Saturation of SERCA's lipid annulus may protect against its thermal inactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Val Andrew; Center for Bone and Muscle Health, Brock University, St. Catharines, ON; Department of Health Sciences, Brock University, St. Catharines, ON
The sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca{sup 2+} into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybeanmore » oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12–14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting. - Highlights: • SERCA's lipid annulus in rat soleus was measured after immunoconcentration. • Short fatty acid chains surround SERCA and may ensure
Vetter, Roland; Rehfeld, Uwe; Reissfelder, Christoph; Fechner, Henry; Seppet, Enn; Kreutz, Reinhold
2011-03-01
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.
Phospholamban mutants compete with wild type for SERCA binding in living cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu
2012-04-06
Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less
Lalli, M J; Yong, J; Prasad, V; Hashimoto, K; Plank, D; Babu, G J; Kirkpatrick, D; Walsh, R A; Sussman, M; Yatani, A; Marbán, E; Periasamy, M
2001-07-20
Ectopic expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) 1a pump in the mouse heart results in a 2.5-fold increase in total SERCA pump level. SERCA1a hearts show increased rates of contraction/relaxation and enhanced Ca(2+) transients; however, the cellular mechanisms underlying altered Ca(2+) handling in SERCA1a transgenic (TG) hearts are unknown. In this study, using confocal microscopy, we demonstrate that SERCA1a protein traffics to the cardiac SR and structurally substitutes for the endogenous SERCA2a isoform. SR Ca(2+) load measurements revealed that TG myocytes have significantly enhanced SR Ca(2+) load. Confocal line-scan images of field-stimulated SR Ca(2+) release showed an increased rate of Ca(2+) removal in TG myocytes. On the other hand, ryanodine receptor binding activity was decreased by approximately 30%. However, TG myocytes had a greater rate of spontaneous ryanodine receptor opening as measured by spark frequency. Whole-cell L-type Ca(2+) current density was reduced by approximately 50%, whereas the time course of inactivation was unchanged in TG myocytes. These studies provide important evidence that SERCA1a can substitute both structurally and functionally for SERCA2a in the heart and that SERCA1a overexpression can be used to enhance SR Ca(2+) transport and cardiac contractility.
Sodium Accumulation in SERCA Knockout-Induced Heart Failure
Li, Liren; Louch, William E.; Niederer, Steven A.; Aronsen, Jan M.; Christensen, Geir; Sejersted, Ole M.; Smith, Nicolas P.
2012-01-01
In cardiomyocytes, a major decrease in the level of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) can severely impair systolic and diastolic functions. In mice with cardiomyocyte-specific conditional excision of the Serca2 gene (SERCA2 KO), end-stage heart failure developed between four and seven weeks after gene deletion combined with [Na+]i elevation and intracellular acidosis. In this study, to investigate the underpinning changes in Ca2+ dynamics and metabolic homeostasis, we developed data-driven mathematical models of Ca2+ dynamics in the ventricular myocytes of the control, four-week, and seven-week SERCA2 knockout (KO) mice. The seven-week KO model showed that elevated [Na+]i was due to increased Na+ influxes through the Na+/Ca2+ exchanger (NCX) and the Na+/H+ exchanger, with the latter exacerbated by intracellular acidosis. Furthermore, NCX upregulation in the seven-week KO model resulted in increased ATP consumption for ion transport. Na+ accumulation in the SERCA KO due to NCX upregulation and intracellular acidosis potentially play a role in the development of heart failure, by initiating a reinforcing cycle involving: a mismatch between ATP demand and supply; an increasingly compromised metabolism; a decreased pHi; and, finally, an even greater [Na+]i elevation. PMID:22824267
Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban.
Martin, Peter D; James, Zachary M; Thomas, David D
2018-06-05
We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to map interactions between the transmembrane (TM) domains of the sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) and phospholamban (PLB) as affected by PLB phosphorylation. In the cardiac sarcoplasmic reticulum, PLB binding to SERCA results in Ca-dependent enzyme inhibition, which is reversed by PLB phosphorylation at Ser16. Previous spectroscopic studies on SERCA-PLB have largely focused on the cytoplasmic domain of PLB, showing that phosphorylation induces a structural shift in this domain relative to SERCA. However, SERCA inhibition is due entirely to TM domain interactions. Therefore, we focus here on PLB's TM domain, attaching Cys-reactive spin labels at five different positions. In each case, continuous-wave EPR indicated moderate spin-label mobility, with the addition of SERCA revealing two populations, one indistinguishable from PLB alone and another with more restricted rotational mobility, presumably due to SERCA-binding. Phosphorylation had no effect on the rotational mobility of either component but significantly decreased the mole fraction of the restricted component. Solvent-accessibility experiments using power-saturation EPR and saturation-recovery EPR confirmed that these two spectral components were SERCA-bound and unbound PLB and showed that phosphorylation increased the overall lipid accessibility of the TM domain by increasing the fraction of unbound PLB. However-based on these results-at physiological levels of SERCA and PLB, most SERCA would have bound PLB even after phosphorylation. Additionally, no structural shift in the TM domain of SERCA-bound PLB was detected, as there were no significant changes in membrane insertion depth or its accessibility. Therefore, we conclude that under physiological conditions, the phosphorylation of PLB induces little or no change in the interaction of the TM domain with SERCA, so relief of inhibition is predominantly due to the
SERCA directs cell migration and branching across species and germ layers
Lansdale, Nick; Navarro, Sonia; Truong, Thai V.; Bower, Dan J.; Featherstone, Neil C.; Connell, Marilyn G.; Al Alam, Denise; Frey, Mark R.; Trinh, Le A.; Fernandez, G. Esteban; Warburton, David; Fraser, Scott E.; Bennett, Daimark; Jesudason, Edwin C.
2017-01-01
ABSTRACT Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding. PMID:28821490
Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation.
Betzer, Cristine; Lassen, Louise Berkhoudt; Olsen, Anders; Kofoed, Rikke Hahn; Reimer, Lasse; Gregersen, Emil; Zheng, Jin; Calì, Tito; Gai, Wei-Ping; Chen, Tong; Moeller, Arne; Brini, Marisa; Fu, Yuhong; Halliday, Glenda; Brudek, Tomasz; Aznar, Susana; Pakkenberg, Bente; Andersen, Jens Peter; Jensen, Poul Henning
2018-05-01
Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca 2+ and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced cytosolic Ca 2+ levels followed by a later Ca 2+ increase. Aggregated but not monomeric α-synuclein binds to and activates SERCA in vitro , and proximity ligation assays confirm this interaction in cells. The SERCA inhibitor cyclopiazonic acid (CPA) normalises both the initial reduction and the later increase in cytosolic Ca 2+ CPA protects the cells against α-synuclein-aggregate stress and improves viability in cell models and in Caenorhabditis elegans in vivo Proximity ligation assays also reveal an increased interaction between α-synuclein aggregates and SERCA in human brains affected by dementia with Lewy bodies. We conclude that α-synuclein aggregates bind SERCA and stimulate its activity. Reducing SERCA activity is neuroprotective, indicating that SERCA and down-stream processes may be therapeutic targets for treating α-synucleinopathies. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.
Kranias, Evangelia G; Hajjar, Roger J
2012-06-08
Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.
SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone
Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab
2011-01-01
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575
Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.
Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito
2005-04-22
Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.
Nassal, Michelle M. J.; Wan, Xiaoping; Laurita, Kenneth R.; Cutler, Michael J.
2015-01-01
Background Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias. Methods Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol. Results As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (p< 0.05) and reduced with SERCA2a inhibition (p<0.05). Surprisingly, there was no difference in susceptibility to Ca-ALT with either SERCA2a overexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p < 0.05) and concomitant increase in SR Ca2+ load (p<0.05). Based on these observations we tested in-vivo atrial arrhythmia inducibility in control and Ad.SERCA2a animals using an esophageal atrial burst pacing protocol. There were no inducible atrial arrhythmias in Ad.GFP (n = 4) animals though 20% of Ad.SERCA2a (n = 5) animals had inducible atrial arrhythmias (p = 0.20). Conclusions Our findings suggest that unlike the ventricle, SERCA2a is not a key regulator of cardiac alternans in the atrium. Importantly, SERCA2a overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic. PMID:26352986
Fragoso-Medina, Jorge; Rodriguez, Gabriela; Zarain-Herzberg, Angel
2018-05-01
The cardiac sarco/endoplasmic reticulum Ca 2+ -ATPase-2a (SERCA2a) is vital for the correct handling of calcium concentration in cardiomyocytes. Recent studies showed that the induction of endoplasmic reticulum (ER) stress (ERS) with the SERCA2 inhibitor Thapsigargin (Tg) increases the mRNA and protein levels of SERCA2a. The SERCA2 gene promoter contains an ERS response element (ERSE) at position -78 bp that is conserved among species and might transcriptionally regulate SERCA2 gene expression. However, its involvement in SERCA2 basal and calcium-mediated transcriptional activation has not been elucidated. In this work, we show that in cellular cultures of neonatal rat ventricular myocytes, the treatment with Tg or the calcium ionophore A23187 increases the SERCA2a mRNA and protein abundance, as well as the transcriptional activity of two chimeric human SERCA2 gene constructs, containing -254 and -2579 bp of 5'-regulatory region cloned in the pGL3-basic vector and transiently transfected in cultured cardiomyocytes. We found that the ERSE present in the SERCA2 proximal promoter contains a CCAAT box that is involved in basal and ERS-mediated hSERCA2 transcriptional activation. The EMSA results showed that the CCAAT box present in the ERSE recruits the NF-Y transcription factor. Additionally, by ChIP assays, we confirmed in vivo binding of NF-Y and C/EBPβ transcription factors to the SERCA2 gene proximal promoter.
Mattila, Minttu; Koskenvuo, Juha; Söderström, Mirva; Eerola, Kim; Savontaus, Mikko
2016-07-01
Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Londraville, R L; Cramer, T D; Franck, J P; Tullis, A; Block, B A
2000-10-01
Complete cDNAs for the fast-twitch Ca2+ -ATPase isoform (SERCA 1) were cloned and sequenced from blue marlin (Makaira nigricans) extraocular muscle (EOM). Complete cDNAs for SERCA 1 were also cloned from fast-twitch skeletal muscle of the same species. The two sequences are identical over the coding region except for the last five codons on the carboxyl end; EOM SERCA 1 cDNA codes for 996 amino acids and the fast-twitch cDNAs code for 991 aa. Phylogenetic analysis revealed that EOM SERCA 1 clusters with an isoform of Ca2+ -ATPase normally expressed in early development of mammals (SERCA 1B). This is the first report of SERCA 1B in an adult vertebrate. RNA hybridization assays indicate that 1B expression is limited to extraocular muscles. Because EOM gives rise to the thermogenic heater organ in marlin, we investigated whether SERCA 1B may play a role in heat generation, or if 1B expression is common in EOM among vertebrates. Chicken also expresses SERCA 1B in EOM, but rat expresses SERCA 1A; because SERCA 1B is not specific to heater tissue we conclude it is unlikely that it plays a specific role in intracellular heat production. Comparative sequence analysis does reveal, however, several sites that may be the source of functional differences between fish and mammalian SERCAs.
Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception
Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan
2011-01-01
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H; Armoundas, Antonis A
2016-04-15
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H.
2016-01-01
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca2+ ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca2+ indicators to selectively measure mitochondrial and cytosolic Ca2+ using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 − (small Ca2+ intensity)/(large Ca2+ intensity)]. Blocking of complex I and II, cytochrome-c oxidase, F0F1 synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P < 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P < 0.04). N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P < 0.001). CGP, an antagonist of the mitochondrial Na+-Ca2+ exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P < 0.0001). The major findings of this study are that impairment of mitochondrial Ca2+ cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca2+ content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca2+ signaling in myocytes from diseased
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Prasad, Vikram; Lorenz, John N; Lasko, Valerie M; Nieman, Michelle L; Huang, Wei; Wang, Yigang; Wieczorek, David W; Shull, Gary E
2015-01-01
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Gupta, Dipin; Palma, Jon; Molina, Ezequiel; Gaughan, John P; Long, Walter; Houser, Steven; Macha, Mahender
2008-04-01
We hypothesized that sarcoplasmic reticulum Ca2+ ATPase pump (SERCA-2a) gene delivery would have beneficial effects upon exercise capacity and markers of inflammation in the setting of heart failure. A pressure-overload model of experimental heart failure was used in rats. Following a decrease in fractional shortening of >or=25%, animals underwent intracoronary adenoviral-mediated gene transfection using SERCA-2a. Heart failure animals were randomized to receive the SERCA-2a gene, the beta galactosidase (control) gene, or followed without any further intervention. Exercise and hemodynamic testing were performed, and myocardial and systemic markers of inflammation were assayed after 7 and 21 d. Animals receiving Ad.SERCA-2a showed an increase in exercise tolerance (499.0 +/- 14.9 versus 312.8 +/- 10.5 s, P < 0.0001) relative to Ad.Gal group. Groups treated with Ad.SERCA-2a had significantly decreased serum levels of the inflammatory markers interleukin-1, interleukin-6, and tumor necrosis factor-alpha compared with Ad.Gal-treated animals. Serum levels of atrial natriuretic peptide were decreased in animals receiving Ad.SERCA-2a compared with animals receiving Ad.Gal at day 7 (0.35 +/- 0.03 versus 0.52 +/- 0.11 pg/mL, P = 0.001). Myocardial levels of the proapoptotic protein bax were reduced in Ad.SERCA-2a -treated animals compared with those receiving Ad.Gal at day 7 (protein level/actin: 0.24 +/- 0.05 versus 0.33 +/- 0.04, P = 0.04) and day 21 (protein level/actin: 0.61 +/- 0.04 versus 0.69 +/- 0.01, P = 0.001). Genetic modulation of heart failure using the SERCA-2a gene was associated with improvement in cardiac function and exercise capacity as well as improvements in heart-failure associated inflammatory markers.
