that the observed data represented long-term BMP efficiencies. The simulated distribution matched the observed distribution well with only small total predictive uncertainties. With additional data, the same method can be used to further improve the simulation results. The modeling framework and results of this study, which can be adopted in hydrologic/water quality models to better represent long-term BMP effectiveness, can help improve decision support systems for creating long-term stormwater management strategies for watershed management projects.
STORMWATER BEST MANAGEMENT PRACTICE MONITORING
Implementation of an effective BMP monitoring program is not a straight-forward task. BMPs by definition are devices, practices, or methods used to manage stormwater runoff. This umbrella term lumps widely varying techniques into a single category. Also, with the existence of ...
Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande
2015-01-01
Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561
Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande
2015-01-01
Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.
NASA Astrophysics Data System (ADS)
Liu, Y.; Engel, B.; Collingsworth, P.; Pijanowski, B. C.
2017-12-01
Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed need to be explored. Best management practices (BMPs) are popular approaches for improving hydrology and water quality. Various scenarios of BMP implementation were simulated in the AXL watershed (an agricultural watershed in Maumee River watershed) using Soil and Water Assessment Tool (SWAT) and a new BMP cost tool to explore the cost-effectiveness of the practices. BMPs of interest included vegetative filter strips, grassed waterways, blind inlets, grade stabilization structures, wetlands, no-till, nutrient management, residue management, and cover crops. The following environmental concerns were considered: streamflow, Total Phosphorous (TP), Dissolved Reactive Phosphorus (DRP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). To obtain maximum hydrological and water quality benefits with minimum cost, an optimization tool was developed to optimally select and place BMPs by connecting SWAT, the BMP cost tool, and optimization algorithms. The optimization tool was then applied in AXL watershed to explore optimization focusing on critical areas (top 25% of areas with highest runoff volume/pollutant loads per area) vs. all areas of the watershed, optimization using weather data for spring (March to July, due to the goal of reducing spring phosphorus in watershed management plan) vs. full year, and optimization results of implementing BMPs to achieve the watershed management plan goal (reducing 2008 TP levels by 40%). The optimization tool and BMP optimization results can be used by watershed groups and communities to solve hydrology and water quality problems.
Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring
Stuntebeck, Todd D.
1995-01-01
The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.
Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.
2012-01-01
In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decrease in median concentrations of ammonia nitrogen at both sites was not statistically significant at the 0.05 significance level. Multiple linear regression analyses were used to remove the effects of climatologic conditions and seasonality from computed storm loads. For both Eagle and Joos Valley Creeks, the median storm loads for suspended solids, total phosphorus, and ammonia nitrogen were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decreases in storm-load regression residuals from the pre- to the post-BMP periods for both Eagle and Joos Valley Creeks were statistically significant for all three constituents at the 0.05 significance level and indicated an apparent improvement in water-quality in the post-BMP period. Because the rainfall characteristics for individual storms in the pre- and post-BMP periods are likely to be different, separate pre- and post-BMP regressions were used to estimate the theoretical pre- and post-BMP storm loads to allow estimates of precent reductions between the pre- and post-BMP periods. The estimated percent reductions in storm loads for suspended solids, total phosphorus, and ammonia nitrogen were 89, 77, and 66 respectively for Eagle Creek and 84, 67, and 60 respectively for Joos Valley Creek. The apparent improvement in water quality is attributed to the implemented BMPs and to a reduction in the number of cattle in the watersheds.
Evaluation of nonpoint-source contamination, Wisconsin: water year 1999
Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.
2001-01-01
For two of the eight rural streams (Rattlesnake and Kuenster Creeks) minimal BMP implementation has occurred, hence a comparison of pre- BMP and data collected after BMP implementation began is not warranted. For two other rural streams (Brewery and Garfoot Creeks), BMP implementation is complete. For the four remaining rural streams (Bower, Otter, Eagle, and Joos Valley Creeks), the pre-BMP load data were compared to the transitional data to determine if significant reductions in the loads have occurred as a result of the BMP implementation to date. For all sites, the actual constituent loads for suspended solids and total phosphorus exhibit no statistically significant reductions after BMP installation. Multiple regressions were used to remove some of the natural variability in the data. Based on the residual analysis, for Otter Creek, there is a significant difference in the suspended-solids regression residuals between the pre-BMP and transitional periods, indicating a potential reduction as a result of the BMP implementation after accounting for natural variability. For Joos Valley Creek, the residuals for suspended solids and total phosphorus both show a significant reduction after accounting for natural variability. It is possible that the other sites will also show statistically significant reductions in suspended solids and total phosphorus if additional BMPs are implemented.
Chiang, Li-Chi; Chaubey, Indrajeet; Hong, Nien-Ming; Lin, Yu-Pin; Huang, Tao
2012-01-01
Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring litter application, optimum grazing management and filter strip with a VFS ratio of 42 could be a promising alternative for use in mitigating future climate change. PMID:23202767
Weirich, Jason W; Shaw, David R; Coble, Keith H; Owen, Micheal D K; Dixon, Philip M; Weller, Stephen C; Young, Bryan G; Wilson, Robert G; Jordan, David L
2011-07-01
The introduction of glyphosate-resistant (GR) crops in the late 1990s made weed control in maize, cotton and soybean simple. With the rapid adoption of GR crops, many growers began to rely solely on glyphosate for weed control. This eventually led to the evolution of GR weeds. Growers are often reluctant to adopt a weed resistance best management practice (BMP) because of the added cost of additional herbicides to weed control programs which would reduce short-term revenue. This study was designed to evaluate when a grower that is risk neutral (profit maximizing) or risk averse should adopt a weed resistance BMP. Whether a grower is risk neutral or risk averse, the optimal decision would be to adopt a weed resistance BMP when the expected loss in revenue is greater than 30% and the probability of resistance evolution is 0.1 or greater. However, if the probability of developing resistance increases to 0.3, then the best decision would be to adopt a weed resistance BMP when the expected loss is 10% or greater. Given the scenarios analyzed, risk-neutral or risk-averse growers should implement a weed resistance BMP with confidence that they have made the right decision economically and avoided the risk of lost revenue from resistance. If the grower wants to continue to see the same level of return, adoption of BMP is required. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Salha, A. A.; Stevens, D. K.
2016-12-01
The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL and if the BMPs are cost-effectively targeting the critical zones.
Storm Water BMP Tool Implementation Testing
DOT National Transportation Integrated Search
2017-12-01
Under project 2015-ORIL 7, a screening tool was developed to assist Local communities with selecting post-construction storm water best management practices (BMPs) to comply with the Ohio Environmental Protection Agencys (Ohio EPA) statewide Const...
Agricultural costs of the Chesapeake Bay total maximum daily load.
Kaufman, Zach; Abler, David; Shortle, James; Harper, Jayson; Hamlett, James; Feather, Peter
2014-12-16
This study estimates costs to agricultural producers of the Watershed Implementation Plans (WIPs) developed by states in the Chesapeake Bay Watershed to comply with the Chesapeake Bay total maximum daily load (TMDL) and potential cost savings that could be realized by a more efficient selection of agricultural Best Management Practices (BMPs) and spatial targeting of BMP implementation. The cost of implementing the WIPs between 2011 and 2025 is estimated to be about $3.6 billion (in 2010 dollars). The annual cost associated with full implementation of all WIP BMPs from 2025 onward is about $900 million. Significant cost savings can be realized through careful and efficient BMP selection and spatial targeting. If retiring up to 25% of current agricultural land is included as an option, Bay-wide cost savings of about 60% could be realized compared to the WIPs.
GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN
Today, many municipalities are implementing best management practices (BMPs) for
wet-weather flow. The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer...
GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN
Today, many municipalities are implementing best management practices (BMPs). The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer strips).
Historical...
Applying a Reverse Auction to Reduce Stormwater Runoff
Incentivizing commercial properties to adopt stormwater runoff control is usually done through command-and-control tactics such as stormwater fees with rebates for implementation of certain best management practices (BMP). In recently-built housing developments around the count...
SUSTAIN - A BMP Process and Placement Tool for Urban Watersheds (Poster)
To assist stormwater management professionals in planning for best management practices (BMPs) and low-impact developments (LIDs) implementation, USEPA is developing a decision support system, called the System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN). ...
BMP analysis system for watershed-based stormwater management.
Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung
2006-01-01
Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River.
Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G
2018-06-05
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William
2012-04-01
Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.
Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.
Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B
2015-03-01
The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.
NASA Astrophysics Data System (ADS)
Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.
2014-12-01
Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected nutrient load reductions attributable to BMPs. Further quantification of the relation of land-based nutrient sources and BMPs to water quality in the bay and its tributaries must account for inconsistency in BMP data over time and uncertainty regarding BMP locations and effectiveness.
Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.
2017-01-01
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.
Roger Ryder; Pamela J. Edwards; Pamela J. Edwards
2005-01-01
There has been a long-standing interest in improving Best Management Practice (BMP) monitoring within and among states. States monitoring the implementation and effectiveness of BMPs for forest operations take a variety of approaches. This creates inconsistencies in data collection and how results are reported. Since 1990 attempts have been made to develop a consistent...
NASA Astrophysics Data System (ADS)
Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.
2017-12-01
Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.
SUSTAIN - AN EPA BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS
To assist stormwater management professionals in planning for implementation of best management practices (BMPs), efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support system for placement of BMPs at strategic locat...
NASA Astrophysics Data System (ADS)
Wright, O.; Istanbulluoglu, E.
2012-12-01
The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.
Currens, J.C.
2002-01-01
Water quality in the Pleasant Grove Spring karst groundwater basin, Logan County, Kentucky, was monitored to determine the effectiveness of best management practices (BMPs) in protecting karst aquifers. Ninety-two percent of the 4,069-ha (10,054-acre) watershed is used for agriculture. Water-quality monitoring began in October 1992 and ended in November 1998. By the fall of 1995 approximately 72% of the watershed was enrolled in BMPs sponsored by the US Department of Agriculture Water Quality Incentive Program (WQIP). Pre-BMP nitrate-nitrogen concentration averaged 4.65 mg/1. The median total suspended solids concentration was 127 mg/1. The median triazine concentration measured by immunosorbent assay was 1.44 ??tg/l. Median bacteria counts were 418 colonies per 100 ml (col/100 ml) for fecal coliform and 540 col/100 ml for fecal streptococci. Post-BMP, the average nitrate-nitrogen concentration was 4.74 mg/1. The median total suspended solids concentration was 47.8 mg/1. The median triazine concentration for the post-BMP period was 1.48 ??g/1. The median fecal coliform count increased to 432 col/100 ml after BMP implementation, but the median fecal streptococci count decreased to 441 col/100 ml. The pre- and post-BMP water quality was statistically evaluated by comparing the annual mass flux, annual descriptive statistics, and population of analyses for the two periods. Nitrate-nitrogen concentration was unchanged. Increases in atrazine-equivalent flux and triazine geometric averages were not statistically significant. Total suspended solids concentration decreased slightly, whereas orthophosphate concentration increased slightly. Fecal streptococci counts were reduced. The BMPs were only partially successful because the types available and the rules for participation resulted in less effective BMPs being chosen. Future BMP programs in karst areas should emphasize buffer strips around sinkholes, excluding livestock from streams and karst windows, and withdrawing land from production.
Aulenbach, Brent T.; Landers, Mark N.; Musser, Jonathan W.; Painter, Jaime A.
2017-01-01
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001-2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.
Verifying critical control points for Phytophthora introduction into nurseries
N.K. Osterbauer; M. Lujan; G. McAninch; A. Trippe; S. Lane
2013-01-01
The Oregon Department of Agriculture implemented the Grower Assisted Inspection Program (GAIP) for nurseries in 2007. Participants in GAIP adopted best management practices (BMP) for five critical control points (CCP) (used containers, irrigation water, soil substrate, potting media, and incoming plants), where foliar Phytophthora can be introduced...
Effectiveness and costs of overland skid trail BMPs
Clay Sawyers; W. Michael Aust; M. Chad Bolding; William A. Lakel III
2012-01-01
Forestry Best Management Practices (BMPs) are designed to protect water quality; however, little data exists comparing the efficacy and costs of different BMP options for skid trail closure. Study objectives were to evaluate erosion control effectiveness and implementation costs of five overland skid trail closure techniques. Closure techniques were: waterbar only (...
USDA-ARS?s Scientific Manuscript database
Vegetated filter strips (VFSs) are a best management practice (BMP) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents present in agricultural runoff. Although they have been widely adopted, insufficient data exist to understand their sh...
Evaluation of GIS Technology in Assessing and Modeling Land Management Practices
NASA Technical Reports Server (NTRS)
Archer, F.; Coleman, T. L.; Manu, A.; Tadesse, W.; Liu, G.
1997-01-01
There is an increasing concern of land owners to protect and maintain healthy and sustainable agroecosystems through the implementation of best management practices (BMP). The objectives of this study were: (1) To develop and evaluate the use of a Geographic Information System (GIS) technology for enhancing field-scale management practices; (2) evaluate the use of 2-dimensional displays of the landscape and (3) define spatial classes of variables from interpretation of geostatistical parameters. Soil samples were collected to a depth of 2 m at 15 cm increments. Existing data from topographic, land use, and soil survey maps of the Winfred Thomas Agricultural Research Station were converted to digital format. Additional soils data which included texture, pH, and organic matter were also generated. The digitized parameters were used to create a multilayered field-scale GIS. Two dimensional (2-D) displays of the parameters were generated using the ARC/INFO software. The spatial distribution of the parameters evaluated in both fields were similar which could be attributed to the similarity in vegetation and surface elevation. The ratio of the nugget to total semivariance, expressed as a percentage, was used to assess the degree of spatial variability. The results indicated that most of the parameters were moderate spatially dependent Biophysical constraint maps were generated from the database layers, and used in multiple combination to visualize results of the BMP. Understanding the spatial relationships of physical and chemical parameters that exists within a field should enable land managers to more effectively implement BMP to ensure a safe and sustainable environment.
MONITORING OF A BEST MANAGEMENT PRACTICE POND IN THE STATEN ISLAND BLUEBELT
The USEPA’s Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored is a retention pond with wetland plantings in the Richmond Creek (RC) watershed. This BMP, designated RC-...
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Status of state forestry best management practices for the southeastern United States
R. Cristan; W.M. Aust; M.C. Bolding; S.M. Barrett; J.F. Munsell
2016-01-01
Forestry Best Management Practices (BMPs) are important measures for protecting the waters of the U.S., but few studies have compared monitoring strategies and implementation success of forestry BMPs across states. In order to assess the status of state forestry BMPs, a survey was sent to the state forestry agency in each U.S. state regarding their forestry BMP program...
O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias
2011-01-01
When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.
Koerkle, Edward H.
2000-01-01
Analyses of water samples collected over a 5-year period (1993-98) in the Mill Creek and Muddy Run Basins during implementation of agricultural best-management practices (BMP’s) indicate statistically significant trends in the concentrations of several nutrient species and in nonfilterable residue (suspended solids). The strongest trends identified were those indicated by a more than 50- percent decrease in the flow-adjusted concentrations of total and dissolved phosphorus and total residue in base flow in the two streams. Analyses of stormflow samples showed a 31-percent decrease in the flow-adjusted concentration of total phosphorus in Mill Creek and a 54-percent decrease in total nonfilterable residue in Muddy Run. A 58-percent increase in the flow-adjusted concentration of total ammonia nitrogen in stormflow was found at Muddy Run.Although the effects of a specific BMP on the indicated trends is uncertain, results of statistical trend tests of the data suggest that stream fencing, possibly in concert with other practices, such as stream crossings for livestock, barnyard runoff control, manure-storage facilities, and rotational grazing, was effective in improving water quality during base flow and probably low to moderate stormflow conditions. Additional improvements in water quality in the Mill Creek and Muddy Run Basins seems likely as the implementation of BMP’s is expected to continue. Thus, the full effect of BMP implementation in the two basins may not be observed for some time.
Panagopoulos, Y; Makropoulos, C; Mimikou, M
2011-10-01
Two kinds of agricultural Best Management Practices (BMPs) were examined with respect to cost-effectiveness (CE) in reducing sediment, nitrates-nitrogen (NO(3)-N) and total phosphorus (TP) losses to surface waters of the Arachtos catchment in Western Greece. The establishment of filter strips at the edge of fields and a non-structural measure, namely fertilization reduction in alfalfa, combined with contour farming and zero-tillage in corn and reduction of animal numbers in pastureland, were evaluated. The Soil and Water Assessment Tool (SWAT) model was used as the non-point-source (NPS) estimator, while a simple economic component was developed estimating BMP implementation cost as the mean annual expenses needed to undertake and operate the practice for a 5-year period. After each BMP implementation, the ratio of their CE in reducing pollution was calculated for each Hydrologic Response Unit (HRU) separately, for each agricultural land use type entirely and for the whole catchment. The results at the HRU scale are presented comprehensively on a map, demonstrating the spatial differentiation of CE ratios across the catchment that enhances the identification of locations where each BMP is most advisable for implementation. Based on the analysis, a catchment management solution of affordable total cost would include the expensive measure of filter strips in corn and only in a small number of pastureland fields, in combination with the profitable measure of reducing fertilization to alfalfa fields. When examined for its impact on river loads at the outlet, the latter measure led to a 20 tn or 8% annual decrease of TP from the baseline with savings of 15€/kg of pollutant reduction. Filter strips in corn fields reduced annual sediments by 66 Ktn or 5%, NO(3)-N by 71 tn or 9.5% and TP by 27 tn or 10%, with an additional cost of 3.1 €/tn, 3.3 €/kg and 8.1 €/kg of each pollutant respectively. The study concludes that considerable reductions of several pollutant types at the same time can be achieved, even at low total cost, by combining targeted BMP implementation strategies only in small parts of the catchment, also enabling policy makers to take local socio-economic constraints into consideration. The methodology and the results presented aim to facilitate decision making for a cost-effective management of diffuse pollution by enabling modelers and researchers to make rapid and reliable BMP cost estimations and thus being able to calculate their CE at the local level in order to identify the most suitable areas for their implementation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Statistical Techniques for Assessing water‐quality effects of BMPs
Walker, John F.
1994-01-01
Little has been published on the effectiveness of various management practices in small rural lakes and streams at the watershed scale. In this study, statistical techniques were used to test for changes in water‐quality data from watersheds where best management practices (BMPs) were implemented. Reductions in data variability due to climate and seasonality were accomplished through the use of regression methods. This study discusses the merits of using storm‐mass‐transport data as a means of improving the ability to detect BMP effects on stream‐water quality. Statistical techniques were applied to suspended‐sediment records from three rural watersheds in Illinois for the period 1981–84. None of the techniques identified changes in suspended sediment, primarily because of the small degree of BMP implementation and because of potential errors introduced through the estimation of storm‐mass transport. A Monte Carlo sensitivity analysis was used to determine the level of discrete change that could be detected for each watershed. In all cases, the use of regressions improved the ability to detect trends.Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(1994)120:2(334)
FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHEDS
To assist stormwater management professionals in planning for BMP/LID implementation, the U.S. Environmental Protection Agency (USEPA) has funded the development of a decision support system for selection and placement of BMP/LID at strategic locations in urban watersheds. The...
Park, Youn Shik; Engel, Bernie A; Kim, Jonggun; Theller, Larry; Chaubey, Indrajeet; Merwade, Venkatesh; Lim, Kyoung Jae
2015-03-01
Total Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches. A web-based LDC Tool was developed to facilitate development of FDC and LDC as well as to support other hydrologic analyses. In this study, the FDC and LDC tool was enhanced to allow collection of water quality data via the web and to assist in establishing cost-effective Best Management Practice (BMP) implementations. The enhanced web-based tool provides use of water quality data not only from the US Geological Survey but also from the Water Quality Portal for the U.S. via web access. Moreover, the web-based tool identifies required pollutant reductions to meet standard loads and suggests a BMP scenario based on ability of BMPs to reduce pollutant loads, BMP establishment and maintenance costs. In the study, flow and water quality data were collected via web access to develop LDC and to identify the required reduction. The suggested BMP scenario from the web-based tool was evaluated using the EPA Spreadsheet Tool for the Estimation of Pollutant Load model to attain the required pollutant reduction at least cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Best Management Practice on Ecological Condition: Does Location Matter?
NASA Astrophysics Data System (ADS)
Holmes, Roger; Armanini, David G.; Yates, Adam G.
2016-05-01
Best management practices (BMPs) are increasingly being promoted as a solution to the potentially adverse effects agriculture can have on aquatic systems. However, the ability of BMPs to improve riverine systems continues to be questioned due to equivocal empirical evidence linking BMP use with improved stream conditions, particularly in regard to ecological conditions. Explicitly viewing BMP location in relation to hydrological pathways may, however, assist in establishing stronger ecological linkages. The goal of this study was to assess the association between water chemistry, benthic macroinvertebrate community structure, and the number and location of agricultural BMPs in a catchment. Macroinvertebrate and water samples were collected in 30 small (<12 km2) catchments exhibiting gradients of BMP use and location in the Grand River Watershed, Southern Ontario, Canada. Stepwise regression analysis revealed that concentrations of most stream nutrients declined in association with greater numbers of BMPs and particularly when BMPs were located in hydrologically connected areas. However, BMPs were significantly associated with only one metric (%EPT) describing macroinvertebrate community structure. Furthermore, variance partitioning analysis indicated that less than 5 % of the among site variation in the macroinvertebrate community could be attributed to BMPs. Overall, the implemented BMPs appear to be achieving water quality improvement goals but spatial targeting of specific BMP types may allow management agencies to attain further water quality improvements more efficiently. Mitigation and rehabilitation measures beyond the BMPs assessed in this study may be required to meet goals of enhanced ecological condition.
Kristopher R. Brown; W. Michael Aust; Kevin J. McGuire
2015-01-01
Reopening of abandoned legacy roads is common in forest operations and represents a reduced cost in comparison to new road construction. However, legacy roads may have lower road standards and require additional best management practice (BMP) implementation upon reopening to protect water quality. Silt fences and elevation measurements of trapped sediment were used to...
Modeling Firing Range Best Management Practices with TREECS (trademark)
2013-06-01
is reduced. Phytoremediation can also be considered a source treatment BMP when plants uptake and transform the MC into other chemical forms that are...the amendment, and the local soil conditions. Phytoremediation includes phytoextraction, phytostabilization, and phytotransformation...model can then be run as usual while taking into account the phytoremediation of the MC. Phytotransformation is being implemented as an option in
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Palmer, M.; Whitehead, P. G.; Baulch, H. M.; Woods, D.; Jin, L.; Oni, S. K.; Dillon, P. J.
2016-09-01
Uncertainty surrounding future climate makes it difficult to have confidence that current nutrient management strategies will remain effective. This study used monitoring and modeling to assess current effectiveness (% phosphorus reduction) and resilience (defined as continued effectiveness under a changing climate) of best management practices (BMPs) within five catchments of the Lake Simcoe watershed, Ontario. The Integrated Catchment Phosphorus model (INCA-P) was used, and monitoring data were used to calibrate and validate a series of management scenarios. To assess current BMP effectiveness, models were run over a baseline period 1985-2014 with and without management scenarios. Climate simulations were run (2070-2099), and BMP resilience was calculated as the percent change in effectiveness between the baseline and future period. Results demonstrated that livestock removal from water courses was the most effective BMP, while manure storage adjustments were the least. Effectiveness varied between catchments, influenced by the dominant hydrological and nutrient transport pathways. Resilience of individual BMPs was associated with catchment sensitivity to climate change. BMPs were most resilient in catchments with high soil water storage capacity and small projected changes in frozen-water availability and in soil moisture deficits. Conversely, BMPs were less resilient in catchments with larger changes in spring melt magnitude and in overland flow proportions. Results indicated that BMPs implemented are not always those most suited to catchment flow pathways, and a more site-specific approach would enhance prospects for maintaining P reduction targets. Furthermore, BMP resilience to climate change can be predicted from catchment physical properties and present-day hydrochemical sensitivity to climate forcing.
Pasture BMP effectiveness using an HRU-based subarea approach in SWAT.
Sheshukov, Aleksey Y; Douglas-Mankin, Kyle R; Sinnathamby, Sumathy; Daggupati, Prasad
2016-01-15
Many conservation programs have been established to motivate producers to adopt best management practices (BMP) to minimize pasture runoff and nutrient loads, but a process is needed to assess BMP effectiveness to help target implementation efforts. A study was conducted to develop and demonstrate a method to evaluate water-quality impacts and the effectiveness of two widely used BMPs on a livestock pasture: off-stream watering site and stream fencing. The Soil and Water Assessment Tool (SWAT) model was built for the Pottawatomie Creek Watershed in eastern Kansas, independently calibrated at the watershed outlet for streamflow and at a pasture site for nutrients and sediment runoff, and also employed to simulate pollutant loads in a synthetic pasture. The pasture was divided into several subareas including stream, riparian zone, and two grazing zones. Five scenarios applied to both a synthetic pasture and a whole watershed were simulated to assess various combinations of widely used pasture BMPs: (1) baseline conditions with an open stream access, (2) an off-stream watering site installed in individual subareas in the pasture, and (3) stream or riparian zone fencing with an off-stream watering site. Results indicated that pollutant loads increase with increasing stocking rates whereas off-stream watering site and/or stream fencing reduce time cattle spend in the stream and nutrient loads. These two BMPs lowered organic P and N loads by more than 59% and nitrate loads by 19%, but TSS and sediment-attached P loads remained practically unchanged. An effectiveness index (EI) quantified impacts from the various combinations of off-stream watering sites and fencing in all scenarios. Stream bank contribution to pollutant loads was not accounted in the methodology due to limitations of the SWAT model, but can be incorporated in the approach if an amount of bank soil loss is known for various stocking rates. The proposed methodology provides an adaptable framework for pasture BMP assessment and was utilized to represent a consistent, defensible process to quantify the effectiveness of BMP proposals in a BMP auction in eastern Kansas. Copyright © 2015 Elsevier Ltd. All rights reserved.
MONITORING OF A RETENTION POND BEFORE AND AFTER MAINTENANCE
The USEPA’s Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored is a retention pond with wetland plantings in the Richmond Creek (RC) watershed. This BMP, designated RC-...
COST ESTIMATING EQUATIONS FOR BEST MANAGEMENT PRACTICES (BMP)
This paper describes the development of an interactive internet-based cost-estimating tool for commonly used urban storm runoff best management practices (BMP), including: retention and detention ponds, grassed swales, and constructed wetlands. The paper presents the cost data, c...
A.J. Lang; W.M. Aust; M.C. Bolding; E.B. Schilling
2016-01-01
Ditched forest roads leading to stream crossings and used for log transportation have recently been a topic of water quality concern and legal controversy. Best management practices (BMPs) can reduce potential water quality issues, yet few research studies have quantified BMP costs and reductions in sediment from implementing specific ditch BMPs. Researchers...
MONITORING OF A RETENTION POND FOR EFFECTS OF MAINTENANCE
The USEPA’s Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP monitored was a retention pond with wetland plantings in the Richmond Creek (RC) watershed. This BMP, designated RC-5, is o...
MONITORING OF A BEST MANAGEMENT PRACTICE POND
The USEPA's Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP currently being monitored, a retention pond with wetland plantings, is in the Richmond Creek (RC) watershed part of New Yor...
MONITORING OF A BEST MANAGEMENT PRACTICE POND
The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...
2017-09-26
on the desire of both parties to collaborate to develop a practical and useable set of Blast Mitigation Program (BMP) design guidelines and...standards. The effort focused on the following topics: occupant-centric design philosophy and terms, test procedures, Military performance specifications...NDIA) was created based on the desire of both parties to collaborate to develop a practical and useable set of Blast Mitigation Program (BMP) design
Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona
2009-09-01
construction would occur in previously disturbed area, soil condition would not be substantially altered. Best Management Practices (BMP), to include...installation of silt fencing and sediment traps, water spray application, disturbed area revegatation, would be used to limit soil movement, stabilize...implementation of BMPs and adherence to the Arizona Pollutant Discharge Elimination System Permit would minimize the potential for exposed soils or other
MONITORING OF A BEST MANAGEMENT PRACTICE POND IN THE STATEN ISLAND BLUEBELL
The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...
NASA Astrophysics Data System (ADS)
Rodriguez, Hector German; Popp, Jennie; Maringanti, Chetan; Chaubey, Indrajeet
2011-01-01
An increased loss of agricultural nutrients is a growing concern for water quality in Arkansas. Several studies have shown that best management practices (BMPs) are effective in controlling water pollution. However, those affected with water quality issues need water management plans that take into consideration BMPs selection, placement, and affordability. This study used a nondominated sorting genetic algorithm (NSGA-II). This multiobjective algorithm selects and locates BMPs that minimize nutrients pollution cost-effectively by providing trade-off curves (optimal fronts) between pollutant reduction and total net cost increase. The usefulness of this optimization framework was evaluated in the Lincoln Lake watershed. The final NSGA-II optimization model generated a number of near-optimal solutions by selecting from 35 BMPs (combinations of pasture management, buffer zones, and poultry litter application practices). Selection and placement of BMPs were analyzed under various cost solutions. The NSGA-II provides multiple solutions that could fit the water management plan for the watershed. For instance, by implementing all the BMP combinations recommended in the lowest-cost solution, total phosphorous (TP) could be reduced by at least 76% while increasing cost by less than 2% in the entire watershed. This value represents an increase in cost of 5.49 ha-1 when compared to the baseline. Implementing all the BMP combinations proposed with the medium- and the highest-cost solutions could decrease TP drastically but will increase cost by 24,282 (7%) and $82,306 (25%), respectively.
McKenna, S; Wallis, M; Brannelly, A; Cawood, J
2001-02-01
Intensive care unit (ICU) patients frequently suffer problems associated with both diarrhoea and constipation. Strategies to optimise the management of these conditions need to focus on improving the communication between staff and ensuring effective treatment is implemented. The team involved in this study developed a Bowel Management Protocol (BMP). The effect of this BMP on the documentation of assessment and management of diarrhoea and constipation was evaluated using a quasi-experimental research design. Data were collected via a retrospective audit of medical records. Two groups of patient records were randomly sampled. The records of 60 patients who were admitted to ICU in the 6 months before the introduction of the BMP were accessed together with the records of 60 patients admitted in the 6 months following the introduction of the BMP. Data were collected regarding patient demographics and the assessment and management of bowel function before and after BMP introduction. The results indicated that a BMP improved documentation of the assessment of bowel function. In addition, there was an improvement in the documentation of nursing intervention in the presence of constipation and diarrhoea. These results have to be interpreted with caution because, despite random sampling over two 6 month periods, there were statistically significant differences in age, length of stay, method of feeding and medical diagnosis between the two groups. Further research into the effectiveness of using a BMP is recommended.
The Green Tool represents infiltration-based stormwater control practices. It allows modelers to select a BMP type, channel shape and BMP unit dimensions, outflow control devices, and infiltration method. The program generates an HSPF-formatted FTABLE.
NASA Astrophysics Data System (ADS)
Havens, Karl E.; Flaig, Eric G.; James, R. Thomas; Lostal, Sergio; Muszick, Dera
1996-07-01
During 1987 1992, a mandatory program to control phosphorus discharges was implemented at dairy operations located to the north of Lake Okeechobee, Florida, USA. Thirty of 48 dairies participated in this program and implemented best management practices (BMPs), which included the construction of intensive animal waste management systems. Eighteen dairies closed their milkproducing operations under a government-funded buyout program. In this paper, we compare trends in runoff total phosphorus (TP) concentrations among the dairies that remained active and implemented BMPs. A central feature of the dairy waste management system is the high intensity area (HIA), defined as the milking barn and adjacent vegetation-free land, encircled by a drainage ditch and dike. Animal waste from the HIA is diverted into anaerobic lagoons and storage ponds, from which water is periodically removed and used for irrigation of field crops. The impacts of BMP construction on runoff TP concentrations were immediate and, in most cases, dramatic. Average TP concentrations declined significantly ( P < 0.001), from 9.0 to 1.2 mg TP liter-1 at dairies in one basin (Lower Kissimmee River), and from 2.6 to 1.0 mg TP liter-1 in another (Taylor Creek/Nubbin Slough). Some sites experienced greater declines in TP than others. To elucidate possible causes for the difference in response, a multivariate statistical model was utilized. Independent variables included soil pH, soil drainage characteristics, spodic horizon depth, and the areas of different BMP components (pasture, HIA, spray fields). The analysis significantly separated dairies with the highest and lowest runoff TP concentrations. Lowest TP occurred at dairies having particular soil characteristic (shallow spodic horizon) and certain BMP features (large HIA and small heard pastures).
Moving towards Total Water Management
The presentation will discuss the following topics: Stormwater Best Management Practice (BMP) Placement (SUSTAIN); Sanitary Sewer Overflow Toolbox (SSOAP); BMP and Low Impact Development (LID) Performance; Green/Grey Infrastructure for Stormwater; Combined Sewers and Reuse; Infra...
Park, Daeryong; Roesner, Larry A
2013-09-01
The performance of stormwater best management practices (BMPs) is affected by BMP geometric and hydrologic factors. The objective of this study was to investigate the effect of BMP surface area and inflow on BMP performance using the k-C* model with uncertainty analysis. Observed total suspended solids (TSS) from detention basins and retention ponds data sets in the International Stormwater BMP Database were used to build and evaluate the model. Detention basins are regarded as dry ponds because they do not always have water, whereas retention ponds have a permanent pool and are considered wet ponds. In this study, Latin hypercube sampling (LHS) was applied to consider uncertainty in both influent event mean concentration (EMC), C(in), and the areal removal constant, k. The latter was estimated from the hydraulic loading rate, q, through use of a power function relationship. Results show that effluent EMC, C(out), decreased as inflow decreased and as BMP surface area increased in both detention basins and retention ponds. However, the change in C(out), depending on inflow and BMP surface area for detention basins, differed from the change in C(out) for retention ponds. Specifically, C(in) was more dominantly associated with the performance of the k-C* model of detention basins than were BMP surface area and inflow. For retention ponds, however, results suggest that BMP surface area and inflow both influenced changes in C(out) as well as C(in). These results suggest that sensitive factors in the performance of the k-C* model are limited to C(in) for detention basins, whereas BMP surface area, inflow, and C(in) are important for retention ponds.
This presentation will document, benchmark and evalute state-of-the-science research and implementation on BMP performance, monitoring, and integration for green infrastructure applications, to manage wet weather flwo, storm-water-runoff stressor relief and remedial sustainable w...
NASA Astrophysics Data System (ADS)
Heeren, A.; Toman, E.; Wilson, R. S.; Martin, J.
2016-12-01
Lake Erie is the most productive of the Great Lakes. However, harmful algal blooms (HABs) caused by nutrient run-off threaten the lake. Experts have proposed numerous best management practices (BMPs) designed to reduce nutrient and sediment run-off. However, for these practices to be effective at reducing HABs, a significant portion of farmers and landowners within Lake Erie's watersheds have to first adopt and implement these practices. In order to better understand how farmers and landowners make decisions about whether or not to adopt and implement BMPs we conducted a series of focus groups and a mail survey of Lake Erie's largest watershed. We found that many farmers were supportive of adopting BMPs. For example, 60% of farmers in the watershed have already adopted using grid soil sampling while another 30% are willing to adopt the practice in the future. However, other practices were less popular, for example, only 18% of farmers had already adopted cover crops. Farmers also expressed several reservations about adopting some BMPs. For example, farmers were concerned about the costs of some BMPs, such as cover crops and drainage management systems, and how such practices might interfere with the planting of subsequent crops. Our research has several implications for reducing nutrient production by promoting BMPs. First, we identified potential concerns and limitations farmers faced in implementing specific BMPs. For example, conservationists can design future programs and communication efforts to target these specific concerns. Second, through examining the socio-psychological and cognitive characteristics that influence farmer decision-making, we identified that willingness to adopt nutrient BMPs is association with how strongly a farmer identifies with conservation and how effective they believed the BMP was at reducing run-off. Messages and information about BMPs may be more effective if they are framed in a way that aligns with identities and beliefs about BMP efficacy. Lastly, our research provides a framework of how the "wicked problem" of nutrient run-off can be addressed through the promotion of BMPs.
McCormick, Paul V.; Campbell, Sharon G.
2007-01-01
A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.
This poster presentation will document, benchmark and evaluate state-of-the-science research and implementation on BMP performance, monitoring and integration for green infrastructure applications, to manage wet weather flow, storm-water runoff stressor relief and remedial sustai...
USDA-ARS?s Scientific Manuscript database
Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water q...