The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)
Altshuler, Ianina; Vaillant, James J.; Xu, Sen; Cristescu, Melania E.
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain. PMID:23285113
The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA).
Altshuler, Ianina; Vaillant, James J; Xu, Sen; Cristescu, Melania E
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transporters, H(+)/K(+) transporters, and plasma membrane Ca(2+) pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca(2+) into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.
Corvazier, Elisabeth; Bredoux, Raymonde; Kovács, Tünde; Enouf, Jocelyne
2009-03-01
The SERCA family includes 3 genes (SERCA1-3), each of which giving rise to various isoforms. To date, detailed structural data is only available for the SERCA1a isoform. Here, limited trypsinolysis of either human platelet membranes or recombinant SERCA3a in HEK-293 cells followed by Western blotting using antibodies covering different regions of the SERCA3(a) protein revealed two, kinetically distinct, Early (ETF) and Late (LTF) Tryptic Fragmentations. The ETF uses many tryptic sites while the LTF uses a unique tryptic site. Using site-directed mutagenesis: i) Arg(334), Arg(396) and Arg(638) were directly assigned to the ETF and ii) Arg(198) was assigned as the only tryptic site to the LTF. Arg(671), Lys(712)/Lys(713) and Lys(728) were also found to modulate the ETF. SERCA inhibitors Tg and tBHQ induced modest inhibition of the ETF. In contrast, the addition of CaCl(2), EGTA or AlF(4)(-) strikingly modified the ETF without any effect on the LTF. Trypsinolysis of the other recombinant SERCA3b-3f isoforms revealed: i) same ETF and LTF as SERCA3a, with variations of the length of the C-terminal fragments; ii) Arg(1002) as an additional tryptic site in SERCA3b-3e isoforms. Taken together, the two distinct SERCA3 fragmentation profiles sign the co-expression of SERCA3 proteins in two conformational states in cell membranes.
Du, Yinping; Liu, Ping; Xu, Tongda; Pan, Defeng; Zhu, Hong; Zhai, Nana; Zhang, Yanbin; Li, Dongye
2018-01-01
The myocardial sarcoplasmic reticulum calcium ATPase (SERCA2a) is a pivotal pump responsible for calcium cycling in cardiomyocytes. The present study investigated the effect of luteolin (Lut) on restoring SERCA2a protein level and stability reduced by myocardial ischemia/reperfusion (I/R) injury. We verified a hypothesis that Lut protected against myocardial I/R injury by regulating SERCA2a SUMOylation. The hemodynamic data, myocardial infarct size of intact hearts, apoptotic analysis, mitochondrial membrane potential (ΔΨm), the level of SERCA2a SUMOylation, and the activity and expression of SERCA2a were examined in vivo and in vitro to clarify the cardioprotective effects of Lut after SUMO1 was knocked down or over-expressed. The putative SUMO conjugation sites in mouse SERCA2a were investigated as the possible regulatory mechanism of Lut. Initially, we found that Lut reversed the SUMOylation and stability of SERCA2a as well as the expression of SUMO1, which were reduced by I/R injury in vitro. Furthermore, Lut increased the expression and activity of SERCA2a partly through SUMO1, thus improving ΔΨm and reducing apoptotic cells in vitro and promoting the recovery of heart function and reducing infarct size in vivo. We also demonstrated that SUMO acceptor sites in mouse SERCA2a involving lysine 585, 480 and 571. Among the three acceptor sites, Lut enhanced SERCA2a stability via lysine 585. Our results suggest that Lut regulates SERCA2a through SUMOylation at lysine 585 to attenuate myocardial I/R injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Shao, Chun Hong; Capek, Haley L.; Patel, Kaushik P.; Wang, Mu; Tang, Kang; DeSouza, Cyrus; Nagai, Ryoji; Mayhan, William; Periasamy, Muthu; Bidasee, Keshore R.
2011-01-01
OBJECTIVE Approximately 25% of children and adolescents with type 1 diabetes will develop diastolic dysfunction. This defect, which is characterized by an increase in time to cardiac relaxation, results in part from a reduction in the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), the ATP-driven pump that translocates Ca2+ from the cytoplasm to the lumen of the sarcoplasmic reticulum. To date, mechanisms responsible for SERCA2a activity loss remain incompletely characterized. RESEARCH DESIGN AND METHODS The streptozotocin (STZ)-induced murine model of type 1 diabetes, in combination with echocardiography, high-speed video detection, confocal microscopy, ATPase and Ca2+ uptake assays, Western blots, mass spectrometry, and site-directed mutagenesis, were used to assess whether modification by reactive carbonyl species (RCS) contributes to SERCA2a activity loss. RESULTS After 6–7 weeks of diabetes, cardiac and myocyte relaxation times were prolonged. Total ventricular SERCA2a protein remained unchanged, but its ability to hydrolyze ATP and transport Ca2+ was significantly reduced. Western blots and mass spectroscopic analyses revealed carbonyl adducts on select basic residues of SERCA2a. Mutating affected residues to mimic physio-chemical changes induced on them by RCS reduced SERCA2a activity. Preincubating with the RCS, methylglyoxal (MGO) likewise reduced SERCA2a activity. Mutating an impacted residue to chemically inert glutamine did not alter SERCA2a activity, but it blunted MGO's effect. Treating STZ-induced diabetic animals with the RCS scavenger, pyridoxamine, blunted SERCA2a activity loss and minimized diastolic dysfunction. CONCLUSIONS These data identify carbonylation as a novel mechanism that contributes to SERCA2a activity loss and diastolic dysfunction during type 1 diabetes. PMID:21300842
Karakikes, Ioannis; Hadri, Lahouaria; Rapti, Kleopatra; Ladage, Dennis; Ishikawa, Kiyotake; Tilemann, Lisa; Yi, Geng-Hua; Morel, Charlotte; Gwathmey, Judith K; Zsebo, Krisztina; Weber, Thomas; Kawase, Yoshiaki; Hajjar, Roger J
2012-01-01
SERCA2a gene therapy improves contractile and energetic function of failing hearts and has been shown to be associated with benefits in clinical outcomes, symptoms, functional status, biomarkers, and cardiac structure in a phase 2 clinical trial. In an effort to enhance the efficiency and homogeneity of gene uptake in cardiac tissue, we examined the effects of nitroglycerin (NTG) in a porcine model following AAV1.SERCA2a gene delivery. Three groups of Göttingen minipigs were assessed: (i) group A: control intracoronary (IC) AAV1.SERCA2a (n = 6); (ii) group B: a single bolus IC injection of NTG (50 µg) immediately before administration of intravenous (IV) AAV1.SERCA2a (n = 6); and (iii) group C: continuous IV NTG (1 µg/kg/minute) during the 10 minutes of AAV1.SERCA2a infusion (n = 6). We found that simultaneous IV infusion of NTG and AAV1.SERCA2a resulted in increased viral transduction efficiency, both in terms of messenger RNA (mRNA) as well as SERCA2a protein levels in the whole left ventricle (LV) compared to control animals. On the other hand, IC NTG pretreatment did not result in enhanced gene transfer efficiency, mRNA or protein levels when compared to control animals. Importantly, the transgene expression was restricted to the heart tissue. In conclusion, we have demonstrated that IV infusion of NTG significantly improves cardiac gene transfer efficiency in porcine hearts. PMID:22215018
Ouyang, Zijun; Li, Wanshuai; Meng, Qianqian; Zhang, Qi; Wang, Xingqi; Elgehama, Ahmed; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang
2017-05-01
Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca 2+ -ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca 2+ -ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Silveira, C.F.S.M.P.; Campos, D.H.S.; Freire, P.P.; Deus, A.F.; Okoshi, K.; Padovani, C.R.; Cicogna, A.C.
2017-01-01
Cardiac remodeling is defined as changes in shape and function of the heart in response to aggression (pressure overload). The sarcoplasmic reticulum calcium ATPase cardiac isoform 2a (SERCA2a) is a known factor that influences function. A wide spectrum of studies report a decrease in SERCA2a in heart failure, but none evaluate it's the role in early isolated diastolic dysfunction in supravalvular aortic stenosis (AoS). Our hypothesis was that SERCA2a participates in such dysfunction. Thirty-day-old male Wistar rats (60-80 g) were divided into AoS and Sham groups, which were submitted to surgery with or without aorta clipping, respectively. After 6 weeks, the animals were submitted to echocardiogram and functional analysis by isolated papillary muscle (IPM) in basal condition, hypoxia, and SERCA2a blockage with cyclopiazonic acid at calcium concentrations of 0.5, 1.5, and 2.5 mM. Western-blot analyses were used for SERCA2a and phospholamban detection. Data analysis was carried out with Student's t-test and ANOVA. AoS enhanced left atrium and E and A wave ratio, with preserved ejection fraction. Basal condition in IPM showed similar increases in developed tension (DT) and resting tension (RT) in AoS, and hypoxia was similar between groups. After cyclopiazonic acid blockage, final DT was equally decreased and RT was similar between groups, but the speed of relaxation was decreased in the AoS group. Western-blot was uniform in all evaluations. The hypothesis was confirmed, since functional parameters regarding SERCA2a were changed in the AoS group. PMID:28423119
Jardim-Messeder, Douglas; Camacho-Pereira, Juliana; Galina, Antonio
2012-05-01
3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 μM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro
2018-06-21
Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.
Asahi, Michio; Otsu, Kinya; Nakayama, Hiroyuki; Hikoso, Shungo; Takeda, Toshihiro; Gramolini, Anthony O.; Trivieri, Maria G.; Oudit, Gavin Y.; Morita, Takashi; Kusakari, Yoichiro; Hirano, Shuta; Hongo, Kenichi; Hirotani, Shinichi; Yamaguchi, Osamu; Peterson, Alan; Backx, Peter H.; Kurihara, Satoshi; Hori, Masatsugu; MacLennan, David H.