USDA-ARS?s Scientific Manuscript database
This paper presents a new GIS-based Best Management Practice (BMP) Tool developed for watershed managers to assist in the decision making process by simulating various scenarios using various combinations of Best Management Practices (BMPs). The development of this BMPTool is based on the integratio...
Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995
Owens, D.W.; Corsi, Steven R.; Rappold, K.F.
1997-01-01
The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss of PAR.
Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds
NASA Astrophysics Data System (ADS)
Samuels, A.; Babbar-Sebens, M.
2012-12-01
Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.
Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.
1996-01-01
Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.
Assessing BMP Performance Using Microtox Toxicity Analysis
Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...
MODELING CONCEPTS FOR BMP/LID SIMULATION
Enhancement of simulation options for stormwater best management practices (BMPs) and hydrologic source control is discussed in the context of the EPA Storm Water Management Model (SWMM). Options for improvement of various BMP representations are presented, with emphasis on inco...
FRAMEWORK DESIGN FOR BMP PLACEMENT IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao
2014-12-01
Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage on arable land with slopes less than 15°), and BMP5 (0.8-fold less than that of 2010).
Assessing BMP Performance Using Microtox Toxicity Analysis - Rhode Island
Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...
Assessing BMP Performance Using Microtox® Toxicity Analysis
Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...
FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, gr...
FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHED
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
Evaluation and Analysis of Regional Best Management Practices in San Diego, California (USA)
NASA Astrophysics Data System (ADS)
Flint, K.; Kinoshita, A. M.
2017-12-01
In urban areas, surface water quality is often impaired due to pollutants transported by stormwater runoff. To maintain and improve surface water quality, the United States Clean Water Act (CWA) requires an evaluation of available water quality information to develop a list of impaired water bodies and establish contaminant restrictions. Structural Best Management Practices (BMPs) are designed to reduce runoff volume and/or pollutant concentrations to comply with CWA requirements. Local level policy makers and managers require an improved understanding of the costs and benefits associated with BMP installation, performance, and maintenance. The International Stormwater BMP Database (Database) is an online platform for submittal of information about existing BMPs, such as cost, design details, and statistical analysis of influent and effluent pollutant concentrations. While the Database provides an aggregation of data which supports analysis of overall BMP performance at international and national scales, the sparse spatial distribution of the data is not suitable for regional and local analysis. This research conducts an extensive review of local inventory and spatial analysis of existing permanent BMPs throughout the San Diego River watershed in California, USA. Information collected from cities within the San Diego River watershed will include BMP types, locations, dates of installation, costs, expected removal efficiencies, monitoring data, and records of maintenance. Aggregating and mapping this information will facilitate BMP evaluation. Specifically, the identification of spatial trends, inconsistencies in BMP performances, and gaps in current records. Regression analysis will provide insight into the nature and significance of correlations between BMP performance and physical characteristics such as land use, soil type, and proximity to impaired waters. This analysis will also result in a metric of relative BMP performance and will provide a basis for future predictions of BMP effectiveness. Ultimately, results from this work will provide information to local governments and agencies for prioritizing, maintaining and monitoring BMPs, and improvement of hydrologic and water quality modeling in urban systems subject to compliance.
NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS
The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...
The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital, and operations and maintenance (O&M) costs for commonly used best management practices (BMPs). Total BMP volume and/or surface area is used to predict these costs. Engineering News Record (ENR) construction cost index was used t...
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital and operations and maintenance (O&M) for commonly used best management practices (BMPS). Total BMP volume and/or surface area is used to predict these costs. ENR construction cost index was used to adjust cost data to December 2000...
NASA Astrophysics Data System (ADS)
McGarity, A. E.
2009-12-01
Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.
Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong
2017-03-01
Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
Periodic maintenance of stormwater best management practices (BMP) includes the removal of accumulated sediment. The resulting impact on trace metal concentrations of copper (Cu), lead (Pb), and zinc (Zn) in a constructed stormwater wetland BMP on Staten Island, NY was investiga...
Phosphorous Attenuation in Urban Best Management (BMP) and Low Impact Development (LID) Practices
While all living organisms require phosphorous (P) to live and grow, adding too much P to the environment can cause unintended and undesirable effects, such as eutrophication of surface waters and harmful algal blooms. Urban best management (BMP) and low impact development (LI...
Alfalfa transgene dispersal and adventitious presence: understanding grower perception of risk
USDA-ARS?s Scientific Manuscript database
Recognizing the importance of coexistence, the alfalfa industry has developed a set of Best Management Practices (BMP) to maintain separation of GE and conventional production. But the success of BMP depends upon the degree that growers comply. Therefore we surveyed 530 alfalfa hay and seed producer...
Spatially targeted social interventions to improve BMP adoption in Maryland watersheds
USDA-ARS?s Scientific Manuscript database
The results of surveys of stakeholders knowledge and attitudes related to water resources, pollution and Best Management Practices (BMPs) are analyzed and used to develop a model of BMP adoption likelihood based on socio-economic factors. The model is integrated into a Diagnostic Decision Support Sy...
Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.
2008-01-01
Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages. ?? 2008 American Water Resources Association.
NASA Astrophysics Data System (ADS)
Hoover, F. A.; Bowling, L. C.; Prokopy, L. S.
2015-12-01
Urban stormwater is an on-going management concern in municipalities of all sizes. In both combined or separated sewer systems, pollutants from stormwater runoff enter the natural waterway system during heavy rain events. Urban flooding during frequent and more intense storms are also a growing concern. Therefore, stormwater best-management practices (BMPs) are being implemented in efforts to reduce and manage stormwater pollution and overflow. The majority of BMP water quality studies focus on the small-scale, individual effects of the BMP, and the change in water quality directly from the runoff of these infrastructures. At the watershed scale, it is difficult to establish statistically whether or not these BMPs are making a difference in water quality, given that watershed scale monitoring is often costly and time consuming, relying on significant sources of funds, which a city may not have. Hence, there is a need to quantify the level of sampling needed to detect the water quality impact of BMPs at the watershed scale. In this study, a power analysis was performed on data from an urban watershed in Lafayette, Indiana, to determine the frequency of sampling required to detect a significant change in water quality measurements. Using the R platform, results indicate that detecting a significant change in watershed level water quality would require hundreds of weekly measurements, even when improvement is present. The second part of this study investigates whether the difficulty in demonstrating water quality change represents a barrier to adoption of stormwater BMPs. Semi-structured interviews of community residents and organizations in Chicago, IL are being used to investigate residents understanding of water quality and best management practices and identify their attitudes and perceptions towards stormwater BMPs. Second round interviews will examine how information on uncertainty in water quality improvements influences their BMP attitudes and perceptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, D.A.; Pace, P.J.; Woods, J.A.
1997-06-01
One of Los Angeles County Department of Public Works` many responsibilities is to manage non-point pollution that enters the storm drain network within Los Angeles County. The management of this non-point source pollution is mandated by the NPDES guidelines under the Federal Clean Water Act. These guidelines require the County to monitor the drainage network and the storm water and urban runoff flowing through it. The County covers over 3,117 square miles, with the NPDES Permit covering over 3,100 square miles and over 2500 miles of storm drains. A proposed solution to monitor and manage this vast geographic area ismore » centered upon an Arc/Info GIS. Some of the many concerns which need to be addressed include the administration and evaluation of Best Management Practices (BMP`s), storm drain inspection for illegal connections and illicit discharges, and pollutant load assessment and modeling. The storm drain network and other coverages will be related to external data bases currently used for facility management and planning. This system would be used for query purposes to perform spatial modeling and {open_quotes}what if{close_quotes} scenarios needed to create maps and reports required by the permit and to evaluate various BMP implementation strategies.« less
Evaluation of nonpoint-source contamination, Wisconsin: Selected data for 1992 water year
Graczyk, D.J.; Walker, J.F.; Greb, S.R.; Corsi, Steven R.; Owens, D.W.
1993-01-01
This report presents the annual results of the U.S. Geological Survey's (USGS) watershed-management evaluation monitoring program in Wisconsin. The overall objective of each individual project in the program is to determine if the water chemistry in the receiving stream has changed as a result of the implementation of land-management practices in the watershed. This is accomplished through monitoring of water chemistry and ancillary variables before best-management practices (BMP's) are installed ('pre-BMP'), during installation ('transitional'), and after ('post-BMP') watershed- management plans have been completely implemented. Fecal-coliform (FC) counts ranged between 10 and 310,00/100 mL. A large range of values occurred within duplicate and triplicate samples as well as over time. The median percentage difference between duplicate and triplicate samples was 17 percent although 4 out of the total 60 duplicate and triplicate samples had differences greater than 100 percent. A decrease in FC counts generally occurred over the duration of the 4-day analyses. Linear regression models of the log-concentration values (dependent variable) with respect to time (independent variable) were calculated for all samples. Negative slopes were found for 14 of the 15 samples. Slopes varied from +0.5 to -38.4 percent gain/loss/day, with a median slope of -8.5 percent/day. A t-test was applied to the data to examine whether or not significant differences in FC counts exist with respect to holding times. Because the T-test only compares two treatments, the test was conducted 3 times (0 versus 24-hr holding time, 0 versus 48-hr holding time, and 0 versus 72-hr holding time). Setting the level of significance at p less than 0.05 and assuming equal variances, 27 percent (all from Bower and Otter Creeks) of the samples demonstrated a significant difference in colony count over the first 24 hr, 40 percent over 48 hr, and 47 percent over 72 hr. All samples that exhibited a significant change in colony count were because of a decrease in colony count of the sample.
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Investigation on the effectiveness of pretreatment in stormwater management technologies.
Maniquiz-Redillas, Marla C; Geronimo, Franz Kevin F; Kim, Lee-Hyung
2014-09-01
The effectiveness of presettling basins as component of stormwater best management practice (BMP) technologies was investigated. Storm event monitoring and sediment collection were conducted from May 2009 to November 2012 on the presettling basins of the three BMP technologies designed to capture and treat stormwater runoff from highly impervious roads and parking lots. Data on captured runoff and sediment, total suspended solids (TSS) loadings, rainfall and runoff rate, sediment accumulation rate, as well as particle distribution and pollutant concentrations of sediment were gathered and analyzed along with the physical design characteristics of the presettling basins such as surface area and storage volume. Regression models were generated to determine significant relationships between design parameters. Results revealed that the storage volume ratio (ratio of storage volume of presettling basin to BMP) was an important parameter in designing the presettling basin of the BMP. For practicality, optimizing the design of the presettling basin means that the storage volume ratio should be determined based on the desired captured amount of runoff and sediment from runoff to limit the frequency of maintenance caused by the accumulation of sediment. It was recommended that pretreatment of runoff should be employed when the site in which the BMP is to be sited has high TSS loading and runoff rate, and is subjected to high intensity rainfall. Copyright © 2014. Published by Elsevier B.V.
Khan, Taleef R; Pearce, Kalin R; McAnany, Steven J; Peters, Colleen M; Gupta, Munish C; Zebala, Lukas P
2018-03-01
Recombinant human bone morphogenetic protein 2 (rhBMP-2) plays a pivotal role in complex spine surgery. Despite its limited approval, the off-label use of rhBMP-2 is prevalent, particularly in transforaminal lumbar interbody fusions (TLIFs). To determine the effectiveness and safety of rhBMP-2 use in TLIF procedures versus autograft. Retrospective cohort study. Patients older than 18 years undergoing spine surgery for lumbar degenerative spine disease at a single academic institution. Clinical outcome was determined according to patient records. Radiographic outcome was determined according to plain X-rays and computed tomography (CT). A retrospective study from 1997 to 2014 was conducted on 191 adults undergoing anterior-posterior instrumented spinal fusion with TLIF at a single academic institution. Patient data were gathered from operative notes, follow-up clinic notes, and imaging studies to determine complications and fusion rates. One hundred eighty-seven patients fit the criteria, which included patients with a minimum of one TLIF, and had a minimum 2-year radiographic and clinical follow-up. Patients were further classified into a BMP group (n=83) or non-BMP group (n=104). Three logistic regression models were run using rhBMP-2 exposure as the independent variable. The respective outcome variables were TLIF-related complications (radiculitis, seroma, osteolysis, and ectopic bone), surgical complications, and all complications. Bone morphogenetic protein (n=83) and non-BMP (n=104) groups had similar baseline demographics (sex, diabetes, pre-existing cancer). On average, the BMP and non-BMP groups were similarly aged (51.9 vs. 47.9 years, p>.05), but the BMP group had a shorter follow-up time (3.03 vs. 4.06 years; p<.001) and fewer smokers (8 vs. 21 patients; p<.048). The fusion rate for the BMP and non-BMP groups was 92.7% and 92.3%, respectively. The pseudoarthrosis rate was 7.5% (14 of 187 patients). Radiculitis was observed in seven patients in the BMP group (8.4%) and two patients in the non-BMP group (1.9%). Seroma was observed in two patients in the BMP group (2.4%) and none in the non-BMP group. No deep infections were observed in the BMP group, and in one patient in the non-BMP group (0.96%). Although patients exposed to BMP were at a significantlygreater risk of developing radiculitis and seroma (odds ratio [OR]=4.53, confidence interval [CI]=1.42-14.5), BMP exposure was not a significant predictor of surgical complications (OR=0.32, CI=0.10-1.00) or overall complications (OR=1.11, CI=0.53-2.34). The outcome of TLIF-related complications was too rare and the confidence interval too wide for practical significance of the first model. Evidence supports the hypothesis that off-label use of rhBMP-2 in TLIF procedures is relatively effective for achieving bone fusion at rates similar to patients receiving autograft. Patients exhibited similar complication rates between the two groups, with the BMP group exhibiting slightly higher rates of radiculitis and seroma. Copyright © 2017 Elsevier Inc. All rights reserved.
Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo
2017-03-01
Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.
Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.
2010-01-01
Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment load decreases to occur; (4) long-term monitoring on the order of decades can be required to detect meaningful changes in water quality in response to BMP implementation; and (5) all consequences of specific BMPs need to be considered when considering strategies for watershed protection.
Emma L. Witt; Christopher D. Barton; Jeffrey W. Stringer; Randy Kolka; Mac A. Cherry
2016-01-01
Streamside management zones (SMZs) are a common best management practice (BMP) used to reduce water quality impacts from logging. The objective of this research was to evaluate the impact of varying SMZ configurations on water quality. Treatments (T1, T2, and T3) that varied in SMZ width, canopy retention within the SMZ, and BMP utilization were applied at the...
Spatio-temporal effects of low impact development practices
NASA Astrophysics Data System (ADS)
Gilroy, Kristin L.; McCuen, Richard H.
2009-04-01
SummaryThe increase in land development and urbanization experienced in the US and worldwide is causing environmental degradation. Traditional off-site stormwater management does not protect small streams. To mitigate the negative effects of land development, best management practices (BMPs) are being implemented into stormwater management policies for the purposes of controlling minor flooding and improving water quality. Unfortunately, the effectiveness of BMPs has not been extensively studied. The purpose of this research was to analyze the effects of both location and quantity of two types of BMPs: cisterns and bioretention pits. A spatio-temporal model of a microwatershed was developed to determine the effects of BMPs on single-family, townhome, and commercial lots. The effects of development and the BMPs on peak runoff rates and volumes were compared to pre-development conditions. The results show that cisterns alone are capable of controlling rooftop runoff for small storms. Both the spatial location and the volume of BMP storage on a microwatershed influences the effectiveness of BMPs. The volume of BMP storage is positively correlated to the percent reduction in the peak discharge rate and total runoff volume; however, location is a factor in the peak reduction and a maximum volume of effective storage for both hydrologic metrics does exist. These results provide guidelines for developing stormwater management policies that can potentially reduce pollution of first-order streams, lower the cost and maintenance requirements, enhance aesthetics, and increase safety.
Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review.
Faundez, Antonio; Tournier, Clément; Garcia, Matthieu; Aunoble, Stéphane; Le Huec, Jean-Charles
2016-06-01
Because of significant complications related to the use of autologous bone grafts in spinal fusion surgery, bone substitutes and growth factors such as bone morphogenetic protein (BMP) have been developed. One of them, recombinant human (rh) BMP-2, has been approved by the Food and Drug Administration (FDA) for use under precise conditions. However, rhBMP-2-related side effects have been reported, used in FDA-approved procedures, but also in off-label use.A systematic review of clinical data was conducted to analyse the rhBMP-2-related adverse events (AEs), in order to assess their prevalence and the associated surgery practices. Medline search with keywords "bone morphogenetic protein 2", "lumbar spine", "anterolateral interbody fusion" (ALIF) and the filter "clinical trial". FDA published reports were also included. Study assessment was made by authors (experienced spine surgeons), based on quality of study designs and level of evidence. Extensive review of randomised controlled trials (RCTs) and controlled series published up to the present point, reveal no evidence of a significant increase of AEs related to rhBMP-2 use during ALIF surgeries, provided that it is used following FDA guidelines. Two additional RCTs performed with rhBMP-2 in combination with allogenic bone dowels reported increased bone remodelling in BMP-treated patients. This AE was transient and had no consequence on the clinical outcome of the patients. No other BMP-related AEs were reported in these studies. This literature review confirms that the use of rhBMP-2 following FDA-approved recommendations (i.e. one-level ALIF surgery with an LT-cage) is safe. The rate of complications is low and the AEs had been identified by the FDA during the pre-marketing clinical trials. The clinical efficiency of rhBMP-2 is equal or superior to that of allogenic or autologous bone graft in respect to fusion rate, low back pain disability, patient satisfaction and rate of re-operations. For all other off-label use, the safety and effectiveness of rhBMP-2 have not been established, and further RCTs with high level of evidence are required.
Quantifying Construction Site Sediment Discharge Risk and Treatment Potential
NASA Astrophysics Data System (ADS)
Ferrell, L.; Beighley, R. E.
2006-12-01
Dealing with soil erosion and sediment transport can be a significant challenge during the construction process due to the potentially large spatial and temporal extent and conditions of bare soils. Best Management Practices (BMP) are commonly used to eliminate or reduce offsite discharge of sediment. However, few efforts have investigated the time varying risk of sediment discharge from construction sites, which often have dynamic soil conditions and the potential for less than optimal BMP installations. The goal of this research is to improve the design, implementation and effectiveness of sediment and erosion control at construction sites using site specific, temporal distributions of sediment discharge risk. Sediment risk is determined from individual factors leading to sediment expert, such as rainfall frequency, the adequacy of BMP installations, and the extent and duration of bare soil conditions. This research specifically focuses on quantifying: (a) the effectiveness of temporary sediment and control erosion control BMPs in preventing, containing, and/or treating construction site sediment discharge at varying levels of "proper" installation, and (b) sediment discharge potential from construction sites during different phases of construction, (ex., disturbed earth operations). BMPs are evaluated at selected construction sites in southern California and at the Soil Erosion Research Laboratory (SERL) in the Civil and Environmental Engineering department at San Diego State University. SERL experiments are performed on a 3-m by 10-m tilting soil bed with soil depths up to 1 meter, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). BMP performance is assessed based on experiments where BMPs are installed per manufacture specifications, potential less than optimal installations, and no treatment conditions. Soil conditions are also varied to represent site conditions during different phases of construction (i.e., loose lifts, stock piles, temporary roads, finished grade, others). Preliminary site monitoring, experimental results, and a conceptual model for estimating the time depend risk of sediment discharge over the duration of a construction project are presented.
Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.
2013-01-01
Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.
Mtibaa, Slim; Hotta, Norifumi; Irie, Mitsuteru
2018-03-01
Soil erosion can be reduced through the strategic selection and placement of best management practices (BMPs) in critical source areas (CSAs). In the present study, the Soil Water Assessment Tool (SWAT) model was used to identify CSAs and investigate the effectiveness of different BMPs in reducing sediment yield in the Joumine watershed, an agricultural river catchment located in northern Tunisia. A cost-benefit analysis (CBA) was used to evaluate the cost-effectiveness of different BMP scenarios. The objective of the present study was to determine the most cost-effective management scenario for controlling sediment yield. The model performance for the simulation of streamflow and sediment yield at the outlet of the Joumine watershed was good and satisfactory, respectively. The model indicated that most of the sediment was originated from the cultivated upland area. About 34% of the catchment area consisted of CSAs that were affected by high to very high soil erosion risk (sediment yield >10t/ha/year). Contour ridges were found to be the most effective individual BMP in terms of sediment yield reduction. At the watershed level, implementing contour ridges in the CSAs reduced sediment yield by 59%. Combinations of BMP scenarios were more cost-effective than the contour ridges alone. Combining buffer strips (5-m width) with other BMPs depending on land slope (> 20% slope: conversion to olive orchards; 10-20% slope: contour ridges; 5-10% slope: grass strip cropping) was the most effective approach in terms of sediment yield reduction and economic benefits. This approach reduced sediment yield by 61.84% with a benefit/cost ratio of 1.61. Compared with the cost of dredging, BMPs were more cost-effective for reducing sediment loads to the Joumine reservoir, located downstream of the catchment. Our findings may contribute to ensure the sustainability of future conservation programs in Tunisian regions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilliom, R.; Hogue, T. S.; McCray, J. E.
2017-12-01
There is a need for improved parameterization of stormwater best management practices (BMP) performance estimates to improve modeling of urban hydrology, planning and design of green infrastructure projects, and water quality crediting for stormwater management. Percent removal is commonly used to estimate BMP pollutant removal efficiency, but there is general agreement that this approach has significant uncertainties and is easily affected by site-specific factors. Additionally, some fraction of monitored BMPs have negative percent removal, so it is important to understand the probability that a BMP will provide the desired water quality function versus exacerbating water quality problems. The widely used k-C* equation has shown to provide a more adaptable and accurate method to model BMP contaminant attenuation, and previous work has begun to evaluate the strengths and weaknesses of the k-C* method. However, no systematic method exists for obtaining first-order removal rate constants needed to use the k-C* equation for stormwater BMPs; thus there is minimal application of the method. The current research analyzes existing water quality data in the International Stormwater BMP Database to provide screening-level parameterization of the k-C* equation for selected BMP types and analysis of factors that skew the distribution of efficiency estimates from the database. Results illustrate that while certain BMPs are more likely to provide desired contaminant removal than others, site- and design-specific factors strongly influence performance. For example, bioretention systems show both the highest and lowest removal rates of dissolved copper, total phosphorous, and total nitrogen. Exploration and discussion of this and other findings will inform the application of the probabilistic pollutant removal rate constants. Though data limitations exist, this research will facilitate improved accuracy of BMP modeling and ultimately aid decision-making for stormwater quality management in urban systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2011-04-30
This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closedmore » by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.« less
STORMWATER POLLUTION ABATEMENT TECHNOLOGIES
This publication presents information regarding best management practices (BMP's) and pollution abatement technologies that can provide treatment of urban stormwater runoff. ncluded in the text are a general approach which considers small storm hydrology, and watershed practices ...
Uncertainty in BMP evaluation and optimization for watershed management
NASA Astrophysics Data System (ADS)
Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.
2012-12-01
Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.
Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming
2008-01-17
In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin.
Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.
McCarthy, Bryce; Yuan, Yuan; Koria, Piyush
2016-07-08
Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng
2015-03-01
Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.
URBAN STORMWATER BEST MANAGEMENT PRACTICE (BMP) RESEARCH
Presentation on urban best management practice research conducted by the Urban Watershed Research Branch. The presentation to Region 3 started with Branch history, discussed results of recent projects, identified mechanisms for collaboration between ORD and Regions and discussed ...
STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 2 - VEGETATIVE BIOFILTERS
This document is Volume 2 of a three volume document that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This second volume provides specific design guidance for a group of onsite BMP control practices that are referred t...
Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A
2015-04-01
The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.
COST ESTIMATING EQUATIONS FOR BEST MANAGEMENT PRACTICES
This paper describes the development of an interactive internet-based cost-estimating tool for commonly used urban storm runoff best management practices (BMP), including: retention and detention ponds, grassed swales, and constructed wetlands. The paper presents the cost data, c...
Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth.
Poh, Chye Khoon; Shi, Zhilong; Tan, Xiao Wei; Liang, Zhen Chang; Foo, Xue Mei; Tan, Hark Chuan; Neoh, Koon Gee; Wang, Wilson
2011-09-01
Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications. Copyright © 2011 Orthopaedic Research Society.
Characterization of Reversibly Immortalized Calvarial Mesenchymal Progenitor Cells.
Shenaq, Deana S; Teven, Chad M; Seitz, Iris A; Rastegar, Farbod; Greives, Matthew R; He, Tong-Chuan; Reid, Russell R
2015-06-01
Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of cell-based strategies. To isolate and immortalize calvarial cells as a potential progenitor source for osseous tissue engineering. Cells were isolated from murine skulls, cultured, and transduced with a retroviral vector bearing the loxP-flanked SV40 large T antigen. Immortalized calvarial cells (iCALs) were evaluated via light microscopy, immunohistochemistry, and flow cytometry to determine whether the immortalization process altered cell morphology or progenitor cell profile. Immortalized calvarial cells were then infected with adenoviral vectors encoding BMP-2 or GFP and assessed for early and late stages of osteogenic differentiation. Immortalization of calvarial cells did not alter cell morphology as demonstrated by phase contrast microscopy. Mesenchymal progenitor cell markers CD166, CD73, CD44, and CD105 were detected at varying levels in both primary cells and iCALs. Significant elevations in alkaline phosphatase activity, osteocalcin mRNA transcription, and matrix mineralization were detected in BMP-2 treated iCALs compared with GFP-treated cells. Gross and histological analyses revealed ectopic bone production from treated cells compared with controls in an in vivo stem cell implantation assay. We have established an immortalized osteoprogenitor cell line from juvenile calvarial cells that retain a progenitor cell phenotype and can successfully undergo osteogenic differentiation upon BMP-2 stimulation. These cells provide a valuable platform to investigate the molecular mechanisms underlying intramembranous bone formation and to screen for factors/small molecules that can facilitate the healing of osseous defects in the craniofacial skeleton.
NASA Astrophysics Data System (ADS)
Eshleman, Keith N.; Sabo, Robert D.
2016-12-01
Reducing nutrient pollution of surface and coastal waters in the U.S. and elsewhere remains a major environmental and engineering challenge for the 21st century. In the case of the Chesapeake Bay restoration, we still lack scientific proof that watershed-based management actions have been effective at reducing nonpoint-source nutrient loads from the land to this estuary in accordance with restoration goals. While the conventional wisdom is that implementation of best management practices (BMP's) and wastewater treatment have turned the tide against nutrient pollution, we examined long-term (1986-present) nitrate-N trends in streams and major tributaries of the Upper Potomac River Basin (UPRB) and found that: 1) dramatic reductions in annual discharge-weighted mean nitrate-N concentrations and yields across the UPRB can be almost universally attributed to reductions in atmospheric N deposition as opposed to on-the-ground management actions such as implementation of BMP's; 2) observed water quality changes generally comport with a modified kinetic N saturation model (MKNSM); 3) the MKNSM can separate the nitrate-N yield that is responsive to atmospheric deposition from a "non-responsive" yield; and 4) N saturation from atmospheric N deposition appears to be an inherently reversible process across most of the landscape. These unanticipated region-wide water quality benefits can be attributed to NOx emission controls brought about by the 1990 Clean Air Act Amendments (and subsequent U.S. NOX control programs) and reflect a water quality "success story" in the Chesapeake Bay restoration.
Pizzuto, James; Schenk, Edward R.; Hupp, Cliff R.; Gellis, Allen; Noe, Greg; Williamson, Elyse; Karwan, Diana L.; O'Neal, Michael; Marquard, Julia; Aalto, Rolf E.; Newbold, Denis
2014-01-01
Watershed Best Management Practices (BMPs) are often designed to reduce loading from particle-borne contaminants, but the temporal lag between BMP implementation and improvement in receiving water quality is difficult to assess because particles are only moved downstream episodically, resting for long periods in storage between transport events. A theory is developed that describes the downstream movement of suspended sediment particles accounting for the time particles spend in storage given sediment budget data (by grain size fraction) and information on particle transit times through storage reservoirs. The theory is used to define a suspended sediment transport length scale that describes how far particles are carried during transport events, and to estimate a downstream particle velocity that includes time spent in storage. At 5 upland watersheds of the mid-Atlantic region, transport length scales for silt-clay range from 4 to 60 km, while those for sand range from 0.4 to 113 km. Mean sediment velocities for silt-clay range from 0.0072 km/yr to 0.12 km/yr, while those for sand range from 0.0008 km/yr to 0.20 km/yr, 4–6 orders of magnitude slower than the velocity of water in the channel. These results suggest lag times of 100–1000 years between BMP implementation and effectiveness in receiving waters such as the Chesapeake Bay (where BMPs are located upstream of the characteristic transport length scale). Many particles likely travel much faster than these average values, so further research is needed to determine the complete distribution of suspended sediment velocities in real watersheds.
NASA Astrophysics Data System (ADS)
Cronenberger, M. S.; McMillan, S. K.
2011-12-01
Increasing urbanization and the subsequent disruption of floodplains has led to the need for implementing stormwater management strategies to mitigate the effects of urbanization, including soil and streambank erosion, increased export of nutrients and contaminants and decreased biotic richness. Excessive stormwater runoff due to the abundance of impervious surfaces associated with an urban landscape has led to the ubiquitous use of best management practices (BMPs) to attenuate runoff events and prevent the destructive delivery of large volumes of water to stream channels. As a result, effluent from BMPs (i.e. wetlands and wet ponds) has the potential to alter the character of the receiving stream channel and thus, key ecosystem processes such as denitrification. The purpose of this study was to determine the extent to which BMPs, in the form of constructed wetlands and wet ponds, influence in-stream denitrification rates in the urban landscape of Charlotte, NC. Four sites, two of each BMP type, were evaluated. Sediment samples were collected upstream and downstream of the BMP outflow from May-July 2011 to determine the effect of wetland discharge on in-stream nitrogen removal via denitrification. Denitrification rates were determined using the acetylene block method; water column nutrient and carbon concentrations and sediment organic matter content were also measured. Generally, wetland sites exhibited higher denitrification rates, nitrate concentrations and sediment organic matter content. Our work and others has demonstrated a significant positive correlation between nitrate concentration and denitrification rates, which is the likely driver of the higher observed rates at the wetland sites. Geomorphology was also found to be a key factor in elevated denitrification rates at sites with riffles and boulder jams. Sediment organic matter was found to be higher downstream of BMP outflows at all four sites, but demonstrated no significant relationship with denitrification rates. We are continuing to investigate these spatial (e.g. BMPs, streams) and temporal (e.g. storm pulse, delayed wetland release) patterns, particularly in the context of factors that influence the specific drivers of denitrification. Understanding these patterns is critical to managing stormwater in urban landscapes as we aim to improve water quality while enhancing ecosystem functions.
Rivera, Samuel; Kershner, Jeffrey L.; Keller, Gordon R.
2009-01-01
Testing road surface treatments to reduce erosion in forest roads in Honduras. Cien. Inv. Agr. 36(3):425-432. Using forest roads produces more erosion and sedimentation than any other forest or agricultural activity. This study evaluated soil losses from a forest road in central Honduras over two consecutive years. We divided a 400-m segment of road into 8 experimental units, each 50 m in length. Four units were treated with Best Management Practices (BMPs) and four were left untreated. The BMP treatments included reshaping the road prism, installing culverts and reshaping of road ditches, compacting 20-cm layers of the road tread, crowning the road surface (3% slope, double drainage), longitudinal sloping (less than 12%), and adding a 10-cm layer of gravel (crush size = 0.63 cm). Soil movement was measured daily during the rainy seasons. The highest soil loss occurred in the control road, around 500 m3 km-1 per year, while the road treated with BMP lost approximately 225 m3km-1 per year. These results show that road surface erosion can be reduced up to 50% with the implementation of surface treatments.
NASA Astrophysics Data System (ADS)
Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn
2015-03-01
Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.
Monitoring of a Best Management Practice Wetland Before and After Maintenance
The USEPA’s Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its overall research program. One such project monitored a retention pond with wetland plantings in the Richmond Creek (RC) watershed; one of several in...
There is currently a dearth of data characterizing best management practice impacts on runoff production at the parcel-level. This data is of critical importance insofar as judging the effectiveness and reliability of on-site stormwater BMPs, with significant implications for bot...
Bone Morphogenetic Protein 15 (BMP15) Acts as a BMP and Wnt Inhibitor during Early Embryogenesis*
Di Pasquale, Elisa; Brivanlou, Ali H.
2009-01-01
Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor β (TGFβ) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of β-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure. PMID:19553676
USDA-ARS?s Scientific Manuscript database
The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...
Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.
Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L
2018-01-01
Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1
Brigaud, Isabelle; Agniel, Rémy; Leroy-Dudal, Johanne; Kellouche, Sabrina; Ponche, Arnaud; Bouceba, Tahar; Mihailescu, Natalia; Sopronyi, Mihai; Viguier, Eric; Ristoscu, Carmen; Sima, Felix; Mihailescu, Ion N; Carreira, Ana Claudia O; Sogayar, Mari Cleide; Gallet, Olivier; Anselme, Karine
2017-06-01
Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leta, O. T.; Dulai, H.; El-Kadi, A. I.
2017-12-01
Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate of the impact that each BMP has on specific land use and Fagaalu's reef. It also offers information that may be useful for the coastal water resource management and mitigation measures to reduce sediment yield of the study site and similar areas.
Reuss, Jose M; Pi-Anfruns, Joan; Moy, Peter K
2018-04-01
The aim of this study was to assess the clinical effectiveness of alveolar distraction osteogenesis (ADO) versus recombinant human bone morphogenetic protein-2 (rh-BMP-2) for vertical ridge augmentation. Few data have been published on vertical bone regeneration using rh-BMP-2. The authors implemented a retrospective cohort study and enrolled a sample composed of patients with deficient alveolar vertical bone height. The primary predictor variable was vertical augmentation with BMP-2 and a titanium mesh or ADO. The primary outcome variable was gain in vertical bone height (millimeters) measured using computed tomography. The secondary outcome variable was postoperative complications, namely need for further grafting before or simultaneous with implant placement, soft tissue dehiscence, paresthesia, infection, implant failure, and pain. Other outcomes included implant stability at time of placement and follow-up (implant stability quotient by resonance frequency analysis), surgical time (minutes), and total treatment time until implant placement (weeks). Other study variables included location of reconstruction (maxilla or mandible). Appropriate bivariate statistics were computed and statistical significance was set a P value less than .05. The retrospective review yielded 21 patients in the BMP group and 19 in the ADO group. For the BMP-2 group, the average vertical bone gain was 2.96 ± 1.8 mm overall (maxilla, mean 3.6 ± 3.1 mm; mandible, mean 2.32 ± 1.8 mm). For the ADO group, this gain was 4 ± 1.69 mm overall (maxilla, mean 2.8 ± 1.94 mm; mandible, mean 5.2 ± 4.67 mm). For complications, group BMP showed a statistically minor tendency for more postoperative problems, such as wound dehiscence. For implant survival, group BMP showed a 92.2% survival rate versus 96.3% in group ADO at 3 to 45 months after delivery of the prosthesis (average, 22 months). The 2 techniques showed similar values in absolute vertical bone gain. Group ADO showed a slightly better outcome in outright vertical regenerative potential, albeit with a more frequent need for regrafting before and simultaneous with implant placement. Group BMP showed a lesser need for regrafting, despite having a higher postoperative complication rate. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Park, Daeryong; Roesner, Larry A
2012-12-15
This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rogers, M B
1996-01-01
The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.
40 CFR 440.148 - Best Management Practices (BMP).
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...
40 CFR 440.148 - Best Management Practices (BMP).
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...
40 CFR 440.148 - Best Management Practices (BMP).
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...
Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F
2012-02-01
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
NASA Astrophysics Data System (ADS)
Eshleman, K. N.; Sabo, R.
2015-12-01
Reducing nutrient pollution of surface and coastal waters in the U.S. and elsewhere remains a major environmental and engineering challenge for the 21st century. In the case of the Chesapeake Bay restoration, we still lack scientific proof that previous watershed-based management actions have been effective at reducing nonpoint-source nutrient loads from the land to this estuary in accordance with restoration goals. While the conventional wisdom is that implementation of best management practices (BMP's) has turned the against nutrient pollution, we examined long-term (1986-present) nitrate-N trends in streams and major tributaries of the Upper Potomac River Basin (UPRB) and found that: 1) dramatic reductions in annual discharge-weighted nitrate-N concentrations and yields across the UPRB can be almost universally attributed to reductions in atmospheric N deposition as opposed to on-the-ground management actions such as implementation of BMP's; 2) observed water quality changes comport with a modified kinetic N saturation model (MKNSM); 3) the MKNSM can separate the nitrate-N yield that is responsive to atmospheric deposition from a "legacy" yield; and 4) N saturation from atmospheric N deposition appears to be an inherently reversible process across most of the landscape. These unanticipated region-wide water quality benefits can be attributed to NOx emission controls brought about by the 1990 Clean Air Act Amendments (and subsequent U.S. NOX control programs) and reflect one of a very few water quality "success stories" in the Chesapeake Bay restoration; the results have important ramifications for the 2017 "mid-point assessment" that is part of the latest Chesapeake Bay Watershed Agreement.
Harada, Yasuji; Itoi, Takamasa; Wakitani, Shigeyuki; Irie, Hiroyuki; Sakamoto, Michiko; Zhao, Dongwei; Nezu, Yoshinori; Yogo, Takuya; Hara, Yasushi; Tagawa, Masahiro
2012-07-01
Because bone morphogenetic protein 2 gene transfected Escherichia coli (E-BMP-2) produce recombinant human BMP-2 (rhBMP-2) more efficiently than mammalian cells (Chinese hamster ovary [CHO]-BMP-2), they may be a more cost-effective source of rhBMP-2 for clinical use. However, use of E-BMP-2 for regenerating long bones in large animals has not been reported. In the current study, we evaluated the healing efficacy of E-BMP-2 in a canine model. We created 2.5-cm critical-size segmental ulnar defects in test animals, then implanted E-BMP-2 and 700 mg of artificial bone (beta-tricalcium phosphate; β-TCP) into the wounds. We examined the differential effects of 5 E-BMP-2 treatments (0, 35, 140, 560, and 2240 μg) across 5 experimental groups (control, BMP35, BMP140, BMP560, and BMP2240). Radiography and computed tomography were used to observe the regeneration process. The groups in which higher doses of E-BMP-2 were administered (BMP560 and BMP2240) displayed more pronounced bone regeneration; the regenerated tissues connected to the host bone, and the cross-sectional areas of the regenerated bone were larger than those of the originals. The groups in which lower doses of E-BMP-2 were administered (BMP35 and BMP140) experienced relatively less bone regeneration; furthermore, the regenerated tissues failed to connect to the host bone. In these groups, the cross-sectional areas of the regenerated bone were equal to or smaller than those of the originals. No regeneration was observed in the control group. These findings suggest that, like CHO-BMP-2, E-BMP-2 can be used for the regeneration of large defects in long bones and that its clinical use might decrease the cost of bone regeneration treatments.
Zhang, Han; Klausen, Christian; Zhu, Hua; Chang, Hsun-Ming; Leung, Peter C K
2015-11-01
Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.
NASA Astrophysics Data System (ADS)
Hagedorn, J.; Zhu, Q.; Davidson, E. A.; Castro, M.
2017-12-01
Managing resources wisely while reducing environmental impact is the backbone of agricultural sustainability. Agricultural practices must develop strategies to effectively reduce nutrient runoff from farmed lands. Preliminary research suggests that one such strategy is drainage water management by which water levels are intentionally elevated following fertilization to favor subsoil denitrification and thereby reduce nitrogen leaching into groundwater and streams. Despite documented success in nitrate reduction, this best management practice (BMP) has not been widely adopted in part because users are not aware of the potential. But before extension agencies begin promoting this practice, evaluation of unintentional consequences must be studied. There is a risk that by elevating water levels for the purpose of creating suitable conditions for denitrification, more potent greenhouse gases such as nitrous oxide (N2O) and methane (CH4) could be produced, in which case the practice would be swapping one form of pollution for another. A multi-scale experimental design, using soil chambers and a tower-based gradient method, was implemented in a drainage water managed corn-soybean system on the Eastern Shore of Maryland. Emissions, soil moisture content, and soil nitrate measurements have been collected and analyzed to evaluate for differences between treatment and control plots as standard farm management practices, such as fertilization, occur. Preliminary results based on monthly sampling of transects of stationary soil chambers characterize the spatial heterogeneity of the fields and reveal that there are detectable differences in N2O and CH4 emissions between fields. There are also significant relationships between soil moisture, soil nitrate content and N2O emissions. The tower-based gradient method with micrometerological measurements provides high temporal resolution at the full field scale that complements the soil chamber work. This multi-scale resolution balance enables us to more accurately quantify this pollution swapping concern and demonstrates the efficacy of reducing nutrient runoff compared to risks of increased greenhouse gas emissions for a BMP that has transformative potential for sustainable agriculture.
Hydraulic characteristics of low-impact development practices in northeastern Ohio, 2008–2010
Darner, Robert A.; Dumouchelle, Denise H.
2011-01-01
Low-impact development (LID) is an approach to managing stormwater as near to its source as possible; this is accomplished by minimizing impervious surfaces and promoting more natural infiltration and evapotranspiration than is typically associated with developed areas. Two newly constructed LID sites in northeastern Ohio were studied to document their hydraulic characteristics. A roadside best-management practice (BMP) was constructed by replacing about 1,400 linear feet of existing ditches with a bioswale/rain garden BMP consisting of a grassed swale interspersed with rain-garden/overflow structures. The site was monitored in 2008, 2009, and 2010. Although some overflows occurred, numerous precipitation events exceeding the 0.75-inch design storm did not result in overflows. A second study site consists of an 8,200-square-foot parking lot made of a pervious pavers and a rain garden that receives runoff from the roof of a nearby commercial building. A comparison of data from 2009 and 2010 indicates that the median runoff volume in 2010 decreased relative to 2009. The centroid lag times (time difference between centroid of precipitation and centroid of flow) decreased in 2010, most likely due to more intense, shorter duration precipitation events and maturation of the rain garden. Additional data could help quantify the relation between meteorological variables and BMP efficiency.
DOT National Transportation Integrated Search
2006-05-01
This research has provided NCDOT with (1) scientific observations to validate the pollutant removal : performance of selected structural BMPs, (2) a database management option for BMP monitoring and : non-monitoring sites, (3) pollution prevention pl...
Collick, A S; Fogarty, E A; Ziegler, P E; Walter, M T; Bowman, D D; Steenhuis, T S
2006-01-01
Pathogen contamination of the public drinking water supply in the New York City watersheds is a serious concern. New York City's Watershed Agriculture Program is working with dairy farms in the watersheds to implement management practices that will reduce the risk of pathogens contaminating the water supply. Solar calf housing (SCH) was suggested as a best management practice (BMP) to control Cryptosporidium parvum, a common protozoan parasite that causes disease in humans. This BMP targets young calves because they are the primary source of C. parvum in dairy herds. The objective of this project was to assess and compare the survivability of C. parvum in SCH and in conventional calf housing (CCH), usually located in the main barn. C. parvum oocysts were secured in sentinel chambers and placed in SCH and CCH bedding on four farms. The chambers were in thermal, chemical, and moisture equilibrium with their microenvironments. An oocyst-filled control chamber, sealed from its surroundings, was placed near each chamber. Chambers and controls were sampled after 4, 6, and 8 wk. Oocyst viability in the chambers decreased to less than 10% in warm months and between 15 and 30% in the winter months. The viability of the control oocysts was similar to the chambers during warm months and generally higher during winter months. There was no significant (P > 0.05) difference in the viability decrease between SCH and CCH. Although oocyst viability was similar in both types of calf housing, SCH allow contaminated calf manure to be isolated from the main barn manure and potentially managed differently and in a way to decrease the number of viable oocysts entering the environment during field spreading.
Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A
2016-04-01
Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; De Geus, D.; Ekkelenkamp, R.
2016-12-01
Sociological surveys suggest that farmers understand that agriculture contributes to nutrient pollution but the same surveys also indicate that in the absence of on-farm nitrate data, farmers assume someone else is causing the problem. This tendency to overestimate our own abilities is common to all of us and often described as "Lake Wobegon Syndrome" after the mythical town where "where all the women are strong, all the men are good-looking, and all the children are above average." We developed the Nitrate App for smartphones to enable farmers and citizens to collect and share nitrate concentration measurements. The app accurately reads and interprets nitrate test strips, directly displays the measured concentration, and gives the option to share the result. The shared results are immediately visualised in the online Delta Data Viewer. Within this viewer, user group specific combinations of background maps, monitoring data, and study area characteristics can be configured. Through the Nitrate App's mapping function project managers can more accurately target conservation practices to areas with the highest nitrate concentrations and loads. Furthermore, we expect that the actual on-farm data helps to overcome the "Lake Wobegon Effect" and will encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. After implementing these BMP's, the farmers can keep monitoring to evaluate the reduction in nitrate losses. In this presentation, we explain the Nitrate App technology and present the results of the first field applications in The Netherlands. We expect this free to download app to have wide transferability across watershed projects worldwide focusing on nitrate contamination of groundwater or surface water. Its simple design requires no special equipment outside of the nitrate test strips, a reference card, and a smartphone. The technology is also transferable to other relevant solutes for which test strips are available, like ammonium, phosphate, sulphate, chloride, and pH.
Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document.more » The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12-60-01, Drilling/Welding Shop Outfalls, contains no COCs above action levels. No further action is required for this site; however, as a BMP, three drain pipe openings will be sealed with grout.« less
Forestry best management practices and sediment control at skidder stream crossings
Laura R. Wear; W. Michael Aust; M. Chad Bolding; Brian D. Strahm; Andrew C. Dolloff
2015-01-01
Stream crossings for skid trails have high sediment delivery ratios. Forestry Best Management Practices (BMPs) have proven to be effective for erosion control, but few studies have quantified the impact of various levels of BMPs on sedimentation. In this study, three skid-trail stream-crossing BMP treatments were installed on nine operational stream crossings (three...
Andrew James Londo; John Benkert Auel
2004-01-01
This study examined the knowledge levels of Mississippi nonindustrial private forest (NIPF) landowners relative to best management practices (BMPs) for water quality. Data were collected through surveys of participants in BMP programs held in conjunction with County Forestry Association (CFA) meetings throughout Mississippi during 2001-02. Ten CFAs participated in this...
Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu
2017-11-01
Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reck-Burneo, Carlos A; Vilanova-Sanchez, Alejandra; Gasior, Alessandra C; Dingemans, Alexander J M; Lane, Victoria A; Dyckes, Robert; Nash, Onnalisa; Weaver, Laura; Maloof, Tassiana; Wood, Richard J; Zobell, Sarah; Rollins, Michael D; Levitt, Marc A
2018-03-24
Published health-care costs related to constipation in children in the USA are estimated at $3.9 billion/year. We sought to assess the effect of a bowel management program (BMP) on health-care utilization and costs. At two collaborating centers, BMP involves an outpatient week during which a treatment plan is implemented and objective assessment of stool burden is performed with daily radiography. We reviewed all patients with severe functional constipation who participated in the program from March 2011 to June 2015 in center 1 and from April 2014 to April 2016 in center 2. ED visits, hospital admissions, and constipation-related morbidities (abdominal pain, fecal impaction, urinary retention, urinary tract infections) 12 months before and 12 months after completion of the BMP were recorded. One hundred eighty-four patients were included (center 1 = 96, center 2 = 88). Sixty-three (34.2%) patients had at least one unplanned visit to the ED before treatment. ED visits decreased to 23 (12.5%) or by 64% (p < 0.0005). Unplanned hospital admissions decreased from 65 to 28, i.e., a 56.9% reduction (p < 0.0005). In children with severe functional constipation, a structured BMP decreases unplanned visits to the ED, hospital admissions, and costs for constipation-related health care. 3. Copyright © 2018. Published by Elsevier Inc.
Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz
2016-03-01
Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment of contaminated roadway runoff using vegetated filter strips.
DOT National Transportation Integrated Search
2009-01-01
The overall goal of this field study was to evaluate the potential effectiveness of vegetated highway embankments as a stormwater runoff best management practice (BMP) for retention of metals, polycyclic aromatic hydrocarbons (PAHs), and particulates...
Maintenance and Monitoring of BMPS
Two best management practice (BMP) sites in the Staten Island Bluebelt in Richmond Creek Watershed are Richmond Creek 5 (RC-5) and Richmond Creek 4 (RC-4). This presentation includes site description, briefing of initial monitoring activity, representative maintenance activity, ...
Stormwater BMP Effectiveness Toolkit
US EPA has identified the effectiveness of Stormwater Best Management Practices (BMPs) as a priority research need. Effective protection of biotic integrity requires that processes maintaining the diversity of physical habitats be protected. Methods are needed to evaluate the e...
Stormwater pollution treatment BMP discharge structures.
DOT National Transportation Integrated Search
2014-03-01
Structural best management practices (BMPs) are used to capture and treat stormwater runoff. Most structural BMPs provide treatment by filtering : runoff through a filter media or collecting it in a detention basin and slowly discharging it over an e...
40 CFR 440.148 - Best Management Practices (BMP).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory § 440.148...: The amount of new water allowed to enter the plant site for use in ore processing shall be limited to...
BMP4 and FGF3 haplotypes increase the risk of tendinopathy in volleyball athletes.
Salles, José Inácio; Amaral, Marcus Vinícius; Aguiar, Diego Pinheiro; Lira, Daisy Anne; Quinelato, Valquiria; Bonato, Letícia Ladeira; Duarte, Maria Eugenia Leite; Vieira, Alexandre Rezende; Casado, Priscila Ladeira
2015-03-01
To investigate whether genetic variants can be correlated with tendinopathy in elite male volleyball athletes. Case-control study. Fifteen single nucleotide polymorphisms within BMP4, FGF3, FGF10, FGFR1 genes were investigated in 138 elite volleyball athletes, aged between 18 and 35 years, who undergo 4-5h of training per day: 52 with tendinopathy and 86 with no history of pain suggestive of tendinopathy in patellar, Achilles, shoulder, and hip abductors tendons. The clinical diagnostic criterion was progressive pain during training, confirmed by magnetic resonance image. Genomic DNA was obtained from saliva samples. Genetic markers were genotyped using TaqMan real-time PCR. Chi-square test compared genotypes and haplotype differences between groups. Multivariate logistic regression analyzed the significance of covariates and incidence of tendinopathy. Statistical analysis revealed participant age (p=0.005) and years of practice (p=0.004) were risk factors for tendinopathy. A significant association between BMP4 rs2761884 (p=0.03) and tendinopathy was observed. Athletes with a polymorphic genotype have 2.4 times more susceptibility to tendinopathy (OR=2.39; 95%CI=1.10-5.19). Also, association between disease and haplotype TTGGA in BMP4 (p=0.01) was observed. The FGF3 TGGTA haplotype showed a tendency of association with tendinopathy (p=0.05), and so did FGF10 rs900379. FGFR1 showed no association with disease. These findings indicate that haplotypes in BMP4 and FGF3 genes may contribute to the tendon disease process in elite volleyball athletes. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng
2015-11-01
Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin
Zhang, Xiaochen; Yu, Quan; Wang, Yan-An; Zhao, Jun
2018-01-01
To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2) are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. A new growth factor delivery system was fabricated using BMP-2-loaded TiO 2 nanotubes by lyophilization with trehalose (TiO 2 -Lyo-Tre-BMP-2). We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT), sequential fluorescent labelling, and histological analysis. Compared with absorbed BMP-2-loaded TiO 2 nanotubes (TiO 2 -BMP-2), TiO 2 -Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO 2 -Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO 2 -BMP-2 nanotubes. Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects.
Periosteal BMP2 activity drives bone graft healing.
Chappuis, Vivianne; Gamer, Laura; Cox, Karen; Lowery, Jonathan W; Bosshardt, Dieter D; Rosen, Vicki
2012-10-01
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Systems biology derived source-sink mechanism of BMP gradient formation
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei
2017-01-01
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. PMID:28826472
Systems biology derived source-sink mechanism of BMP gradient formation.
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C
2017-08-09
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.
Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.
Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin
2014-03-01
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.
Hemmat, Abbas; Kafashan, Jalal; Huang, Hongying
2017-01-01
To study the optimum process conditions for pretreatments and anaerobic codigestion of oil refinery wastewater (ORWW) with chicken manure, L9 (34) Taguchi's orthogonal array was applied. The biogas production (BGP), biomethane content (BMP), and chemical oxygen demand solubilization (CODS) in stabilization rate were evaluated as the process outputs. The optimum conditions were obtained by using Design Expert software (Version 7.0.0). The results indicated that the optimum conditions could be achieved with 44% ORWW, 36°C temperature, 30 min sonication, and 6% TS in the digester. The optimum BGP, BMP, and CODS removal rates by using the optimum conditions were 294.76 mL/gVS, 151.95 mL/gVS, and 70.22%, respectively, as concluded by the experimental results. In addition, the artificial neural network (ANN) technique was implemented to develop an ANN model for predicting BGP yield and BMP content. The Levenberg-Marquardt algorithm was utilized to train ANN, and the architecture of 9-19-2 for the ANN model was obtained. PMID:29441352
Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.
2011-01-01
The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418
BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy
Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A.; Leyton, Patricio A.; Cheng, Juan; Tainsh, Robert E. T.; Mayeur, Claire; Rhee, David K.; Wu, Mei. X.; Scherrer-Crosbie, Marielle; Buys, Emmanuel S.; Zapol, Warren M.; Bloch, Kenneth D.; Bloch, Donald B.
2016-01-01
Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969
NASA Astrophysics Data System (ADS)
Rao, N. S.; Easton, Z. M.; Lee, D. R.; Steenhuis, T. S.
2007-12-01
Nutrient runoff from agricultural fields threatens water quality and can impair habitats in many watersheds. Agencies consider these potential risks as they determine acceptable levels of nutrient loading. For example, in the New York City (NYC) watershed, the Environmental Protection Agency's Total Maximum Daily Load (TMDL) for phosphorus (P) has been set at 15μg P L-1 to protect against eutrophication and bacterial outbreaks. In the NYC watersheds agricultural Best Management Practices (BMPs) are the primary means to control nonpoint source P loading. BMPs include riparian buffers, filter strips, manure storage facilities, crop rotation, stripcropping, tree planting and nutrient management plans (NMPs). Water quality research on BMPs to date has included studies on site-specificity of different BMPs, short and long term BMP efficacy, and placement of BMPs with respect to critical source areas. A necessary complement to studies addressing water quality aspects of different BMPs are studies examining the cost-benefit aspects of BMPs. In general, there are installment, maintenance and opportunity costs associated with each BMP, and there are benefits, including cost share agreements between farmers and farm agencies, and increased efficiency of farm production and maintenance. Combining water quality studies and related cost-benefit analyses would help planners and watershed managers determine how best improve water quality. Our research examines the costs-benefit structure associated with BMP scenarios on a one-farm headwater watershed in the Catskill Mountains of NY. The different scenarios include "with and without" BMPs, combinations of BMPs, and different BMP placements across agricultural fields. The costs associated with each BMP scenarios are determined using information from farm agencies and watershed planning agencies. With these data we perform a cost-benefit analysis for the different BMP scenarios and couple the water quality modeling using the Variable Source Loading Function (VSLF) model (Schneiderman et al., 2007) with the cost-benefit analysis to look at the specific water quality and economic consequences of different watershed management scenarios. The results of our study will be useful for planners and watershed managers in determining how best to reduce nonpoint source pollution in a cost-effective manner. References Schneiderman, E.M., T.S. Steenhuis, D.J. Thongs, Z.M. Easton, M.S. Zion, G.F. Mendoza, M.T. Walter, and A.C. Neal. 2007. Incorporating variable source area hydrology into curve number based watershed loading functions. Hydrol. Proc. (In Press).
Bone Morphogenetic Proteins, Antagonists and Receptors in Prostate Cancer
2005-01-01
expressed in prostate. This work investigates BMP receptors and BMP antagonists to understand the basic mechanisms to inhibit the BMP signaling in...during embryoge- nesis, and prostate cancer metastases to bone. BMP functions can be inhibited by antagonists such as Noggin or DAN. DAN is a protein...protein along with a constant 0-6 -1 10 100 1000 1O0ng/ml of BMP-6, we were able to show a ng/ml BMP-6 dose-dependent inhibition of BMP-6 activity in DU
MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007
Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in ...
Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...
FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007
Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in...
Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo
2015-11-01
Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. © 2015 Wiley Periodicals, Inc.
Biological activity of a genetically modified BMP-2 variant with inhibitory activity
Klammert, Uwe; Nickel, Joachim; Würzler, Kristian; Klingelhöffer, Christoph; Sebald, Walter; Kübler, Alexander C; Reuther, Tobias
2009-01-01
Background Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2) lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo. Methods Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2) in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control) were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically. Results As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner. Conclusion The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism. PMID:19187528
Pamela Edwards; Karl W.J. Williard
2010-01-01
Quantifying the effects of forestry best management practices (BMPs) on sediment and nutrient loads is a critical need. Through an exhaustive literature search, three paired forested watershed studies in the eastern United States were found that permitted the calculation of BMP efficiencies--the percent reduction in sediment or nutrients achieved by BMPs. For sediment...
J. R. Svec; R. K. Kolka; J. W. Stringer
2003-01-01
In Kentucky stream classification is used to determine which forestry best management practice (BMP) to apply in riparian zones. Kentucky defines stream classes as follows (Stringer and others 1998): a) perennial streams that hold water throughout the year, b) intermittent streams that hold water during wet portions of the year, and c) ephemeral channels that hold...
Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W
2017-08-18
Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo
2016-06-01
Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki
2015-01-01
We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254
Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey
2015-03-01
Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.
2015-01-21
Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.
BMP2 and BMP7 play antagonistic roles in feather induction
Michon, Frédéric; Forest, Loïc; Collomb, Elodie; Demongeot, Jacques; Dhouailly, Danielle
2008-01-01
Summary During embryonic development, feathers first appear as primordia consisting of an epidermal placode associated with a dermal condensation. In most previous studies, the BMPs have been proposed to function as inhibitors of the formation of cutaneous appendages. We showed that the function of BMPs is quite nuanced: BMP-2 and BMP-7, which are expressed in both skin components, act antagonistically and yet are both involved in the dermal condensations formation. BMP-7, the first to be expressed, is implicated in chemotaxis which leads to cell recruitment to the condensation, whereas BMP-2, which is expressed later, leads to an arrest of cell migration, likely via its modulation of EIIIA Fibronectin domain and α4-Integrin expression. We also propose a mathematical model, a reaction-diffusion system, based on cell proliferation, chemotaxis and the timing of BMP-2 and BMP-7 expression, which simulates the endogenous situation and reproduces the negative effects of excess BMP-2 or BMP-7 on feather patterning. PMID:18635609
Nakamura, Toshiaki; Shirakata, Yoshinori; Shinohara, Yukiya; Miron, Richard J; Hasegawa-Nakamura, Kozue; Fujioka-Kobayashi, Masako; Noguchi, Kazuyuki
2017-12-01
Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm 3 , n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm 3 , n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm 3 , n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. Within the limits of this study, it can be concluded that rhBMP-2/ACS induced a slight early increase in new bone formation at 2 weeks and that rhBMP-9/ACS provided comparable new bone formation to rhBMP-2/ACS with less adipose tissues after a healing period of 8 weeks in rat CSD. RhBMP-9/ACS treatment provided new bone formation with less adipose tissues compared with rhBMP-2/ACS.
Covalent Binding of BMP-2 on Surfaces Using a Self-assembled Monolayer Approach
Pohl, Theresa L. M.; Schwab, Elisabeth H.; Cavalcanti-Adam, Elisabetta A.
2013-01-01
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation. PMID:24021994
Lintern, Katherine B; Guidato, Sonia; Rowe, Alison; Saldanha, José W; Itasaki, Nobue
2009-08-21
Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.
Xia, Yuan-Jun; Xia, Hong; Chen, Ling; Ying, Qing-Shui; Yu, Xiang; Li, Li-Hua; Wang, Jian-Hua; Zhang, Ying
2018-04-01
Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.
A computational model for BMP movement in sea urchin embryos.
van Heijster, Peter; Hardway, Heather; Kaper, Tasso J; Bradham, Cynthia A
2014-12-21
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sukhotnik, I; Berkowitz, D; Dorfman, T; Halabi, Salim; Pollak, Y; Bejar, J; Bitterman, A; Coran, A G
2016-02-01
Bone morphogenetic proteins (BMPs) are a group of growth factors that are implicated in intestinal growth, morphogenesis, differentiation, and homeostasis. The role of the BMP signaling cascade in stimulation of cell proliferation after massive small bowel resection is unknown. The purpose of this study was to evaluate the role of BMP signaling during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75 % bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression analysis was used to determine the BMP signaling gene expression profiling. BMP-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. From the total number of 20,000 probes, 8 genes related to BMP signaling were investigated. From these genes, five genes were found to be up-regulated in jejunum (BMP1-10 %, BMP2-twofold increase, BMP3-10 %, BMP2R-12 % and STAT3-28 %) and four genes to be up-regulated in ileum (BMP1-16 %, BMP2-27 %, BMP3-10 %, and STAT3-20 %) in SBS vs sham animals with a relative change in gene expression level of 10 % or more. SBS rats also demonstrated a significant increase in BMP2 and STAT3 mRNA and protein levels (determined by real-time PCR and Western blot) compared to control animals. Two weeks following massive bowel resection in rats, the BMP signaling pathway is stimulated. BMP signaling may serve as an important mediator of reciprocal interactions between the epithelium and the underlying mesenchymal stroma during intestinal adaptation following massive bowel resection in a rat.
Behesti, Hourinaz; Holt, James KL; Sowden, Jane C
2006-01-01
Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest the existence of a dorsal-high, ventral-low BMP4 signaling gradient across which distinct domains of Tbx2, Tbx3, Tbx5 and Vax2 transcription factor gene expression are set up. Furthermore we show that the correct level of BMP4 signaling is critical for normal growth of the mammalian embryonic eye. PMID:17173667
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
Bone morphogenetic protein (BMP)1-3 enhances bone repair.
Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan
2011-04-29
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Barlow, A J; Francis-West, P H
1997-01-01
The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.
Patel, Janki Jayesh; Modes, Jane E.; Flanagan, Colleen L.; Krebsbach, Paul H.; Edwards, Sean P.
2015-01-01
Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm3) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm3). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps. PMID:25809081
Patel, Janki Jayesh; Modes, Jane E; Flanagan, Colleen L; Krebsbach, Paul H; Edwards, Sean P; Hollister, Scott J
2015-09-01
Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.
Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira
2012-01-01
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.
Gilde, Flora; Fourel, Laure; Guillot, Raphael; Pignot-Paintrand, Isabelle; Okada, Takaharu; Fitzpatrick, Vincent; Boudou, Thomas; Albiges-Rizo, Corinne; Picart, Catherine
2016-12-01
Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue. The presentation of growth factors from material surfaces currently presents significant challenges in academic research, clinics and industry. Being able to deliver efficiently these growth factors by a biomaterial will open new perspectives for regenerative medicine. However, to date, very little is known about how matrix-bound growth factors are delivered to cells, especially whether they are internalized and how they are signaling to drive key differentiation events. These initial steps are crucial as they will guide the subsequent processes leading to tissue regeneration. In this work, we investigate the uptake and processing by cells of BMP-2 ligands embedded in polyelectrolyte multilayer films in comparison to soluble BMP-2. We show that BMP-2 responsive cells can internalize matrix-bound BMP-2 and that internalization is dependent on the cross-linking level of the polyelectrolyte films. In addition, we show that internalization is mediated by both clathrin- and caveolin-dependent pathways. While inhibiting clathrin-dependent endocytosis affects only non-canonical signaling, blocking caveolin-1-dependent endocytosis reduces both canonical and non-canonical BMP signaling. The signaling pathways found for matrix-bound BMP-2 are similar to those found for soluble BMP-2. These results highlight that BMP-2 presented by a biomaterial at the ventral side of the cell can trigger major endocytic and associated signaling pathways leading to bone regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nguyen, Ha M; Barlow, Linda A
2010-10-13
Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. Our data suggest that intragemmal BMP4-ß-gal cells in circumvallate papillae are immature taste cells which eventually differentiate into each of the 3 taste cell types, whereas perigemmal BMP4-ß-gal cells in both circumvallate and fungiform papillae may be slow cycling stem cells, or belong to the stem cell niche to regulate taste cell renewal from the proliferative cell population.
Irshad, Shazia; Bansal, Mukesh; Guarnieri, Paolo; Davis, Hayley; Al Haj Zen, Ayman; Baran, Brygida; Pinna, Claudia Maria Assunta; Rahman, Haseeb; Biswas, Sujata; Bardella, Chiara; Jeffery, Rosemary; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Lewis, Annabelle; Leedham, Simon John
2017-06-01
The functional role of bone morphogenetic protein (BMP) signalling in colorectal cancer (CRC) is poorly defined, with contradictory results in cancer cell line models reflecting the inherent difficulties of assessing a signalling pathway that is context-dependent and subject to genetic constraints. By assessing the transcriptional response of a diploid human colonic epithelial cell line to BMP ligand stimulation, we generated a prognostic BMP signalling signature, which was applied to multiple CRC datasets to investigate BMP heterogeneity across CRC molecular subtypes. We linked BMP and Notch signalling pathway activity and function in human colonic epithelial cells, and normal and neoplastic tissue. BMP induced Notch through a γ-secretase-independent interaction, regulated by the SMAD proteins. In homeostasis, BMP/Notch co-localization was restricted to cells at the top of the intestinal crypt, with more widespread interaction in some human CRC samples. BMP signalling was downregulated in the majority of CRCs, but was conserved specifically in mesenchymal-subtype tumours, where it interacts with Notch to induce an epithelial-mesenchymal transition (EMT) phenotype. In intestinal homeostasis, BMP-Notch pathway crosstalk is restricted to differentiating cells through stringent pathway segregation. Conserved BMP activity and loss of signalling stringency in mesenchymal-subtype tumours promotes a synergistic BMP-Notch interaction, and this correlates with poor patient prognosis. BMP signalling heterogeneity across CRC subtypes and cell lines can account for previous experimental contradictions. Crosstalk between the BMP and Notch pathways will render mesenchymal-subtype CRC insensitive to γ-secretase inhibition unless BMP activation is concomitantly addressed. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E
2001-07-01
The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.
Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.
Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae
2009-08-01
It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.
EFFECT OF COLLA CORNUS CERVI COMBINED WITH LV-MEDIATED BMP7 TRANSFECTED BMSCs ON ANFH IN RATS.
Wang, Ping; Shi, Bin; Gao, Zhi-Hui; Sun, Tie-Feng; Yang, Wu-Bin; Han, Shu-Fang; Liu, Peng; Wang, Lei-Lei; Zhao, Bo-Nian; Wang, Dan-Dan
2016-11-01
In the present study, we investigated the combined effect of Colla Comus Cervi (CCC) and BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) on osteogenic induction and the treatment of avascular necrosis of the femoral head (ANFH). BMSCs were isolated from rats. BMP7-overexpressing BMSCs were generated by lentiviral-mediated gene transduction. Cell proliferation, alkaline phosphatase (ALP) activity, osteogenesis related gene expression, osteocalcin levels, and calcified nodules were quantified and compared between four groups: untreated controls, BMSCs cultured with CCC complex medium, BMP7-overexpressing BMSCs, and BMP7-overexpressing BMSCs cultured with CCC complex medium (CCC+BMP7). CCC+BMP7 BMSCs showed higher proliferation rate. ALP activity and osteaocalcin content were significantly increased in CCC+BMP7 BMSCs. The osteogenesis related genes, COLI, and integrin-α2, -α5, and -β1, were expressed significantly higher in CCC+BMP7 BMSCs. The number of calcified nodules in the CCC+BMP7 group was significantly higher than that in other groups. For in vivo assays, ANFH was induced in rats, and BMSCs were injected into the femoral head of the lower left extremity. In rats with induced ANFH, general observation scores of the CCC+BMP7 injected group were significantly higher than the model group. X-ray and microscopic observations revealed that ANFH was significantly improved and femoral head cells gradually recovered in rats treated with CCC+BMP7 BMSCs. Our results suggest that CCC+BMP7 significantly promote the proliferation and osteogenic differentiation of BMSCs in vitm. CCC+BMP7 BMSCs promote the ability of repairing ANFH in rats, providing a new therapeutic paradigm for the treatment of ANFH.
Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng
2017-11-01
Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content <10wt%). Further studies demonstrated that the Sr-induced enhancement of bioactivity of rhBMP-2 was related to an elevated recognition of bone morphogenetic protein receptor-IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.
Gaviño, Michael A; Reddien, Peter W
2011-02-22
Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway, BMP signaling, controls development of the dorsoventral (DV) axis throughout the Bilateria. In vertebrates, spatially opposed expression of the BMP family proteins Bmp4 and Admp (antidorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans). By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a regulatory circuit of oppositely expressed bmp4 and admp genes represents a deuterostome-specific innovation. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed ventrally and laterally in adult Schmidtea mediterranea planarians, opposing the dorsal-pole expression of Smed-bmp4. Smed-admp is required for regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gaviño, Michael A.; Reddien, Peter W.
2011-01-01
Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway – BMP signaling – controls development of the dorsoventral (DV) axis throughout the Bilateria [1-8]. In vertebrates, spatially opposed expression of the BMP-family signaling proteins Bmp4 and Admp (anti-dorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal [9-11]. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans) [12]. By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a DV regulatory circuit of oppositely expressed bmp4 and admp genes represents an innovation specific to deuterostomes. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed at the ventral pole and laterally in adult Schmidtea mediterranea planarians, spatially opposing the dorsal-pole domain of Smed-bmp4 expression. Smed-admp is required for planarian regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis. PMID:21295483
SWMM IMPROVEMENT FOR ANALYZING BMP/LTD PERFORMANCE
Pollution and treatment costs associated with wet weather flows (WWFs) have caused a need for reducing stormwater runoff volumes as well as loads. A number of strategies and best management practices (BMPs) are being used to mitigate runoff volumes and associated nonpoint source...
Enhancement of the EPA Stormwater BMP Decision-Support Tool (SUSTAIN)
U.S. Environmental Protection Agency (EPA) has been developing and improving a decision-support tool for placement of stormwater best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment and Analysis...
Storm Water Pollution Removal Performance of Compost Filter Socks
USDA-ARS?s Scientific Manuscript database
In 2005, the US Environmental Protection Agency National Menu of Best Management Practices (BMPs) listed compost filter socks as an approved BMP for controlling sediment in storm runoff on construction sites. Filtrexx International manufactures and distributes Filter Soxx (FS). Literature suggests...
40 CFR 440.148 - Best Management Practices (BMP).
Code of Federal Regulations, 2010 CFR
2010-07-01
... incursion into the plant site. (b) Berm construction: Berms, including any pond walls, dikes, low dams and... that pollutant materials removed from the process water and wastewater streams will be retained in... continue their effectiveness and to protect from unexpected and catastrophic failure. ...
Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F
2000-12-01
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.
Zhu, Xiaojing; Zhang, Hui; Zhang, Xinchun; Ning, Chengyun; Wang, Yan
2017-09-26
To fabricate a sustained-release delivery system of bone morphogenetic protein (BMP-2) on titanium surface, explore the effect of BMP-2 concentration on the loading/release behavior of BMP-2 and evaluate the cell compatibility of the system in vitro, pure titanium specimens were immersed into supersaturated calcium phosphate solutions (SCP) containing 4 different concentrations of BMP-2: 0, 50, 100, 200 and 400 ng/mL. Biomimetic calcium phosphate coating was formed on titanium surface and BMP-2 was incorporated into the coating through co-deposition. The release profile of BMP-2 suggested that BMP-2 were delivered sustainably up to 20 days. CCK-8 and ALP assay showed that 200 group and 400 ng/mL BMP-2 group have significant effect on promoting MC3T3-E1 cell proliferation and differentiation. The BMP-2 incorporated into the hybrid coating released in a sustained manner and significantly promoted the proliferation and differentiation of MC3T3-E1 on the titanium surface.
Bmp2 Deletion Causes an Amelogenesis Imperfecta Phenotype Via Regulating Enamel Gene Expression
GUO, FENG; FENG, JUNSHENG; WANG, FENG; LI, WENTONG; GAO, QINGPING; CHEN, ZHUO; SHOFF, LISA; DONLY, KEVIN J.; GLUHAK-HEINRICH, JELICA; CHUN, YONG HEE PATRICIA; HARRIS, STEPHEN E.; MACDOUGALL, MARY; CHEN, SHUO
2015-01-01
Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. PMID:25545831
Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.
Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo
2015-08-01
Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.
Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki
2009-09-01
Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.