2004-01-01
Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds through phospholamban (PLN). To determine whether overexpression of SLN in the heart might impair cardiac function, transgenic (TG) mice were generated with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope). The level of NF-SLN expression (the NF-SLN/PLN expression ratio) was equivalent to that which induces profound superinhibition when coexpressed with PLN and SERCA2a in HEK-293 cells. In TG hearts, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate control hearts. Invasive hemodynamic and echocardiographic analyses revealed impaired cardiac contractility and ventricular hypertrophy in TG mice. Basal PLN phosphorylation was reduced. In isolated papillary muscle subjected to isometric tension, peak amplitudes of Ca2+ transients and peak tensions were reduced, whereas decay times of Ca2+ transients and relaxation times of tension were increased in TG mice. Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts. No compensatory changes in expression of SERCA2a, PLN, ryanodine receptor, and calsequestrin were observed in TG hearts. Coimmunoprecipitation indicated that overexpressed NF-SLN was bound to both SERCA2a and PLN, forming a ternary complex. These data suggest that NF-SLN overexpression inhibits SERCA2a through stabilization of SERCA2a–PLN interaction in the absence of PLN phosphorylation and through the inhibition of PLN phosphorylation. Inhibition of SERCA2a impairs contractility and calcium cycling, but responsiveness to β-adrenergic agonists may prevent progression to heart failure. PMID:15201433
Zhai, Yuting; Luo, Yuanyuan; Wu, Pei; Li, Dongye
2018-05-01
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) is a target of interest in gene therapy for heart failure with reduced ejection fraction (HFrEF). However, the results of an important clinical study, the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, were controversial. Promising results were observed in the CUPID 1 trial, but the results of the CUPID 2 trial were negative. The factors that caused the controversial results remain unclear. Importantly, enrolled patients were required to have a higher plasma level of B-type natriuretic peptide (BNP) in the CUPID 2 trial. Moreover, BNP was shown to inhibit SERCA2a expression. Therefore, it is possible that high BNP levels interact with treatment effects of SERCA2a gene transfer and accordingly lead to negative results of CUPID 2 trial. From this point of view, effects of SERCA2a gene therapy should be explored in heart failure with preserved ejection fraction, which is characterised by lower BNP levels compared with HFrEF. In this review, we summarise the current knowledge of SERCA2a gene therapy for heart failure, analyse potential interaction between BNP levels and therapeutic effects of SERCA2a gene transfer and provide directions for future research to solve the identified problems. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sphingosine inhibits the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benaim, Gustavo, E-mail: gbenaim@idea.gob.ve; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela; Pimentel, Adriana A., E-mail: adriana.pimentel@ucv.ve
2016-04-29
The increase in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is the key variable for many different processes, ranging from regulation of cell proliferation to apoptosis. In this work we demonstrated that the sphingolipid sphingosine (Sph) increases the [Ca{sup 2+}]{sub i} by inhibiting the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA), in a similar manner to thapsigargin (Tg), a specific inhibitor of this Ca{sup 2+} pump. The results showed that addition of sphingosine produced a release of Ca{sup 2+} from the endoplasmic reticulum followed by a Ca{sup 2+} entrance from the outside mileu. The results presented in this work support thatmore » this sphingolipid could control the activity of the SERCA, and hence sphingosine may participate in the regulation of [Ca{sup 2+}]{sub I} in mammalian cells.« less
Summerfield, Nuala; Peters, Mary E; Hercock, Carol A; Mobasheri, Ali; Young, Iain S
2010-04-01
Dilated cardiomyopathy (DCM) is one of the most common acquired canine heart diseases. It is particularly common in large and giant breed dogs. Although a great deal is known about the clinical progression and manifestations of the disease, the underlying cellular and molecular mechanisms remain poorly understood. One widely held belief is that calcium-handling abnormalities are critically involved in the disease process. This study investigates the changes in expression of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) isoforms in DCM myocardium from German shepherd dogs. Affected tissue samples were obtained from German shepherd dogs with DCM, euthanized for intractable congestive heart failure while normal myocardial tissue samples were obtained from German shepherd dogs, euthanized for non-cardiovascular reasons. Tissue microarrays containing normal and DCM myocardium samples were prepared, immunostained with SERCA1 and SERCA2 antibodies and analyzed. We were able to demonstrate, for the first time, that while there is little change in the expression of the cardiac isoform (SERCA2), there is clear expression of the fast-twitch skeletal muscle isoform SERCA1 in the myocardium of dogs diagnosed with DCM. We propose that SERCA1 expression is evidence of a natural adaptive response to the impaired Ca2+ handling thought to occur in German shepherd dogs with DCM and heart failure. Copyright 2010 Elsevier B.V. All rights reserved.
Moore, Caronda J.; Shao, Chun Hong; Nagai, Ryoji; Kutty, Shelby; Singh, Jaipaul; Bidasee, Keshore R.
2013-01-01
Recently, we reported an elevated level of glucose-derived carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca2+ transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes. This study used Western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, Nε-carboxy(methyl)lysine (CML), pentosidine and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca2+ kinetics in myocytes from control, diabetic and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from control or 8 weeks diabetic rats with altered evoked Ca2+ transients. However, CML, pentosidine, and pyrraline adducts were elevated 3–5 fold (p<0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-reactive carbonyl species scavenger) reduced CML, pentosidine and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca2+ cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca2+ cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca2+ dysregulation. PMID:23354458
Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP.
Henderson, Mark J; Wires, Emily S; Trychta, Kathleen A; Yan, Xiaokang; Harvey, Brandon K
2015-09-06
The endoplasmic reticulum (ER) contains the highest level of intracellular calcium, with concentrations approximately 5,000-fold greater than cytoplasmic levels. Tight control over ER calcium is imperative for protein folding, modification and trafficking. Perturbations to ER calcium can result in the activation of the unfolded protein response, a three-prong ER stress response mechanism, and contribute to pathogenesis in a variety of diseases. The ability to monitor ER calcium alterations during disease onset and progression is important in principle, yet challenging in practice. Currently available methods for monitoring ER calcium, such as calcium-dependent fluorescent dyes and proteins, have provided insight into ER calcium dynamics in cells, however these tools are not well suited for in vivo studies. Our lab has demonstrated that a modification to the carboxy-terminus of Gaussia luciferase confers secretion of the reporter in response to ER calcium depletion. The methods for using a luciferase based, secreted ER calcium monitoring protein (SERCaMP) for in vitro and in vivo applications are described herein. This video highlights hepatic injections, pharmacological manipulation of GLuc-SERCaMP, blood collection and processing, and assay parameters for longitudinal monitoring of ER calcium.
Johnson, Justin S.; Kono, Tatsuyoshi; Tong, Xin; Yamamoto, Wataru R.; Zarain-Herzberg, Angel; Merrins, Matthew J.; Satin, Leslie S.; Gilon, Patrick; Evans-Molina, Carmella
2014-01-01
Although the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in β cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of β cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/− mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca2+ regulation in Pdx-1-deficient states. PMID:25271154
Byrne, M J; Power, J M; Preovolos, A; Mariani, J A; Hajjar, R J; Kaye, D M
2008-12-01
Abnormal excitation-contraction coupling is a key pathophysiologic component of heart failure (HF), and at a molecular level reduced expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) is a major contributor. Previous studies in small animals have suggested that restoration of SERCA function is beneficial in HF. Despite this promise, the means by which this information might be translated into potential clinical application remains uncertain. Using a recently established cardiac-directed recirculating method of gene delivery, we administered adeno-associated virus 2 (AAV2)/1SERCA2a to sheep with pacing-induced HF. We explored the effects of differing doses of AAV2/1SERCA2a (low 1 x 10(10) d.r.p.; medium 1 x 10(12) d.r.p. and high 1 x 10(13) d.r.p.) in conjunction with an intra-coronary delivery group (2.5 x 10(13) d.r.p.). At the end of the study, haemodynamic, echocardiographic, histopathologic and molecular biologic assessments were performed. Cardiac recirculation delivery of AAV2/1SERCA2a elicited a dose-dependent improvement in cardiac performance determined by left ventricular pressure analysis, (+d P/d t(max); low dose -220+/-70, P>0.05; medium dose 125+/-53, P<0.05; high dose 287+/-104, P<0.05) and echocardiographically (fractional shortening: low dose -3+/-2, P>0.05; medium dose 1+/-2, P>0.05; high dose 6.5+/-3.9, P<0.05). In addition to favourable haemodynamic effects, brain natriuretic peptide expression was reduced consistent with reversal of the HF molecular phenotype. In contrast, direct intra-coronary infusion did not elicit any effect on ventricular function. As such, AAV2/1SERCA2a elicits favourable functional and molecular actions when delivered in a mechanically targeted manner in an experimental model of HF. These observations lay a platform for potential clinical translation.
Cabello, Nuria; Llach, Anna; Vallmitjana, Alexander; Benítez, Raúl; Badimon, Lina; Cinca, Juan; Llorente-Cortés, Vicenta; Hove-Madsen, Leif
2013-01-01
The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30±0.04 to 0.17±0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38±6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7±0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44±3%; p<0.05 for mRNA and by 79±2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal. PMID:23516438
Zhang, Ying; Jiao, Lei; Sun, Lihua; Li, Yanru; Gao, Yuqiu; Xu, Chaoqian; Shao, Yingchun; Li, Mengmeng; Li, Chunyan; Lu, Yanjie; Pan, Zhenwei; Xuan, Lina; Zhang, Yiyuan; Li, Qingqi; Yang, Rui; Zhuang, Yuting; Zhang, Yong; Yang, Baofeng
2018-05-11
Ca 2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca 2+ homeostasis and cardiac contractile function in the setting of MI. ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca 2+ transient leading to intracellular Ca 2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1 . Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1 . ZFAS1 had no significant effects on other Ca 2+ -handling regulatory proteins. ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti- ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart. © 2018 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shanqin; Ying, Jia; Jiang, Bingbing
2006-06-01
Nitration of protein tyrosine residues (nY) is a marker of oxidative stress and may alter the biological activity of the modified proteins. The aim of this study was to develop antibodies towards site-specific nY-modified proteins and to use histochemical and immunoblotting to demonstrate protein nitration in tissues. Affinity-purified polyclonal antibodies towards peptides with known nY sites in MnSOD nY-34 and of two adjacent nY in the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA2 di-nY-294,295) were developed. Kidneys from rats infused with angiotensin II with known MnSOD nY and aorta from atherosclerotic rabbits and aging rat skeletal and cardiac sarcoplasmic reticulum withmore » known SERCA di-nY were used for positive controls. Staining for MnSOD nY-34 was most intense in distal renal tubules and collecting ducts. Staining of atherosclerotic aorta for SERCA2 di-nY was most intense in atherosclerotic plaques. Aging rat skeletal muscle and atherosclerotic aorta and cardiac atrium from human diabetic patients also stained positively. Staining was decreased by sodium dithionite that chemically reduces nitrotyrosine to aminotyrosine, and the antigenic nY-peptide blocked staining for each respective nY site, but not for the other. As previously demonstrated, immunoblotting failed to detect these modified proteins in whole tissue lysates, but did when the proteins were concentrated. Immunohistochemical staining for specific nY-modified tyrosine residues offers the ability to assess the effects of oxidant stress associated with pathological conditions on individual proteins whose function may be affected in specific tissue sites.« less
Contributions of SERCA pump and ryanodine-sensitive stores to presynaptic residual Ca2+
Scullin, Chessa S.; Partridge, L. Donald
2010-01-01
The presynaptic Ca2+ signal, which triggers vesicle release, disperses to a broadly distributed residual [Ca2+] ([Ca2+]res) that plays an important role in synaptic plasticity. We have previously reported a slowing in the decay timecourse of [Ca2+]res during the second of paired pulses. In this study, we investigated the contributions of organelle and plasma membrane Ca2+ flux pathways to the reduction of effectiveness of [Ca2+]res clearance during short-term plasticity in Schaffer collateral terminals in the CA1 field of the hippocampus. We show that the slowed decay timecourse is mainly the result of a transport-dependent Ca2+ clearance process; that presynaptic caffeine-sensitive Ca2+ stores are not functionally loaded in the unstimulated terminal, but that these stores can effectively take up Ca2+ even during high frequency trains of stimuli; and that a rate limiting step of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) kinetics following the first pulse is responsible for a large portion of the observed slowing of [Ca2+]res clearance during the second pulse. We were able to accurately fit our [Ca2+]res data with a kinetic model based on these observations and this model predicted a reduction in availability of unbound SERCA during paired pulses, but no saturation of Ca2+ buffer in the endoplasmic reticulum. PMID:20153896
Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola
2017-06-21
Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2014-03-15
The Ca(2+) uptake properties of the sarcoplasmic reticulum (SR) were compared between type I and type II fibres of vastus lateralis muscle of young healthy adults. Individual mechanically skinned muscle fibres were exposed to solutions with the free [Ca(2+)] heavily buffered in the pCa range (-log10[Ca(2+)]) 7.3-6.0 for set times and the amount of net SR Ca(2+) accumulation determined from the force response elicited upon emptying the SR of all Ca(2+). Western blotting was used to determine fibre type and the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoform present in every fibre examined. Type I fibres contained only SERCA2 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.8, whereas type II fibres contained only SERCA1 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.6. Maximal Ca(2+) uptake rate was ∼0.18 and ∼0.21 mmol Ca(2+) (l fibre)(-1) s(-1) in type I and type II fibres, respectively, in good accord with previously measured SR ATPase activity. Increasing free [Mg(2+)] from 1 to 3 mM had no significant effect on the net Ca(2+) uptake rate at pCa 6.0, indicating that there was little or no calcium-induced calcium release occurring through the Ca(2+) release channels during uptake in either fibre type. Ca(2+) leakage from the SR at pCa 8.5, which is thought to occur at least in part through the SERCA, was ∼2-fold lower in type II fibres than in type I fibres, and was little affected by the presence of ADP, in marked contrast to the larger SR Ca(2+) leak observed in rat muscle fibres under the same conditions. The higher affinity of Ca(2+) uptake in the type I human fibres can account for the higher relative level of SR Ca(2+) loading observed in type I compared to type II fibres, and the SR Ca(2+) leakage characteristics of the human fibres suggest that the SERCAs are regulated differently from those in rat and contribute comparatively less to resting metabolic rate.
De Ford, C; Heidersdorf, B; Haun, F; Murillo, R; Friedrich, T; Borner, C; Merfort, I
2016-01-01
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits. PMID:26821066
Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme
2016-04-15
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.
Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell
2016-01-01
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123
Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity.
Mortimer, Nathan T; Goecks, Jeremy; Kacsoh, Balint Z; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A
2013-06-04
Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.
Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli
2016-09-01
The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.
Baptista, Maria João; Recamán, Mónica; Melo-Rocha, Gustavo; Nogueira-Silva, Cristina; Roriz, José-Mário; Soares-Fernandes, João; Gonzaga, Silvia; Santos, Marta; Leite-Moreira, Adelino; Areias, José Carlos; Correia-Pinto, Jorge
2006-09-01
Previous morphological studies had produced controversial results with regard to heart development in congenital diaphragmatic hernia (CDH), whereas a few publications investigated cardiac function and myocardial maturation. Myocardium maturation is associated with age-dependent increasing of gene expression of gap junction protein connexin 43 (Cx43), adenosine triphosphatase of the sarcoplasmic reticulum (SERCA2a), as well as switching of myosin heavy chains (MHCs) from beta to alpha isoforms. Our aim was to evaluate myocardium maturity in nitrofen-induced CDH rat model. Fetuses from dated pregnant Sprague-Dawley rats were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from left ventricle free wall were processed to (i) quantification of messenger RNA (mRNA) of Cx43, SERCA2a, alpha and beta MHC isoforms, as well as beta-actin (housekeeping gene); and (ii) separation of MHC isoforms (alpha and beta isoforms) by sodium dodecyl sulfate polyacrylamide gel electrophoresis silver stained. We demonstrated that there is no difference in myocardial gene expression of Cx43 (control, 1.0 +/- 0.1; nitrofen, 1.1 +/- 0.2; CDH, 1.3 +/- 0.2) and SERCA2a (control, 1.0 +/- 0.1; nitrofen, 0.9 +/- 0.1; CDH, 1.0 +/- 0.2). Myocardial gene expressions of alpha and beta mRNA of MHC isoforms were slightly decreased both in nitrofen and CDH fetuses when compared with control fetuses, but evaluation of the alpha-to-beta ratios of MHC isoforms at protein level revealed no significant differences between CDH and control (control, 16.9 +/- 2.5; CDH, 17.0 +/- 2.0). Myocardial quantification of Cx43 and SERCA2a mRNA, as well as the expression pattern of MHC isoforms at protein levels, was similar in all studied groups. We predict, therefore, that acute heart failure commonly observed in CDH infants might be attributed predominantly to cardiac overload secondary to severe pulmonary
Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.
2017-01-01
A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691
Pinto, João; Gribaldo, Simonetta; Legrand, Eric; Niang, Makhtar; Kim, Nimol; Pharath, Lim; Volnay, Béatrice; Ekala, Marie Therese; Bouchier, Christiane; Fandeur, Thierry; Berzosa, Pedro; Benito, Agustin; Ferreira, Isabel Dinis; Ferreira, Cynthia; Vieira, Pedro Paulo; Alecrim, Maria das Graças; Mercereau-Puijalon, Odile; Cravo, Pedro
2010-01-01
Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte. PMID:20195531
Shi, Hongtao; Han, Qinghua; Xu, Jianrong; Liu, Wenyuan; Chu, Tingting; Zhao, Li
2016-05-25
Although studies have shown that Urotensin II (UII) can induce cardiomyocyte hypertrophy and UII-induced cardiomyocyte hypertrophy model has been widely used for hypertrophy research, but its precise mechanism remains unknown. Recent researches have demonstrated that UII-induced cardiomyocyte hypertrophy has a relationship with the changes of intracellular Ca(2+) concentration. Therefore, the aim of this study was to investigate the mechanisms of cardiomyocyte hypertrophy induced by UII and to explore whether the calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulating of phospholamban (PLN) Thr17-phosphorylation signaling pathway contributed to UII-induced cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were stimulated for 48h with UII. Cell size, protein/DNA contents and intracellular Ca(2+) were determined. Phosphorylated and total forms of CaMKII, PLN and the total amount of serco/endo-plasmic reticulum ATPases (SERCA 2a) were quantified by western blot. The responses of cardiomyocytes to UII were also evaluated after pretreatment with the CaMKII inhibitor, KN-93. These results showed that UII increased cell size, protein/DNA ratio and intracellular Ca(2+), consistent with a hypertrophic response. Furthermore, the phosphorylation of CaMKII and its downstream target PLN (Thr17), SERCA 2a levels were up-regulated by UII treatment. Conversely, treatment with KN-93 reversed all those effects of UII. Taken together, the results suggest that UII can induce cardiomyocyte hypertrophy through CaMKII-mediated up-regulating of PLN Thr17-phosphorylation signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Penitente, Arlete R; Novaes, Rômulo D; Silva, Marcelo E; Silva, Márcia F; Quintão-Júnior, Judson F; Guatimosim, Silvia; Cruz, Jader S; Chianca, Deoclécio A; Natali, Antônio J; Neves, Clóvis A
2014-01-01
The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR) are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20) and a protein-restricted group (PRG, n = 20), receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV) were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca(2+)sparks analysis. PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca(2+)sparks were observed in PRG cardiomyocytes. The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca(2+) intracellular kinetics. © 2014 S. Karger AG, Basel.
Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D
2009-01-15
Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results
NASA Astrophysics Data System (ADS)
Naik, Parvaiz Ahmad; Pardasani, Kamal Raj
2013-11-01
Oocyte is a female gametocyte or germ cell involved in reproduction. Calcium ions (Ca2+) impact nearly all aspects of cellular life as they play an important role in a variety of cellular functions. Calcium ions contributes to egg activation upon fertilization. Since it is the internal stores which provide most of the calcium signal, much attention has been focused on the intracellular channels. There are mainly two types of calcium channels which release calcium from the internal stores to the cytoplasm in many cell types. These channels are IP3-Receptor and Ryanodine Receptor (RyR). Further it is essential to maintain low cytosolic calcium concentration, the cell engages the Serco/Endoplasmic reticulum Ca2+ ATPases (SERCA) present on the ER or SR membrane for the re-uptake of cytosolic calcium at the expense of ATP hydrolysis. In view of above an attempt has been made to study the effect of the Ryanodine receptor (RyR) and the SERCA pump on the calcium distribution in oocytes. The main aim of this paper is to study the calcium concentration in absence and presence of these parameters. The FEM is used to solve the proposed Mathematical model under appreciate initial and boundary conditions. The program has been developed in MATLAB 7.10 for the entire problem to get numerical results.
Diedrich, Denise; Wildner, Andreia C; Silveira, Thayse F; Silva, Gloria N S; Santos, Francine Dos; da Silva, Elenilson F; do Canto, Vanessa P; Visioli, Fernanda; Gosmann, Grace; Bergold, Ana M; Zimmer, Aline R; Netz, Paulo A; Gnoatto, Simone C B
2018-05-01
Malaria is one of the most significant infectious diseases that affect poor populations in tropical areas throughout the world. Plants have been shown to be a good source for the development of new antimalarial chemotherapeutic agents, as shown for the discovery of quinine and artemisinin derivatives. Our research group has been working with semisynthetic triterpene derivatives that show potential antimalarial activity toward different strains of Plasmodium falciparum by specifically modulating calcium pathways in the parasite. Promising results were obtained for nanomolar concentrations of the semisynthetic betulinic acid derivative LAFIS13 against the P. falciparum 3D7 strain in vitro, with a selectivity index of 18 compared to a mammalian cell line. Continuing these studies, we present here in vitro and in vivo toxicological evaluations of this compound, followed by docking studies with PfATP6, a sarco/endoplasmic reticulum Ca +2 -ATPase (SERCA) protein. LAFIS13 showed an LD 50 between 300 and 50 mg/kg, and the acute administration of 50 mg/kg (i.p.) had no negative effects on hematological, biochemical and histopathological parameters. Based on the results of the in vitro assays, LAFIS13 not exerted significant effects on coagulation parameters of human peripheral blood, but a hemolytic activity was verified at higher concentrations. According to the molecular docking study, the PfATP6 protein may be a target for LAFIS13, which corroborates its previously reported modulatory effects on calcium homeostasis in the parasite. Notably, LAFIS13 showed a higher selectivity for the mammalian SERCA protein than for PfATP6, thus impairing the selectivity between parasite and host. In summary, the direct interaction with calcium pumps and the hemolytic potential of the compound proved to be plausible mechanism of LAFIS13 toxicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Noble, Penelope J.; Noble, Denis
2011-01-01
Ca2+-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca2+ overload. The main hypothesis as to their initiation has been Ca2+ overflow from the overloaded sarcoplasmic reticulum (SR). Our results using 37 previously published mathematical models provide evidence that Ca2+-induced DADs are initiated by the same mechanism as Ca2+-induced Ca2+ release, i.e., the modulation of the opening of ryanodine receptors (RyR) by Ca2+ in the dyadic subspace; an SR overflow mechanism was not necessary for the induction of DADs in any of the models. The SR Ca2+ level is better viewed as a modulator of the appearance of DADs and the magnitude of Ca2+ release. The threshold for the total Ca2+ level within the cell (not only the SR) at which Ca2+ oscillations arise in the models is close to their baseline level (∼1- to 3-fold). It is most sensitive to changes in the maximum sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump rate (directly proportional), the opening probability of RyRs, and the Ca2+ diffusion rate from the dyadic subspace into the cytosol (both indirectly proportional), indicating that the appearance of DADs is multifactorial. This shift in emphasis away from SR overload as the trigger for DADs toward a multifactorial analysis could explain why SERCA overexpression has been shown to suppress DADs (while increasing contractility) and why DADs appear during heart failure (at low SR Ca2+ levels). PMID:21666112
Kekenes-Huskey, P M; Gillette, A; Hake, J; McCammon, J A
2012-10-31
We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca(2+)-binding proteins: Troponin C and the Sarcoplasmic Reticulum Ca(2+) ATPase (SERCA). We find that a combination of diffusional encounter and internal 'buried channel' descriptions provide superior descriptions of association rates, improving estimates by orders of magnitude.
Nascimento, Andrews Marques do; Lima, Ewelyne Miranda de; Brasil, Girlandia Alexandre; Caliman, Izabela Facco; Silva, Josiane Fernandes da; Lemos, Virgínia Soares; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza
2016-06-15
Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20mg/kg/week for 4weeks); and NDE (trained and treated). The haemodynamic parameters (+dP/dtmax, -dP/dtmin and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na(+)/Ca(2+) exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. Copyright © 2016 Elsevier Inc. All rights reserved.
Kekenes-Huskey, P. M.; Gillette, A.; Hake, J.; McCammon, J. A.