Khanna-Jain, Rashi; Agata, Hideki; Vuorinen, Annukka; Sándor, George K B; Suuronen, Riitta; Miettinen, Susanna
2010-12-01
This study was designed to investigate the potential merits of the combined use of bone morphogenetic protein (BMP)-2 or BMP-6 and osteogenic supplements (OS) [dexamethasone, ascorbic acid (AA), and β-glycerophosphate] on osteogenic differentiation of periodontal ligament cells (PDLCs). Osteogenic differentiation was evaluated by quantitative alkaline phosphatase (ALP) assay, alizarin red staining, quantitative calcium assay, and the qRT-PCR analysis for the expression of collagen type I, runt-related transcription factor-2, osteopontin (OPN), and osteocalcin in PDLCs. Culture with BMP-2 or BMP-6+AA increased ALP activity of PDLCs, suggesting their osteo-inductive effects. However, longer duration of culture showed neither of the BMPs induced in vitro mineralization. In contrast, OS were able to increase ALP activity and OPN expressions, and also induced in vitro mineralization. The mineralization ability was not enhanced by the addition of BMP-2 or BMP-6. These findings suggest that the addition of BMP-2 or BMP-6 to OS may not enhance an osteogenic differentiation of hPDLCs.
An urban runoff model designed to inform stormwater management decisions.
Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret
2017-05-15
We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.
Roger Ryder; Pamela Edwards; Pamela Edwards
2006-01-01
Forestry operations do not have permitting requirements under the Clean Water Act because there is a ccsilvicultural exemption" given in that law, as long as best management practices (BMPs) are used to help control non-point source pollution. However, states' monitoring of BMP effectiveness often has been sporadic and anecdotal, and the procedures used have...
Rico-Llanos, Gustavo A; Becerra, Jose; Visser, Rick
2017-07-01
Bone morphogenetic protein-2 (BMP-2) is widely used in orthopedic surgery and bone tissue engineering because of its strong osteogenic activity. However, BMP-2 treatments have several drawbacks and many groups are actively exploring alternatives. Since BMP-6 has been demonstrated to be more osteoinductive, its use, either alone or together with other growth factors, might be an interesting option. In this work, we have compared the effect of BMP-2, BMP-6, or insulin-like growth factor-1 (IGF-1), either alone or in combination. Murine preosteoblasts were treated with 15 nM IGF-1 and/or 6 nM BMP-2 or -6 and the expression of osteogenic marker genes, proliferation, and alkaline phosphatase (ALP) activity in vitro were analyzed. The results showed that IGF-1 greatly enhanced the BMP-induced osteogenic differentiation of these cells in general and that the ALP activity in the cultures was higher when the combination was made with BMP-6 than with BMP-2. Furthermore, we tested the osteogenic potential of these treatments in vivo by loading 25 pmoles of IGF-1 and/or 10 pmoles of BMP-2 or -6 onto absorbable collagen sponges and implanting them into an ectopic bone formation model in rats. This study revealed that only BMP-6 was able to induce bone formation at the used dose and that the addition of IGF-1 contributed to an increase of the mineralization in the implants. Hence, the combination of BMP-6 with IGF-1 might be a better alternative than BMP-2 for orthopedic surgery or bone tissue engineering approaches. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1867-1875, 2017. © 2017 Wiley Periodicals, Inc.
Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C
2011-01-01
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.
Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation.
Wang, Jingxiao; Zheng, Yuanna; Zhao, Juan; Liu, Tie; Gao, Lixia; Gu, Zhiyuan; Wu, Gang
2012-01-01
To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created surrounding SLA-treated titanium implants (3.1 mm in diameter, 10 mm in length) in minipig's calvaria. We administrated collagen sponges with adsorbed low-dose (30 ng/mm(3) ) BMP2/7 to treat the defects using BMP2, BMP7 or no BMP as controls.2, 3 and 6 weeks after implantation, we adopted micro-computer tomography to evaluate the micro-architectures of new bone using the following parameters: relative bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density, and structure mode index (SMI). Bone implant contact (BIC) was also revealed histologically. Consistent with 2 and 3 weeks, after 6 weeks post-operation, BMP2/7 resulted in significantly higher BV/TV (63.033 ± 2.055%) and significantly lower SMI (-4.405 ± 0.500) than BMP2 (BV/TV: 43.133 ± 2.001%; SMI: -0.086 ± 0.041) and BMP7 (BV/TV: 41.467 ± 1.850%; SMI: -0.044 ± 0.016) respectively. Significant differences were also found in Tb.N, Tb.Th and Tb.Sp at all time points. At 2 weeks, BMP2/7 resulted in significantly higher BIC than the controls. Low-dose BMP2/7 heterodimer facilitated more rapid bone regeneration in better quality in peri-implant bone defects than BMP2 and BMP7 homodimers. © 2011 John Wiley & Sons A/S.
Zhang, Wenjun; Chen, Hanying; Wang, Yong; Yong, Weidong; Zhu, Wuqiang; Liu, Yunlong; Wagner, Gregory R.; Payne, R. Mark; Field, Loren J.; Xin, Hongbo; Cai, Chen-Leng; Shou, Weinian
2011-01-01
Bone morphogenetic protein 10 (BMP10) belongs to the TGFβ-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation. PMID:21890625
Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*
Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan
2016-01-01
By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222
Kato, Akihito; Miyaji, Hirofumi; Ishizuka, Ryosuke; Tokunaga, Keisuke; Inoue, Kana; Kosen, Yuta; Yokoyama, Hiroyuki; Sugaya, Tsutomu; Tanaka, Saori; Sakagami, Ryuji; Kawanami, Masamitsu
2015-01-01
Objective : Biomodification of the root surface plays a major role in periodontal wound healing. Root surface modification with bone morphogenetic protein (BMP) stimulates bone and cementum-like tissue formation; however, severe ankylosis is simultaneously observed. Bio-safe collagen hydrogel scaffolds may therefore be useful for supplying periodontal ligament cells and preventing ankylosis. We examined the effects of BMP modification in conjunction with collagen hydrogel scaffold implantation on periodontal wound healing in dogs. Material and Methods: The collagen hydrogel scaffold was composed of type I collagen sponge and collagen hydrogel. One-wall infrabony defects (5 mm in depth, 3 mm in width) were surgically created in six beagle dogs. In the BMP/Col group, BMP-2 was applied to the root surface (loading dose; 1 µg/µl), and the defects were filled with collagen hydrogel scaffold. In the BMP or Col group, BMP-2 coating or scaffold implantation was performed. Histometric parameters were evaluated at 4 weeks after surgery. Results: Single use of BMP stimulated formation of alveolar bone and ankylosis. In contrast, the BMP/Col group frequently enhanced reconstruction of periodontal attachment including cementum-like tissue, periodontal ligament and alveolar bone. The amount of new periodontal ligament in the BMP/Col group was significantly greater when compared to all other groups. In addition, ankylosis was rarely observed in the BMP/Col group. Conclusion: The combination method using root surface modification with BMP and collagen hydrogel scaffold implantation facilitated the reestablishment of periodontal attachment. BMP-related ankylosis was suppressed by implantation of collagen hydrogel. PMID:25674172
Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di
2003-08-01
Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.
Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.
Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y
2010-04-01
The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.
Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun
2016-04-01
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Zhu, Minghua; Zeng, Yi; Sun, Tao; Peng, Qiang
2005-03-15
To investigate the osteogenic potential of four kinds of new bioactive ceramics combined with bovine bone morphogenetic proteins (BMP) and to explore the feasibility of using compounds as bone substitute material. Ninety-six rats were divided into 4 groups (24 in each group). BMP was combined with hydroxyapatite (HA), tricalcium phosphate (TCP), fluoridated-HA (FHA), and collagen-HA(CHA) respectively. The left thighs of the rats implanted with HA/BMP, TCP/BMP, FHA/BMP, and CHA/BMP were used as experimental groups. The right thighs of the rats implanted with HA, TCP, CHA, and decalcified dentin matrix (DDM) were used as control groups. The rats were sacrificed 1, 3, 5 and 7 weeks after implantation and bone induction was estimated by alkaline phosphatase (ALP), phosphorus (P), and total protein (TP) measurement. The histological observation and electronic microscope scanning of the implants were also made. The cartilage growth in the 4 experimental groups and the control group implanted with DDM was observed 1 week after operation and fibrous connective tissues were observed in the other 3 control groups. 3 weeks after implantation, lamellar bone with bone marrow and positive reaction in ALP stain were observed in the 4 experimental groups. No bone formation or positive reaction in ALP stain were observed in the control groups. The amount of ALP activity, P value, and new bone formation in the experimental groups were higher than those in the control group(P < 0.05). The amount of ALP activity, P value, and new bone formation in TCP/BMP group were higher than those in HA/BMP, CHA/BMP and FHA/BMP groups (P < 0.05). There was no significant difference in TP between the BMP treatment group and the control groups. From 5th to 7th week, new bone formation, histochemistry evaluation, and the level of ALP, P, TP value were as high as those in the 3rd week. New composite artificial bone of TCP/BMP, HA/BMP, CHA/BMP, and FHA/BMP all prove to be effective, but TCP/BMP is the most effective so that it is the most suitable biomaterial replacement of tissue.
Yazaki, Y; Matsunaga, S; Onishi, T; Nagamine, T; Origuchi, N; Yamamoto, T; Ishidou, Y; Imamura, T; Sakou, T
1998-01-01
The expression of bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) in the epiphyseal growth plate has not been clarified. In this study, we studied immunohistochemically the spatial and temporal localization of BMP-2/4, osteogenic protein-1 (OP-1, or BMP-7), and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II) in the epiphyseal plate of growing rats. The proximal parts of tibia in growing rats were observed. At 12 weeks after birth, BMP-2/4 and OP-1 were expressed markedly in proliferating and maturing chondrocytes. BMPR-IA, IB and II were clearly co-expressed in proliferating and maturing chondrocytes, and the expression was decreased in hypertrophic chondrocytes. At 24 weeks, the expression of BMP-2/4 and OP-1 was decreased, but BMPRs were still well-expressed in proliferating chondrocytes. The temporal and spatial expression of BMP and BMPR suggests that BMP and BMP receptors play roles in the multistep cascade of enchondral ossification in the epiphyseal growth plate.
Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6
Mouillesseaux, Kevin P.; Wiley, David S.; Saunders, Lauren M.; Wylie, Lyndsay A.; Kushner, Erich J.; Chong, Diana C.; Citrin, Kathryn M.; Barber, Andrew T.; Park, Youngsook; Kim, Jun-Dae; Samsa, Leigh Ann; Kim, Jongmin; Liu, Jiandong; Jin, Suk-Won; Bautch, Victoria L.
2016-01-01
Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. PMID:27834400
Zhang, Wenjing; Tian, Yu; He, Hongyan; Chen, Rui; Ma, Yifan; Guo, Han; Yuan, Yuan; Liu, Changsheng
2016-03-01
Strontium (Sr(2+)) has pronounced effects on stimulating bone formation and inhibiting bone resorption in bone regeneration. In this current study, the effect and the underlying mechanism involved of Sr(2+) on the biological activity of bone morphogenetic protein-2 (BMP-2) were studied in detail with pluripotent skeletal muscle myogenic progenitor C2C12 model cell line. The results indicated that Sr(2+) could bind recombinant human BMP-2 (rhBMP-2) rapidly, even in the presence of Ca(2+) and Mg(2+), and inhibited rhBMP-2-induced osteogenic differentiation in vitro and osteogenetic efficiency in vivo. Further studies demonstrated that Sr(2+) treatment undermined the binding capacity of rhBMP-2 with its receptor BMPRIA and thus attenuated Smad 1/5/8 phosphorylation without affecting their dephosphorylation in C2C12 cells. Furthermore, circular dichroism spectroscopy, fluorescence spectroscopy and X-ray photoelectron spectroscopy all revealed that the inhibitory effect of Sr(2+) on the rhBMP-2 osteogenic activity was associated with the formation of Sr-rhBMP-2 complex and ensuing enhancement of β-sheet structure. Our work suggests the activity of rhBMP-2 to induce osteogenic differentiation was decreased by directly interaction with free Sr ions in solution, which should provide guide and assist for development of BMP-2-based materials for bone regeneration. Due to easy denaturation and ensuing the reduced activity of rhBMP-2, preserving/enhancing the capacity of rhBMP-2 to induce osteogenic differentiation is of critical importance in developing the protein-based therapy. Cations as effective elements influence the conformation and thereby the bioactivity of protein. Strontium (Sr(2+)), stimulating bone formation and inhibiting bone resorption, has been incorporated into biomaterials/scaffold to improve the bioactivity for bone-regeneration applications. However, Sr(2+)-induced changes in the conformation and bioactivity of BMP-2 have never been investigated. In this study, the formation of Sr-rhBMP-2 complex inhibited the osteogenic differentiation in vitro and osteogenetic efficiency in vivo through the inhibition of BMP/Smad signaling pathway, providing guidance for development of Sr-containing BMP-2-based bone scaffold/matrice and other Sr-dopped protein therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
CRUZ, Ariadne Cristiane Cabral; SILVA, Mariana Lúcia; CAON, Thiago; SIMÕES, Cláudia Maria Oliveira
2012-01-01
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. Objectives This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Material and Methods Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. Conclusions We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs. PMID:23329244
Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan
2014-03-01
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.
Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S.
2008-01-01
We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 hours after infection (~HH22) and observed that Shh expression was reduced or absent. In the mesenchyme we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 hours after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway. PMID:18028903
Shan, Fang; Liu, YuJuan; Jiang, Haiying; Tong, Fei
2017-01-01
Here, we describe a bone morphogenetic protein-2 (BMP-2) nanocarrier based on glycyrrhetinic acid (GA)-poly(ethylene glycol) (PEG)-b-poly(l-lysine) (PLL). A protein nanocarrier was synthesized, characterized and evaluated as a BMP-2 delivery system. The designed nanocarrier was synthesized based on the ring-opening polymerization of amino acid N-carboxyanhydride. The final product was measured with 1H nuclear magnetic resonance. GA-PEG-b-PLL nanocarrier could combine with BMP-2 through electrostatic interaction to form polyion complex (PIC) micelles. BMP-2 could be rapidly and efficiently encapsulated through the GA-PEG-b-PLL nanocarrier under physiological conditions, exhibiting efficient encapsulation and sustained release. In addition, the GA-PEG-b-PLL-mediated BMP-2 delivery system could target the liver against hepatic diseases as it has GA-binding receptors. The anti-hepatic ischemia/reperfusion injury (anti-HI/RI) effect of BMP-2/GA-PEG-b-PLL PIC micelles was investigated in rats using free BMP-2 and BMP-2/PEG-b-PLL PIC micelles as controls, and the results showed that BMP-2/GA-PEG-b-PLL PIC micelles indicated significantly enhanced anti-HI/RI property compared to BMP-2 and BMP-2/PEG-b-PLL. All results suggested that GA-PEG-b-PLL could be used as a potential BMP-2 nanocarrier. PMID:29089759
7 CFR 634.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... best management practices (BMP's) in project areas which have critical water quality problems resulting... approved agricultural portion of a 208 water quality management plan. Participation in RCWP is voluntary. (c) The program is a new USDA program and an extension of existing water-quality management programs...
Enhancement of the EPA Stormwater BMP Decision-Support Tool (SUSTAIN) - slides
U.S. Environmental Protection Agency (EPA) has been developing and improving a decision-support tool for placement of stormwater best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment and Analysis...
7 CFR 634.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... best management practices (BMP's) in project areas which have critical water quality problems resulting... approved agricultural portion of a 208 water quality management plan. Participation in RCWP is voluntary. (c) The program is a new USDA program and an extension of existing water-quality management programs...
Kim, Harry K W; Aruwajoye, Olumide; Du, Justin; Kamiya, Nobuhiro
2014-09-17
Non-weight-bearing decreases the femoral head deformity but increases bone resorption without increasing bone formation in an experimental animal model of Legg-Calvé-Perthes disease. We sought to determine if local administration of bone morphogenetic protein (BMP)-2 with or without bisphosphonate can increase the bone formation during the non-weight-bearing treatment in the large animal model of Legg-Calvé-Perthes disease. Eighteen piglets were surgically induced with femoral head ischemia. Immediately following the surgery, all animals received an above-the-knee amputation to enforce local non-weight-bearing (NWB). One to two weeks later, six animals received local BMP-2 to the necrotic head (BMP group), six received local BMP-2 and ibandronate (BMP+IB group), and the remaining six received no treatment (NWB group). All animals were killed at eight weeks after the induction of ischemia. Radiographic, microcomputed tomography (micro-CT), and histomorphometric assessments were performed. Radiographic assessment showed that the femoral heads in the NWB, BMP, and BMP+IB groups had a decrease of 20%, 14%, and 10%, respectively, in their mean epiphyseal quotient in comparison with the normal control group. Micro-CT analyses showed significantly higher femoral head bone volume in the BMP+IB group than in the BMP group (p = 0.02) and the NWB group (p < 0.001). BMP+IB and BMP groups had a significantly higher trabecular number (p < 0.01) and lower trabecular separation (p < 0.02) than the NWB group. In addition, the osteoclast number per bone surface was significantly lower in the BMP+IB group compared with the NWB group. Calcein labeling showed significantly higher bone formation in the BMP and BMP+IB groups than in the NWB group (p < 0.05). Heterotopic ossification was found in the capsule of four hips in the BMP+IB group but not in the BMP group. Administration of BMP-2 with bisphosphonate best decreased bone resorption and increased new bone formation during non-weight-bearing treatment of ischemic osteonecrosis in a pig model, but heterotopic ossification is a concern. This preclinical study provides new evidence that BMP-2 with bisphosphonate can effectively prevent the extreme bone loss associated with the non-weight-bearing treatment and increase new bone formation in the femoral head in this animal model of ischemic osteonecrosis. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Turning Bone Morphogenetic Protein 2 (BMP2) On and Off in Mesenchymal Cells†
Rogers, Melissa B.; Shah, Tapan A.; Shaikh, Nadia N.
2016-01-01
The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. This article is protected by copyright. All rights reserved PMID:25776852
Neugebauer, Judith M; Kwon, Sunjong; Kim, Hyung-Seok; Donley, Nathan; Tilak, Anup; Sopory, Shailaja; Christian, Jan L
2015-05-05
Bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) are morphogens that signal as either homodimers or heterodimers to regulate embryonic development and adult homeostasis. BMP4/7 heterodimers exhibit markedly higher signaling activity than either homodimer, but the mechanism underlying the enhanced activity is unknown. BMPs are synthesized as inactive precursors that dimerize and are then cleaved to generate both the bioactive ligand and prodomain fragments, which lack signaling activity. Our study reveals a previously unknown requirement for the BMP4 prodomain in promoting heterodimer activity. We show that BMP4 and BMP7 precursor proteins preferentially or exclusively form heterodimers when coexpressed in vivo. In addition, we show that the BMP4 prodomain is both necessary and sufficient for generation of stable heterodimeric ligands with enhanced activity and can enable homodimers to signal in a context in which they normally lack activity. Our results suggest that intrinsic properties of the BMP4 prodomain contribute to the relative bioactivities of homodimers versus heterodimers in vivo. These findings have clinical implications for the use of BMPs as regenerative agents for the treatment of bone injury and disease.
Fujioka-Kobayashi, Masako; Schaler, Benoit; Shirakata, Yoshinori; Nakamura, Toshiaki; Noguchi, Kazuyuki; Zhang, Yufeng; Miron, Richard J
To investigate the bone-inducing properties of two types of collagen membranes in combination with recombinant human bone morphogenetic protein (rhBMP)-2 and rhBMP-9 on osteoblast behavior. Porcine pericardium collagen membranes (PPCM) and porcine dermis-derived collagen membranes (PDCM) were coated with either rhBMP-2 or rhBMP-9. The adsorption and release abilities were first investigated via enzyme-linked immunosorbent assay up to 10 days. Moreover, murine bone stromal ST2 cell adhesion, proliferation, and osteoblast differentiation were assessed by MTS assay; real-time polymerase chain reaction for genes encoding runt-related transcription factor 2 (Runx2); alkaline phosphatase (ALP); and osteocalcin, ALP assay, and alizarin red staining. Both rhBMP-2 and rhBMP-9 adsorbed to collagen membranes and were gradually released over time up to 10 days. PPCM showed significantly less cell attachment, whereas PDCM demonstrated comparable cell attachment with the control tissue culture plastic at 8 hours. While both rhBMPs were shown not to affect cell proliferation, collagen membranes combined with rhBMP-9 significantly increased ALP activity at 7 days and ALP mRNA levels at either 3 or 14 days compared with the control tissue culture plastic. Furthermore, rhBMP-9 increased osteocalcin mRNA levels and alizarin red staining at 14 days compared with the control tissue culture plastic. The results from this study suggest that both porcine-derived collagen membranes combined with rhBMP-9 accelerated the osteopromotive potential of ST2 cells. Interestingly, rhBMP-9 demonstrated additional osteogenic differentiation compared with rhBMP-2 and may serve as a suitable growth factor for future clinical use.
Zhong, Cheng; Feng, Jun; Lin, Xiangjin; Bao, Qi
2017-01-01
Graphene oxide (GO) has been used as a delivery vehicle for small molecule drugs and nucleotides. To further investigate GO as a smart biomaterial for the controlled release of cargo molecules, we hypothesized that GO may be an appropriate delivery vehicle because it releases bone morphogenetic protein 2 (BMP2). GO characterization indicated that the size distribution of the GO flakes ranged from 81.1 nm to 45,749.7 nm, with an approximate thickness of 2 nm. After BMP2 adsorption onto GO, Fourier-transformed infrared spectroscopy (FTIR) and thermal gravimetric analysis were performed. Compared to GO, BMP2-GO did not induce significant changes in the characteristics of the materials. GO continuously released BMP2 for at least 40 days. Bone marrow stem cells (BMSCs) and chondrocytes were treated with BMP2-GO in interleukin-1 media and assessed in terms of cell viability, flow cytometric characterization, and expression of particular mRNA. Compared to GO, BMP2-GO did not induce any significant changes in biocompatibility. We treated osteoarthritic rats with BMP2 and BMP2-GO, which showed significant differences in Osteoarthritis Research Society International (OARSI) scores (P<0.05). Quantitative assessment revealed significant differences compared to that using BMP2 and BMP2-GO (P<0.05). These findings indicate that GO may be potentially used to control the release of carrier materials. The combination of BMP2 and GO slowed the progression of NF-κB-activated degenerative changes in osteoarthritis. Therefore, we infer that our BMP2-GO strategy could alleviate the NF-κB pathway by inducing continuous BMP2 release. PMID:28243085
Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji
2012-04-01
To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
2011-01-01
Background Bone morphogenetic protein (BMP)7 evokes both inductive and axon orienting responses in dorsal interneurons (dI neurons) in the developing spinal cord. These events occur sequentially during the development of spinal neurons but in these and other cell types such inductive and acute chemotactic responses occur concurrently, highlighting the requirement for divergent intracellular signaling. Both type I and type II BMP receptor subtypes have been implicated selectively in orienting responses but it remains unclear how, in a given cell, divergence occurs. We have examined the mechanisms by which disparate BMP7 activities are generated in dorsal spinal neurons. Results We show that widely different threshold concentrations of BMP7 are required to elicit the divergent inductive and axon orienting responses. Type I BMP receptor kinase activity is required for activation of pSmad signaling and induction of dI character by BMP7, a high threshold response. In contrast, neither type I BMP receptor kinase activity nor Smad1/5/8 phosphorylation is involved in the low threshold orienting responses of dI axons to BMP7. Instead, BMP7-evoked axonal repulsion and growth cone collapse are dependent on phosphoinositide-3-kinase (PI3K) activation, plausibly through type II receptor signaling. BMP7 stimulates PI3K-dependent signaling in dI neurons. BMP6, which evokes neural induction but does not have orienting activity, activates Smad signaling but does not stimulate PI3K. Conclusions Divergent signaling through pSmad-dependent and PI3K-dependent (Smad-independent) mechanisms mediates the inductive and orienting responses of dI neurons to BMP7. A model is proposed whereby selective engagement of BMP receptor subunits underlies choice of signaling pathway. PMID:22085733
BMP9 and BMP10 are necessary for proper closure of the ductus arteriosus
Levet, Sandrine; Ouarné, Marie; Ciais, Delphine; Coutton, Charles; Subileau, Mariela; Mallet, Christine; Ricard, Nicolas; Bidart, Marie; Debillon, Thierry; Faravelli, Francesca; Rooryck, Caroline; Feige, Jean-Jacques; Tillet, Emmanuelle; Bailly, Sabine
2015-01-01
The transition to pulmonary respiration after birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. Two members of the TGFβ family, bone morphogenetic protein 9 (BMP9) and BMP10, have been recently involved in postnatal angiogenesis, both being necessary for remodeling of newly formed microvascular beds. The aim of the present work was to study whether BMP9 and BMP10 could be involved in closure of the DA. We found that Bmp9 knockout in mice led to an imperfect closure of the DA. Further, addition of a neutralizing anti-BMP10 antibody at postnatal day 1 (P1) and P3 in these pups exacerbated the remodeling defect and led to a reopening of the DA at P4. Transmission electron microscopy images and immunofluorescence stainings suggested that this effect could be due to a defect in intimal cell differentiation from endothelial to mesenchymal cells, associated with a lack of extracellular matrix deposition within the center of the DA. This result was supported by the identification of the regulation by BMP9 and BMP10 of several genes known to be involved in this process. The involvement of these BMPs was further supported by human genomic data because we could define a critical region in chromosome 2 encoding eight genes including BMP10 that correlated with the presence of a patent DA. Together, these data establish roles for BMP9 and BMP10 in DA closure. PMID:26056270
NASA Astrophysics Data System (ADS)
Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie
2009-06-01
Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.
García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D
2015-09-01
Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the blastocyst stage in the BMP5 group. Moreover, reverse transcription quantitative real-time polymerase chain reaction analysis showed a significant increase in the relative abundance of SOX2 in two-cell stage embryos, ID2 and OCT4 in eight-cell stage embryos, and NANOG and OCT4 in blastocysts derived from BMP5-treated embryos. In conclusion, our results report that early addition of BMP5 to the embryo culture medium had a positive effect on the blastocyst rate and affected the relative expression of BMP target and pluripotency genes, suggesting that BMP5 could play an important role in the preimplantation development of bovine embryos. Copyright © 2015 Elsevier Inc. All rights reserved.
Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo
2013-11-01
Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.
Arsenite suppression of BMP signaling in human keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Marjorie A.; Qin, Qin; Hu, Qin
2013-06-15
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction,more » BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte differentiation.« less
Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi
2009-03-01
Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.
Furic-Cunko, Vesna; Kes, Petar; Coric, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Basic-Jukic, Nikolina
2015-07-01
Bone morphogenetic proteins (BMPs) are pleiotropic growth factors. This paper investigates the connection between the expression pattern of BMPs in kidney allograft tissue versus the cause of allograft dysfunction. The expression pattern of BMP2, BMP4, BMP6 and BMP7 in 50 kidney allografts obtained by transplant nephrectomy is investigated. Immunohistochemical staining is semiquantitatively evaluated for intensity to identify the expression pattern of BMPs in normal and allograft kidney tissues. The expression of BMP4 is unique between different tubular cell types in grafts without signs of fibrosis. This effect is not found in specimens with high grades of interstitial fibrosis and tubular atrophy (IFTA). In samples with IFTA grades II and III, the BMP7 expression is reduced in a significant fraction of specimens relative to those without signs of IFTA. The expression pattern of BMP6 indicates that its activation may be triggered by the act of transplantation and subsequent reperfusion injury. The expression of BMP2 is strong in all types of tubular epithelial cells and does not differ between the compared allografts and control kidney specimens. The intensity and expression pattern of BMP4, BMP6 and BMP7 in transplanted kidney tissue are found to be dependent upon the length of the transplanted period, the clinical indication for transplant nephrectomy and signs of IFTA in kidney tissue.
Lv, Zilan; Wang, Chuan; Yuan, Taixian; Liu, Yuehong; Song, Tao; Liu, Yueliang; Chen, Chu; Yang, Min; Tang, Zuchuan; Shi, Qiong; Weng, Yaguang
2014-02-01
Bone morphogenetic protein 9 (BMP9) is a member of the transforming growth factor-β (TGF-β) family, which has been shown to regulate the progression of several tumors. Recent studies indicated that BMP9 affects osteosarcoma (OS) processes, but its specific roles and molecular mechanisms have yet to be fully elucidated. The human OS cell lines 143B and MG63 were used for the present study. We found that BMP9 overexpression suppressed the growth of OS cells, whereas inhibition of BMP9 reversed this effect. Our results also showed that BMP9 overexpression induced G0/G1 phase arrest and apoptosis in OS cells. We further investigated the possible molecular mechanisms mediating the biological role of BMP9. We observed that BMP9 overexpression reduced β-catenin mRNA and protein levels, and also downregulated its downstream proteins c-Myc and osteoprotegerin (OPG) and inhibited the phosphorylation levels of GSK-3β (Ser 9) in OS cells, whereas inhibition of BMP9 reversed these effects. Moreover, the suppressive effects of BMP9 overexpression on OS cells was reversed by exogenous β-catenin expression, but augmented by β-catenin silencing. In conclusion, our results revealed that BMP9 can regulate tumor growth of OS cells through the Wnt/β-catenin pathway. Therefore, BMP9 may be a new therapeutic target in OS.
A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella.
Kuo, Dian-Han; Weisblat, David A
2011-08-09
Bone morphogenetic protein (BMP) signaling is broadly implicated in dorsoventral (DV) patterning of bilaterally symmetric animals [1-3], and its role in axial patterning apparently predates the birth of Bilateria [4-7]. In fly and vertebrate embryos, BMPs and their antagonists (primarily Sog/chordin) diffuse and interact to generate signaling gradients that pattern fields of cells [8-10]. Work in other species reveals diversity in essential facets of this ancient patterning process, however. Here, we report that BMP signaling patterns the DV axis of segmental ectoderm in the leech Helobdella, a clitellate annelid (superphylum Lophotrochozoa) featuring stereotyped developmental cell lineages, but the detailed mechanisms of DV patterning in Helobdella differ markedly from fly and vertebrates. In Helobdella, BMP2/4s are expressed broadly, rather than in dorsal territory, whereas a dorsally expressed BMP5-8 specifies dorsal fate by short-range signaling. A BMP antagonist, gremlin, is upregulated by BMP5-8 in dorsolateral, rather than ventral territory, and yet the BMP-antagonizing activity of gremlin is required for normal ventral cell fates. Gremlin promotes ventral fates without disrupting dorsal fates by selectively inhibiting BMP2/4s, not BMP5-8. Thus, DV patterning in the development of the leech revealed unexpected evolutionary plasticity of the conserved BMP patterning system, presumably reflecting its adaptation to different modes of embryogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hernandez-Hurtado, Adelina A; Borrego-Soto, Gissela; Marino-Martinez, Ivan A; Lara-Arias, Jorge; Romero-Diaz, Viktor J; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G; Espinoza-Juarez, Marcela A; Lopez-Romero, Gloria C; Robles-Zamora, Alejandro; Mendoza Lemus, Oscar F; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto
2016-01-01
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development.
Phippard, D J; Weber-Hall, S J; Sharpe, P T; Naylor, M S; Jayatalake, H; Maas, R; Woo, I; Roberts-Clark, D; Francis-West, P H; Liu, Y H; Maxson, R; Hill, R E; Dale, T C
1996-09-01
Expression of the Msx-1 and Msx-2 homeobox genes have been shown to be coordinately regulated with the Bmp-2 and Bmp-4 ligands in a variety of developing tissues. Here we report that transcripts from all four genes are developmentally regulated during both foetal and postnatal mammary gland development. The location and time-course of the Bmp and Msx expression point to a role for Msx and Bmp gene products in the control of epithelial-mesenchymal interactions. Expression of Msx-2, but not Msx-1, Bmp-2 or Bmp-4 was decreased following ovariectomy, while expression of the human Msx-2 homologue was regulated by 17beta-oestradiol in the MCF-7 breast cancer cell line. The regulation of Msx-2 expression by oestrogen raises the possibility that hormonal regulation of mammary development is mediated through the control of epithelial-mesenchymal interactions.
Kestens, Christine; Siersema, Peter D.; Offerhaus, G. Johan A.; van Baal, Jantine W. P. M.
2016-01-01
Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1. PMID:27191723
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function.
Lochab, Amaneet K; Extavour, Cassandra G
2017-07-15
In multicellular organisms, the specification, maintenance, and transmission of the germ cell lineage to subsequent generations are critical processes that ensure species survival. A number of studies suggest that the Bone Morphogenetic Protein (BMP) pathway plays multiple roles in this cell lineage. We wished to use a comparative framework to examine the role of BMP signaling in regulating these processes, to determine if patterns would emerge that might shed light on the evolution of molecular mechanisms that may play germ cell-specific or other reproductive roles across species. To this end, here we review evidence to date from the literature supporting a role for BMP signaling in reproductive processes across Metazoa. We focus on germ line-specific processes, and separately consider somatic reproductive processes. We find that from primordial germ cell (PGC) induction to maintenance of PGC identity and gametogenesis, BMP signaling regulates these processes throughout embryonic development and adult life in multiple deuterostome and protostome clades. In well-studied model organisms, functional genetic evidence suggests that BMP signaling is required in the germ line across all life stages, with the exception of PGC specification in species that do not use inductive signaling to induce germ cell formation. The current evidence is consistent with the hypothesis that BMP signaling is ancestral in bilaterian inductive PGC specification. While BMP4 appears to be the most broadly employed ligand for the reproductive processes considered herein, we also noted evidence for sex-specific usage of different BMP ligands. In gametogenesis, BMP6 and BMP15 seem to have roles restricted to oogenesis, while BMP8 is restricted to spermatogenesis. We hypothesize that a BMP-based mechanism may have been recruited early in metazoan evolution to specify the germ line, and was subsequently co-opted for use in other germ line-specific and somatic reproductive processes. We suggest that if future studies assessing the function of the BMP pathway across extant species were to include a reproductive focus, that we would be likely to find continued evidence in favor of an ancient association between BMP signaling and the reproductive cell lineage in animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Hongmei; Wang, Jinhua; Deng, Fang; Huang, Enyi; Yan, Zhengjian; Wang, Zhongliang; Deng, Youlin; Zhang, Qian; Zhang, Zhonglin; Ye, Jixing; Qiao, Min; Li, Ruifang; Wang, Jing; Wei, Qiang; Zhou, Guolin; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Deng, Feng
2014-01-01
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. Here, we investigate if BMP9 and Wnt/β-catenin act synergistically on odontogenic differentiation. Using the immortalized SCAPs (iSCAPs) isolated from mouse apical papilla tissue, we demonstrate that Wnt3A effectively induces early osteogenic marker alkaline phosphatase (ALP) in iSCAPs, which is reduced by β-catenin knockdown. While Wnt3A and BMP9 enhance each other’s ability to induce ALP activity in iSCAPs, silencing β- catenin significantly diminishes BMP9-induced osteo/odontogenic differentiation. Furthermore, silencing β-catenin reduces BMP9-induced expression of osteocalcin and osteopontin and in vitro matrix mineralization of iSCAPs. In vivo stem cell implantation assay reveals that while BMP9-transduced iSCAPs induce robust ectopic bone formation, iSCAPs stimulated with both BMP9 and Wnt3A exhibit more mature and highly mineralized trabecular bone formation. However, knockdown of β-catenin in iSCAPs significantly diminishes BMP9 or BMP9/Wnt3A-induced ectopic bone formation in vivo. Thus, our results strongly suggest that β-catenin may play an important role in BMP9-induced osteo/ondontogenic signaling and that BMP9 and Wnt3A may act synergistically to induce osteo/odontoblastic differentiation of iSCAPs. It’s conceivable that BMP9 and/or Wnt3A may be explored as efficacious biofactors for odontogenic regeneration and tooth engineering. PMID:25468367
Postoperative Complications Associated With rhBMP2 Use in Posterior/Posterolateral Lumbar Fusion.
Esmail, Nabil; Buser, Zorica; Cohen, Jeremiah R; Brodke, Darrel S; Meisel, Hans-Joerg; Park, Jong-Beom; Youssef, Jim A; Wang, Jeffrey C; Yoon, S Tim
2018-04-01
Retrospective database review. Posterior/posterolateral lumbar fusion (PLF) is an effective treatment for a variety of spinal disorders; however, variations in surgical technique have different complication profiles. The aim of our study was to quantify the frequency of various complications in patients undergoing PLF with and without human recombinant bone morphogenetic protein 2 (rhBMP2). We queried the orthopedic subset of the Medicare database (PearlDiver) between 2005 and 2011 for patients undergoing PLF procedures with and without rhBMP2. Complication and reoperation rates were analyzed within 1 year of the index procedure. Complications assessed include: acute renal failure, deep vein thrombosis, dural tear, hematoma, heterotopic ossification, incision and drainage, cardiac complications, nervous system complications, osteolysis, pneumonia, pseudarthrosis, pulmonary embolism, radiculopathy, respiratory complications, sepsis, urinary retention, urinary tract infection, mechanical, and wound complications. Chi-square analysis was used to calculate the complication differences between the groups. Our data revealed higher overall complication rates in patients undergoing PLF with rhBMP2 versus no_rhBMP2 (76.9% vs 68.8%, P < .05). Stratified by gender, rhBMP2 males had higher rates of mechanical complications, pseudarthrosis, and reoperations compared with no_rhBMP2 males ( P < .05), whereas rhBMP2 females had higher rates of pseudarthrosis, urinary tract infection, and urinary retention compared with no_rhBMP2 females ( P < .05). Our data revealed higher overall complication rates in PLF patients given rhBMP2 compared with no_rhBMP2. Furthermore, our data suggests that rhBMP2-associated complications may be gender specific.