2012-01-01
We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca2+-binding proteins: Troponin C and the Sarcoplasmic Reticulum Ca2+ ATPase (SERCA). We find that a combination of diffusional encounter and internal ‘buried channel’ descriptions provide superior descriptions of association rates, improving estimates by orders of magnitude. PMID:23293662
Willer, Elisabeth A; Malli, Roland; Bondarenko, Alexander I; Zahler, Stefan; Vollmar, Angelika M; Graier, Wolfgang F; Fürst, Robert
2012-10-01
WS® 1442 has been proven as an effective and safe therapeutical to treat mild forms of congestive heart failure. Beyond this action, we have recently shown that WS® 1442 protects against thrombin-induced vascular barrier dysfunction and the subsequent edema formation by affecting endothelial calcium signaling. The aim of the study was to analyze the influence of WS® 1442 on intracellular calcium concentrations [Ca(2+)](i) in the human endothelium and to investigate the underlying mechanisms. Using ratiometric calcium measurements and a FRET sensor, we found that WS® 1442 concentration-dependently increased basal [Ca(2+)](i) by depletion of the endoplasmic reticulum (ER) and inhibited a subsequent histamine-triggered rise of [Ca(2+)](i). Interestingly, the augmented [Ca(2+)](i) did neither trigger an activation of the contractile machinery nor led to a barrier breakdown (macromolecular permeability). It also did not impair endothelial cell viability. As assessed by patch clamp recordings, WS® 1442 did only slightly affect endothelial Na(+)/K(+)-ATPase, but increased [Ca(2+)](i) by inhibiting the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) and by activating the inositol 1,4,5-trisphosphate (IP(3)) pathway. Most importantly, WS® 1442 did not induce store-operated calcium entry (SOCE), but even irreversibly prevented histamine-induced SOCE. Taken together, WS® 1442 prevented the deleterious hyperpermeability-associated rise of [Ca(2+)](i) by a preceding, non-toxic release of Ca(2+) from the ER. WS® 1442 interfered with SERCA and the IP(3) pathway without inducing SOCE. The elucidation of this intriguing mechanism helps to understand the complex pharmacology of the cardiovascular drug WS® 1442. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascimento, Andrews Marques do; Lima, Ewelyne Mira
Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. Aim: To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Main methods: Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20 mg/kg/week for 4 weeks); and NDE (trained and treated). The haemodynamic parameters (+ dP/dt{sub max}, − dP/dt{sub min} and Tau) were assessed in the leftmore » ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. Results: ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na{sup +}/Ca{sup 2+} exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Conclusion: Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. - Highlights: • ND and resistive exercise enhanced the cardiac function and increased expression of cytosolic calcium regulatory components.« less
Valverde, Carlos A; Mundiña-Weilenmann, Cecilia; Said, Matilde; Ferrero, Paola; Vittone, Leticia; Salas, Margarita; Palomeque, Julieta; Petroff, Martín Vila; Mattiazzi, Alicia
2005-01-01
An increase in stimulation frequency causes an acceleration of myocardial relaxation (FDAR). Several mechanisms have been postulated to explain this effect, among which is the Ca2+–calmodulin-dependent protein kinase (CaMKII)-dependent phosphorylation of the Thr17 site of phospholamban (PLN). To gain further insights into the mechanisms of FDAR, we studied the FDAR and the phosphorylation of PLN residues in perfused rat hearts, cat papillary muscles and isolated cat myocytes. This allowed us to sweep over a wide range of frequencies, in species with either positive or negative force–frequency relationships, as well as to explore the FDAR under isometric (or isovolumic) and isotonic conditions. Results were compared with those produced by isoprenaline, an intervention known to accelerate relaxation (IDAR) via PLN phosphorylation. While IDAR occurs tightly associated with a significant increase in the phosphorylation of Ser16 and Thr17 of PLN, FDAR occurs without significant changes in the phosphorylation of PLN residues in the intact heart and cat papillary muscles. Moreover, in intact hearts, FDAR was not associated with any significant change in the CaMKII-dependent phosphorylation of sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA2a), and was not affected by the presence of the CaMKII inhibitor, KN-93. In isolated myocytes, FDAR occurred associated with an increase in Thr17 phosphorylation. However, for a similar relaxant effect produced by isoprenaline, the phosphorylation of PLN (Ser16 and Thr17) was significantly higher in the presence of the β-agonist. Moreover, the time course of Thr17 phosphorylation was significantly delayed with respect to the onset of FDAR. In contrast, the time course of Ser16 phosphorylation, the first residue that becomes phosphorylated with isoprenaline, was temporally associated with IDAR. Furthermore, KN-93 significantly decreased the phosphorylation of Thr17 that was evoked by increasing the stimulation frequency, but failed to
Noble, Debbie; Borysova, Lyudmyla; Wray, Susan; Burdyga, Theodor
2014-09-01
In the myometrium SR Ca(2+) depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca(2+) sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca(2+)-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca(2+) transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca(2+)]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca(2+) spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca(2+) and depolarization continued a point was reached when electrical and Ca(2+) spikes and phasic contractions ceased, and a maintained, tonic force and Ca(2+) was produced. Lanthanum, a non-selective blocker of store-operated Ca(2+) entry, but not the L-type Ca(2+) channel blocker nifedipine (1-10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca(2+) depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca(2+) release is coupled to marked Ca(2+) entry, via store operated Ca(2+) channels, leading to depolarization and enhanced electrical and mechanical activity. Copyright © 2014. Published by Elsevier Ltd.
Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.
Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L
2016-09-20
The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Inhibitory action of linoleamide and oleamide toward sarco/endoplasmic reticulum Ca2+-ATPase.
Yamamoto, Sachiko; Takehara, Munenori; Ushimaru, Makoto
2017-01-01
SERCA maintains intracellular Ca 2+ homeostasis by sequestering cytosolic Ca 2+ into SR/ER stores. Two primary fatty acid amides (PFAAs), oleamide (18:1 9-cis ) and linoleamide (18:2 9,12-cis ), induce an increase in intracellular Ca 2+ levels, which might be caused by their inhibition of SERCA. Three major SERCA isoforms, rSERCA1a, hSERCA2b, and hSERCA3a, were individually overexpressed in COS-1 cells, and the inhibitory action of PFAAs on Ca 2+ -ATPase activity of SERCA was examined. The Ca 2+ -ATPase activity of each SERCA was inhibited in a concentration-dependent manner strongly by linoleamide (IC 50 15-53μM) and partially by oleamide (IC 50 8.3-34μM). Inhibition by other PFAAs, such as stearamide (18:0) and elaidamide (18:1 9-trans ), was hardly or slightly observed. With increasing dose, linoleamide decreased the apparent affinity for Ca 2+ and the apparent maximum velocity of Ca 2+ -ATPase activity of all SERCAs tested. Oleamide also lowered these values for hSERCA3a. Meanwhile, oleamide uniquely reduced the apparent Ca 2+ affinity of rSERCA1a and hSERCA2b: the reduction was considerably attenuated above certain concentrations of oleamide. The dissociation constants for SERCA interaction varied from 6 to 45μM in linoleamide and from 1.6 to 55μM in oleamide depending on the isoform. Linoleamide and oleamide inhibit SERCA activity in the micromolar concentration range, and in a different manner. Both amides mainly suppress SERCA activity by lowering the Ca 2+ affinity of the enzyme. Our findings imply a novel role of these PFAAs as modulators of intracellular Ca 2+ homeostasis via regulation of SERCA activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela
2017-06-26
Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.
Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G
2016-06-01
Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.
Fan, Lu; Li, Ang; Li, Wanshuai; Cai, Peifen; Yang, Baofang; Zhang, Minxia; Gu, Yanhong; Shu, Yongqian; Sun, Yang; Shen, Yan; Wu, Xuefeng; Hu, Gang; Wu, Xudong; Xu, Qiang
2014-10-01
Sarco/endoplasmic reticulum calcium ATPase (SERCA) enzymes play important roles in several signal transduction pathways that control proliferation, differentiation and apoptosis. Here, we reported that SERCA2 expression was positively correlated with tumor node metastasis (TNM) stages (n=75, P=0.0251) and grades (n=63, P=0.0146) of patients with colorectal cancer. The animal experiments demonstrated that SERCA2 expression was consistent with PCNA staining of intestinal tissues of male C57BL/6J-Apc(Min/)JNju mice. Besides, SERCA2 expression was also increased in undifferentiated HT-29 cells as compared with that in differentiated HT-29gal cells. Moreover, SERCA2 overexpression promoted proliferation and migration of SW480 cells via activating MAPK and AKT signaling pathways, while silence of SERCA2 inhibited the proliferation and migration of SW480 cells. In addition, we identified that a curcumin analog, F36, exhibited more potent inhibitory effect in colorectal cancer cells than curcumin through inhibiting SERCA2 expression. Taken together, our findings indicate that SERCA2 is involved in the malignant progress of colorectal cancer and maybe a therapeutic target for colorectal cancer treatment. Curcumin analog F36 shows enhanced anti-cancer activity in colorectal cancer cells by targeting SERCA2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Md Quamrul; Dhyani, Neha; Ismail, Md Vasim; Najmi, Abul Kalam
2016-05-15
Diabetic cardiomyopathy (DCM) is one of the most common causes of mortality. Its pathophysiology is not fully understood and involve number of factors including, cardiovascular and metabolic disorders. The present study was designed to study the pathogenesis of DCM and to explore the effects of levosimendan along with either ramipril or insulin in the long term management of DCM. Streptozotocin (STZ) was used to develop DCM in Wistar rats at the dose of 25mg/kg body weight for three consecutive days. Rats were randomly divided into 9 groups and treatments were started after 2weeks of STZ administration. Persistent hyperglycemia was observed in STZ treated rats, leading to significant contractile dysfunction as evidenced by decreased left ventricular pressure (LVP), +LV (dp/dt), -LV (dp/dt) as well as elevated Tau and LVEDP. Marked myocardial damage such as fibrosis, increased wall tension, depletion of contractile proteins were observed as evidenced by increased levels of TGF-β, BNP, cTroponin-I, as well as decreased expression of SERCA2a and NCX1 proteins in diabetic rats. The levosimendan alone and also in combination with either ramipril or insulin significantly normalized the myocardial dysfunctions developed during the course of persistent hyperglycemia. The study suggests that levosimendan treatment improves cardiac dysfunction significantly. Its combined use with ramipril proves better than with insulin in correcting myocardial performance as well as reduction in myocardial damage. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenoien, David L.; Knyushko, Tatyana V.; Londono, Monica P.
2007-06-01
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) family members are transmembrane proteins that play an essential role in regulating intracellular calcium levels. Phospholamban (PLB), a 52 amino acid phosphoprotein, regulates SERCA activity in adult heart and skeletal muscle. Using the C2C12 myocyte cell line, we find endogenous PLB constitutively expressed in both myoblasts and myotubes, whereas SERCA expression coincides with activation of the differentiation program. PLB has a punctuate distribution in myoblasts changing to a reticular distribution in myotubes where it colocalizes with SERCAs. To examine the distribution and dynamics of PLB and SERCA, we expressed fluorescent fusion proteins (GFP, CFP, andmore » YFP) of PLB and SERCA in myoblasts. Coexpressed PLB and SERCA localize to distinct cellular compartments in myoblasts but begin to colocalize as cells differentiate. Fluorescence Recovery After Photobleaching (FRAP) studies show different recovery patterns for each protein in myoblasts confirming their localization to distinct compartments. To extend these studies, we created stable cell lines expressing O6-alkylguanine-DNA alkyltransferase (AGT) fusions with PLB or SERCA to track their localization as myocytes differentiate. These experiments demonstrate that PLB localizes to punctate vesicles in myoblasts and adopts a reticular distribution that coincides with SERCA distribution after differentiation. Colocalization experiments indicate that a subset of PLB in myoblasts colocalizes with endosomes, Golgi, and the plasma membrane however PLB also localizes to other, as yet unidentified vesicles. Our results indicate that differentiation plays a critical role in regulating PLB distribution to ensure its colocalization within the same cellular compartment as SERCA in differentiated cells. The presence and altered distribution of PLB in undifferentiated myoblasts raises the possibility that this protein has additional functions distinct from SERCA
Wang, Hong Li; Zhou, Xian Hui; Li, Zhi Qiang; Fan, Ping; Zhou, Qi Na; Li, Yao Dong; Hou, Yue Mei; Tang, Bao Peng
2017-08-16
BACKGROUND Recent research suggests that abnormal Ca2+ handling plays a role in the occurrence and maintenance of atrial fibrillation (AF). Therefore, Ca2+ release and ingestion depend on properties of the ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+ATPase2a (SERCA2a). This study aimed to detect whether SERCA2a gene overexpression has a preventive effect on atrial fibrillation caused by rapid pacing right atrium. MATERIAL AND METHODS Forty-eight New Zealand white rabbits were randomly divided into a control group, AF group, AAV9/GFP group, and AAV9/SERCA2a group. The right atrium was rapidly paced at 600 beats/min for 30 days after an intraperitoneal injection of an adeno-associated virus expressing the SERCA2a gene and GFP. The AF induction rate and the effective refraction period (ERP) were measured after 0, 4, 8, 12, and 24 h of pacing. Western blot analysis was used to test for the expression of SERCA2a. Changes in atrial tissue structure were observed by H&E staining and electron microscopy. RESULTS The AF induction rate was higher in the AF groups than in the AAV9/SERCA2a group at different time points of pacing. After 12 h of pacing, ERP was significantly prolonged in the AAV9/SERCA2a group compared to the AF and AAV9/GFP groups (p<0.05). SERCA2a protein expression was significantly lower in the AF and AAV9/GFP groups compared to the control group (p<0.05), while expression was significantly higher in the AAV9/SERCA2a group than in the AF and AAV9/GFP groups (p<0.05). The myocardial structure of the AAV9/SERCA2a group was significantly improved compared with the AF group, indicating that SERCA2a overexpression relieved the structural remodeling of atrial fibrillation. CONCLUSIONS SERCA2a overexpression is capable of suppressing ERP shortening and AF induced by rapid pacing atrium. SERCA2a gene therapy is expected to be a new anti-atrial fibrillation strategy.
A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.
Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong
2017-11-27
Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.
2004-10-15
Fuel Injection," SAE 910489. Density and Vaporization on Penetration and 7. Shundoh, S., Komori, M., Tsujimura , K., and Dispersion of Diesel Sprays...of a 3-D Engines", SAE 920725. multi-zone combustion model for the prediction 12. Kakegawa, T., Suzuki, T., Tsujimura , K., of a DI diesel engines
HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes
Meraviglia, Viviana; Sacchetto, Roberta; Motta, Benedetta M.; Corti, Corrado; D’Elia, Yuri; Rosato-Siri, Marcelo D.; Suffredini, Silvia; Pompilio, Giulio; Pramstaller, Peter P.; Stilli, Donatella
2018-01-01
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency. PMID:29385061
HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes.
Meraviglia, Viviana; Bocchi, Leonardo; Sacchetto, Roberta; Florio, Maria Cristina; Motta, Benedetta M; Corti, Corrado; Weichenberger, Christian X; Savi, Monia; D'Elia, Yuri; Rosato-Siri, Marcelo D; Suffredini, Silvia; Piubelli, Chiara; Pompilio, Giulio; Pramstaller, Peter P; Domingues, Francisco S; Stilli, Donatella; Rossini, Alessandra
2018-01-31
SERCA2a is the Ca 2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.
Hadri, Lahouaria; Pavoine, Catherine; Lipskaia, Larissa; Yacoubi, Sabrina; Lompré, Anne-Marie
2005-01-01
Histamine, known to induce Ca2+ oscillations in endothelial cells, was used to alter Ca2+ cycling. Treatment of HUVEC (human umbilical-vein endothelial cell)-derived EA.hy926 cells with histamine for 1–3 days increased the levels of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) 3, but not of SERCA 2b, transcripts and proteins. Promoter-reporter gene assays demonstrated that this increase in expression was due to activation of SERCA 3 gene transcription. The effect of histamine was abolished by mepyramine, but not by cimetidine, indicating that the H1 receptor, but not the H2 receptor, was involved. The histamine-induced up-regulation of SERCA 3 was abolished by cyclosporin A and by VIVIT, a peptide that prevents calcineurin and NFAT (nuclear factor of activated T-cells) from interacting, indicating involvement of the calcineurin/NFAT pathway. Histamine also induced the nuclear translocation of NFAT. NFAT did not directly bind to the SERCA 3 promoter, but activated Ets-1 (E twenty-six-1), which drives the expression of the SERCA 3 gene. Finally, cells treated with histamine and loaded with fura 2 exhibited an improved capacity in eliminating high cytosolic Ca2+ concentrations, in accordance with an increase in activity of a low-affinity Ca2+-ATPase, like SERCA 3. Thus chronic treatment of endothelial cells with histamine up-regulates SERCA 3 transcription. The effect of histamine is mediated by the H1R (histamine 1 receptor) and involves activation of the calcineurin/NFAT pathway. By increasing the rate of Ca2+ sequestration, up-regulation of SERCA 3 counteracts the cytosolic increase in Ca2+ concentration. PMID:16250893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, Hideaki; Minowa, Osamu; Inoue, Maki
Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells ofmore » any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.« less
Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W
2015-04-01
Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.
Tong, X; Kono, T; Evans-Molina, C
2015-06-18
The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b
van der Linden, C G; Simonides, W S; Muller, A; van der Laarse, W J; Vermeulen, J L; Zuidwijk, M J; Moorman, A F; van Hardeveld, C
1996-12-01
We studied the effect of thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) on the expression of sarcoplasmic reticulum (SR) fast- and slow-type Ca(2+)-ATPase isoforms, SERCA1 and SERCA2a, respectively, and total SR Ca(2+)-ATPase activity in rat skeletal muscle. Cross sections and homogenates of soleus and extensor digitorum longus muscles from hypo-, eu-, and hyperthyroid rats were examined, and expression of Ca(2+)-ATPase isoforms in individual fibers was compared with expression of fast (MHC II) and slow (MHC I) myosin heavy chain isoforms. In both muscles, T3 induced a coordinated and full conversion to a fast-twitch phenotype in one-half of the fibers that were slow twitch in the absence of T3. The conversion was partial in the other one-half of the fibers, giving rise to a mixed phenotype. The stimulation by T3 of total SERCA expression in all fibers was reflected by increased SR Ca(2+)-ATPase activity. The time course of the T3-induced changes of SERCA isoform expression was examined 1-14 days after the start of daily T3 treatment of euthyroid rats. SERCA1 expression was stimulated by T3 at a pretranslational level in all fibers. SERCA2a mRNA expression was transiently stimulated and disappeared in a subset of fibers. In these fibers SR Ca(2+)-ATPase activity was high because of high SERCA1 protein levels. These data suggest that the ultimate downregulation of SERCA2a expression, which is always associated with high SR Ca(2+)-ATPase activities, occurs at a pretranslational level.
Woeste, Matthew; Steller, Jeffrey; Hofmann, Emily; Kidd, Taylor; Patel, Rahul; Connolly, Kevin; Jayasinghe, Manori; Paula, Stefan
2013-01-01
Bisphenols (BPs) are a class of small organic compounds with widespread industrial applications. Previous studies have identified several BPs that interfere with the activity of the ion-translocating enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). In order to define the molecular determinants of BP-mediated SERCA inhibition, we conducted enzyme activity assays with rabbit SERCA to determine the inhibitory potencies of 27 commercially available BPs, which were the basis for structure-activity relationships. The most potent BPs inhibited SERCA at low micromolar concentrations and carried at their two phenyl rings multiple non-polar substituents, such as small alkyl groups or halides. Furthermore, the presence of methyl groups or a cyclohexyl group at the central carbon atom connecting the two phenyl moieties correlated with good potencies. For a characterization and visualization of inhibitor/enzyme interactions, molecular docking was performed, which suggested that hydrogen bonding with Asp254 and hydrophobic interactions were the major driving forces for BP binding to SERCA. Calcium imaging studies with a selection of BPs showed that these inhibitors were able to increase intracellular calcium levels in living human cells, a behavior consistent with that of a SERCA inhibitor. PMID:23643898
Ahmad, Aftab; Hendry-Hofer, Tara B.; Loader, Joan E.; Claycomb, William C.; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L.; Chandler, Joshua D.; Day, Brian J.; Veress, Livia A.; White, Carl W.
2015-01-01
Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure. PMID:25188881
Asahi, M; Kimura, Y; Kurzydlowski, K; Tada, M; MacLennan, D H
1999-11-12
In an earlier study (Kimura, Y., Kurzydlowski, K., Tada, M., and MacLennan, D. H. (1997) J. Biol. Chem. 272, 15061-15064), mutation of amino acids on one face of the phospholamban (PLN) transmembrane helix led to loss of PLN inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) molecules. This helical face was proposed to form a site of PLN interaction with a transmembrane helix in SERCA molecules. To determine whether predicted transmembrane helices M4, M5, M6, or M8 in SERCA1a interact with PLN, SERCA1a mutants were co-expressed with wild-type PLN and effects on Ca(2+) dependence of Ca(2+) transport were measured. Wild-type inhibitory interactions shifted apparent Ca(2+) affinity of SERCA1a by an average of -0.34 pCa units, but four of the seven mutations in M4 led to a more inhibitory shift in apparent Ca(2+) affinity, averaging -0.53 pCa units. Seven mutations in M5 led to an average shift of -0.32 pCa units and seven mutations in M8 led to an average shift of -0.30 pCa units. Among 11 mutations in M6, 1, Q791A, increased the inhibitory shift (-0.59 pCa units) and 5, V795A (-0.11), L802A (-0.07), L802V (-0.04), T805A (-0.11), and F809A (-0.12), reduced the inhibitory shift, consistent with the view that Val(795), Leu(802), Thr(805), and Phe(809), located on one face of a predicted M6 helix, form a site in SERCA1a for interaction with PLN. Those mutations in M4, M6, or M8 of SERCA1a that enhanced PLN inhibitory function did not enhance PLN physical association with SERCA1a, but mutants V795A and L802A in M6, which decreased PLN inhibitory function, decreased physical association, as measured by co-immunoprecipitation. In related studies, those PLN mutants that gained inhibitory function also increased levels of co-immunoprecipitation of wild-type SERCA1a and those that lost inhibitory function also reduced association, correlating functional interaction sites with physical interaction sites. Thus, both functional and physical data confirm that PLN
Pérez-Gordones, M C; Serrano, M L; Rojas, H; Martínez, J C; Uzcanga, G; Mendoza, M
2015-12-01
In higher eukaryotes, the sarco-endoplasmic reticulum (ER) Ca(2+)-ATPase (SERCA) is characterized for its high sensitivity to low concentrations of thapsigargin (TG), a very specific inhibitor. In contrast, SERCA-like enzymes with different sensitivities to TG have been reported in trypanosomatids. Here, we characterized a SERCA-like enzyme from Trypanosoma evansi and evaluated its interaction with TG. Confocal fluorescence microscopy using BODIPY FL TG and specific anti-SERCA antibodies localized the T. evansi SERCA-like enzyme in the ER and confirmed its direct interaction with TG. Moreover, the use of either 1 μM TG or 25 μM 2',5'-di (tert-butyl)-1,4-benzohydroquinone prevented the reuptake of Ca(2+) and consequently produced a small increase in the parasite cytosolic calcium concentration in a calcium-free medium, which was released from the ER pool. A 3035 bp-sequence coding for a protein with an estimated molecular mass of 110.2 kDa was cloned from T. evansi. The corresponding gene product contained all the invariant residues and conserved motifs found in other P-type ATPases but lacked the calmodulin binding site. Modeling of the three-dimensional structure of the parasite enzyme revealed that the amino acid changes found in the TG-SERCA binding pocket do not compromise the interaction between the enzyme and the inhibitor. Therefore, we concluded that T. evansi possesses a SERCA-like protein that is inhibited by TG. Copyright © 2015 Elsevier Inc. All rights reserved.
Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R
1997-09-19
Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, Wazo; Gong, Qingguo; Ahn, Jinwoo
2011-02-04
Research highlights: {yields} Structural consequence by substitution mutations on the isolated SERCA-nucleotide binding (SERCA-N) domain was studied. {yields} The study fills a gap between the previous clinical, physiological, and biochemical data and the molecular basis of SERCA-N. {yields} The E412G mutation, known to be seen in patients with Darier's disease, was found to maintain the active conformation but exhibit reduced protein stability. -- Abstract: Sarcoplasmic reticulum Ca{sup 2+} ATPase (SERCA) is essential for muscle function by transporting Ca{sup 2+} from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolatedmore » SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. {sup 15}N-{sup 1}H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP-PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier's disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP-PNP dissociation constant ({approx}2.5 mM) was similar to that of WT ({approx}3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.« less
Tian, Chengju; Alomar, Fadhel; Moore, Caronda J; Shao, Chun Hong; Kutty, Shelby; Singh, Jaipaul; Bidasee, Keshore R.
2016-01-01
Efficient and rhythmic cardiac contractions depend critically on the adequate and synchronized release of Ca2+ from the sarcoplasmic reticulum (SR) via ryanodine receptor Ca2+ release channels (RyR2) and its reuptake via sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a). It is well established that this orchestrated process becomes compromised in diabetes. What remain incompletely defined are the molecular mechanisms responsible for the dysregulation of RyR2 and SERCA2a in diabetes. Earlier, found elevated levels of carbonyl adducts on RyR2 and SERCA2a isolated from hearts of type 1 diabetic rats and showed the presence of these post-translational modifications compromised their functions. We also showed that these mono- and di-carbonyl reactive carbonyl species (RCS) do not indiscriminately react with all basic amino acid residues on RyR2 and SERCA2a; some residues are more susceptible to carbonylation (modification by RCS) than others. A key unresolved question in the field is which of the many RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a? This brief review introduces readers to the field of RCS and their roles in perturbing SR Ca2+ cycling in diabetes. It also provides new experimental evidence that not all RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a, methylglyoxal and glyoxal preferentially do. PMID:23430128
Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.
Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko
2015-12-01
Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition. Copyright © 2015. Published by Elsevier B.V.
Stockwin, Luke H.; Han, Bingnan; Yu, Sherry X.; Hollingshead, Melinda G.; ElSohly, Mahmoud A.; Gul, Waseem; Slade, Desmond; Galal, Ahmed M.; Newton, Dianne L.