Flow Control and Design Assessment for Drainage System at McMurdo Station, Antarctica
2014-11-24
Council BMP Best Management Practice CASQUA California Storm Water Quality Task Force CRREL Cold Regions Research and Engineering Laboratory DS...ponds The California Storm Water Quality Task Force (CASQUA 1993) defines a sediment basin as “a pond created by excavation or constructing an em...British Standards Institution. California Storm Water Quality Task Force (CASQUA). 1993. ESC41: Check Dams. In Stormwater Best Management Practices
J. M. McClure; R. K. Kolka; A. White
2004-01-01
The distribution of coarse woody debris (CWD) was analyzed in three Appalachian watersheds in eastern Kentucky, eighteen years after harvest. The three watersheds included an unharvested control (Control), a second watershed with best management practices (BMPs) applied that included a 15.2 m unharvested zone near the stream (BMP watershed), and a third watershed that...
Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein.
Muraoka, Osamu; Shimizu, Takashi; Yabe, Taijiro; Nojima, Hideaki; Bae, Young-Ki; Hashimoto, Hisashi; Hibi, Masahiko
2006-04-01
The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.
BMP-2 and titanium particles synergistically activate osteoclast formation
Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H.
2014-01-01
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation. PMID:24820069
Ski represses BMP signaling in Xenopus and mammalian cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
kluo@lbl.gov
2001-05-16
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less
Is site-specific APEX calibration necessary for field scale BMP assessment?
USDA-ARS?s Scientific Manuscript database
The possibility of extending parameter sets obtained at one site to sites with similar characteristics is appealing. This study was undertaken to test model performance and compare the effectiveness of best management practices (BMPs) using three parameters sets obtained from three watersheds when a...
Since 2010, the State of California has required construction operators to utilize the electronic Storm Water Application and Report Tracking System (SMARTS) for construction projects covered by the General Construction Permit. The General Construction permit encourages BMP and G...
Irrigation potential of suspended solids and nutrients from tailwater recovery systems
USDA-ARS?s Scientific Manuscript database
Within the Lower Mississippi Alluvial Valley (Mississippi Delta), best management practices (BMP) are being utilized to mitigate nutrient loading from agricultural landscapes to downstream waters. This study was conducted to determine the potential to use solids, P and N captured by tailwater recove...
Kwon, Hyuck Joon
2012-08-10
Although both TGF-β and BMP signaling enhance expression of adhesion molecules during chondrogenesis, TGF-β but not BMP signaling can initiate condensation of uncondensed mesenchymal cells. However, it remains unclear what causes the differential effects between TGF-β and BMP signaling on prechondrogenic condensation. Our previous report demonstrated that ATP oscillations play a critical role in prechondrogenic condensation. Thus, the current study examined whether ATP oscillations are associated with the differential actions of TGF-β and BMP signaling on prechondrogenic condensation. The result revealed that while both TGF-β1 and BMP2 stimulated chondrogenic differentiation, TGF-β1 but not BMP2 induced prechondrogenic condensation. It was also found that TGF-β1 but not BMP2 induced ATP oscillations and inhibition of TGF-β but not BMP signaling prevented insulin-induced ATP oscillations. Moreover, blockage of ATP oscillations inhibited TGF-β1-induced prechondrogenic condensation. In addition, TGF-β1-driven ATP oscillations and prechondrogenic condensation depended on Ca(2+) influx via voltage-dependent calcium channels. This study suggests that Ca(2+)-driven ATP oscillations mediate TGF-β-induced the initiation step of prechondrogenic condensation and determine the differential effects between TGF-β and BMP signaling on chondrogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong
2017-10-01
There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.
Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.
2011-01-01
Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414
NASA Astrophysics Data System (ADS)
Gallo, E. M.; Hogue, T. S.; Gold, M.; Mika, K.
2016-12-01
Dominguez Channel and Machado Lake watersheds are located in highly urbanized southern Los Angeles County. The 16 mile long channel that runs through the Dominguez Channel watershed (DCW) captures stormwater from a drainage area of 71 square miles and discharges directly into the Los Angeles Harbor. Machado Lake, located within the Machado Lake watershed (MLW) and directly adjacent to DCW, has a surface area of 40 acres and receives stormwater from 25 square miles. The water quality of receiving streams and waterbodies in DCW and MLW are increasingly polluted from stormwater runoff and highly concentrated areas of industrial activities. The main concern of water impairment within DCW includes copper and zinc while MLW is focused on nutrients, Total Nitrogen and Total Phosphorous. The implementation of Low Impact Developments (LIDs) and stormwater Best Management Practices (BMPs) within the watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. We utilize the EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) model in order to assess the impact of BMPs within the DCW and MLW watersheds by forecasting flow regimes and water quality time series data. Six compliance scenarios are simulated in SUSTAIN to assess pollutant load reduction and cost effectiveness. They each utilize a various suite of the five BMPs selected, which include vegetated swales, bioretention cells, dry ponds, infiltration trenches and porous pavement. Preliminary results show that while the six compliance options reduce pollutant loads by at least 73% in DCW, copper and zinc are only 9% and 50% in compliance, respectively, in terms of the wet weather TMDLs. This study further analyzes these results by comparing DCW to other previously modelled watersheds in Los Angeles, including Ballona Creek watershed and the Los Angeles River watershed. Observed water quality sampling from Machado Lake has shown the mean concentrations of nutrients well above the TMDLs. Machado Lake is currently being restored which includes the implementation BMPs. While the DCW is being modeled to determine the best scenarios for future BMP implementation, MLW is modeled to assess the efficacy of current BMPs to meet TMDL compliance.
Integrating water quality responses to best management practices in Portugal.
Fonseca, André; Boaventura, Rui A R; Vilar, Vítor J P
2018-01-01
Nutrient nonpoint pollution has a significant impact on water resources worldwide. The main challenge of this work was to assess the application of best management practices in agricultural land to comply with water quality legislation for surface waters. The Hydrological Simulation Program-FORTRAN was used to evaluate water quality of Ave River in Portugal. Best management practices (infiltration basin) (BMP) were applied to agricultural land (for 3, 6, 9, 12, and 15% area) with removal efficiencies of 50% for fecal coliforms and 30% for nitrogen, phosphorus, and biochemical oxygen demand. The inflow of water quality constituents was reduced for all scenarios, with fecal coliforms achieving the highest reduction between 5.8 and 28.9% and nutrients and biochemical oxygen demand between 2 and 13%. Biochemical oxygen demand and orthophosphates concentrations achieved a good water quality status according to the European Legislation for scenarios of BMP applied to 3 and 12% agricultural area, respectively. Fecal coliform levels in Ave River basin require further treatment to fall below the established value in the abovementioned legislation. This study shows that agricultural watersheds such as Ave basins demand special attention in regard to nonpoint pollution sources effects on water quality and nutrient loads.
Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin
2016-03-01
Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.
Tellier, Liane E; Miller, Tobias; McDevitt, Todd C; Temenoff, Johnna S
2015-10-28
Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ~50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ~100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.
BMP-2 Induces Versican and Hyaluronan That Contribute to Post-EMT AV Cushion Cell Migration
Inai, Kei; Burnside, Jessica L.; Hoffman, Stanley; Toole, Bryan P.; Sugi, Yukiko
2013-01-01
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions. PMID:24147033
Fonseca, Dora Janeth; Ortega-Recalde, Oscar; Esteban-Perez, Clara; Moreno-Ortiz, Harold; Patiño, Liliana Catherine; Bermúdez, Olga María; Ortiz, Angela María; Restrepo, Carlos M; Lucena, Elkin; Laissue, Paul
2014-11-01
BMP15 has drawn particular attention in the pathophysiology of reproduction, as its mutations in mammalian species have been related to different reproductive phenotypes. In humans, BMP15 coding regions have been sequenced in large panels of women with premature ovarian failure (POF), but only some mutations have been definitely validated as causing the phenotype. A functional association between the BMP15 c.-9C>G promoter polymorphism and cause of POF have been reported. The aim of this study was to determine the potential functional effect of this sequence variant on specific BMP15 promoter transactivation disturbances. Bioinformatics was used to identify transcription factor binding sites located on the promoter region of BMP15. Reverse transcription polymerase chain reaction was used to study specific gene expression in ovarian tissue. Luciferase reporter assays were used to establish transactivation disturbances caused by the BMP15 c.-9C>G variant. The c.-9C>G variant was found to modify the PITX1 transcription factor binding site. PITX1 and BMP15 co-expressed in human and mouse ovarian tissue, and PITX1 transactivated both BMP15 promoter versions (-9C and -9G). It was found that the BMP15 c.-9G allele was related to BMP15 increased transcription, supporting c.-9C>G as a causal agent of POF. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Lee, So-Youn; Auh, Q-Schick; Kang, Soo-Kyung; Kim, Hyung-Joon; Lee, Jung-Woo; Noh, Kwantae; Jang, Jun-Hyeog; Kim, Eun-Cheol
2014-07-01
The aim of this study is to determine the effects of the combination of recombinant human BMP-2 (rh-BMP-2) and dentin sialoprotein (rh-DSP) on growth and differentiation in human cementoblasts and determine the underlying signal transduction mechanism. Compared to treatment of cementoblasts with either rh-BMP-2 or rh-DSP alone, the combination of rh-BMP-2 and rh-DSP synergistically increased cell growth, ALP activity, nodule formation and expression of differentiation markers. The differentiation-promoting effect was also observed in periodontal ligament cells and an osteoblastic cell line. Likewise, combination of rh-DSP and rh-BMP-2 increased BMP-2 mRNA expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. The expression levels of α2β1 integrin and RhoA, as well as the phosphorylation status of FAK and Akt, were increased by the combination of rh-BMP-2 and rh-DSP in a time-dependent manner. In addition, rh-BMP-2 and rh-DSP enhanced expression of Wnt ligands, β-catenin activation and GSK-3β phosphorylation, all of which were inhibited by the Wnt receptor antagonist DKK1. Furthermore, treatment with rh-DSP plus rh-BMP-2 resulted in phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 and also induced the nuclear translocation of the NF-κB p65 subunit, which was blocked by noggin. This study demonstrates for the first time that rh-DSP and rh-BMP-2 act synergistically, enhancing each other's ability to stimulate cementoblastic cell growth and differentiation in vitro via autocrine BMP, integrin, Wnt/β-catenin, MAP kinase and NF-κB pathways. These results support the therapeutic potential of a combination strategy for aiding periodontal regeneration.
Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan
2014-01-01
Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer. PMID:24805814
Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan
2014-01-01
Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.
Ramamoorthy, R; Povinelli, L; Philipp M, T
1996-01-01
An expression library made with Borrelia burgdorferi DNA in the vector lambda ZapII was screened with serum from a monkey infected with the Lyme disease agent. This serum killed B. burgdorferi in vitro by an antibody-dependent, complement-mediated mechanism and contained antibodies to at least seven spirochetal antigens, none of which were the major outer surface proteins OspA or OspB. Among several positive clones, a clone containing the B. burgdorferi bmpA gene encoding the immunodominant antigen P39 was obtained. Chromosome walking and DNA sequence analysis permitted the identification of two additional upstream genes homologous to the bmpA gene and its related companion, bmpB. The first of these was the recently characterized bmpC gene, and adjacent to it was the fourth and new member of this class, which has been designated bmpD. The gene product encoded by bmpD is 34l residues long, contains a signal sequence with a potential signal peptidase II cleavage site, and has 26% identity with TmpC of Treponema pallidum. Southern blotting confirmed the tandem arrangement of all four bmp genes in the chromosome of B. burgdorferi JD1. However, Northern (RNA) blotting revealed that bmpD is expressed as a monocistronic transcript, which indicates that it is not part of an operon at the bmp locus. The bmpD gene was found to be conserved in representative members of the three species of the B. burgdorferi sensu lato complex, suggesting that it serves an important biological function in the spirochete. PMID:8606088
Alobaidaan, Raed; Cohen, Jeremiah R; Lord, Elizabeth L; Buser, Zorica; Yoon, S Tim; Youssef, Jim A; Park, Jong-Beom; Brodke, Darrel S; Wang, Jeffrey C; Meisel, Hans-Joerg
2017-12-01
Retrospective cohort study among Medicare beneficiaries who underwent posterior lumbar interbody fusion (PLIF) surgery. To identify the complication rates associated with the use of bone morphogenetic protein 2 (BMP2) in PLIF. Human BMP2 is commonly used in the "off-label" manner for various types of spine fusion procedures, including PLIF. However, recent studies have reported potential complications associated with the recombinant human BMP2 (rhBMP2) use in the posterior approach. Medicare records within the PearlDiver database were queried for patients undergoing PLIF procedure with and without rhBMP2 between 2005 and 2010. We evaluated complications within 1 year postoperatively. Chi-square was used to compare the complication rates between the 2 groups. A total of 8609 patients underwent PLIF procedure with or without rhBMP2. Individual complication rates in the rhBMP2 group ranged from 0.45% to 7.68% compared with 0.65% to 10.99 in the non-rhBMP2 group. Complication rates for cardiac, pulmonary, lumbosacral neuritis, infection, wound, and urinary tract (include acute kidney failure and post-operative complications) were significantly lower in the rhBMP2 group ( P < .05). There was no difference in the rates of central nervous system complications or radiculitis between the 2 groups. Our data showed that the patients who received rhBMP2 had lower complication rates compared to the non-rhBMP2 group. However, use of rhBMP2 was associated with a higher rate of pseudarthrosis. We did not observe any difference in radiculitis and central nervous system complications between the groups.
Alobaidaan, Raed; Cohen, Jeremiah R.; Lord, Elizabeth L.; Yoon, S. Tim; Youssef, Jim A.; Park, Jong-Beom; Brodke, Darrel S.; Wang, Jeffrey C.; Meisel, Hans-Joerg
2017-01-01
Study Design: Retrospective cohort study among Medicare beneficiaries who underwent posterior lumbar interbody fusion (PLIF) surgery. Objective: To identify the complication rates associated with the use of bone morphogenetic protein 2 (BMP2) in PLIF. Human BMP2 is commonly used in the “off-label” manner for various types of spine fusion procedures, including PLIF. However, recent studies have reported potential complications associated with the recombinant human BMP2 (rhBMP2) use in the posterior approach. Methods: Medicare records within the PearlDiver database were queried for patients undergoing PLIF procedure with and without rhBMP2 between 2005 and 2010. We evaluated complications within 1 year postoperatively. Chi-square was used to compare the complication rates between the 2 groups. Results: A total of 8609 patients underwent PLIF procedure with or without rhBMP2. Individual complication rates in the rhBMP2 group ranged from 0.45% to 7.68% compared with 0.65% to 10.99 in the non-rhBMP2 group. Complication rates for cardiac, pulmonary, lumbosacral neuritis, infection, wound, and urinary tract (include acute kidney failure and post-operative complications) were significantly lower in the rhBMP2 group (P < .05). There was no difference in the rates of central nervous system complications or radiculitis between the 2 groups. Conclusion: Our data showed that the patients who received rhBMP2 had lower complication rates compared to the non-rhBMP2 group. However, use of rhBMP2 was associated with a higher rate of pseudarthrosis. We did not observe any difference in radiculitis and central nervous system complications between the groups. PMID:29238641
Postoperative Complications Associated With rhBMP2 Use in Posterior/Posterolateral Lumbar Fusion
Esmail, Nabil; Buser, Zorica; Cohen, Jeremiah R.; Brodke, Darrel S.; Meisel, Hans-Joerg; Park, Jong-Beom; Youssef, Jim A.; Wang, Jeffrey C.; Yoon, S. Tim
2017-01-01
Study Design: Retrospective database review. Objective: Posterior/posterolateral lumbar fusion (PLF) is an effective treatment for a variety of spinal disorders; however, variations in surgical technique have different complication profiles. The aim of our study was to quantify the frequency of various complications in patients undergoing PLF with and without human recombinant bone morphogenetic protein 2 (rhBMP2). Methods: We queried the orthopedic subset of the Medicare database (PearlDiver) between 2005 and 2011 for patients undergoing PLF procedures with and without rhBMP2. Complication and reoperation rates were analyzed within 1 year of the index procedure. Complications assessed include: acute renal failure, deep vein thrombosis, dural tear, hematoma, heterotopic ossification, incision and drainage, cardiac complications, nervous system complications, osteolysis, pneumonia, pseudarthrosis, pulmonary embolism, radiculopathy, respiratory complications, sepsis, urinary retention, urinary tract infection, mechanical, and wound complications. Chi-square analysis was used to calculate the complication differences between the groups. Results: Our data revealed higher overall complication rates in patients undergoing PLF with rhBMP2 versus no_rhBMP2 (76.9% vs 68.8%, P < .05). Stratified by gender, rhBMP2 males had higher rates of mechanical complications, pseudarthrosis, and reoperations compared with no_rhBMP2 males (P < .05), whereas rhBMP2 females had higher rates of pseudarthrosis, urinary tract infection, and urinary retention compared with no_rhBMP2 females (P < .05). Conclusion: Our data revealed higher overall complication rates in PLF patients given rhBMP2 compared with no_rhBMP2. Furthermore, our data suggests that rhBMP2-associated complications may be gender specific. PMID:29662744
Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo
2011-07-01
Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.
Sudiman, Jaqueline; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; White, Melissa A.; Mottershead, David G.; Thompson, Jeremy G.; Gilchrist, Robert B.
2014-01-01
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies. PMID:25058588
Sudiman, Jaqueline; Sutton-McDowall, Melanie L; Ritter, Lesley J; White, Melissa A; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B
2014-01-01
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.
Economic analysis of best management practices to reduce watershed phosphorus losses.
Rao, Nalini S; Easton, Zachary M; Lee, David R; Steenhuis, Tammo S
2012-01-01
In phosphorus-limited freshwater systems, small increases in phosphorus (P) concentrations can lead to eutrophication. To reduce P inputs to these systems, various environmental and agricultural agencies provide producers with incentives to implement best management practices (BMPs). In this study, we examine both the water quality and economic consequences of systematically protecting saturated, runoff-generating areas from active agriculture with selected BMPs. We also examine the joint water quality/economic impacts of these BMPs-specifically BMPs focusing on barnyards and buffer areas. Using the Variable Source Loading Function model (a modified Generalized Watershed Loading Function model) and net present value analysis (NPV), the results indicate that converting runoff-prone agricultural land to buffers and installing barnyard BMPs are both highly effective in decreasing dissolved P loss from a single-farm watershed, but are also costly for the producer. On average, including barnyard BMPs decreases the nutrient loading by about 5.5% compared with only implementing buffers. The annualized NPV for installing both buffers on only the wettest areas of the landscape and implementing barnyard BMPs becomes positive only if the BMPs lifetime exceeds 15 yr. The spatial location of the BMPs in relation to runoff producing areas, the time frame over which the BMPs are implemented, and the marginal costs of increasing buffer size were found to be the most critical considerations for water quality and profitability. The framework presented here incorporates estimations of nutrient loading reductions in the economic analysis, and is applicable to farms facing BMP adoption decisions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, N.W.T.; Ortega, R.; Rahilly, P.
2011-12-17
The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approachmore » to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.« less
Bae, Hyun W; Zhao, Li; Kanim, Linda E A; Wong, Pamela; Delamarter, Rick B; Dawson, Edgar G
2006-05-20
Enzyme-linked immunosorbent assay was used to detect bone morphogenetic proteins (BMPs) 2, 4, and 7 in 9 commercially available ("off the shelf") demineralized bone matrix (DBM) product formulations using 3 different manufacturer's production lots of each DBM formulation. To evaluate and compare the quantity of BMPs among several different DBM formulations (inter-product variability), as well as examine the variability of these proteins in different production lots within the same DBM formulation (intra-product variability). DBMs are commonly used to augment available bone graft in spinal fusion procedures. Surgeons are presented with an ever-increasing variety of commercially available human DBMs from which to choose. Yet, there is limited information on a specific DBM product's osteoinductive efficacy, potency, and constancy. There were protein extracts from each DBM sample separately dialyzed 4 times against distilled water at 4 degrees C for 48 hours. The amount of BMP-2, BMP-4, and BMP-7 was determined using enzyme-linked immunosorbent assay. RESULTS.: The concentrations of detected BMP-2 and BMP-7 were low for all DBM formulations, only nanograms of BMP were extracted from each gram of DBM (20.2-120.6 ng BMP-2/g DBM product; 54.2-226.8 ng BMP-7/g DBM). The variability of BMP concentrations among different lots of the same DBM formulation, intra-product variability, was higher than the variability of concentrations among different DBM formulations, inter-product variability (coefficient of variation range BMP-2 [16.34% to 76.01%], P < 0.01; BMP-7 [3.71% to 82.08%], P < 0.001). BMP-4 was undetectable. The relative quantities of BMPs in DBMs are low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in concentration of BMPs among 3 different lots of the same DBM formulation than among different DBM formulations. This variability questions DBM products' reliability and, possibly, efficacy in providing consistent osteoinduction.
Kim, In Sook; Lee, Eui Nam; Cho, Tae Hyung; Song, Yun Mi; Hwang, Soon Jung; Oh, Ji Hye; Park, Eun Kyung; Koo, Tai Young; Seo, Young-Kwon
2011-02-01
Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.
McKenzie, Jennifer A.; Buettmann, Evan G.; Gardner, Michael J.; Silva, Matthew J.
2015-01-01
Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10–24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2. PMID:26344756
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.
Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K
2016-06-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. © 2016. Published by The Company of Biologists Ltd.
Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.
2016-01-01
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692
Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein
Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian
2015-01-01
Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661
A conserved post-transcriptional BMP2 switch in lung cells.
Jiang, Shan; Fritz, David T; Rogers, Melissa B
2010-05-15
An ultra-conserved sequence in the bone morphogenetic protein 2 (BMP2) 3' untranslated region (UTR) markedly represses BMP2 expression in non-transformed lung cells. In contrast, the ultra-conserved sequence stimulates BMP2 expression in transformed lung cells. The ultra-conserved sequence functions as a post-transcriptional cis-regulatory switch. A common single-nucleotide polymorphism (SNP, rs15705, +A1123C), which has been shown to influence human morphology, disrupts a conserved element within the ultra-conserved sequence and altered reporter gene activity in non-transformed lung cells. This polymorphism changed the affinity of the BMP2 RNA for several proteins including nucleolin, which has an increased affinity for the C allele. Elevated BMP2 synthesis is associated with increased malignancy in mouse models of lung cancer and poor lung cancer patient prognosis. Understanding the cis- and trans-regulatory factors that control BMP2 synthesis is relevant to the initiation or progression of pathologies associated with abnormal BMP2 levels. (c) 2010 Wiley-Liss, Inc.
Zheng, Guang Bin; Lee, Jae Hyup; Jin, Yuan-Zhe
2017-12-01
This study compared osteoinductivity and osteogenic capacity between AB204 and rhBMP-2 using hMSCs in vitro and a beagle's posterolateral spinal fusion model. Cultured hMSCs were treated with AB204 or rhBMP-2 with low to high doses. Three male beagles were performed posterolateral spinal fusion with biphasic calcium phosphate (2 ml) + AB204 or rhBMP-2 (20, 50 or 200 µg). They were euthanized after 8 weeks. The fusion rate and bone formation of spine samples were examined. AB204 had higher alkaline phosphatase activity, mineralization and osteogenic-related gene expression than rhBMP-2. Fusion rates in all rhBMP-2 groups were 0. They were 100% for 50 μg and 200 μg AB204 groups. Therefore, AB204 showed higher osteogenicity than rhBMP-2. It could be a better bone graft substitute.
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish
Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.
2016-01-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
...: [email protected] . Mail/Hand Delivery/Courier: Michael Davis, Project Manager, Consumer Financial... application of best management practices (BMP) to minimize short term air quality and noise impact during... of Final Environmental Assessment (FINAL EA) and a Finding of No Significant Impact (FONSI) for...
USDA-ARS?s Scientific Manuscript database
Enhancing wetland characteristics in agricultural drainage ditches with the use of low-grade weirs, has been identified as a potential best management practice (BMP) to mitigate nutrient runoff from agriculture landscapes. This study examined microbe community abundance and diversity involved in den...
The goal of this project, and associated research, is to establish thresholds for ecological response to watershed disturbance and to develop tools and insights that will help us manage risks and evaluate best management practice (BMP) effectiveness. Changes in the amount and typ...
Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.
Tucker, A S; Al Khamis, A; Sharpe, P T
1998-08-01
Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future sites of tooth formation, creating a positive feedback loop that maintains expression of both genes in tooth mesenchymal cells.
Fritz, David T; Jiang, Shan; Xu, Junwang; Rogers, Melissa B
2006-07-01
The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.
Effects of Bone Morphogenic Proteins on Engineered Cartilage
NASA Technical Reports Server (NTRS)
Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.
2007-01-01
A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.
Negative regulation of BMP signaling by the ski oncoprotein.
Luo, Kunxin
2003-01-01
The bone morphogenetic proteins (BMPs) play important roles in the regulation of multiple aspects of vertebrate development. BMPs signal through the cell surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. The activity of this signal pathway can be modulated both by extracellular factors that regulate the binding of BMPs to the receptor and by intracellular proteins that interact with the Smad proteins. We have shown that Ski is an important negative regulator of the Smad proteins. Ski can bind to the BMP-Smad protein complexes in response to BMP and repress their ability to activate BMP target genes through disruption of a functional Smad complex and through recruitment of transcriptional co-repressors. The antagonism of BMP signaling by Ski results in neural specification in Xenopus embryos and inhibition of osteoblast differentiation in mouse bone-marrow stromal progenitor cells. This ability to modulate BMP signaling by Ski may play an important role in the regulation of craniofacial, neuronal, and skeletal muscle development.
Lord, Elizabeth L; Cohen, Jeremiah R; Buser, Zorica; Meisel, Hans-Joerg; Brodke, Darrel S; Yoon, S Tim; Youssef, Jim A; Wang, Jeffrey C; Park, Jong-Beom
2017-10-01
Retrospective database review. After the Food and Drug Administration approved bone morphogenetic protein-2 (BMP) in 2002, BMP was used off-label in the cervical spine to increase bone growth and bony fusion. Since then, concerns have been raised regarding complication rates and safety. This study was conducted to examine the use of BMP in anterior cervical discectomy and fusion (ACDF) in the Medicare population and to determine risk of complications and associated costs within 90 days of surgery. Patients who underwent ACDF were identified using Current Procedural Terminology (CPT) and International Classification of Diseases, Ninth Revision Procedure codes (ICD9-P). Complications were identified using ICD9 diagnostic codes. Charges were calculated as amount billed, and reimbursements were calculated as amounts paid by Medicare. Data for these analyses came from a nationwide claims database. A total of 215 047 patients were identified who had ACDF from 2005 to 2011. For the majority of the procedures (89.0%), BMP was not used. BMP use rose from 11.84% in 2005 to a peak of 16.73% in 2007 before decreasing to 12.01% in 2011. BMP was used 16% more in women than men. BMP use was the highest in the West (13.6%) followed by Midwest (11.8%), South (10.6%), and Northeast (7.5%). There was a higher overall complication rate in the BMP group (2.1%) compared with the non-BMP group (1.9%) (odds ratio [OR] = 1.11, 95% CI = 1.01-1.22). The BMP group also had a higher rate of wound complications (0.98% vs 0.76%, OR = 1.29, 95% CI = 1.12-1.48). In this study population, there was no difference in dysphagia/hoarseness, neurologic, medical, or other complications. During the 90-day perioperative period, BMP surgeries were charged at 17.6% higher than non-BMP surgeries. The use of BMP in ACDF in the Medicare population has decreased since a peak in 2007. The rate of wound and overall complications for BMP use with ACDF was higher than without. Our results regarding dysphagia/hoarseness did not show a statistically meaningful difference, which is in contrast with many other studies. Charges associated with BMP use were higher during the 90-day perioperative period.
Cohen, Jeremiah R.; Buser, Zorica; Meisel, Hans-Joerg; Brodke, Darrel S.; Yoon, S. Tim; Youssef, Jim A.; Wang, Jeffrey C.; Park, Jong-Beom
2017-01-01
Study Design: Retrospective database review. Objectives: After the Food and Drug Administration approved bone morphogenetic protein–2 (BMP) in 2002, BMP was used off-label in the cervical spine to increase bone growth and bony fusion. Since then, concerns have been raised regarding complication rates and safety. This study was conducted to examine the use of BMP in anterior cervical discectomy and fusion (ACDF) in the Medicare population and to determine risk of complications and associated costs within 90 days of surgery. Methods: Patients who underwent ACDF were identified using Current Procedural Terminology (CPT) and International Classification of Diseases, Ninth Revision Procedure codes (ICD9-P). Complications were identified using ICD9 diagnostic codes. Charges were calculated as amount billed, and reimbursements were calculated as amounts paid by Medicare. Data for these analyses came from a nationwide claims database. Results: A total of 215 047 patients were identified who had ACDF from 2005 to 2011. For the majority of the procedures (89.0%), BMP was not used. BMP use rose from 11.84% in 2005 to a peak of 16.73% in 2007 before decreasing to 12.01% in 2011. BMP was used 16% more in women than men. BMP use was the highest in the West (13.6%) followed by Midwest (11.8%), South (10.6%), and Northeast (7.5%). There was a higher overall complication rate in the BMP group (2.1%) compared with the non-BMP group (1.9%) (odds ratio [OR] = 1.11, 95% CI = 1.01-1.22). The BMP group also had a higher rate of wound complications (0.98% vs 0.76%, OR = 1.29, 95% CI = 1.12-1.48). In this study population, there was no difference in dysphagia/hoarseness, neurologic, medical, or other complications. During the 90-day perioperative period, BMP surgeries were charged at 17.6% higher than non-BMP surgeries. Conclusions: The use of BMP in ACDF in the Medicare population has decreased since a peak in 2007. The rate of wound and overall complications for BMP use with ACDF was higher than without. Our results regarding dysphagia/hoarseness did not show a statistically meaningful difference, which is in contrast with many other studies. Charges associated with BMP use were higher during the 90-day perioperative period. PMID:28989837
Hsu, Mei-Yu; Rovinsky, Sherry; Lai, Chiou-Yan; Qasem, Shadi; Liu, Xiaoming; How, Joan; Engelhardt, John F.; Murphy, George F.
2009-01-01
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily responsible for mediating a diverse array of cellular functions both during embryogenesis and in adult life. Previously, we reported that upregulation of BMP7 in human melanoma correlates with tumor progression. However, melanoma cells are either inhibited by or become resistant to BMP7 as a function of tumor progression, with normal melanocytes being most susceptible. Herein, real-time quantitative reverse transcriptase-polymerase chain reactions and Western blotting revealed that the expression of BMP antagonist, Noggin, correlates with resistance to BMP7 in advanced melanoma cells. To test the hypothesis that coordinated upregulation of Noggin protects advanced melanoma cells from autocrine inhibition by BMP7, functional expression of Noggin in susceptible melanoma cells was achieved by adenoviral gene transfer. The Noggin-overexpressing cells exhibited a growth advantage in response to subsequent BMP7 transduction in vitro under anchorage-dependent and -independent conditions, in three-dimensional skin reconstructs, as well as in vivo in severe combined immune-deficiency mice. In concordance, Noggin knockdown by lentiviral shRNA confers sensitivity to BMP7-induced growth inhibition in advanced melanoma cells. Our findings suggest that, like TGF-β, BMP7 acts as an autocrine growth inhibitor in melanocytic cells, and that advanced melanoma cells may escape from BMP7-induced inhibition through concomitant aberrant expression of Noggin. PMID:18560367
Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan
2016-01-01
Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.
BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis
Jiang, Ming; Ku, Wei-Yao; Zhou, Zhongren; Dellon, Evan S.; Falk, Gary W.; Nakagawa, Hiroshi; Wang, Mei-Lun; Liu, Kuancan; Wang, Jun; Katzka, David A.; Peters, Jeffrey H.; Lan, Xiaopeng; Que, Jianwen
2015-01-01
Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE. PMID:25774506
Schmal, Hagen; Mehlhorn, Alexander T.; Pilz, Ingo H.; Dovi-Akue, David; Kirchhoff, Christina; Südkamp, Norbert P.; Gerlach, Ulrike; Lohrmann, Christian; Niemeyer, Philipp
2012-01-01
Introduction. Although it is well known that BMP-2 and BMP-7 play significant roles in cartilage metabolism, data about intra-articular expression and localization of these proteins and their receptors in humans are rare. Methods. Biopsies of synovia and debrided cartilage were taken in patients undergoing autologous chondrocyte implantation. Expression of BMP-2, BMP-7, and their receptors BMPR-1A, BMPR-1B and BMPR-2 were semiquantitatively evaluated by immunohistological staining. Results. BMP-7 was equally highly expressed in all cartilage and synovial biopsies. Increased levels of BMPR-1A, but not of BMPR-1B, and BMPR-2, were found in all synovial and 47% of all cartilage samples (P = 0.002). BMP-2 was positively scored in 47% of all cartilage and 40% of all synovial specimens. Defect size, KOSS, Henderson or Kellgren-Lawrence score did not statistically significant correlate with the expression of the analyzed proteins or Mankin and Pritzker scores. Duration of symptoms and localization of lesions were associated with KOSS (P < 0.02), but there was no influence of these parameters on protein expression. Conclusions. BMP-2, BMP-7, and BMPR-1A were expressed in cartilage and synovia of knees with focal cartilage lesions. Although defect localization and duration of symptoms decisively influence KOSS, there was no associated alteration of protein expression observed. PMID:22272175
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-01-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233
NASA Astrophysics Data System (ADS)
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-04-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.
Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki
2015-06-01
β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. © 2014 Wiley Periodicals, Inc.
Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae
2015-01-01
Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing. PMID:26491693
Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae
2015-01-01
Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.
Chen, Zhuoyue; Zhang, Zhen; Feng, Juantao; Guo, Yayuan; Yu, Yuan; Cui, Jihong; Li, Hongmin; Shang, Lijun
2018-04-11
Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.
Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel
NASA Astrophysics Data System (ADS)
Wu, B.; Wu, B. F.; Feng, Y. J.; Tao, J.; Ji, Y. H.
2016-07-01
The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10-16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02’s β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.
Bone morphogenetic protein signaling is impaired in an Hfe knockout mouse model of hemochromatosis
Corradini, Elena; Garuti, Cinzia; Montosi, Giuliana; Ventura, Paolo; Andriopoulos, Billy; Lin, Herbert Y.; Pietrangelo, Antonello; Babitt, Jodie L.
2009-01-01
Background and Aims Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis (HH). Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in HH mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. Methods The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. Results Liver levels of Bmp6 mRNA were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. Conclusions HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron. PMID:19591830
Wang, Zengjian; Zhang, Delong; Liang, Bishan; Chang, Song; Pan, Jinghua; Huang, Ruiwang; Liu, Ming
2016-01-01
Biological motion perception (BMP) refers to the ability to perceive the moving form of a human figure from a limited amount of stimuli, such as from a few point lights located on the joints of a moving body. BMP is commonplace and important, but there is great inter-individual variability in this ability. This study used multiple regression model analysis to explore the association between BMP performance and intrinsic brain activity, in order to investigate the neural substrates underlying inter-individual variability of BMP performance. The resting-state functional magnetic resonance imaging (rs-fMRI) and BMP performance data were collected from 24 healthy participants, for whom intrinsic brain networks were constructed, and a graph-based network efficiency metric was measured. Then, a multiple linear regression model was used to explore the association between network regional efficiency and BMP performance. We found that the local and global network efficiency of many regions was significantly correlated with BMP performance. Further analysis showed that the local efficiency rather than global efficiency could be used to explain most of the BMP inter-individual variability, and the regions involved were predominately located in the Default Mode Network (DMN). Additionally, discrimination analysis showed that the local efficiency of certain regions such as the thalamus could be used to classify BMP performance across participants. Notably, the association pattern between network nodal efficiency and BMP was different from the association pattern of static directional/gender information perception. Overall, these findings show that intrinsic brain network efficiency may be considered a neural factor that explains BMP inter-individual variability. PMID:27853427
Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.