2009-01-01
Analogs of the malaria therapeutic, artemisinin, possess in vitro and in vivo anti-cancer activity. In this study, two dimeric artemisinins (NSC724910 and 735847) were studied to determine their mechanism of action. Dimers were >1000 fold more active than monomer and treatment was associated with increased reactive oxygen species (ROS) and apoptosis induction. Dimer activity was inhibited by the anti-oxidant L-NAC, the iron chelator desferroxamine, and exogenous hemin. Similarly, induction of heme oxygenase (HMOX) with CoPPIX inhibited activity while inhibition of HMOX with SnPPIX enhanced it. These results emphasize the importance of iron, heme and ROS in activity. Microarray analysis of dimer treated cells identified DNA damage; iron/heme and cysteine/methionine metabolism, antioxidant response, and endoplasmic reticulum (ER) stress as affected pathways. Detection of an ER-stress response was relevant because in malaria, artemisinin inhibits pfATP6, the plasmodium orthologue of mammalian ER-resident SERCA Ca2+-ATPases. A comparative study of NSC735847 with thapsigargin, a specific SERCA inhibitor and ER-stress inducer showed similar behavior in terms of transcriptomic changes, induction of endogenous SERCA and ER calcium mobilization. However, thapsigargin had little effect on ROS production, modulated different ER-stress proteins and had greater potency against purified SERCA1. Furthermore, an inactive derivative of NSC735847 that lacked the endoperoxide had identical inhibitory activity against purified SERCA1, suggesting that direct inhibition of SERCA has little inference on overall cytotoxicity. In summary, these data implicate indirect ER-stress induction as a central mechanism of artemisinin dimer activity. PMID:19533749
Thompson, Melissa D; Mei, Yu; Weisbrod, Robert M; Silver, Marcy; Shukla, Praphulla C; Bolotina, Victoria M; Cohen, Richard A; Tong, Xiaoyong
2014-07-18
The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is key to Ca(2+) homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca(2+) uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca(2+) studies showed decreased nitric oxide (·NO)-induced (45)Ca(2+) uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca(2+) stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca(2+) influx. Adenoviral overexpression of calreticulin, an ER Ca(2+) binding protein, increased ionomycin-releasable stores, VEGF-induced Ca(2+) influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca(2+) homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca(2+) stores. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Sanka, Shankar C.; Bennett, David C.; Rojas, Jose D.; Tasby, Geraldine B.; Meininger, Cynthia J.; Wu, Guoyao; Wesson, Donald E.; Pfarr, Curtis M.; Martinez-Zaguilan, Raul
2000-04-01
Cytosolic Ca2+ ([Ca2+]cyt) regulates several cellular functions, e.g. cell growth, contraction, secretion, etc. In many cell types, ion homeostasis appears to be coupled with glucose metabolism. In certain cell types, a strict coupling between glycolysis and the activity of Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPases (SERCA) has been suggested. Glucose metabolism is altered in diabetes. We hypothesize that: (1) Ca2+ homeostasis is altered in microvascular endothelial cells from diabetic animals due to the dysfunction of glycolysis coupling the activity of SERCA; (2) endosomal/lysosomal compartments expressing SERCA are involved in the dysfunction associated with diabetes.
Espinoza-Fonseca, L Michel
2017-03-28
Ca 2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca 2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca 2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca 2+ and other ions across the SR. During Ca 2+ uptake by the SR Ca 2+ -ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca 2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca 2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca 2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.
Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).
Little, Alexander G; Seebacher, Frank
2013-09-15
Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the
Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase
Musgaard, Maria; Thøgersen, Lea; Schiøtt, Birgit; Tajkhorshid, Emad
2012-01-01
Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still largely unknown how the transported Ca2+ ions reach their transmembrane binding sites in SERCA from the cytoplasmic side. Here, we performed extended all-atom molecular dynamics simulations of SERCA. The calculated electrostatic potential of the protein reveals a putative mechanism by which cations may be attracted to and bind to the Ca2+-free state of the transporter. Additional molecular dynamics simulations performed on a Ca2+-bound state of SERCA reveal a water-filled pathway that may be used by the Ca2+ ions to reach their buried binding sites from the cytoplasm. Finally, several residues that are involved in attracting and guiding the cations toward the possible entry channel are identified. The results point to a single Ca2+ entry site close to the kinked part of the first transmembrane helix, in a region loaded with negatively charged residues. From this point, a water pathway outlines a putative Ca2+ translocation pathway toward the transmembrane ion-binding sites. PMID:22339863
Chen, Jialin; De Raeymaecker, Joren; Hovgaard, Jannik Brøndsted; Smaardijk, Susanne; Vandecaetsbeek, Ilse; Wuytack, Frank; Møller, Jesper Vuust; Eggermont, Jan; De Maeyer, Marc; Christensen, Søren Brøgger; Vangheluwe, Peter
2017-01-01
The Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca2+-dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di-tert-butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed. PMID:28264934
Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan
2012-10-15
Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.
Ceholski, Delaine K; Trieber, Catharine A; Young, Howard S
2012-05-11
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) and its regulatory partner phospholamban (PLN) are essential for myocardial contractility. Arg(9) → Cys (R9C) and Arg(14) deletion (R14del) mutations in PLN are associated with lethal dilated cardiomyopathy in humans. To better understand these mutations, we made a series of amino acid substitutions in the cytoplasmic domain of PLN and tested their ability to inhibit SERCA. R9C is a complete loss-of-function mutant of PLN, whereas R14del is a mild loss-of-function mutant. When combined with wild-type PLN to simulate heterozygous conditions, the mutants had a dominant negative effect on SERCA function. A series of targeted mutations in this region of the PLN cytoplasmic domain ((8)TRSAIRR(14)) demonstrated the importance of hydrophobic balance in proper PLN regulation of SERCA. We found that Arg(9) → Leu and Thr(8) → Cys substitutions mimicked the behavior of the R9C mutant, and an Arg(14) → Ala substitution mimicked the behavior of the R14del mutant. The results reveal that the change in hydrophobicity resulting from the R9C and R14del mutations is sufficient to explain the loss of function and persistent interaction with SERCA. Hydrophobic imbalance in the cytoplasmic domain of PLN appears to be a predictor for the development and progression of dilated cardiomyopathy.
Neumann, Jake T; Diaz-Sylvester, Paula L; Fleischer, Sidney; Copello, Julio A
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca²+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca²+ channels and plasmalemma Na+/Ca²+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca²+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca²+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC₅₀ values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased V(max) of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥ 5 μM) also increased RyR-mediated Ca²+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC(50) values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca²+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca²+ transporters.
Neumann, Jake T.; Diaz-Sylvester, Paula L.; Fleischer, Sidney
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca2+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca2+ channels and plasmalemma Na+/Ca2+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca2+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca2+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC50 values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased Vmax of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥5 μM) also increased RyR-mediated Ca2+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC50 values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca2+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca2+ transporters. PMID:20923851
A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2013-06-01
We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.
Chen, Jialin; De Raeymaecker, Joren; Hovgaard, Jannik Brøndsted; Smaardijk, Susanne; Vandecaetsbeek, Ilse; Wuytack, Frank; Møller, Jesper Vuust; Eggermont, Jan; De Maeyer, Marc; Christensen, Søren Brøgger; Vangheluwe, Peter
2017-04-28
The Golgi/secretory pathway Ca 2+ /Mn 2+ -transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca 2+ -dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca 2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di- tert -butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Park, Seon-Ah; Hong, Bing-Zhe; Ha, Ki-Chan; Kim, Uh-Hyun; Han, Myung-Kwan; Kwak, Yong-Geun
2017-06-02
Cyclic ADP-ribose (cADPR) releases Ca 2+ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca 2+ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca 2+ ([Ca 2+ ] i ) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca 2+ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca 2+ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.
Effects of moderate heart failure and functional overload on rat plantaris muscle
NASA Technical Reports Server (NTRS)
Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.
2002-01-01
It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.
Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.
Sonntag, Yonathan; Musgaard, Maria; Olesen, Claus; Schiøtt, Birgit; Møller, Jesper Vuust; Nissen, Poul; Thøgersen, Lea
2011-01-01
The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.
Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A.; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A.; Barrett, Timothy G.
2015-01-01
Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca2+ imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca2+ concentration ([Ca2+]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773
Motion of the Ca2+-pump captured.
Yokokawa, Masatoshi; Takeyasu, Kunio
2011-09-01
Studies of ion pumps, such as ATP synthetase and Ca(2+)-ATPase, have a long history. The crystal structures of several kinds of ion pump have been resolved, and provide static pictures of mechanisms of ion transport. In this study, using fast-scanning atomic force microscopy, we have visualized conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) in real time at the single-molecule level. The analyses of individual SERCA molecules in the presence of both ATP and free Ca(2+) revealed up-down structural changes corresponding to the Albers-Post scheme. This fluctuation was strongly affected by the ATP and Ca(2+) concentrations, and was prevented by an inhibitor, thapsigargin. Interestingly, at a physiological ATP concentrations, the up-down motion disappeared completely. These results indicate that SERCA does not transit through the shortest structure, and has a catalytic pathway different from the ordinary Albers-Post scheme under physiological conditions. © 2011 The Authors Journal compilation © 2011 FEBS.
Montalvo, Dolores; Pérez-Treviño, Perla; Madrazo-Aguirre, Katheryne; González-Mondellini, Fabio A; Miranda-Roblero, Hipólito O; Ramonfaur-Gracia, Diego; Jacobo-Antonio, Mariana; Mayorga-Luna, Maritza; Gómez-Víquez, Norma L; García, Noemí; Altamirano, Julio
2018-06-01
Hypothyroidism (Hypo) is a risk factor for cardiovascular diseases, including heart failure. Hypo rapidly induces Ca 2+ mishandling and contractile dysfunction (CD), as well as atrophy and ventricular myocytes (VM) remodeling. Hypo decreases SERCA-to-phospholamban ratio (SERCA/PLB), and thereby contributes to CD. Nevertheless, detailed spatial and temporal Ca 2+ cycling characterization in VM is missing, and contribution of other structural and functional changes to the mechanism underlying Ca 2+ mishandling and CD, as transverse tubules (T-T) remodeling, mitochondrial density (D mit ) and energy availability, is unclear. Therefore, in a rat model of Hypo, we aimed to characterize systolic and diastolic Ca 2+ signaling, T-T remodeling, D mit , citrate synthase (CS) activity and high-energy phosphate metabolites (ATP and phosphocreatine). We confirmed a decrease in SERCA/PLB (59%), which slowed SERCA activity (48%), reduced SR Ca 2+ (19%) and blunted Ca 2+ transient amplitude (41%). Moreover, assessing the rate of SR Ca 2+ release (dRel/dt), we found that early and maximum dRel/dt decreased, and this correlated with staggered Ca 2+ transients. However, dRel/dt persisted during Ca 2+ transient relaxation due to abundant late Ca 2+ sparks. Isoproterenol significantly up-regulated systolic Ca 2+ cycling. T-T were unchanged, hence, cannot explain staggered Ca 2+ transients and altered dRel/dt. Therefore, we suggest that these might be caused by RyR2 clusters desynchronization, due to diminished Ca 2+ -dependent sensitivity of RyR2, which also caused a decrease in diastolic SR Ca 2+ leak. Furthermore, D mit was unchanged and CS activity slightly decreased (14%), however, the ratio phosphocreatine/ATP did not change, therefore, energy deficiency cannot account for Ca 2+ and contractility dysregulation. We conclude that decreased SR Ca 2+ , due to slower SERCA, disrupts systolic RyR2 synchronization, and this underlies CD. Copyright © 2018 Elsevier Ltd. All rights
Mei, Yu; Thompson, Melissa D; Shiraishi, Yasunaga; Cohen, Richard A; Tong, Xiaoyong
2014-11-01
Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia. Copyright © 2014
Fechner, H; Suckau, L; Kurreck, J; Sipo, I; Wang, X; Pinkert, S; Loschen, S; Rekittke, J; Weger, S; Dekkers, D; Vetter, R; Erdmann, V A; Schultheiss, H-P; Paul, M; Lamers, J; Poller, W
2007-02-01
Impaired function of the phospholamban (PLB)-regulated sarcoplasmic reticulum Ca(2+) pump (SERCA2a) contributes to cardiac dysfunction in heart failure (HF). PLB downregulation may increase SERCA2a activity and improve cardiac function. Small interfering (si)RNAs mediate efficient gene silencing by RNA interference (RNAi). However, their use for in vivo gene therapy is limited by siRNA instability in plasma and tissues, and by low siRNA transfer rates into target cells. To address these problems, we developed an adenoviral vector (AdV) transcribing short hairpin (sh)RNAs against rat PLB and evaluated its potential to silence the PLB gene and to modulate SERCA2a-mediated Ca(2+) sequestration in primary neonatal rat cardiomyocytes (PNCMs). Over a period of 13 days, vector transduction resulted in stable > 99.9% ablation of PLB-mRNA at a multiplicity of infection of 100. PLB protein gradually decreased until day 7 (7+/-2% left), whereas SERCA, Na(+)/Ca(2+) exchanger (NCX1), calsequestrin and troponin I protein remained unchanged. PLB silencing was associated with a marked increase in ATP-dependent oxalate-supported Ca(2+) uptake at 0.34 microM of free Ca(2+), and rapid loss of responsiveness to protein kinase A-dependent stimulation of Ca(2+) uptake was maintained until day 7. In summary, these results indicate that AdV-derived PLB-shRNA mediates highly efficient, specific and stable PLB gene silencing and modulation of active Ca(2+) sequestration in PNCMs. The availability of the new vector now enables employment of RNAi for the treatment of HF in vivo.