Lizotte, Richard E; Yasarer, Lindsey M W; Locke, Martin A; Bingner, Ronald L; Knight, Scott S
2017-03-01
Watershed-scale management efforts to reduce nutrient loads and improve the conservation of lakes in agricultural watersheds require effective integration of a variety of agricultural conservation best management practices (BMPs). This paper documents watershed-scale assessments of the influence of multiple integrated BMPs on oxbow lake nutrient concentrations in a 625-ha watershed of intensive row-crop agricultural activity during a 14-yr monitoring period (1996-2009). A suite of BMPs within fields and at field edges throughout the watershed and enrollment of 87 ha into the Conservation Reserve Program (CRP) were implemented from 1995 to 2006. Total phosphorus (TP), soluble reactive phosphorus (SRP), ammonium, and nitrate were measured approximately biweekly from 1996 to 2009, and total nitrogen (TN) was measured from 2001 to 2009. Decreases in several lake nutrient concentrations occurred after BMP implementation. Reductions in TP lake concentrations were associated with vegetative buffers and rainfall. No consistent patterns of changes in TN or SRP lake concentrations were observed. Reductions in ammonium lake concentrations were associated with conservation tillage and CRP. Reductions in nitrate lake concentrations were associated with vegetative buffers. Watershed simulations conducted with the AnnAGNPS (Annualized Agricultural Non-Point Source) model with and without BMPs also show a clear reduction in TN and TP loads to the lake after the implementation of BMPs. These results provide direct evidence of how watershed-wide BMPs assist in reducing nutrient loading in aquatic ecosystems and promote a more viable and sustainable lake ecosystem. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Yang, Qi; Zhao, Zhengyong; Benoy, Glenn; Chow, Thien Lien; Rees, Herb W; Bourque, Charles P-A; Meng, Fan-Rui
2010-01-01
Soil conservation beneficial management practices (BMPs) are effective at controlling soil loss from farmlands and minimizing water pollution in agricultural watersheds. However, costs associated with implementing and maintaining these practices are high and often deter farmers from using them. Consequently, it is necessary to conduct cost-benefit analysis of BMP implementation to assist decision-makers with planning to provide the greatest level of environmental protection with limited resources and funding. The Soil and Water Assessment Tool (SWAT) was used to evaluate the efficacy of flow diversion terraces (FDT) in abating sediment yield at the outlet of Black Brook Watershed (BBW), northwestern New Brunswick. Different FDT-implementation scenarios were expressed as the ratio of land area protected by FDT to the total cultivated area. From this analysis, we found that average annual sediment yield decreased exponentially with increased FDT protection. When the proportion of FDT-protected areas was low, sediment reductions caused by FDT increased sharply with increasing use of FDT. Similarly, marginal sediment yield abatement costs (dollar per tonne of sediment reduction) increased exponentially with increasing proportion of FDT-protected area. The results indicated that increasing land protection with FDT from 6 to 50% would result in a reduction of about 2.1 tonne ha(-1) yr(-1) and costs of sediment reduction increased from $7 to $12 per tonne. Increasing FDT-protected cropland from 50 to 100%, a reduction of about 0.9 tonne of sediment ha(-1) yr(-1) would occur and the costs would increase from $12 to $53 per tonne of sediment yield reduction.
Nordin, Kara; LaBonne, Carole
2014-01-01
SUMMARY The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages, and the neural plate border (NPB) and neural crest (NC) at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long sought DNA binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm. PMID:25453832
Dynamics of BMP signaling in limb bud mesenchyme and polydactyly.
Norrie, Jacqueline L; Lewandowski, Jordan P; Bouldin, Cortney M; Amarnath, Smita; Li, Qiang; Vokes, Martha S; Ehrlich, Lauren I R; Harfe, Brian D; Vokes, Steven A
2014-09-15
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San
2009-04-03
Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells
Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin
2000-01-01
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.
Wang, W; Mariani, F V; Harland, R M; Luo, K
2000-12-19
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.
Attenuated BMP1 Function Compromises Osteogenesis, Leading to Bone Fragility in Humans and Zebrafish
Asharani, P.V.; Keupp, Katharina; Semler, Oliver; Wang, Wenshen; Li, Yun; Thiele, Holger; Yigit, Gökhan; Pohl, Esther; Becker, Jutta; Frommolt, Peter; Sonntag, Carmen; Altmüller, Janine; Zimmermann, Katharina; Greenspan, Daniel S.; Akarsu, Nurten A.; Netzer, Christian; Schönau, Eckhard; Wirth, Radu; Hammerschmidt, Matthias; Nürnberg, Peter; Wollnik, Bernd; Carney, Thomas J.
2012-01-01
Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFβ superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability. PMID:22482805
Kudoh, Tetsuhiro; Concha, Miguel L.; Houart, Corinne; Dawid, Igor B.; Wilson, Stephen W.
2009-01-01
Summary Studies in fish and amphibia have shown that graded Bmp signalling activity regulates dorsal-to-ventral (DV) patterning of the gastrula embryo. In the ectoderm, it is thought that high levels of Bmp activity promote epidermal development ventrally, whereas secreted Bmp antagonists emanating from the organiser induce neural tissue dorsally. However, in zebrafish embryos, the domain of cells destined to contribute to the spinal cord extends all the way to the ventral side of the gastrula, a long way from the organiser. We show that in vegetal (trunk and tail) regions of the zebrafish gastrula, neural specification is initiated at all DV positions of the ectoderm in a manner that is unaffected by levels of Bmp activity and independent of organiser-derived signals. Instead, we find that Fgf activity is required to induce vegetal prospective neural markers and can do so without suppressing Bmp activity. We further show that Bmp signalling does occur within the vegetal prospective neural domain and that Bmp activity promotes the adoption of caudal fate by this tissue. PMID:15262889
Effect of rhBMP-2 on tibial plateau fractures in a canine model.
Schaefer, Susan L; Lu, Yan; Seeherman, Howard; Li, X Jian; Lopez, Mandi J; Markel, Mark D
2009-04-01
This study was to determine the efficacy of recombinant human bone morphogenetic protien-2 (rhBMP-2)/calcium phosphate matrix (CPX) paste to accelerate healing in a canine articular fracture model with associated subchondral defect. rhBMP-2/CPX (BMP), CPX alone (CPX) or autogenous bone graft (ABG) was administered to a canine articular tibial plateau osteotomy with a subchondral defect in each of 21 female dogs. The unoperated contralateral limbs served as controls. Ground reaction forces, synovial fluid, radiographic changes, mechanical testing, bone density, and histology of bone and synovium were analyzed at 6 weeks after surgery. Radiographic analysis demonstrated that the BMP and CPX groups showed improved bony healing compared to the ABG group at week 6. Histomorphometric analysis demonstrated that the BMP group had significantly increased trabecular bone volume compared to the CPX and ABG groups. Mechanical testing revealed that the BMP group had significantly greater maximum failure loads than the ABG group. Histological analysis demonstrated that the BMP group had significantly less sub-synovial inflammation than CPX group. This study demonstrated that rhBMP-2/CPX accelerated healing of articular fractures with subchondral defect compared to ABG in most of the parameters evaluated, and had less subsynovial inflammation than the CPX alone in a canine model.
Role of RGM coreceptors in bone morphogenetic protein signaling
Halbrooks, Peter J; Ding, Ru; Wozney, John M; Bain, Gerard
2007-01-01
Background The repulsive guidance molecule (RGM) proteins, originally discovered for their roles in neuronal development, have been recently identified as co-receptors in the bone morphogenetic protein (BMP) signaling pathway. BMPs are members of the TGFβ superfamily of signaling cytokines, and serve to regulate many aspects of cellular growth and differentiation. Results Here, we investigate whether RGMa, RGMb, and RGMc play required roles in BMP and TGFβ signaling in the mouse myoblast C2C12 cell line. These cells are responsive to BMPs and are frequently used to study BMP/TGFβ signaling pathways. Using siRNA reagents to specifically knock down each RGM protein, we show that the RGM co-receptors are required for significant BMP signaling as reported by two cell-based BMP activity assays: endogenous alkaline phosphatase activity and a luciferase-based BMP reporter assay. Similar cell-based assays using a TGFβ-induced luciferase reporter show that the RGM co-receptors are not required for TGFβ signaling. The binding interaction of each RGM co-receptor to each of BMP2 and BMP12 is observed and quantified, and equilibrium dissociation constants in the low nanomolar range are reported. Conclusion Our results demonstrate that the RGMs play a significant role in BMP signaling and reveal that these molecules cannot functionally compensate for one another. PMID:17615080
Characterization of the post-translational modification of recombinant human BMP-15 mature protein
Saito, Seiji; Yano, Keiichi; Sharma, Shweta; McMahon, Heather E.; Shimasaki, Shunichi
2008-01-01
Bone morphogenetic protein-15 (BMP-15) is an oocyte-secreted factor critical for the regulation of ovarian physiology. When recombinant human BMP-15 (rhBMP-15) produced in human embryonic kidney 293 cells was subjected to SDS-PAGE analysis, two mature protein forms corresponding to 16 kDa (P16) and 17 kDa (P17) were observed. Despite the physiological relevance and critical function of BMP-15 in female reproduction, little is known about the structure of rhBMP-15. Here, we have analyzed the structure of the rhBMP-15 mature proteins (P16 and P17) using state-of-the-art proteomics technology. Our findings are as follows: (1) the N-terminal amino acid of P16 and P17 is pyroglutamic acid; (2) the Ser residue at the sixth position of P16 is phosphorylated; (3) P17 is O-glycosylated at Thr10; and (4) the C-terminal amino acid of P16 and P17 is truncated. These findings are the first knowledge of the structure of rhBMP-15 mature protein toward understanding the molecular basis of BMP-15 function and could provide an important contribution to the rapidly progressing research area involving oocyte-specific growth factors in modulation of female fertility. PMID:18227435
Meng, Xiaomei; Zhu, Peng; Li, Ning; Hu, Jinchen; Wang, Shaoguang; Pang, Shuguang; Wang, Jiahui
2017-04-01
Bone morphogenetic protein 4 (BMP-4) is a member of the BMP protein family. BMP-4 was reported to induce epithelial-mesenchymal transition (EMT) and promote tumor cell immigration and invasion. This study aimed to investigate the expression of BMP-4 in papillary thyroid carcinoma (PTC) and its correlation with the patients' clinicophathological features and with tumor invasion and metastasis. Surgically resected PTC specimens from 82 patients admitted to the Department of Thyroid Surgery of Yantai Yuhuangding Hospital between Feb 1st and May 31st, 2016 were collected. The expression level of BMP-4 in PTC tissues was examined by immunohistochemical staining. The full clinical records of all patients were collected to analyze the relevance between BMP-4 expression and the clinical pathological features of PTC. Our result showed that BMP-4-positive cell rate and staining intensity were positively correlated with the patient's age (P=0.031, 0.037), tumor size (P=0.033, 0.019), capsular invasion (P=0.001, 0.002) and TNM stage (P=0.001, 0.004), while not correlated with gender, multicentricity of tumor or lymphatic metastasis. In conclusion, this study identified BMP-4 as a potential molecular marker for predicting the invasion and progression of PTC. Copyright © 2017 Elsevier GmbH. All rights reserved.
BMP suppresses PTEN expression via RAS/ERK signaling.
Beck, Stayce E; Carethers, John M
2007-08-01
Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.
Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity.
Intini, Giuseppe; Nyman, Jeffry S
2015-06-01
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.
Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity
Intini, Giuseppe; Nyman, Jeffry S.
2015-01-01
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465
Park, Shin-Young; Kim, Kyoung-Hwa; Gwak, Eun-Hye; Rhee, Sang-Hoon; Lee, Jeong-Cheol; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo
2015-01-01
Peri-implantitis is a chronic inflammatory process with advanced bone loss and impaired healing potential. For peri-implantitis treatment, tissue engineering can be applied to enhance bone regeneration of peri-implant defects. This study aimed to evaluate ex vivo bone morphogenetic protein 2 (BMP2) gene delivery using canine periodontal ligament stem cells (PDLSCs) for regeneration of peri-implantitis defects. Canine PDLSCs were transduced with adenoviral vectors containing BMP2 (BMP2/PDLSCs). After peri-implantitis was induced by ligature placement in six beagle dogs, regenerative procedures were performed; hydroxyapatite (HA) particles and collagen gel with autologous canine PDLSCs (PDLSC group) or BMP2/PDLSCs (BMP/PDLSC group) or without cells (control group) were grafted into the defects and covered by an absorbable membrane. Three months later, the animals were sacrificed. In vitro, BMP2/PDLSCs showed similar levels of stem cell properties to PDLSCs, such as colony-forming efficiency and expression of MSC markers STRO-1 and CD 146. BMP2/PDLSCs produced BMP-2 until day 21 at a concentration of 4-8 ng/mL. In vivo, the BMP2/PDLSC group showed significantly more new bone formation and re-osseointegration in peri-implantitis defects compared to the other groups. In conclusion, ex vivo BMP2 gene delivery using PDLSCs enhanced new bone formation and re-osseointegration in peri-implantitis defects. © 2014 Wiley Periodicals, Inc.
Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth.
Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W
2017-03-16
Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Youjia; Wang, Jiulong; Wu, Jingjing; Zhang, Jun; Wan, Ying; Wu, Hua
2016-03-23
Some delivery carriers with injectable characteristics were built using the thermosensitive chitosan/dextran-polylactide/glycerophosphate hydrogel and selected alginate microspheres for the controllable release of bone morphogenetic protein-2 (BMP-2). BMP-2 was first loaded into the microspheres with an average size of around 20 μm and the resulting microspheres were then embedded into the gel in order to achieve well-controlled BMP-2 release. The microsphere-embedded gels show their incipient gelation temperature at around 32 °C and pH at about 7.1. Some gels had their elastic modulus close to 1400 Pa and the ratio of elastic modulus to viscous modulus at around 34, revealing that they behaved like mechanically strong gels. Optimized microsphere-embedded gels were found to be able to administer the BMP-2 release without significant initial burst release in an approximately linear manner over a period of time longer than four weeks. The release rate and the released amount of BMP-2 from these gels could be regulated individually or cooperatively by the initial BMP-2 load and the dextran-polylactide content in the gels. Measurements of the BMP-2 induced alkaline phosphatase activity in C2C12 cells confirmed that C2C12 cells responded to BMP-2 in a dose-dependent way and the released BMP-2 from the microsphere-embedded gels well retained their bioactivity. In vivo assessment of some gels revealed that the released BMP-2 maintained its osteogenesis functions.
BMP2 and BMP4 variations and risk of non-syndromic cleft lip and palate.
Saket, Mitra; Saliminejad, Kioomars; Kamali, Koorosh; Moghadam, Fatemeh Aghakhani; Anvar, Nazanin Esmaeili; Khorram Khorshid, Hamid Reza
2016-12-01
Non-syndromic cleft lip with or without cleft palate (CL/P) is one of the most common congenital anomalies and arises from the interaction of environmental and genetic factors. The objective of this study was to investigate the association between the BMP2 (bone morphogenetic protein 2) and BMP4 (bone morphogenetic protein 4) polymorphisms with non-syndromic CL/P to clarify the potential role of these genes in the etiology of CL/P in Iranian population. The allelic and genotypic frequencies of BMP2 rs235768 A>T and BMP4 rs17563 T>C polymorphisms were determined in 107 unrelated Iranian subjects with non-syndromic CL/P and 186 control subjects using PCR and RFLP methods, and the results were compared with healthy controls. A p-value of <0.05 was considered statistically significant. The BMP2 rs235768 AT genotype was significantly higher (P=0.009, OR=3, 95% CI=1.3-7.0) in the CL/P (59.8%) than the control group (33.3%). Similarly, the BMP4 rs17563 TC genotype were significantly higher (P=0.008, OR=3.7, 95% CI=1.4-9.9) in the CL/P (70.0%) than the control group (44.6%). The BMP2 rs235768 A>T and BMP4 rs17563 T>C polymorphisms could be considered as the risk factor for non-syndromic CL/P in Iranian population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation
Levet, Sandrine; Ciais, Delphine; Merdzhanova, Galina; Mallet, Christine; Zimmers, Teresa A.; Lee, Se-Jin; Navarro, Fabrice P.; Texier, Isabelle; Feige, Jean-Jacques; Bailly, Sabine
2013-01-01
Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function. PMID:23741013
Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming
2013-09-01
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming
2013-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832
Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.
2009-01-01
Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560
Ji, Ye; Xu, Gong Ping; Zhang, Zhi Peng; Xia, Jing Jun; Yan, Jing Long; Pan, Shang Ha
2010-03-01
Autogenous bone grafts are widely used in the repair of bone defects. Growth factors such as bone morphogenetic protein 2 (BMP-2) can induce bone regeneration and enhance bone growth. The combination of an autogenous bone graft and BMP-2 may provide a better osteogenic effect than either treatment alone, but BMP-2 is easily inactivated in body fluid. The objective of this study was to develop a technique that can better preserve the in vivo activity of BMP-2 incorporated in bone grafts. In this study, we first prepared BMP-2/poly(lactic-co-glycolic acid) (PLGA) delayed-release microspheres, and then combined collagen, the delayed-release microspheres, and rat autologous bone particulates to form four groups of composite grafts with different combinations: collagen in group A; collagen combined with bone particulates in group B; collagen combined with BMP-2/PLGA delayed-release microspheres in group C; and collagen combined with both bone particulates and BMP-2/PLGA delayed-release microspheres in group D. The four groups of composite grafts were implanted into the gluteus maximus pockets in rats. The ectopic osteogenesis and ALP level in group D (experimental group) were compared with those in groups A, B, and C (control groups) to study whether it had higher osteogenic capability. Results showed that the composite graft design increased the utility of BMP-2 and reduced the required dose of BMP-2 and volume of autologous bone. The selection of bone particulate diameter had an impact on the osteogenetic potential of bone grafts. Collagen prevented the occurrence of aseptic inflammation and improved the osteoinductivity of BMP-2. These results showed that this composite graft design is effective and feasible for use in bone repair.
Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won
2017-04-01
Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.
Tabisz, Barbara; Schmitz, Werner; Schmitz, Michael; Luehmann, Tessa; Heusler, Eva; Rybak, Jens-Christoph; Meinel, Lorenz; Fiebig, Juliane E; Mueller, Thomas D; Nickel, Joachim
2017-03-13
The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.
Kang, Yunqing; Kim, Sungwoo; Khademhosseini, Ali; Yang, Yunzhi
2011-01-01
Extracellular matrix (ECM) comprises a rich meshwork of proteins and proteoglycans, which not only contains biological cues for cell behavior, but is also a reservoir for binding growth factors and controlling their release. Here we aimed to create a suitable bony microenvironment with cell-derived ECM and biodegradable β-tricalcium phosphate (β-TCP). More specifically, we investigated whether the ECM produced by bone marrow-derived mesenchymal stem cells (hBMSC) on a β-TCP scaffold can bind bone morphogenetic protein-2 (BMP-2) and control its release in a sustained manner, and further examined the effect of ECM and the BMP-2 released from ECM on cell behaviors. The ECM was obtained through culturing the hBMSC on a β-TCP porous scaffold and performing decellularization and sterilization. SEM, XPS, FTIR, and immunofluorescent staining results indicated the presence of ECM on the β-TCP and the amount of ECM increased with the incubation time. BMP-2 was loaded onto the β-TCP with and without ECM by immersing the scaffolds in the BMP-2 solution. The loading and release kinetics of the BMP-2 on the β-TCP/ECM were significantly slower than those on the β-TCP. The β-TCP/ECM exhibited a sustained release profile of the BMP-2, which was also affected by the amount of ECM. This is probably because the β-TCP/ECM has different binding mechanisms with BMP-2. The β-TCP/ECM promoted cell proliferation. Furthermore, the BMP-2-loaded β-TCP/ECM stimulated reorganization of the actin cytoskeleton, increased expression of alkaline phosphatase and calcium deposition by the cells compared to those without BMP-2 loading and the β-TCP with BMP-2 loading. PMID:21632105
Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis
2015-01-01
Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.
Pi, Weifeng; Guo, Xuejun; Su, Liping; Xu, Weiguo
2012-01-01
To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways. Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate. BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.
Regulation of bone morphogenetic proteins in early embryonic development
NASA Astrophysics Data System (ADS)
Yamamoto, Yukiyo; Oelgeschläger, Michael
2004-11-01
Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.
Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark
2016-01-01
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. PMID:27144312
Rausa, Marco; Pagani, Alessia; Nai, Antonella; Campanella, Alessandro; Gilberti, Maria Enrica; Apostoli, Pietro; Camaschella, Clara; Silvestri, Laura
2015-01-01
Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production. PMID:25860887
Lombardo, Ylenia; Scopelliti, Alessandro; Cammareri, Patrizia; Todaro, Matilde; Iovino, Flora; Ricci-Vitiani, Lucia; Gulotta, Gaspare; Dieli, Francesco; de Maria, Ruggero; Stassi, Giorgio
2011-01-01
The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Lactoferricin Enhances BMP7-Stimulated Anabolic Pathways in Intervertebral Disc Cells
Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wijnen, Andre J.; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong
2013-01-01
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral (IVD) matrix and cell homeostasis. Similarly, lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc (IVD) matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin (BMP receptor antagonist) and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. PMID:23644135
Yan, C; Wang, P; DeMayo, J; DeMayo, F J; Elvin, J A; Carino, C; Prasad, S V; Skinner, S S; Dunbar, B S; Dube, J L; Celeste, A J; Matzuk, M M
2001-06-01
Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.
Wu, Gui; Wang, Hai; Qiu, Guixing; Yu, Xin; Su, Xinlin; Ma, Pei; Yin, Bo; Wu, Zhihong
2015-06-02
To prepare rhBMP-2/chitosan microspheres (rhBMP-2 CMs) with vanilline as a cross-linking reagent and study the biocompatibility and drug release characteristic of microspheres in vitro. Emulsion cross-linking method was utilized to prepare rhBMP-2 CMs, Scanning electron microscope (SEM) was used to observe the microstructure of microspheres.Leaching solution of microspheres and blank culture medium were designated as experimental and control groups respectively. Both groups were cultured with human mesenchymal stem cells (hMSCs) to determine its cytotoxicity and its effect on the proliferation of hMSCs. Dynamic immersion method was used to examine the in vitro release characteristic of rhBMP-2. And the alkaline phosphatase (ALP) activity of hMSCs was determined to reveal the bioactivity of released rhBMP-2. The rhBMP-2 CMs were spherical under SEM.After treating with leaching solution for 24 and 48 h, there was no inter-group statistical difference in optical density (OD) values at both timepoints (24 h:0.72 ± 0.07 vs 0.73 ± 0.05, P > 0.05; 48 h:1.19 ± 0.11 vs 1.27 ± 0.06, P > 0.05). After culturing with leaching solution for 1, 3 and 7 days, the number of cells increased with time for both groups. And the OD values were not statistically different at each timepoint. Five milligram rhBMP-2 CMs soaked for 19 days with a gradual release of rhBMP-2. The concentration of rhBMP-2 was 216.1 ± 20.0 ng/ml at Day 19. At Days 3 and 7, the ALP activities of hMSCs were (0.50 ± 0.07) and (0.68 ± 0.06) µmol pNPP·min⁻¹·mg⁻¹ protein respectively and both were higher than that of blank culture medium group (0.14 ± 0.01) (P < 0.05). With an excellent biocompatibility, rhBMP-2 CMs may be an ideal carrier for control-released rhBMP-2 and encapsulated rhBMP-2 remains bioactive.
He, Xuezhong; Ma, Junyu; Jabbari, Esmaiel
2008-11-04
Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.
Wang, Haitao; Shore, Eileen M; Pignolo, Robert J; Kaplan, Frederick S
2018-04-01
Fibrodysplasia ossificans progressiva (FOP), is caused by mutations in the type I BMP receptor ACVR1 that lead to increased activation of the BMP-pSmad1/5/8 signaling pathway. Recent findings suggest that Activin A (Act A) promiscuously stimulates the bone morphogenetic protein (BMP) signaling pathway in vitro and mediates heterotopic ossification (HO) in mouse models of FOP, but primary data from FOP patient cells are lacking. To examine BMP-pSmad1/5/8 pathway signaling and chondro-osseous differentiation in response to endogenous and exogenous Act A in primary connective tissue progenitor cells [CTPCs; also known as stem cells from human exfoliated deciduous teeth (SHED) cells] from patients with FOP. These cells express the common FOP mutation, ACVR1 (R206H). We found that Act A amplifies dysregulated BMP pathway signaling in human FOP primary CTPCs cells through the Smad1/5/8 pathway and induces chondro-osseous differentiation. Amplification of BMP-pSmad1/5/8 signaling was inhibited by Follistatin and by a neutralizing antibody to Activin A. The increased basal pSmad1/5/8 activity, as well as the hypoxia-induced stimulation of FOP CTPCs cells, were BMP4 and Act A independent. Importantly, either BMP4 or Act A stimulated pSmad1/5/8 pathway signaling but BMP4 signaling was not dependent on Activin A and vice versa. Circulating plasma levels of Act A or BMP4 are similar in controls compared to FOP patients, and suggest the potential for an autocrine or paracrine route for pathological signaling. The mutated FOP receptor [ACVR1 (R206H)] is hypersensitive to BMP4 and uniquely sensitive (compared to the wild type receptor) to Act A. Both canonical and non-canonical ligands have a synergistic effect on BMP-pSmad1/5/8 signaling in FOP CTPCs and may cooperate to alter the threshold for HO in FOP. Our findings in primary human FOP CTPCs have important implications for the design of clinical trials to inhibit dysregulated BMP pathway signaling in humans who have FOP. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-04-29
transduction of human mesenchymal stem cells (MSCs), BMP2 was not detectable by Western blotting, whereas high levels of the protein were produced by A549 (human... mesenchymal stem cells , generating high levels of BMP2. When Ad5BMP2 or Ad5F35BMP2 were compared in vitro for their ability to induce BMP2 synthesis...in human mesenchymal stem cells and in vivo for their ability to stimulate formation of heterotopic bone, mineralized bone was radiologically
Concepts about forests and water
Gordon W. Stuart; Pamela J. Edwards
2006-01-01
Six concepts concerning forests, forestry, and water resources are discussed: (1) the role of the forest canopy in erosion control; (2) the impact of disturbance on soils; (3) the variability of natural water quality; (4) the impact of harvesting on water quality;( 5) the role of extreme experiments; and (6) the effectiveness of forestry best management practices (BMP...
Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel
2013-01-01
Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...
Performance Probability Distributions for Sediment Control Best Management Practices
NASA Astrophysics Data System (ADS)
Ferrell, L.; Beighley, R.; Walsh, K.
2007-12-01
Controlling soil erosion and sediment transport can be a significant challenge during the construction process due to the extent and conditions of bare, disturbed soils. Best Management Practices (BMPs) are used as the framework for the design of sediment discharge prevention systems in stormwater pollution prevention plans which are typically required for construction sites. This research focuses on commonly-used BMP systems for perimeter control of sediment export: silt fences and fiber rolls. Although these systems are widely used, the physical and engineering parameters describing their performance are not well understood. Performance expectations are based on manufacturer results, but due to the dynamic conditions that exist on a construction site performance expectations are not always achievable in the field. Based on experimental results product performance is shown to be highly variable. Experiments using the same installation procedures show inconsistent sediment removal performances ranging from (>)85 percent to zero. The goal of this research is to improve the determination of off-site sediment yield based on probabilistic performance results of perimeter control BMPs. BMPs are evaluated in the Soil Erosion Research Laboratory (SERL) in the Civil and Environmental Engineering department at San Diego State University. SERL experiments are performed on a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters and a slope of 33 percent. The simulated storm event consists of 17 mm/hr for 20 minutes followed by 51 mm/hr for 30 minutes. The storm event is based on an ASTM design storm intended to simulate BMP failures. BMP performance is assessed based on experiments where BMPs are installed per manufacture specifications, less than optimal installations, and no treatment conditions. Preliminary results from 30 experiments are presented and used to develop probability distributions for BMP sediment removal efficiencies. The results are then combined with spatial and temporal distributions of perimeter sediment loadings for a construction site to estimate the time dependent risk of off-site sediment discharge over the duration of a project (ex., 0, 25, 50, 75 and 100 percent complete). The results are used to highlight the importance of considering all phases of construction when developing stormwater pollution prevention plans.
Treatment BMP technology report.
DOT National Transportation Integrated Search
2006-04-01
The Treatment BMP Technology Report consolidates and standardizes information on storm : water quality technologies that are part of the California Department of Transportations : (Departments) BMP identification, and evaluation process describ...
Xu, Emma-Ruoqi; Blythe, Emily E; Fischer, Gerhard; Hyvönen, Marko
2017-07-28
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Crews, Leslie; Adame, Anthony; Patrick, Christina; Delaney, Alexandra; Pham, Emiley; Rockenstein, Edward; Hansen, Lawrence; Masliah, Eliezer
2010-09-15
During aging and in the progression of Alzheimer's disease (AD), synaptic plasticity and neuronal integrity are disturbed. In addition to the alterations in plasticity in mature neurons, the neurodegenerative process in AD has been shown to be accompanied by alterations in neurogenesis. Members of the bone morphogenetic protein (BMP) family of growth factors have been implicated as important regulators of neurogenesis and neuronal cell fate determination during development; however, their role in adult neurogenesis and in AD is less clear. We show here by qRT-PCR analysis that BMP6 mRNA levels were significantly increased in the hippocampus of human patients with AD and in APP transgenic mice compared to controls. Immunoblot and immunohistochemical analyses confirmed that BMP6 protein levels were increased in human AD brains and APP transgenic mouse brains compared to controls and accumulated around hippocampal plaques. The increased levels of BMP6 were accompanied by defects in hippocampal neurogenesis in AD patients and APP transgenic mice. In support of a role for BMP6 in defective neurogenesis in AD, we show in an in vitro model of adult neurogenesis that treatment with amyloid-β(1-42) protein (Aβ) resulted in increased expression of BMP6, and that exposure to recombinant BMP6 resulted in reduced proliferation with no toxic effects. Together, these results suggest that Aβ-associated increases in BMP6 expression in AD may have deleterious effects on neurogenesis in the hippocampus, and therapeutic approaches could focus on normalization of BMP6 levels to protect against AD-related neurogenic deficits.
Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A
2017-03-01
Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary. Copyright © 2017 by the Endocrine Society
Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4.
Astorga, Jeanette; Carlsson, Peter
2007-10-01
The first vasculature of the developing vertebrate embryo forms by assembly of endothelial cells into simple tubes from clusters of mesodermal angioblasts. Maturation of this vasculature involves remodeling, pruning and investment with mural cells. Hedgehog proteins are part of the instructive endodermal signal that triggers the assembly of the first primitive vessels in the mesoderm. We used a combination of genetic and in vitro culture methods to investigate the role of hedgehogs and their targets in murine extraembryonic vasculogenesis. We show that Bmps, in particular Bmp4, are crucial for vascular tube formation, that Bmp4 expression in extraembryonic tissues requires the forkhead transcription factor Foxf1 and that the role of hedgehog proteins in this process is to activate Foxf1 expression in the mesoderm. We show in the allantois that genetic disruption of hedgehog signaling (Smo(-/-)) has no effect on Foxf1 expression, and neither Bmp4 expression nor vasculogenesis are disturbed. By contrast, targeted inactivation of Foxf1 leads to loss of allantoic Bmp4 and vasculature. In vitro, the avascular Foxf1(-/-) phenotype can be rescued by exogenous Bmp4, and vasculogenesis in wild-type tissue can be blocked by the Bmp antagonist noggin. Hedgehogs are required for activation of Foxf1, Bmp4 expression and vasculogenesis in the yolk sac. However, vasculogenesis in Smo(-/-) yolk sacs can be rescued by exogenous Bmp4, consistent with the notion that the role of hedgehog signaling in primary vascular tube formation is as an activator of Bmp4, via Foxf1.
Hung, Wei-Ting; Wu, Fang-Ju; Wang, Chun-Jen; Luo, Ching-Wei
2012-05-01
Although differential screening-selected gene aberrative in neuroblastoma (DAN, official symbol NBL1) is the founding member of the DAN subfamily of bone morphogenetic protein (BMP) antagonists, its antagonizing targets, gene regulation, and physiological functions remain unclear. Using diverse cell expression systems, we found that the generation of bioactive DAN is likely to be cell type specific. Unlike other phylogenetically close members, which are covalently linked homodimers, DAN forms a noncovalently linked homodimer during folding. Purified recombinant DAN specifically blocked signaling of BMP2 and BMP4 but not that of other ovarian-expressed transforming growth factor-beta members. Although widely distributed in many organs, DAN transcript level was periodically regulated by gonadotropins. Ovarian microdissection indicated that NBL1 (DAN) mRNA is mainly expressed in granulosa cells, where its transcript level is up-regulated by the gonadotropin-driven cAMP cascade. We further investigated the local regulation and ovarian functions of DAN. NBL1 (DAN) mRNA expression in granulosa cells was up-regulated by oocyte-derived growth differentiation factor 9 (GDF9), whereas treatment with DAN significantly reversed the inhibitory effect of BMP4 on follicle-stimulating hormone-induced progesterone production in cultured granulosa cells. Our findings suggest the DAN gradient in granulosa cells, established by oocyte-derived GDF9, may serve as an antagonist barrier that modulates the actions of theca-derived BMP4 and granulosa/theca-derived BMP2 during folliculogenesis both spatially and temporally.
TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation
Rahman, Md Shaifur; Akhtar, Naznin; Jamil, Hossen Mohammad; Banik, Rajat Suvra; Asaduzzaman, Sikder M
2015-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics. PMID:26273537
Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro
Garrett, I.R.; Chen, D.; Gutierrez, G.; Zhao, M.; Escobedo, A.; Rossini, G.; Harris, S.E.; Gallwitz, W.; Kim, K.B.; Hu, S.; Crews, C.M.; Mundy, G.R.
2003-01-01
We have found that the ubiquitin-proteasome pathway exerts exquisite control of osteoblast differentiation and bone formation in vitro and in vivo in rodents. Structurally different inhibitors that bind to specific catalytic β subunits of the 20S proteasome stimulated bone formation in bone organ cultures in concentrations as low as 10 nM. When administered systemically to mice, the proteasome inhibitors epoxomicin and proteasome inhibitor–1 increased bone volume and bone formation rates over 70% after only 5 days of treatment. Since the ubiquitin-proteasome pathway has been shown to modulate expression of the Drosophila homologue of the bone morphogenetic protein-2 and -4 (BMP-2 and BMP-4) genes, we examined the effects of noggin, an endogenous inhibitor of BMP-2 and BMP-4 on bone formation stimulated by these compounds and found that it was abrogated. These compounds increased BMP-2 but not BMP-4 or BMP-6 mRNA expression in osteoblastic cells, suggesting that BMP-2 was responsible for the observed bone formation that was inhibited by noggin. We show proteasome inhibitors regulate BMP-2 gene expression at least in part through inhibiting the proteolytic processing of Gli3 protein. Our results suggest that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation and that inhibition of specific components of this system may be useful therapeutically in common diseases of bone loss. PMID:12782679
TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation
Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping
2012-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. PMID:22298955
Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas
2017-01-30
In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.
Alveolar ridge and maxillary sinus augmentation using rhBMP-2: a systematic review.
Freitas, Rubens Moreno de; Spin-Neto, Rubens; Marcantonio Junior, Elcio; Pereira, Luís Antônio Violin Dias; Wikesjö, Ulf M E; Susin, Cristiano
2015-01-01
The aim of this systematic review was to evaluate clinical and safety data for recombinant human bone morphogenetic protein-2 (rhBMP-2) in an absorbable collagen sponge (ACS) carrier when used for alveolar ridge/maxillary sinus augmentation in humans. Clinical studies/case series published 1980 through June 2012 using rhBMP-2/ACS were searched. Studies meeting the following criteria were considered eligible for inclusion: >10 subjects at baseline and maxillary sinus or alveolar ridge augmentation not concomitant with implant placement. Seven of 69 publications were eligible for review. rhBMP-2/ACS yielded clinically meaningful bone formation for maxillary sinus augmentation that would allow placement of regular dental implants without consistent differences between rhBMP-2 concentrations. Nevertheless, the statistical analysis showed that sinus augmentation following autogenous bone graft was significantly greater (mean bone height: 1.6 mm, 95% CI: 0.5-2.7 mm) than for rhBMP-2/ACS (rhBMP-2 at 1.5 mg/mL). In extraction sockets, rhBMP-2/ACS maintained alveolar ridge height while enhancing alveolar ridge width. Safety reports did not represent concerns for the proposed indications. rhBMP-2/ACS appears a promising alternative to autogenous bone grafts for alveolar ridge/maxillary sinus augmentation; dose and carrier optimization may expand its efficacy, use, and clinical application. © 2013 Wiley Periodicals, Inc.
Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo
2011-01-01
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257
Ma, Taotao; Huang, Cheng; Xu, Qingqing; Yang, Yang; Liu, Yaru; Meng, Xiaoming; Li, Jun; Ye, Min; Liang, Hong
2017-01-01
Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by histone deacetylase (HDAC) inhibitors via epigenetic modification to enhance bone morphogenetic protein 7 (BMP-7) expression. Cisplatin upregulated the activity of HDAC2 in the kidney. Inhibition of HDAC with clinically used trichostatin A (TSA) or valproic acid (VPA) suppressed cisplatin-induced kidney injury and epithelial cell apoptosis. Overexpression of HDAC2 promotes CP-treated tubular epithelium cells apoptosis. Chromatin immunoprecipitation assay clearly detected HDAC2 assosiation with BMP-7 promoter. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by TSA or VPA in vivo and in vitro. Interestingly, administration of recombinant BMP-7 (rhBMP-7) reduced cisplatin-induced kidney dysfunction. Moreover, BMP-7 treatment suppressed epithelial cell apoptosis and small interfering RNA-based knockdown of BMP-7 expression abolished HDAC inhibitors suppression of epithelial cell apoptosis in vitro. Results of current study indicated that TSA or VPA inhibited apoptosis of renal tubular epithelial cells via promoting the level of BMP-7 epigenetically through targeting HDAC2. Hence, HDAC inhibitors could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:29072686
NASA Astrophysics Data System (ADS)
Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas
2017-01-01
In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.
Raspopovic, J; Marcon, L; Russo, L; Sharpe, J
2014-08-01
During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.
The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.
Soukup, Vladimir; Kozmik, Zbynek
2018-02-01
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.
DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.
Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu
2009-06-01
Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.
Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Kawasaki, Natsumi; Holmborn, Katarina; Sundqvist, Anders; Tsutsumi, Shuichi; Watabe, Tetsuro; Aburatani, Hiroyuki; Heldin, Carl-Henrik; Miyazono, Kohei
2016-01-12
Bone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs. KLF4 physically interacts with SMAD1 and suppresses its activity. Consistently, a subpopulation of cells with active BMP-SMAD can be ablated without disturbing the naive state of the culture. Moreover, Smad1/5 double-knockout mESCs stay in the naive state, indicating that the BMP-SMAD pathway is dispensable for it. In contrast, the MEK5-ERK5 pathway mediates BMP-4-induced self-renewal of mESCs by inducing Klf2, a critical factor for the ground state pluripotency. Our study illustrates that BMP exerts its self-renewing effect through distinct functions of different Krüppel-like factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis
Xiao, Changchun; Shim, Jae-hyuck; Klüppel, Michael; Zhang, Samuel Shao-Min; Dong, Chen; Flavell, Richard A.; Fu, Xin-Yuan; Wrana, Jeffrey L.; Hogan, Brigid L.M.; Ghosh, Sankar
2003-01-01
Bone morphogenetic proteins (Bmps) are members of the transforming growth factor β (TGFβ) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. Therefore, these results show that Ecsit functions as an essential component in two important signal transduction pathways and establishes a novel role for Ecsit as a cofactor for Smad proteins in the Bmp signaling pathway. PMID:14633973
Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M
2017-03-27
Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone morphogenetic protein-2 and bone therapy: successes and pitfalls.
Poon, Bonnie; Kha, Tram; Tran, Sally; Dass, Crispin R
2016-02-01
Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy. The PubMed database was consulted to compile this review. With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 'off-label' use, which lead to various adverse effects. Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery. © 2015 Royal Pharmaceutical Society.
SMOC can act as both an antagonist and an expander of BMP signaling.
Thomas, J Terrig; Eric Dollins, D; Andrykovich, Kristin R; Chu, Tehyen; Stultz, Brian G; Hursh, Deborah A; Moos, Malcolm
2017-03-21
The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone ( pent ), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.
Bone regeneration by polyhedral microcrystals from silkworm virus
Matsumoto, Goichi; Ueda, Takayo; Shimoyama, Junko; Ijiri, Hiroshi; Omi, Yasushi; Yube, Hisato; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Kinoshita, Yukihiko; Arias, Duverney Gaviria; Shimabukuro, Junji; Kotani, Eiji; Kawamata, Shin; Mori, Hajime
2012-01-01
Bombyx mori cypovirus is a major pathogen which causes significant losses in silkworm cocoon harvests because the virus particles are embedded in micrometer-sized protein crystals called polyhedra and can remain infectious in harsh environmental conditions for years. But the remarkable stability of polyhedra can be applied on slow-release carriers of cytokines for tissue engineering. Here we show the complete healing in critical-sized bone defects by bone morphogenetic protein-2 (BMP-2) encapsulated polyhedra. Although absorbable collagen sponge (ACS) safely and effectively delivers recombinant human BMP-2 (rhBMP-2) into healing tissue, the current therapeutic regimens release rhBMP-2 at an initially high rate after which the rate declines rapidly. ACS impregnated with BMP-2 polyhedra had enough osteogenic activity to promote complete healing in critical-sized bone defects, but ACS with a high dose of rhBMP-2 showed incomplete bone healing, indicating that polyhedral microcrystals containing BMP-2 promise to advance the state of the art of bone healing. PMID:23226833
Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Huiwu; Health and Science Center, SIBS CAS and SSMU, 225 South Chongqing Road, Shanghai 200025; Dai Kerong
2007-05-18
In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a {beta}-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified bymore » BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals.« less
Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.
2016-01-01
STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. PMID:27385727
Bayne, Rosemary A; Donnachie, Douglas J; Kinnell, Hazel L; Childs, Andrew J; Anderson, Richard A
2016-09-01
Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. Not applicable. This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Microcontact printing of BMP-2 and its effect on human chondrocytes behavior
NASA Astrophysics Data System (ADS)
Pan, Chang-Jiang; Nie, Yu-Dong
2010-01-01
The present study is to investigate human chondrocytes behavior on microcontact printed bone morphogenetic protein-2 (BMP-2) lines on polystyrene (PS) surface. It was found that the cells aligned with BMP lines and expressed type II and VI collagen. The chondrocytes in vitro cultured on BMP lines were elongated, which resulted in altered cell morphology. Taking all these results into consideration, BMP-2 lines enhance cell adhesion, restrict spreading, and increase type II and VI collagen expression. The results represented in this study may be an approach to the problem of engineering reparative cartilage in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, Lina; Shi, Jin; Gao, Wenqun
2014-07-18
Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part bymore » increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of GATA4 and Nkx2.5, suggesting that Smad4 mediated BMP2 signaling pathway was essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells.« less
BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1
Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju
2013-01-01
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588
Dorsoventral patterning in hemichordates: insights into early chordate evolution.
Lowe, Christopher J; Terasaki, Mark; Wu, Michael; Freeman, Robert M; Runft, Linda; Kwan, Kristen; Haigo, Saori; Aronowicz, Jochanan; Lander, Eric; Gruber, Chris; Smith, Mark; Kirschner, Marc; Gerhart, John
2006-09-01
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called "dorsal." On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.
Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution
Lowe, Christopher J; Terasaki, Mark; Wu, Michael; Freeman, Robert M; Runft, Linda; Kwan, Kristen; Haigo, Saori; Aronowicz, Jochanan; Lander, Eric; Gruber, Chris; Smith, Mark; Kirschner, Marc; Gerhart, John
2006-01-01
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other. PMID:16933975
Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène
2016-01-01
Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.
Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3.
Dwivedi, Prem P; Grose, Randall H; Filmus, Jorge; Hii, Charles S T; Xian, Cory J; Anderson, Peter J; Powell, Barry C
2013-08-01
From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis. Copyright © 2013 Elsevier Inc. All rights reserved.
Villavicencio, Alan T; Burneikiene, Sigita
2016-10-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) remains the primary synthetic osteoinductive material used in spinal fusion surgery today. The early inflammation reaction to rhBMP-2 manifesting with radicular symptoms has been previously reported in patients undergoing transforaminal lumbar interbody fusion (TLIF). There is a disagreement with regard to the factors affecting its occurrence and whether such symptoms are dose dependent. The purpose of this analysis was to determine the incidence of rhBMP-2-induced radiculitis and its relationship to dose. A retrospective cohort analysis was performed of the prospectively collected data. All consecutive patients (n=204) who underwent one- or two-level TLIF and instrumented posterolateral fusion with an off-label rhBMP-2 use were included in this analysis. The patients who developed new radicular symptoms after initial improvement postoperatively and had sterile fluid collections indicative of inflammatory process, or in the absence of any structural abnormalities that would explain these symptoms on imaging studies, were deemed to have rhBMP-2-induced radiculitis. Magnetic resonance imaging (MRI) scans were obtained for all patients who developed postoperative radicular symptoms. Correlations between the total rhBMP-2 dose, dose per spinal level, and incidence of radiculitis were evaluated while controlling for age, sex, number of TLIF levels, and surgeon. The incidence of postoperative radiculitis was 11.3% (23 out of 204). The average total rhBMP-2 dose was 4.9 mg (range=2.1-12) and the average dose per spinal level was 3.8 mg (range=1.05-12). Logistic regression analysis did not identify any significant correlations between the rhBMP-2 doses and the incidence of radiculitis (p=.6). The incidence of rhBMP-2-induced radiculitis in patients undergoing TLIF is quite high, but there were no dose-related correlations found. The study, however, cannot rule out a possibility that a larger variation in bone morphogenetic protein (BMP) doses could still be a factor in the development of rhBMP-2-associated radiculitis. Copyright © 2016 Elsevier Inc. All rights reserved.
Lao, Lifeng; Cohen, Jeremiah R.; Brodke, Darrel S.; Youssef, Jim A.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.; Meisel, Hans-Joerg
2017-01-01
Study Design: Retrospective study. Objectives: Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely used in spinal fusion surgery, but there is little information on rhBMP-2 utilization in single-level posterior lumbar interbody fusion (PLIF). The purpose of our study was to evaluate the trends and demographics of rhBMP-2 utilization in single-level PLIF. Methods: Patients who underwent single-level PLIF from 2005 to 2011 were identified by searching ICD-9 diagnosis and procedure codes in the PearlDiver Patient Records Database, a national database of orthopedic insurance records. The year of procedure, age, gender, and region of the United States were recorded for each patient. Results were reported for each variable as the incidence of procedures identified per 100 000 patients searched in the database. Results: A total of 2735 patients had single-level PLIF. The average rate of single-level PLIF with rhBMP-2 maintained at a relatively stable level (28% to 31%) from 2005 to 2009, but decreased in 2010 (9.9%) and 2011 (11.8%). The overall incidence of single-level PLIF without rhBMP-2 (0.68 cases per 100 000 patients) was statistically higher (P < .01) compared to single-level PLIF with rhBMP-2 (0.21 cases per 100 000 patients). The average rate of single-level PLIF with rhBMP-2 utilization was the highest in West (30.1%), followed by Midwest (26.9%), South (20.5%), and Northeast (17.8%). The highest incidence of single-level PLIF with rhBMP-2 was observed in the age group <65 years (0.3 per 100 000 patients). Conclusions: To our knowledge, this is the first study to report on the demographics associated with rhBMP-2 use in single-level PLIF. There was a 3-fold increase in the rate of PLIF without rhBMP-2 compared to PLIF with rhBMP-2, with both procedures being mainly done in patients less than 65 years of age. PMID:28989840
Takahashi, Shinji; Buser, Zorica; Cohen, Jeremiah R; Roe, Allison; Myhre, Sue L; Meisel, Hans-Joerg; Brodke, Darrel S; Yoon, S Tim; Park, Jong-Beom; Wang, Jeffrey C; Youssef, Jim A
2017-11-01
A retrospective cohort study. To compare the complications between posterior cervical fusions with and without recombinant human bone morphogenetic protein 2 (rhBMP2). Use of rhBMP2 in anterior cervical spinal fusion procedures can lead to potential complications such as neck edema, resulting in airway complications or neurological compression. However, there are no data on the complications associated with the "off-label" use of rhBMP2 in upper and lower posterior cervical fusion approaches. Patients from the PearlDiver database who had a posterior cervical fusion between 2005 and 2011 were identified. We evaluated complications within 90 days after fusion and data was divided in 2 groups: (1) posterior cervical fusion including upper cervical spine O-C2 (upper group) and (2) posterior cervical fusion including lower cervical spine C3-C7 (lower group). Complications were divided into: any complication, neck-related complications, wound-related complications, and other complications. Of the 352 patients in the upper group, 73 patients (20.7%) received rhBMP2, and 279 patients (79.3%) did not. Likewise, in the lower group of 2372 patients, 378 patients (15.9%) had surgery with rhBMP2 and 1994 patients (84.1%) without. In the upper group, complications were observed in 7 patients (9.6%) with and 34 patients (12%) without rhBMP2. In the lower group, complications were observed in 42 patients (11%) with and 276 patients (14%) without rhBMP2. Furthermore, in the lower group the wound-related complications were significantly higher in the rhBMP2 group (23 patients, 6.1%) compared with the non-rhBMP2 group (75 patients, 3.8%). Our data showed that the use of rhBMP2 does not increase the risk of complications in upper cervical spine fusion procedures. However, in the lower cervical spine, rhBMP2 may elevate the risk of wound-related complications. Overall, there were no major complications associated with the use of rhBMP2 for posterior cervical fusion approaches. Level III.
Raina, Deepak Bushan; Larsson, David; Mrkonjic, Filip; Isaksson, Hanna; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2018-02-28
In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold+rhBMP-2 when compared to an approved absorbable collagen sponge (ACS)+rhBMP-2 as verified by micro-CT. Co-delivery of rhBMP-2+ZA via the novel scaffold enabled a reduction in the effective rhBMP-2 doses. The presence of tartrate resistant acid phosphatase staining in the rhBMP-2 group indicates osteoclastic resorption, which could be stalled by adding ZA, which by speculation could explain the net increase in mineralization. The new scaffold allowed for slow release of rhBMP-2 in-vitro (3.3±0.1%) after 4weeks. Using single photon emission computed tomography (SPECT), the release kinetics of 125 I-rhBMP-2 in-vivo was followed for 4weeks and a total of 65.3±15.2% 125 I-rhBMP-2 was released from the scaffolds. In-vitro 14 C-ZA release curve shows an initial burst release on day 1 (8.8±0.7%) followed by a slow release during the following 4weeks (13±0.1%). In-vivo, an initial release of 43.2±7.6% of 14 C-ZA was detected after 1day, after which the scaffold retained the remaining ZA during 4-weeks. Taken together, our results show that the developed biomaterial is an efficient carrier for spatio-temporal delivery of rhBMP-2 and ZA leading to increased bone formation compared to commercially available carrier for rhBMP-2. Copyright © 2018 Elsevier B.V. All rights reserved.
2012-01-01
Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells. PMID:22537242
Lao, Lifeng; Cohen, Jeremiah R; Buser, Zorica; Brodke, Darrel S; Youssef, Jim A; Park, Jong-Beom; Yoon, S Tim; Wang, Jeffrey C; Meisel, Hans-Joerg
2017-10-01
Retrospective study. Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely used in spinal fusion surgery, but there is little information on rhBMP-2 utilization in single-level posterior lumbar interbody fusion (PLIF). The purpose of our study was to evaluate the trends and demographics of rhBMP-2 utilization in single-level PLIF. Patients who underwent single-level PLIF from 2005 to 2011 were identified by searching ICD-9 diagnosis and procedure codes in the PearlDiver Patient Records Database, a national database of orthopedic insurance records. The year of procedure, age, gender, and region of the United States were recorded for each patient. Results were reported for each variable as the incidence of procedures identified per 100 000 patients searched in the database. A total of 2735 patients had single-level PLIF. The average rate of single-level PLIF with rhBMP-2 maintained at a relatively stable level (28% to 31%) from 2005 to 2009, but decreased in 2010 (9.9%) and 2011 (11.8%). The overall incidence of single-level PLIF without rhBMP-2 (0.68 cases per 100 000 patients) was statistically higher ( P < .01) compared to single-level PLIF with rhBMP-2 (0.21 cases per 100 000 patients). The average rate of single-level PLIF with rhBMP-2 utilization was the highest in West (30.1%), followed by Midwest (26.9%), South (20.5%), and Northeast (17.8%). The highest incidence of single-level PLIF with rhBMP-2 was observed in the age group <65 years (0.3 per 100 000 patients). To our knowledge, this is the first study to report on the demographics associated with rhBMP-2 use in single-level PLIF. There was a 3-fold increase in the rate of PLIF without rhBMP-2 compared to PLIF with rhBMP-2, with both procedures being mainly done in patients less than 65 years of age.
Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki
2011-01-01
Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987
Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; de Kerguenec, Caroline; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Veronique; Bedossa, Pierre; Valla, Dominique; Gouya, Laurent; Beaumont, Carole; Brissot, Pierre; Puy, Hervé; Karim, Zoubida; Tchernitchko, Dimitri
2016-03-01
Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals. We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses. We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production. We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced hepcidin production. These mutations might increase susceptibility to mild-to-moderate late-onset iron overload. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu
2016-03-01
Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.
Qian, Dongyang; Bai, Bo; Yan, Guangbin; Zhang, Shujiang; Liu, Qi; Chen, Yi; Tan, Xiaobo; Zeng, Yanjun
2016-01-01
The repairing of large segmental bone defects is difficult for clinical orthopedists at present. Gene therapy is regarded as a promising method for bone defects repair. The present study aimed to construct an effective and controllable Tet-On expression system for transferring hBMP-2 gene into bone marrow mesenchymal progenitor cells (BMSCs). Meanwhile, with combination of alginate-poly-L-lysine-alginate (APA) microencapsulation technology, we attempted to reduce the influence of immunologic rejection and examine the effect of the Tet-On expression system on osteogenesis of BMSCs. The adenovirus encoding hBMP-2 (ADV-hBMP2) was constructed using the means of molecular cloning. The ADV-hBMP2 and Adeno-X Tet-On virus was respectively transfected to the HEK293 for amplification and afterward BMSCs were co-infected with the virus of ADV-hBMP2 and the Adeno-X Tet-On. The expression of hBMP-2 was measured with induction by doxycycline (DOX) at different concentration by means of RT-PCR and ELISA. Combining Tet-On expression system and APA microcapsules with the use of the pulsed high-voltage electrostatic microcapsule instrument, we examined the expression level of hBMP-2 in APA microcapsules by ELISA as well as the osteogenesis by alizarin red S staining. An effective Tet-On expression system for transferring hBMP-2 gene into BMSCs was constructed successfully. Also, the expression of hBMP-2 could be regulated by concentration of DOX. The data exhibited that BMSCs in APA microcapsules maintained the capability of proliferation and differentiation. The combination of Tet-On expression system and APA microcapsules could promote the osteogenesis of BMSCs. According to the results, microencapsulated Tet-On expression system showed the effective characteristics of secreting hBMP-2 and enhancing osteogenesis, which would provide a promising way for bone repair.
Bone morphogenetic protein 7 (BMP-7) influences tendon-bone integration in vitro.
Schwarting, Tim; Lechler, Philipp; Struewer, Johannes; Ambrock, Marius; Frangen, Thomas Manfred; Ruchholtz, Steffen; Ziring, Ewgeni; Frink, Michael
2015-01-01
Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts at the tendon-bone interface.
Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin.
Szláma, György; Vásárhelyi, Viktor; Trexler, Mária; Patthy, László
2016-12-01
The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin. Unexpectedly, WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 contributes most significantly to the observed enhancer activity. Analysis of a pro-TGF-β -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible to BMP1. In view of this observation, the most plausible explanation for the BMP1-enhancer activity of the KKN1 fragment is that it shifts a conformational equilibrium of latent myostatin from the closed circular structure of the homodimer to a more open form, making the cleavage sites more accessible to BMP1. On the other hand, the observation that the enhancer activity of KKN1 is superstimulated in the presence of heparin is explained by the fact KKN1, latent myostatin, and BMP1 have affinity for heparin and these interactions with heparin increase the local concentrations of the reactants thereby facilitating the action of BMP1. Furin: EC 3.4.21.75; BMP1, bone morphogentic protein 1 or procollagen C-endopeptidase: EC 3.4.24.19. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Ben Amara, Heithem; Lee, Jung-Won; Kim, Jung-Ju; Kang, Yun-Mi; Kang, Eun-Jung; Koo, Ki-Tae
Evidence on the outcomes of functional loading placed in recombinant human bone morphogenetic protein 2 (rhBMP-2)/acellular collagen sponge (ACS)-induced bone is lacking. The aim of this study was to verify whether guided bone regeneration (GBR) with rhBMP-2/ACS enhances regeneration of missing bone and osseointegration of dental implants subject to functional loading. Two bilateral standardized large saddle-type defects (≈10 × 10 × 6 mm) were surgically created in each mandible of seven beagle dogs 2 months after tooth extraction. Defects were immediately reconstructed randomly using rhBMP-2 (O-BMP or InFuse) soaked in ACS, deproteinized bovine bone mineral (DBBM) granules, or ACS alone as surgical control and subsequently covered with collagen membrane. Screw-type sand-blasted, acid-etched dental implants were placed 3 months later into the reconstructed defects and into adjacent bone. Osseointegration was allowed to progress for 3 months before functional loading of 3 months until sacrifice. Significantly more bone fill was radiographically observed for GBR with rhBMP-2/ACS (O-BMP: 92.5%, InFuse: 79%) in comparison to the DBBM (52%) and ACS alone groups (56.6%). Osseointegration was achieved and maintained in all experimental defects challenged by prostheses-driven functional load. The bone density ranged from 37.49% in the ACS group to 64.9% in the rhBMP-2/ACS (InFuse) group with no significance. The highest mean percentage of BIC was found in rhBMP-2/ACS (InFuse: 52.98%) with no statistical difference. Crestal bone resorption was observed around implants placed in reconstructed areas without any significant difference. GBR with rhBMP-2/ACS provided the greatest bone fill among the three treatment procedures. GBR with rhBMP-2/ACS showed efficacy for placement, osseointegration, and functional loading of titanium implants in alveolar ridge defects.
Nishio, Kensuke; Ozawa, Yasumasa; Ito, Hisanori; Kifune, Takashi; Narita, Tatsuya; Iinuma, Toshimitsu; Gionhaku, Nobuhito; Asano, Masatake
2017-10-01
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. Recently, BMP7 has been demonstrated to be produced by salivary glands and contribute to embryonic branching in mice. The BMP7 in saliva is thought to be delivered to the oral cavity and is expected to contact with stratified squamous epithelial cells which line the surface of oral mucosa. In this study, we attempted to investigate the effects of BMP7 on oral epithelial cells. The expression of BMP receptors was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). OSCCs were stimulated with human recombinant BMP7 (hrBMP7) and the phosphorylation status of Smad1/5/8 was examined by western blotting. For microarray analysis, Ca9-22 cells were stimulated with 100 ng/mL of hrBMP7 and total RNA was extracted and subjected to real-time PCR. The 5'-untranslated region (5'-UTR) of IL-17 F gene was cloned to pGL4-basic vector and used for luciferase assay. Ca9-22 cells were pre-incubated with DM3189, a specific inhibitor of Smad1/5/8, for inhibition assay. All isoforms of type I and type II BMP receptors were expressed in both Ca9-22 and HSC3 cells and BMP7 stimulation resulted in the phosphorylation of Smad1/5/8 in both cell lines. The microarray analysis revealed the induction of interleukin-17 F (IL-17 F), netrin G2 (NTNG2) and hyaluronan synthase 1 (HAS1). Luciferase assay using the 5'-UTR of the IL-17 F gene revealed transcriptional regulation. Induced IL-17 F production was further confirmed at the protein level by ELISA. Smad1/5/8 inhibitor pretreatment decreased IL-17 F expression levels in the cells.
Hindoyan, Kevork; Tilan, Justin; Buser, Zorica; Cohen, Jeremiah R; Brodke, Darrel S; Youssef, Jim A; Park, Jong-Beom; Yoon, S Tim; Meisel, Hans-Joerg; Wang, Jeffrey C
2017-04-01
Retrospective review. The aim of our study was to quantify the frequency of complications associated with recombinant human bone morphogenetic protein 2 (rhBMP-2) use in anterior lumbar interbody fusion (ALIF). The orthopedic subset of the Medicare database (PearlDiver) was queried for this retrospective cohort study using International Statistical Classification of Diseases 9 (ICD-9) and Current Procedure Terminology (CPT) codes for ALIF procedures with and without rhBMP-2 between 2005 and 2010. Frequencies of complications and reoperations were then identified within 1 year from the index procedure. Complications included reoperations, pulmonary embolus, deep vein thrombosis, myocardial infarction, nerve-related complications, incision and drainage procedures, wound, sepsis, pneumonia, urinary tract infections, respiratory, heterotopic ossification, retrograde ejaculation, radiculopathy, and other medical complications. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the statistical significance. We identified a total of 41 865 patients who had an ALIF procedure. A total of 14 384 patients received rhBMP-2 while 27 481 did not. Overall, 6016 (41.8%) complications within 1 year from surgery were noted within the group who received rhBMP-2 and 12 950 (47.1%) complications within 1 year from surgery were recorded in those who did not receive rhBMP-2 (OR = 0.81, CI = 0.77-0.84). Overall, exposure to rhBMP-2 was associated with significantly decreased odds of complications with exception to reoperation rates (0.9% rhBMP-2 vs 1.0% no rhBMP-2; OR = 0.88, CI = 0.71-1.09) and radiculopathy (4.4% rhBMP-2 vs 4.3% no rhBMP-2; OR = 1.02, CI = 0.93-1.13). The use of rhBMP-2 in patients undergoing ALIF procedure was associated with a significantly decreased rate of complications. Further studies are needed to elucidate a true incidence of complication.
Hindoyan, Kevork; Tilan, Justin; Cohen, Jeremiah R.; Brodke, Darrel S.; Youssef, Jim A.; Park, Jong-Beom; Yoon, S. Tim; Meisel, Hans-Joerg; Wang, Jeffrey C.
2017-01-01
Study Design: Retrospective review. Objective: The aim of our study was to quantify the frequency of complications associated with recombinant human bone morphogenetic protein 2 (rhBMP-2) use in anterior lumbar interbody fusion (ALIF). Methods: The orthopedic subset of the Medicare database (PearlDiver) was queried for this retrospective cohort study using International Statistical Classification of Diseases 9 (ICD-9) and Current Procedure Terminology (CPT) codes for ALIF procedures with and without rhBMP-2 between 2005 and 2010. Frequencies of complications and reoperations were then identified within 1 year from the index procedure. Complications included reoperations, pulmonary embolus, deep vein thrombosis, myocardial infarction, nerve-related complications, incision and drainage procedures, wound, sepsis, pneumonia, urinary tract infections, respiratory, heterotopic ossification, retrograde ejaculation, radiculopathy, and other medical complications. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the statistical significance. Results: We identified a total of 41 865 patients who had an ALIF procedure. A total of 14 384 patients received rhBMP-2 while 27 481 did not. Overall, 6016 (41.8%) complications within 1 year from surgery were noted within the group who received rhBMP-2 and 12 950 (47.1%) complications within 1 year from surgery were recorded in those who did not receive rhBMP-2 (OR = 0.81, CI = 0.77-0.84). Overall, exposure to rhBMP-2 was associated with significantly decreased odds of complications with exception to reoperation rates (0.9% rhBMP-2 vs 1.0% no rhBMP-2; OR = 0.88, CI = 0.71-1.09) and radiculopathy (4.4% rhBMP-2 vs 4.3% no rhBMP-2; OR = 1.02, CI = 0.93-1.13). Conclusions: The use of rhBMP-2 in patients undergoing ALIF procedure was associated with a significantly decreased rate of complications. Further studies are needed to elucidate a true incidence of complication. PMID:28507884
Wu, Mary Y.; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S.
2011-01-01
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification. PMID:21358802
Carpenter, Ryan S; Goodrich, Laurie R; Frisbie, David D; Kisiday, John D; Carbone, Beth; McIlwraith, C Wayne; Centeno, Christopher J; Hidaka, Chisa
2010-10-01
Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. Published by Wiley Periodicals, Inc. J Orthop Res 28:1330-1337, 2010.
Arjunan, Pachiappan; Gnanaprakasam, Jaya P.; Ananth, Sudha; Romej, Michelle A.; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D.; Martin, Pamela M.; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D.; Ganapathy, Vadivel
2016-01-01
Purpose Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv−/− mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv−/− retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Methods Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv−/− mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv−/− pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Results Expression of GPR91 was higher in Hjv−/− retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv−/− retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv−/− retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. Conclusions G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization. PMID:27046124
Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel
2016-04-01
Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.
Lactoferricin enhances BMP7-stimulated anabolic pathways in intervertebral disc cells.
Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wjnen, Andre J; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong
2013-07-25
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral disc (IVD) matrix and cell homeostasis. Similarly, Lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the gene expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of Noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of Noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.
Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian
2018-05-01
Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.
Doherty, Leo F; Taylor, Hugh S
2015-03-01
To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won
2017-01-01
Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325
Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong
2018-01-01
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103
Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong
2018-01-01
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.
Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu
2018-05-11
Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model
Schulz, Peter; Klünter, Tim; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). Methods: Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92–94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. Results: BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. Conclusions: BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site. PMID:28458969
Myhre, Sue Lynn; Buser, Zorica; Meisel, Hans-Joerg; Brodke, Darrel S; Yoon, S Tim; Wang, Jeffrey C; Park, Jong-Beom; Youssef, Jim A
2017-06-01
Retrospective database review. To analyze and report the trends and cost of posterior cervical fusions (PCFs) with and without off-label recombinant human bone morphogenetic protein-2 (rhBMP-2) in the Medicare population. Patient records from the PearlDiver database were retrospectively reviewed from January 1, 2005, to December 31, 2012, to distinguish individuals who underwent a PCF with or without rhBMP-2. Total numbers, incidence, age, gender, geographic region, reimbursement, and length of stay were analyzed and summarized. The combined total of non-rhBMP-2 (n = 39 479; 85.51%) and rhBMP-2 PCF (n = 6692; 14.49%) procedures performed between 2005 and 2012 was 46 171. In general, the number of PCFs without rhBMP-2 consistently increased over time, while the number of PCFs with rhBMP-2 had only a slight increase from 2005 to 2012. On average, PCFs without rhBMP-2 were associated with $1197 higher cost than those with rhBMP-2, but the average length of stay was similar (6 days). From 2005 to 2012, the average cost for procedures with and without rhBMP-2 increased by $12 605 and $7291, respectively. The percentage of rhBMP-2 use peaked in 2007 and dwindled until 2010, and declined an additional 2.84% from 2011 to 2012. Multiple age, region, and gender tendencies were observed. To our knowledge, this was the first study to use the PearlDiver database to report incidence and cost trends of PCF procedures. This article provides meaningful trend data on PCFs to surgeons and clinicians, researchers, and patients, as well as functions as a beacon for future research questions.
DeVries, J George; Nguyen, Minh; Berlet, Gregory C; Hyer, Christopher F
2012-01-01
The use of bone morphogenetic protein-2 (BMP-2) has been recommended for high-risk fusions and nonunion. Patients undergoing revisional tibiotalocalcaneal (TTC) arthrodesis via a retrograde arthrodesis nail to evaluate the influence of BMP-2 on rate of fusion in this high-risk population are presented. A retrospective chart and radiographic review were performed on 23 patients with failed prior fusion attempts at the ankle treated with retrograde intramedullary nailing. Sixteen patients were treated without BMP-2 (None group) and 7 were treated with BMP-2 (BMP group). The primary and secondary end-points were successful fusion, and time to fusion, respectively, with a variety of variables evaluated for influence. Other than the use of BMP-2, there were no statistical differences in the patient population. Overall, 11 of 16 ankles (68.8%) in the None group and 5 of 7 ankles (71.4%) in the BMP group resulted in a stable, functional limb. Rate of complication was similar between the 2 groups (p > .05). Time to radiographic ankle union was 115.2 and 184.0 days in the None and BMP groups (p > .05). The effect of BMP-2 on revisional TTC fusions with retrograde nails is reported here. The overall result as a stable, functional limb was 69.6%, which suggests that revision surgery in this high-risk population is a reasonable consideration. Even though this study was unable to demonstrate statistically significant differences, biologic augmentation with BMP-2 did not increase the complication rate and showed a slightly enhanced salvage rate for revision TTC fusions with an intramedullary nail. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong
2014-01-01
The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202
Kukreja, Sunil; Ahmed, Osama I; Haydel, Justin; Nanda, Anil
2015-01-01
Objective There are several reports, which documented a high incidence of complications following the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in anterior cervical fusions (ACFs). The objective of this study is to share our experience with low-dose rhBMP-2 in anterior cervical spine. Methods We performed a retrospective analysis of 197 patients who underwent anterior cervical fusion (ACF) with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) during 2007-2012. A low-dose rhBMP-2 (0.7mg/level) sponge was placed exclusively within the cage. In 102 patients demineralized bone matrix (DBM) was filled around the BMP sponge. Incidence and severity of dysphagia was determined by 5 points SWAL-QOL scale. Results Two patients had prolonged hospitalization due to BMP unrelated causes. Following the discharge, 13.2%(n=26) patients developed dysphagia and 8.6%(n=17) patients complained of neck swelling. More than half of the patients (52.9%, n=9) with neck swelling also had associated dysphagia; however, only 2 of these patients necessitated readmission. Both of these patients responded well to the intravenous dexamethasone. The use of DBM did not affect the incidence and severity of complications (p>0.05). Clinico-radiological evidence of fusion was not observed in 2 patients. Conclusion A low-dose rhBMP-2 in ACFs is not without risk. However, the incidence and severity of complications seem to be lower with low-dose BMP placed exclusively inside the cage. Packing DBM putty around the BMP sponge does not affect the safety profile of rhBMP-2 in ACFs. PMID:26217385
Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin
2018-02-01
Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.
Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian
2014-07-01
The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ding, Sai; Zhang, Jing; Tian, Yu; Huang, Baolin; Yuan, Yuan; Liu, Changsheng
2016-09-01
Efficient presentation of growth factors is one of the great challenges in tissue engineering. In living systems, bioactive factors exist in soluble as well as in matrix-bound forms, both of which play an integral role in regulating cell behaviors. Herein, effect of magnesium on osteogenic bioactivity of recombinant human bone morphogenetic protein-2 (rhBMP-2) was investigated systematically with a series of Mg modified calcium phosphate cements (xMCPCs, x means the content of magnesium phosphate cement wt%) as matrix model. The results indicated that the MCPC, especially 5MCPC, could promote the rhBMP-2-induced in vitro osteogenic differentiation via Smad signaling of C2C12 cells. Further studies demonstrated that all MCPC substrates exhibited similar rhBMP-2 release rate and preserved comparable conformation and biological activity of the released rhBMP-2. Also, the ionic extracts of MCPC made little difference to the bioactivity of rhBMP-2, either in soluble or in matrix-bound forms. However, with the quartz crystal microbalance (QCM), we observed a noticeable enhancement of rhBMP-2 mass-uptake on 5MCPC as well as a better recognition of the bound rhBMP-2 to BMPR IA and BMPR II. In vivo results demonstrated a better bone regeneration capacity of 5MCPC/rhBMP-2. From the above, our results demonstrated that it was the Mg anchored on the underlying substrates that tailored the way of rhBMP-2 bound on MCPC, and thus facilitated the recognition of BMPRs to stimulate osteogenic differentiation. The study will guide the development of Mg-doped bioactive bone implants for tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Chang; Gao, Jing; Chen, Bing; Chen, Lin; Belguise, Karine; Yu, Weifeng; Lu, Kaizhi; Wang, Xiaobo; Yi, Bin
2017-08-15
One central factor in hepatopulmonary syndrome (HPS) pathogenesis is intravascular accumulation of activated macrophages in small pulmonary arteries. However, molecular mechanism underlying the macrophage accumulation in HPS is unknown. In this study, we aimed to explore whether elevated COX-2 induces the Bone morphogenic protein-2 (BMP-2)/Crossveinless-2 (CV-2) imbalance and then activation of BMP signaling pathway promotes the macrophage accumulation in Common Bile Duct Ligation (CBDL) rat lung. The COX-2/PGE2 signaling activation, the BMP-2/CV-2 imbalance and the activation of Smad1 were evaluated in CBDL rat lung and in cultured pulmonary microvascular endothelial cells (PMVECs) under the HPS serum stimulation. The effects of Parecoxib (COX-2 inhibitor), BMP-2 and CV-2 recombinant proteins on 4-week CBDL rat lung were determined, respectively. The COX-2/PGE2 signaling pathway was activated in CBDL rat lung in vivo and PMVECs in vitro, which was due to the activation of NF-κB P65. The inhibition of COX-2 by Parecoxib reduced macrophage accumulation, decreased lung angiogenesis and improved HPS. Meanwhile, the CBDL rat lung secreted more BMP-2 but less CV-2, and the imbalance between BMP-2 and CV-2 exacerbated the BMP signaling activation thus promoting the macrophage accumulation and lung angiogenesis. The BMP-2/CV-2 imbalance is dependent on the COX-2/PGE2 signaling pathway, and thus the effects of this imbalance can be reversed by adminstration of Parecoxib. Our findings indicate that inhibition of COX-2 by parecoxib can improve the HPS through the repression of BMP signaling and macrophage accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Chowdhury, Mohammad Mahfuz; Fujii, Teruo; Sakai, Yasuyuki
2013-07-01
In our previous studies, we observed that cell-secreted BMP4 had a prominent influence on mouse embryonic stem cell (mESC) behaviors in a membrane-based two-chambered microbioreactor (MB), but not in a macro-scale culture (6-well plate/6WP). In this study, we investigated how the physical aspects of these cultures regulated BMP4 signaling by developing mathematical models of the cultures. The models estimated signaling activity in the cultures by considering size of the undifferentiated mESC colonies and their growth, diffusion of BMP4, and BMP4 trafficking process in the colonies. The models successfully depicted measured profile of BMP4 concentration in the culture medium which was two times higher in the MB than that in the 6WP during 5-day culture. The models estimated that, owing to the small volume and the membrane, cells were exposed to a higher BMP4 concentration in the top chamber of the MB than that in the 6WP culture. The higher concentration of BMP4 induced a higher concentration of BMP4-bound receptor in the colony in the MB than in the 6WP, thereby leading to the higher activation of BMP4 signaling in the MB. The models also predicted that the size of the MB, but not that of the 6WP, was suitable for maximizing BMP4 accumulation and upregulating its signaling. This study will be helpful in analyzing culture systems, designing microfluidic devices for controlling ESC or other cell behavior. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.
2014-01-01
This study investigates the influence of the controlled release of bone morphogenetic protein 7 (BMP-7) from cross-linked chitosan microparticles on pre-osteoblasts (OB-6) in vitro. BMP-7 was incorporated into microparticles by encapsulation during the particle preparation and coating after particle preparation. Chitosan microparticles had an average diameter of 700 μm containing ~100 ng of BMP-7. The release study profile indicates that nearly 98% of the BMP-7 coated on the microparticles was released in a period of 18 days while only 36% of the BMP-7 encapsulated in the microparticles was released in the same time period. Cell attachment study indicated that the BMP-7 coated microparticles have many cells adhered on the microparticles in comparison with microparticles without growth factors on day 10. DNA assay indicated a statistical significant increase (p<0.05) in the amount of DNA obtained from BMP-7 encapsulated and coated microparticles in comparison with microparticles without any growth factors. A real time RT-PCR experiment was performed to determine the expression of a few osteoblast specific genes - Dlx5, runx2, osterix, osteopontin, osteocalcin, and bone sialoprotein. The results thus suggest that chitosan microparticles obtained by coacervation method are biocompatible and helps in improving the encapsulation efficiency of BMP-7. Also BMP-7 incorporated in the microparticles is being released in a controlled fashion to support attachment, proliferation and differentiation of pre-osteoblasts, thus acting as a good scaffold for bone tissue regeneration. PMID:24497318
Knockaert, Marie; Sapkota, Gopal; Alarcón, Claudio; Massagué, Joan; Brivanlou, Ali H.
2006-01-01
Smad transcription factors are key signal transducers for the TGF-β/bone morphogenetic protein (BMP) family of cytokines and morphogens. C-terminal serine phosphorylation by TGF-β and BMP membrane receptors drives Smads into the nucleus as transcriptional regulators. Dephosphorylation and recycling of activated Smads is an integral part of this process, which is critical for agonist sensing by the cell. However, the nuclear phosphatases involved have remained unknown. Here we provide functional, biochemical, and embryological evidence identifying the SCP (small C-terminal domain phosphatase) family of nuclear phosphatases as mediators of Smad1 dephosphorylation in the BMP signaling pathway in vertebrates. Xenopus SCP2/Os4 inhibits BMP activity in the presumptive ectoderm and leads to neuralization. In Xenopus embryos, SCP2/Os4 and human SCP1, 2, and 3 cause selective dephosphorylation of Smad1 compared with Smad2, inhibiting BMP- and Smad1-dependent transcription and leading to the induction of the secondary dorsal axis. In human cells, RNAi-mediated depletion of SCP1 and SCP2 increases the extent and duration of Smad1 phosphorylation in response to BMP, the transcriptional action of Smad1, and the strength of endogenous BMP gene responses. The present identification of the SCP family as Smad C-terminal phosphatases sheds light on the events that attenuate Smad signaling and reveals unexpected links to the essential phosphatases that control RNA polymerase II in eukaryotes. PMID:16882717
Liao, Junyi; Wei, Qiang; Zou, Yulong; Fan, Jiaming; Song, Dongzhe; Cui, Jing; Zhang, Wenwen; Zhu, Yunxiao; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Zhang, Zhicai; Wang, Claire; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Luu, Hue H; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Wolf, Jennifer Moriatis; He, Tong-Chuan; Huang, Wei
2017-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It's conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering. © 2017 The Author(s)Published by S. Karger AG, Basel.
Bae, Eun-Bin; Park, Keun-Ho; Shim, Jin-Hyung; Chung, Ho-Yun; Choi, Jae-Won; Lee, Jin-Ju; Kim, Chang-Hwan; Jeon, Ho-Jun; Kang, Seong-Soo; Huh, Jung-Bo
2018-01-01
This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP) scaffold containing bone demineralized and decellularized extracellular matrix (bdECM) and human recombinant bone morphogenetic protein-2 (rhBMP-2) on bone regeneration. Scaffolds were divided into PCL/ β -TCP, PCL/ β -TCP/bdECM, and PCL/ β -TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm 3 ) and new bone areas (%). Excellent cell bioactivity was observed in the PCL/ β -TCP/bdECM and PCL/ β -TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/ β -TCP/bdECM/BMP group than in the other groups ( p < .05). Within the limitations of this study, bdECM printed PCL/ β -TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.
Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia
2017-07-01
Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
BMP signaling balances proliferation and differentiation of muscle satellite cell descendants
2011-01-01
Background The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. Results Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. Conclusion Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism. PMID:21645366
Urata, Mariko; Kokabu, Shoichiro; Matsubara, Takuma; Sugiyama, Goro; Nakatomi, Chihiro; Takeuchi, Hiroshi; Hirata-Tsuchiya, Shizu; Aoki, Kazuhiro; Tamura, Yukihiko; Moriyama, Yasuko; Ayukawa, Yasunori; Matsuda, Miho; Zhang, Min; Koyano, Kiyoshi; Kitamura, Chiaki; Jimi, Eijiro
2018-09-01
Bone morphogenetic protein (BMP) potentiates bone formation through the Smad signaling pathway in vitro and in vivo. The transcription factor nuclear factor κB (NF-κB) suppresses BMP-induced osteoblast differentiation. Recently, we identified that the transactivation (TA) 2 domain of p65, a main subunit of NF-κB, interacts with the mad homology (MH) 1 domain of Smad4 to inhibit BMP signaling. Therefore, we further attempted to identify the interacting regions of these two molecules at the amino acid level. We identified a region that we term the Smad4-binding domain (SBD), an amino-terminal region of TA2 that associates with the MH1 domain of Smad4. Cell-permeable SBD peptide blocked the association of p65 with Smad4 and enhanced BMP2-induced osteoblast differentiation and mineralization without affecting the phosphorylation of Smad1/5 or the activation of NF-κB signaling. SBD peptide enhanced the binding of the BMP2-inudced phosphorylated Smad1/5 on the promoter region of inhibitor of DNA binding 1 (Id-1) compared with control peptide. Although SBD peptide did not affect BMP2-induced chondrogenesis during ectopic bone formation, the peptide enhanced BMP2-induced ectopic bone formation in subcortical bone. Thus, the SBD peptide is useful for enabling BMP2-induced bone regeneration without inhibiting NF-κB activity. © 2018 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Treating poultry litter with alum is a best management practice (BMP) for lowering ammonia (NH3) emissions and phosphorus (P) runoff losses. The objective of this study was to evaluate the long-term (20 year) effects of alum-treated and untreated poultry litter applications on P availability, leachi...
USDA-ARS?s Scientific Manuscript database
Adding alum (aluminum sulfate) to poultry litter is a best management practice (BMP) used to stabilize phosphorus (P) in less soluble forms, reducing non-point source P runoff. However, little research has been conducted on the effects of alum-treated poultry litter on P leaching. The objective of...
Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal.
Tian, Aiguo; Jiang, Jin
2017-10-02
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.
Bae, In-Ho; Jeong, Byung-Chul; Kook, Min-Suk; Kim, Sun-Hun; Koh, Jeong-Tae
2013-01-01
Thiolated chitosan (Thio-CS) is a well-established pharmaceutical excipient for drug delivery. However, its use as a scaffold for bone formation has not been investigated. The aim of this study was to evaluate the potential of Thio-CS in bone morphogenetic protein-2 (BMP-2) delivery and bone formation. In vitro study showed that BMP-2 interacted with the Thio-CS and did not affect the swelling behavior. The release kinetics of BMP-2 from the Thio-CS was slightly delayed (70%) within 7 days compared with that from collagen gel (Col-gel, 85%), which is widely used in BMP-2 delivery. The BMP-2 released from Thio-CS increased osteoblastic cell differentiation but did not show any cytotoxicity until 21 days. Analysis of the in vivo ectopic bone formation at 4 weeks of posttransplantation showed that use of Thio-CS for BMP-2 delivery induced more bone formation to a greater extent (1.8 fold) than that of Col-gel. However, bone mineral density in both bones was equivalent, regardless of Thio-CS or Col-gel carrier. Taken together, Thio-CS system might be useful for delivering osteogenic protein BMP-2 and present a promising bone regeneration strategy.
Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia
2017-01-01
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960
Metals and bacteria partitioning to various size particles in Ballona Creek storm water runoff.
Brown, Jeffrey S; Stein, Eric D; Ackerman, Drew; Dorsey, John H; Lyon, Jessica; Carter, Patrick M
2013-02-01
Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well-documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant-particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≤0.7 cm rain), the highest concentration of pollutants were associated with a <6-µm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant-particle association changed with storm size. Most pollutant mass was associated with >35 µm size particles during a 5-cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 µm. Copyright © 2012 SETAC.
Anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test
NASA Astrophysics Data System (ADS)
Aziz, Nur Izzah Hamna A.; Hanafiah, Marlia M.
2018-04-01
Biogas is a promising sustainable and renewable energy alternative to reduce the dependence on fossil fuel. In Malaysia, the conversion of palm oil mill effluent (POME) to bioenergy has recently been expanded due to its high potential in generating energy. However, without a proper treatment and management, POME could be harmful to environment because it emits greenhouse gas emissions into the atmosphere and could also pollutes the watercourses if discharge directly due to the high acidity and chemical oxygen demand (COD) content. Many initiatives have been taken by the government towards sustainable development. Therefore, more efforts need to be practiced to improve and upscale the technology for a better waste management. In this study, the anaerobic digestion of POME was carried out using Bio-methane potential (BMP) test in batch and laboratory scales. Physicochemical characteristics and the biogas production of POME were measured. The BMP test under mesophilic condition was conducted for 23 consecutive days to measure the biogas production. The POME produced 721.3 cm3 of biogas by using anaerobic sludge as inoculum. The results also found that the methane (CH4) and carbon dioxide (CO2) gases produced with 360.65 cm3 and 288.52 cm3, respectively.
Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling
Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K.; Zhang, Chun-Li
2014-01-01
Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity. PMID:24782704
Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.
Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li
2014-01-01
Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.
The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass
Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.
2013-01-01
Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169
Expression of bone morphogenetic proteins and Msx genes during root formation.
Yamashiro, T; Tummers, M; Thesleff, I
2003-03-01
Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.
Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.
Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu
2015-07-15
Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A
2016-02-01
Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.
2012-12-01
Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels of complexity to be quickly designed and rendered in QnDTM without time-consuming additions of new Java code. Thus, temporal and spatial scales used in the equations become part of model development and iteration. A salient aspect is that QnDTM links spatial components within GIS (ArcInfo Shape) files to the abiotic (e.g., climate), biotic and chemical/contaminant interactions. QnD-VFS integrates environmental, management and socio-economic/cultural factors identified through stakeholder input. Several scenarios have been studied. Thus one of the main results show that changing water management, improved irrigation, is equivalent to changing length of vegetative filter strips, with a low economic impacts for farmers. Concurrently, these interactive tools allow resource managers to identify economic and social determinants that may impede conservation efforts.
Dong, Yu; Zhang, Qingguo; Li, Yunxia; Jiang, Jia; Chen, Shiyi
2012-01-01
At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2) on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs) were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control), and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2) were used to reconstruct the anterior cruciate ligament (ACL) in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N) (P = 0.041 and P = 0.001, respectively). In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3) was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4) or control groups (12.4 ± 6.0) (p = 0.036 and 0.001, respectively). Based on the histological findings, there was an increased amount of perpendicular collagen fibers formed between the tendon and bone in the bMSCs+Lv-Control and bMSCs+Lv-BMP-2 group, compared with the gastrocnemius tendons. The proliferation of cartilage-like cells and the formation of fibrocartilage-like tissue were highest within the bone tunnels in the bMSCs+Lv-BMP-2 group. These results suggest that this lentivirus can be used to efficiently infect bMSCs with BMP-2. Furthermore, tendons wrapped by bMSCs+Lv-BMP-2 improved tendon–bone healing. PMID:23202970
Crops Conservation Agriculture Systems Alliance Biotechnology/Sustainability Know Your Watershed technology for conservation agriculture. Celebrates producer achievements. Encourage the formation of local Survey BMP Survey Form BMP Survey Results BMP News Release Conservation Agriculture Systems Alliance CASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Li-An; Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an; Yuan, Guohua
Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show thatmore » transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.« less
Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G
2017-05-01
Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.
BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.
Gupta, Sunny; Zhu, Hao; Zon, Leonard I; Evans, Todd
2006-06-01
The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.
Protein-protein recognition control by modulating electrostatic interactions.
Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin
2010-06-04
Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration
Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C.; Ottmüller, Katja J.; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F.; Kreines, Fabiana; Lieberman, Sophia R.; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M.; Shono, Yusuke; Jenq, Robert R.; Hanash, Alan M.; Nolan, Daniel J.; Butler, Jason M.; Beilhack, Andreas; Manley, Nancy R.; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel RM
2018-01-01
The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. Here we show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration, via their production of BMP4. ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signalling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance and regeneration; and its downstream targets such as Dll4, itself a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. PMID:29330161
Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.
Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto
2003-12-01
There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest genetic cascade. In order to study the hierarchical relationship between msx1 and snail/slug we performed several rescue experiments using dominant negatives for these genes. The rescuing activity by snail and slug on neural crest development of the msx1 dominant negative, together with the inability of msx1 to rescue the dominant negatives of slug and snail strongly argue that msx1 is upstream of snail and slug in the genetic cascade that specifies the neural crest in the ectoderm. We propose a model where a gradient of Bmp activity specifies the expression of Msx genes in the neural folds, and that this expression is essential for the early specification of the neural crest.
Louis-Ugbo, John; Kim, Hak-Sun; Boden, Scott D; Mayr, Matthew T; Li, Ronald C; Seeherman, Howard; D'Augusta, Darren; Blake, Cara; Jiao, Aiping; Peckham, Steve
2002-09-01
The purpose of this study was to characterize the retention kinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) applied to two calcium-based delivery matrices. Biphasic calcium phosphate (BCP) and a composite containing BCP in an absorbable collagen sponge (BCP/ACS) were evaluated using a spinal fusion model in rabbits. rhBMP-2 labeled with radioactive iodine (125I) was used as a tracer to assess in vivo retention of rhBMP-2 in the presence of these materials (nine animals per material studied). Over a 36 day study period, animals were assessed for the following: percent administered dose retained at the implant site as measured by scintigraphic imaging (counting) with a gamma camera (all animals), radiography of the implant site (all animals), radioactivity in blood and plasma (all animals), and radioactivity in the urine and feces (three animals for each material). Radioactivity data were corrected for the decay of 125I and the attenuation between the implant in vivo and the gamma camera. Differences observed between the two materials for the area under the retention vs. time profile (AUC; 988%*day for BCP vs. 1070%*day for BCP/ACS, p = 0.57) and the mean residence time (MRT; 10.2 days for BCP vs. 7.6 days for BCP/ACS, p = 0.06) were not statistically significant. Initial retention/incorporation of rhBMP-2 was slightly higher for rhBMP-2/BCP/ACS than for rhBMP-2/BCP (96.8% vs. 86.0%, p < 0.05). Animals receiving rhBMP-2/BCP showed a longer terminal retention half-life (t1/2) than did those receiving rhBMP-2/BCP/ACS (7.5 vs. 4.5 days, p < 0.05). The urinary radioactivity recovery data supported the data obtained by scintigraphy. Over the 36 day collection period, essentially complete recovery of radioactivity (dose) in urine was observed for rhBMP-2/BCP and rhBMP-2/BCP/ACS and the majority of the radioactivity (approximately 95%) was soluble in trichloroacetic acid, suggesting extensive catabolism of rhBMP-2 before renal excretion. Fecal recovery of radioactivity was low, approximately 2-3%. In conclusion, rhBMP-2 was retained at the implant site when delivered with either BCP or BCP/ACS based on mean residence time and area under the retention curve vs. time profile. Use of these matrices resulted in detectable rhBMP-2 levels at the surgical site for over a week in contrast to data reported with several other matrices that lasted less time. Systemic catabolism and elimination of the rhBMP-2 was extensive and systemic presence of the protein was negligible.
Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.
Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S
2018-07-01
Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.
Preliminary evaluation of a load-bearing BMP-2 carrier for segmental defect regeneration.
Chu, Tien-Min G; Sargent, Peter; Warden, Stuart J; Turner, Charles H; Stewart, Rena L
2006-01-01
Large segmental defects in bones can result from tumor removal, massive trauma, congenital malformation, or non-union fractures. Such defects often are difficult to manage and require multiple-phase surgery to achieve adequate union and function. In this study, we propose a novel design of bone morphogenetic protein 2 (BMP-2) carrier for tissue engineering of segmental defect regeneration. The tube-shaped BMP-2 carrier was fabrication from a poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) composite via casting technique developed in our laboratory. An in vitro evaluation showed that the compressive strength of the carrier decreased about 48% in 12 weeks while maintained a pH in the 6.8-7.4 range. In vivo study was conducted by implanting carriers loaded with 10 microg of BMP-2 in 5 mm rat femur gap model for 15 weeks. X-ray evidence of bridging was first found in the BMP group at 3 weeks. Bridging in all animals (N = 4) in the BMP group was found at 9 weeks. No x-ray evidence of bridging was found in the No BMP group (N = 3). pQCT analysis indicated that the bone mineral density of the callus in the BMP group has reached the level of native femur at 15 weeks after implantation, while the callus in the No BMP group has a bone mineral density at a lower level of 84% to the native femur. Histology analysis shows that a normal fatty bone marrow was restored and mineralized callus formed and bridged the segmental defect.
Mumcuoglu, Didem; de Miguel, Laura; Jekhmane, Shehrazade; Siverino, Claudia; Nickel, Joachim; Mueller, Thomas D; van Leeuwen, Johannes P; van Osch, Gerjo J; Kluijtmans, Sebastiaan G
2018-03-01
Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (K D : 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles. Copyright © 2017 Elsevier B.V. All rights reserved.
The human chondrosarcoma HCS-2/8 cell line is responsive to BMP-7, but not to IL-1beta.
Saas, Joachim; Gebauer, Matthias; Jacobi, Carsten; Haag, Jochen; Takigawa, Masaharu; Aigner, Thomas
2005-05-01
Cultures of primary chondrocytes as in vitro model systems for studying the cellular behavior of chondrocytes are notoriously difficult to cultivate and propagate. One way to circumvent these problems appears to be the use of immortalized/immortal chondrocytic cell lines. In the present study, we were interested whether the chondrosarcoma derived HCS-2/8 cells are suitable for studying major cellular reaction pattern in response to key anabolic (BMP-7) and catabolic (IL-1beta) factors. Therefore, we used cDNA array and real-time PCR technology in order to evaluate gene expression triggered by stimulation with IL-1beta (0,1-100 ng/ml) and BMP-7 in confluent monolayer cultures. HCS-2/8 cells hardly responded to IL-1beta, but showed good responsiveness to BMP-7. We found 12 genes up- and 17 significantly down-regulated by BMP-7 (out of 340 investigated genes). Besides the expected activation of anabolic genes chondrocytic cells after BMP-stimulation try to neutralize activation of the BMP-signalling cascade by expressing intra- and extracellular BMP-antagonists. Chondrosarcoma derived cell lines are a potential substitute for primary articular chondrocytes promising consistent expression of a differentiated chondrocyte phenotype with sufficient proliferative capacity. However, as shown by this study one needs to carefully select the cell line depending on the effects which one intends to study. In this respect, HCS-2/8 cells are a validated tool for studying BMP-effects on chondrocytes, but not e.g. effects of interleukin-1.
Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael
2014-01-01
Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair. PMID:23937304
Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G
2015-09-21
Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.
Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi
2018-05-09
Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.
Kenley, R; Marden, L; Turek, T; Jin, L; Ron, E; Hollinger, J O
1994-10-01
In the current investigation, we report osseous regeneration in critical-size rat calvarial defects using recombinant human bone morphogenetic protein-2 (rhBMP-2) and novel delivery systems based on biomaterials. The novel systems combine rhBMP-2 with dry powder microparticles of poly(D,L-lactide-co-glycolide) (PLGA). The mixture of rhBMP-2 with PLGA microparticles is added to an aqueous solution of biopolymer to yield a semisolid paste. The biopolymers tested include autologous blood clot, hydroxypropyl methylcellulose, and sodium alginate cross-linked with calcium ion. Insoluble collageneous bone matrix was also studied as a control. Test articles were made at 0-, 10-, and 30-micrograms doses of rhBMP-2 and imiplanted in 8-mm-diameter rat calvarial defects (which will not heal if left untreated). The animals were examined 21 days after implantation by radiography, radiomorphometry, histology, and histomorphometry. All tested materials containing rhBMP-2 restored radiopacity and normal contouring to the calvarial defects. Samples without added rhBMP-2 yielded only soft tissue within the defects. Histology showed restoration of inner and outer bone tables plus marrow constituents. The PLGA microparticles were significantly resorbed at the 21-day time point. Although small differences between delivery systems were evident at 0- and 10-micrograms rhBMP-2 doses, all test articles performed essentially equivalently at the 30-micrograms dose. Thus, novel delivery systems for rhBMP-2 offer the promise of combining the intrinsic bioactivity of the osteoinductive protein with pharmaceutically acceptable biomaterials.
The best management of SuDS treatment trains: a holistic approach.
Bastien, Nicolas; Arthur, Scott; Wallis, Stephen; Scholz, Miklas
2010-01-01
The use of Sustainable Drainage Systems (SuDS) or Best Management Practice (BMP) is becoming increasingly common. However, rather than adopting the preferred "treatment train" implementation, many developments opt for end of pipe control ponds. This paper discusses the use of SuDS in series to form treatment trains and compares their potential performance and effectiveness with end of pipe solutions. Land-use, site and catchment characteristics have been used alongside up-to-date guidance, Infoworks CS and MUSIC to determine whole-life-costs, land-take, water quality and water quantity for different SuDS combinations. The results presented show that the use of a treatment train allows approaches differing from the traditional use of single SuDS, either source or "end of pipe", to be proposed to treat and attenuate runoff. The outcome is a more flexible solution where the footprint allocated to SuDS, costs and water quality can be managed differently to satisfy more efficiently the holistically stakeholders' objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nanjun; Tengstrand, Elizabeth A.; Chourb, Lisa
The inability to routinely monitor drug-induced phospholipidosis (DIPL) presents a challenge in pharmaceutical drug development and in the clinic. Several nonclinical studies have shown di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP) to be a reliable biomarker of tissue DIPL that can be monitored in the plasma/serum and urine. The aim of this study was to show the relevance of di-22:6-BMP as a DIPL biomarker for drug development and safety assessment in humans. DIPL shares many similarities with the inherited lysosomal storage disorder Niemann–Pick type C (NPC) disease. DIPL and NPC result in similar changes in lysosomal function and cholesterol status that leadmore » to the accumulation of multi-lamellar bodies (myeloid bodies) in cells and tissues. To validate di-22:6-BMP as a biomarker of DIPL for clinical studies, NPC patients and healthy donors were classified by receiver operator curve analysis based on urinary di-22:6-BMP concentrations. By showing 96.7-specificity and 100-sensitivity to identify NPC disease, di-22:6-BMP can be used to assess DIPL in human studies. The mean concentration of di-22:6-BMP in the urine of NPC patients was 51.4-fold (p ≤ 0.05) above the healthy baseline range. Additionally, baseline levels of di-22:6-BMP were assessed in healthy non-medicated laboratory animals (rats, mice, dogs, and monkeys) and human subjects to define normal reference ranges for nonclinical/clinical studies. The baseline ranges of di-22:6-BMP in the plasma, serum, and urine of humans and laboratory animals were species dependent. The results of this study support the role of di-22:6-BMP as a biomarker of DIPL for pharmaceutical drug development and health care settings. - Highlights: • A reliable biomarker of drug-induced phospholipidosis (DIPL) is needed for humans. • Di-22:6-BMP is specific/sensitive for DIPL in animals as published in literatures. • The di-22:6-BMP biomarker can be validated for humans via NPC patients. • DIPL shares morphologic/mechanistic similarities with Niemann–Pick type C disease. • Di-22:6-BMP is an effective DIPL biomarker in humans via NPC patient validation.« less
Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig.
Kong, Chang-Bae; Lee, Jae Hyup; Baek, Hae-Ri; Lee, Choon-Ki; Chang, Bong-Soon
2014-12-01
Hydroxyapatite (HA) is used as a bone graft extender for posterolateral spinal fusion in human. It is also useful as a recombinant human bone morphogenetic protein (rhBMP)-2 carrier because of its high affinity for rhBMP-2. To assess the osteoinductivity of Escherichia coli-derived rhBMP-2 (E-BMP-2) using HA granules as a carrier and to evaluate the bone-forming ability depending on the different dosages of E-BMP-2. A mini-pig lumbar posterolateral fusion model using microcomputed tomography (μCT) scanning. Thirty-one adult male mini pigs were randomized into a single control group (n=8) without E-BMP-2 and two experimental groups with two different doses of E-BMP-2 (1 mg per side, n=8 and 3 mg per side, n=15). Outcome was measured by plain radiography, manual palpation, CT, three-dimensional μCT, and histologic examinations. Bilateral intertransverse process arthrodesis was performed, and E-BMP-2 (0, 1.0, 3.0 mg per side) was implanted into the intertransverse space using HA granules as a carrier. Three mini pigs were removed because of death. Among 28 experimental subjects, 19 animals achieved solid bony union. The fusion rates were 37.5% for control group, 71.4% for 1 mg group, and 84.6% for 3 mg group. Fusion rates were significantly different among groups (p=.031). However, there was no statistically significant difference in fusion rates between 1 and 3 mg groups (p=.587). Thirty-eight intertransverse fusion masses of 19 subjects underwent μCT scanning. The bone volumes determined by μCT were 12,603±3,240 mm(3) for control group, 18,718±3,000 mm(3) for 1 mg group, and 26,768±7,256 mm(3) for 3 mg group, and the difference between groups was statistically significant (p<.001). This study shows that E-BMP-2 has osteoinductive activity in dose-dependent fashion, and porous HA granule is suitable for E-BMP-2 carrier in a porcine posterolateral fusion model. These preliminary findings suggest that E-BMP-2-adsorbed porous HA granules could be a novel effective bone graft substitute. Copyright © 2014 Elsevier Inc. All rights reserved.
BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.
Pan, Haichun; Zhang, Honghao; Abraham, Ponnu; Komatsu, Yoshihiro; Lyons, Karen; Kaartinen, Vesa; Mishina, Yuji
2017-09-01
Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses. Copyright © 2017 Elsevier Inc. All rights reserved.
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.
NOGGIN IS REQUIRED FOR NORMAL LOBE PATTERNING AND DUCTAL BUDDING IN THE MOUSE PROSTATE
Cook, Crist; Vezina, Chad M.; Hicks, Sarah M.; Shaw, Aubie; Yu, Min; Peterson, Richard E.; Bushman, Wade
2008-01-01
Mesenchymal expression of the BMP antagonist NOGGIN during prostate development plays a critical role in pre-natal ventral prostate development and opposes BMP4-mediated inhibition of cell proliferation during postnatal ductal development. Morphologic examination of newborn Noggin-/- male fetuses revealed genitourinary anomalies including cryptorchidism, incomplete separation of the hindgut from the urogenital sinus (UGS), absence of the ventral mesenchymal pad and a complete loss of ventral prostate (VP) budding. Examination of lobe-specific marker expression in the E14 Noggin-/- UGS rescued by transplantation under the renal capsule of a male nude mouse confirmed a complete loss of VP determination. More modest effects were observed in the other lobes, including decreased number of ductal buds in the dorsal and lateral prostates of newborn Noggin-/- males. BMP4 and BMP7 have been shown to inhibit ductal budding and outgrowth by negatively regulating epithelial cell proliferation. We show here that NOGGIN can neutralize budding inhibition by BMP4 and rescues branching morphogenesis of BMP4-exposed UGS in organ culture and show that the effects of BMP4 and NOGGIN activities converge on P63+ epithelial cells located at nascent duct tips. Together, these studies show that the BMP-NOGGIN axis regulates patterning of the ventral prostate, regulates ductal budding, and controls proliferation of P63+ epithelial cells in the nascent ducts of developing mouse prostate. PMID:18028901
Fujita, Kazuhiko; Otsuka, Takanobu; Yamamoto, Naohiro; Kainuma, Shingo; Ohguchi, Reou; Kawabata, Tetsu; Sakai, Go; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko
2017-01-01
Chlorogenic acid (CGA) is a primary phenolic component of coffee and (−)-epigallocatechin gallate (EGCG) is a primary flavonoid component of green tea, both of which have been documented to possess beneficial health properties. A previous study by the present authors demonstrated that p38 mitogen-activated protein kinase (MAPK) may be associated with osteoprotegerin synthesis stimulated by bone morphogenetic protein-4 (BMP-4) in osteoblast-like MC3T3-E1 cells. In the present study, the effects of CGA and EGCG on BMP-4-stimulated osteoprotegerin synthesis in MC3T3-E1 cells were investigated. It was observed that CGA had no effect on osteoprotegerin release stimulated by BMP-4, whereas EGCG significantly enhanced BMP-4-stimulated osteoprotegerin release (P=0.003). Levels of osteoprotegerin mRNA expression induced by BMP-4 were also significantly increased by EGCG (P=0.03). By contrast, EGCG had no significant effect on phosphorylation of Smad1 or p38 MAPK induced by BMP-4. In addition, EGCG had little effect on BMP-induced phosphorylation of p70 S6 kinase; however rapamycin, as an inhibitor of p70 S6 kinase, significantly suppressed osteoprotegerin release (P=0.007). These data suggest that EGCG but not CGA may upregulate the synthesis of osteoprotegerin induced by BMP-4 in osteoblasts. PMID:28672948
Fujita, Kazuhiko; Otsuka, Takanobu; Yamamoto, Naohiro; Kainuma, Shingo; Ohguchi, Reou; Kawabata, Tetsu; Sakai, Go; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko
2017-07-01
Chlorogenic acid (CGA) is a primary phenolic component of coffee and (-)-epigallocatechin gallate (EGCG) is a primary flavonoid component of green tea, both of which have been documented to possess beneficial health properties. A previous study by the present authors demonstrated that p38 mitogen-activated protein kinase (MAPK) may be associated with osteoprotegerin synthesis stimulated by bone morphogenetic protein-4 (BMP-4) in osteoblast-like MC3T3-E1 cells. In the present study, the effects of CGA and EGCG on BMP-4-stimulated osteoprotegerin synthesis in MC3T3-E1 cells were investigated. It was observed that CGA had no effect on osteoprotegerin release stimulated by BMP-4, whereas EGCG significantly enhanced BMP-4-stimulated osteoprotegerin release (P=0.003). Levels of osteoprotegerin mRNA expression induced by BMP-4 were also significantly increased by EGCG (P=0.03). By contrast, EGCG had no significant effect on phosphorylation of Smad1 or p38 MAPK induced by BMP-4. In addition, EGCG had little effect on BMP-induced phosphorylation of p70 S6 kinase; however rapamycin, as an inhibitor of p70 S6 kinase, significantly suppressed osteoprotegerin release (P=0.007). These data suggest that EGCG but not CGA may upregulate the synthesis of osteoprotegerin induced by BMP-4 in osteoblasts.
Peng, Xiaochun; Chen, Yunsu; Li, Yamin; Wang, Yiming
2016-01-01
We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation. PMID:27379249
Gene Therapy of Bone Morphogenetic Protein for Periodontal Tissue Engineering
Jin, Q-M.; Anusaksathien, O.; Webb, S.A.; Rutherford, R.B.; Giannobile, W.V.
2009-01-01
Background The reconstruction of lost periodontal support including bone, ligament, and cementum is a major goal of therapy. Bone morphogenetic proteins (BMPs) have shown much potential in the regeneration of the periodontium. Limitations of BMP administration to periodontal lesions include need for high-dose bolus delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene transfer offers promise as an alternative treatment strategy to deliver BMPs to periodontal tissues. Methods This study utilized ex vivo BMP-7 gene transfer to stimulate tissue engineering of alveolar bone wounds. Syngeneic dermal fibroblasts (SDFs) were transduced ex vivo with adenoviruses encoding either green fluorescent protein (Ad-GFP or control virus), BMP-7 (Ad-BMP-7), or an antagonist of BMP bioactivity, noggin (Ad-noggin). Transduced cells were seeded onto gelatin carriers and then transplanted to large mandibular alveolar bone defects in a rat wound repair model. Results Ad-noggin treatment tended to inhibit osteogenesis as compared to the control-treated and Ad-BMP-7-treated specimens. The osseous lesions treated by Ad-BMP-7 gene delivery demonstrated rapid chrondrogenesis, with subsequent osteogenesis, cementogenesis and predictable bridging of the periodontal bone defects. Conclusion These results demonstrate the first successful evidence of periodontal tissue engineering using ex vivo gene transfer of BMPs and offers a new approach for repairing periodontal defects. PMID:12666709
Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin
2016-05-05
Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.
Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin
2016-01-01
Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352
MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells
Ying, Xuexiang; Sun, Yunpo; He, Pingqing
2017-01-01
Bone morphogenetic protein-7 (BMP7) is known to antagonize transforming growth factor β 1 (TGFβ1)-mediated fibrosis through suppressing epithelial-mesenchymal transition (EMT). We recently reported that BMP7 also antagonizes the effects of TGFβ1 in breast cancer (BC) tumorigenesis-related EMT. Nevertheless, the control of BMP7 expression in BC remains ill-defined. Here, we detected significantly lower levels of BMP7 and significantly higher levels of microRNA-137 (miR-137) in the BC specimens, relative to paired adjacent non-tumor breast tissue. BMP7 and miR-137 levels were correlated inversely. Additionally, the high miR-137 levels in BC specimens were correlated with reduced patient survival. In vitro, overexpression of miR-137 significantly increased cell EMT and invasion, while depletion of miR-137 significantly decreased cell EMT and invasion in BC cells. The increases in BC cell invasiveness by miR-137 appeared to result from its suppression of BMP7, through direct binding of miR-137 to the 3'-UTR of BMP7 mRNA, thereby blocking its protein translation in BC cells. This study sheds light on miR-137 as a crucial factor that enhances BC cell EMT and invasiveness, and points to miR-137 as a promising innovative therapeutic target for BC treatment. PMID:28407692