Differential calcium handling in two canine models of right ventricular pressure overload.
Moon, Marc R; Aziz, Abdulhameed; Lee, Anson M; Moon, Cynthia J; Okada, Shoichi; Kanter, Evelyn M; Yamada, Kathryn A
2012-12-01
The purpose of this investigation was to characterize differential right atrial (RA) and ventricular (RV) molecular changes in Ca(2+)-handling proteins consequent to RV pressure overload and hypertrophy in two common, yet distinct models of pulmonary hypertension: dehydromonocrotaline (DMCT) toxicity and pulmonary artery (PA) banding. A total of 18 dogs underwent sternotomy in four groups: (1) DMCT toxicity (n = 5), (2) mild PA banding over 10 wk to match the RV pressure rise with DMCT (n = 5); (3) progressive PA banding to generate severe RV overload (n = 4); and (4) sternotomy only (n = 4). In the right ventricle, with DMCT, there was no change in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) or phospholamban (PLB), but we saw a trend toward down-regulation of phosphorylated PLB at serine-16 (p[Ser-16]PLB) (P = 0.07). Similarly, with mild PA banding, there was no change in SERCA or PLB, but p(Ser-16)PLB was down-regulated by 74% (P < 0.001). With severe PA banding, there was no change in PLB, but SERCA fell by 57% and p(Ser-16)PLB fell by 67% (P < 0.001). In the right atrium, with DMCT, there were no significant changes. With both mild and severe PA banding, p(Ser-16)PLB fell (P < 0.001), but SERCA and PLB did not change. Perturbations in Ca(2+)-handling proteins depend on the degree of RV pressure overload and the model used to mimic the RV effects of pulmonary hypertension. They are similar, but blunted, in the atrium compared with the ventricle. Copyright © 2012 Elsevier Inc. All rights reserved.
Takeuchi, Koh; Minakawa, M; Otaki, M; Odagiri, S; Itoh, K; Murakami, A; Yaku, H; Kitamura, N
2003-12-01
Hyperthyroidism is known to affect multiple organ functions, and thyroid hormone has been known to improve myocardial function in a failing heart. The purpose of this study is to elucidate the functional and metabolic effects of thyroid hormone on myocardium in a rat model exposed to long-term excess thyroid hormone, particularly focusing on the SR Ca(2+)-ATPase (SERCA2) function. 3,5,3'-Triiodo-L-thyronine (T3), or the vehicle, was subcutaneously given for 4 weeks (T3 and control [C] group). Bolus I.V. Thapsigargin (TG) was used to test the SERCA2 function (C-TG and T3-TG) in Langendorff perfused heart. Myocardial functions such as LV-developed pressure (LVDP; mmHg), +/- dP/dt (mmHg/s), tau (ms), and oxygen consumption (MVO(2); ml/min/g wt) were measured. SERCA2 and GLUT4 protein level were also evaluated by Western immunoblotting. Left ventricle to body weight (LV/BW) ratio was significantly higher in the T3 group. Both negative dP/dt and tau were significantly decreased by TG. It is interesting that the decrement of negative dP/dt and tau attained by TG was significantly larger in the hyperthyroid group (T3-TG) than in a normal heart (C-TG). SERCA2 and GLUT4 protein levels were not significantly different between control and the T3 group. We conclude that prolonged exposure to thyroid hormone causes hypertrophy of the myocardium and an augmentation of the SR Ca(2+) ATPase activity. Care must be taken in hyperthyroid heart during the ischemia-reperfusion process where the SRECA2 function is inhibited.
Duan, Xiao-qin; Li, Yan-hui; Zhang, Xiu-yun; Zhao, Zhi-tao; Wang, Ying; Wang, Huan; Li, Guang-sheng; Jing, Ling
2016-04-01
Calcium homeostasis of osteoblasts (OBs) has an important role in the physiology and pathology of bone tissue. In order to study the mechanisms of intracellular calcium homeostasis, MC3T3-E1 cells and Sprague-Dawley rats were treated with different concentrations of fluoride. Then, we examined intracellular-free calcium ion ([Ca(2+)]i) in MC3T3-E1 cells as well as mRNA and protein levels of Cav1.2, the main subunit of L-type voltage-dependent calcium channels (VDCCs), Na(+)/Ca(2+) exchange carriers (NCS), and plasma membrane Ca(2+)-ATPase (PMCA), inositol 1,4,5-trisphosphate receptor (IP3R) channels, sarco/endoplasmic reticulum calcium ATPase 2b (SERCA2b)/ATP2A2 in vitro, and rat bone tissues in vivo. Our results showed that [Ca(2+)]i of fluoride-treated OBs increased in a concentration-dependent manner with an increase in the concentration of fluoride. We also found that the low dose of fluoride led to high expression levels of Cav1.2, NCS-1, and PMCA and low expression levels of IP3R and SERCA2b/ATP2A2, while the high dose of fluoride induced an increase in SERCA2b/ATP2A2 levels and decrease in Cav1.2, PMCA, NCS-1, and IP3R levels. These results demonstrate that calcium channels and calcium pumps of plasma and endoplasmic reticulum (ER) membranes keep intracellular calcium homeostasis by regulating Cav1.2, NCS-1, PMCA, IP3R, and SERCA2b/ATP2A2 expression.
Nivala, Michael; Song, Zhen; Weiss, James N.; Qu, Zhilin
2015-01-01
In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the mechanisms of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in “orphaned” RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF. PMID:25450613
Janus, Izabela; Kandefer-Gola, Malgorzata; Ciaputa, Rafal; Noszczyk-Nowak, Agnieszka; Paslawska, Urszula; Tursi, Massimiliano; Nowak, Marcin
2017-01-01
Dilated cardiomyopathy (DCM) and myxomatous mitral valve disease (MMVD) are common heart conditions in dogs. They have different etiology and pathogenesis and although other studies focused on changes in the left ventricles of the affected hearts, the aim of our study was to assess the expressions of some intrinsic proteins in the enlarged left atria. We performed an immunohistochemical analysis of left atrial specimens obtained from 15 dogs with DCM, 35 dogs with MMVD and six control dogs. We assessed the expression of following proteins: SERCA1, SERCA2, sarcomeric actinin, smooth muscle actin, and dystrophin. We noted a higher percentage of SERCA1-positive cells in the MMVD group and lower percentage of dystrophin-positive cells in the DCM group as compared to control group. The expression of other proteins was similar in the hearts of control dogs and dogs with heart diseases. The observed changes in the expression patterns of some proteins in the atria of dogs with DCM and MMVD suggest that atrial enlargement relies not only on volume overload, but also alterations of the intrinsic proteins can contribute to the pathogenesis of dilated cardiomyopathy.
Maxwell, Joshua T; Blatter, Lothar A
2012-12-01
The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.
Flepisi, T B; Lochner, Amanda; Huisamen, Barbara
2013-10-01
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.
A transcriptomic approach to search for novel phenotypic regulators in McArdle disease.
Nogales-Gadea, Gisela; Consuegra-García, Inés; Rubio, Juan C; Arenas, Joaquin; Cuadros, Marc; Camara, Yolanda; Torres-Torronteras, Javier; Fiuza-Luces, Carmen; Lucia, Alejandro; Martín, Miguel A; García-Arumí, Elena; Andreu, Antoni L
2012-01-01
McArdle disease is caused by lack of glycogen phosphorylase (GP) activity in skeletal muscle. Patients experience exercise intolerance, presenting as early fatigue and contractures. In this study, we investigated the effects produced by a lack of GP on several genes and proteins of skeletal muscle in McArdle patients. Muscle tissue of 35 patients and 7 healthy controls were used to identify abnormalities in the patients' transcriptomic profile using low-density arrays. Gene expression was analyzed for the influence of variables such as sex and clinical severity. Differences in protein expression were studied by immunoblotting and 2D electrophoresis analysis, and protein complexes were examined by two-dimensional, blue native gel electrophoresis (BN-PAGE). A number of genes including those encoding acetyl-coA carboxylase beta, m-cadherin, calpain III, creatine kinase, glycogen synthase (GS), and sarcoplasmic reticulum calcium ATPase 1 (SERCA1), were found to be downregulated in patients. Specifically, compared to controls, GS and SERCA1 proteins were reduced by 50% and 75% respectively; also, unphosphorylated GS and SERCA1 were highly downregulated. On BN-PAGE analysis, GP was present with GS in two muscle protein complexes. Our findings revealed some issues that could be important in understanding the physiological consequences of McArdle disease: (i) SERCA1 downregulation in patients could result in impaired calcium transport in type II (fast-twitch) muscle fibers, leading to early fatigability during exercise tasks involving type II fibers (which mostly use glycolytic metabolism), i.e. isometric exercise, lifting weights or intense dynamic exercise (stair climbing, bicycling, walking at a very brisk pace), (ii) GP and GS were found together in two protein complexes, which suggests a new regulatory mechanism in the activity of these glycogen enzymes.
Nivala, Michael; Song, Zhen; Weiss, James N; Qu, Zhilin
2015-02-01
In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maxwell, Joshua T; Blatter, Lothar A
2012-01-01
The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145
Exposure to low mercury concentration in vivo impairs myocardial contractile function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro
2011-09-01
Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP)more » and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small
Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?
Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc
2008-11-01
We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.
Sacconi, Alessio; Moncelli, Maria Rosa; Margheri, Giancarlo; Tadini-Buoninsegni, Francesco
2013-11-12
A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca(2+) and Mg(2+), the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.
Resistance Training Regulates Cardiac Function through Modulation of miRNA-214
Melo, Stéphano Freitas Soares; Barauna, Valério Garrone; Júnior, Miguel Araújo Carneiro; Bozi, Luiz Henrique Marchesi; Drummond, Lucas Rios; Natali, Antônio José; de Oliveira, Edilamar Menezes
2015-01-01
Aims: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. Main methods: Male Wistar rats were divided into two groups (n = 7/group): Control (CO) or trained (TR). The exercise-training protocol consisted of: 4 × 12 bouts, 5×/week during 8 weeks, with 80% of one repetition maximum. Key findings: RT increased the left ventricular myocyte width by 15% and volume by 12%, compared with control animals (p < 0.05). The time to half relaxation and time to peak were 8.4% and 4.4% lower, respectively, in cells from TR group as compared to CO group (p < 0.05). RT decreased miRNA-214 level by 18.5% while its target SERCA2a expression were 18.5% higher (p < 0.05). Significance: Our findings showed that RT increases single left ventricular myocyte dimensions and also leads to faster cell contraction and relaxation. These mechanical adaptations may be related to the augmented expression of SERCA2a which, in turn, may be associated with the epigenetic modification of decreased miRNA-214 expression. PMID:25822872
Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo
2008-01-15
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less
Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak
Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.
2016-01-01
Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the
PDF calculation of scalar mixing layer with simple chemical reactions
NASA Astrophysics Data System (ADS)
Kanzaki, Takao; Pope, Stephen B.
1999-11-01
A joint velocity-composition-turbulent frequency PDF(JPDF) model is used to simulate reactive mixing layer in a grid-generated turbulence with the influence of second-order irreversible chemical reactions. To investigate the effects of molecular mixing, a gas flow and a liquid flow are simulated. For a gas flow, the oxidation reaction (NO+ O3 arrow NO2 +O2 ) between nitricoxide (NO) and ozone (O3 ) is used. For a liquid flow, the saponification reaction(NaOH+HCOOCH3 arrow HCOONa+CH_3OH) between sodiumhydroxide(NaOH) and methylformate(HCOOCH_3) is used. The both cases are moderately fast reactions. Therefore, reactive scalar statistics are affected by turbulent mixing. The results of caliculation are compared with experimental data of Komori et al.(1994) and Bilger et al.(1991)
Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann
2010-04-01
Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
McCrink, Katie A; Maning, Jennifer; Vu, Angela; Jafferjee, Malika; Marrero, Christine; Brill, Ava; Bathgate-Siryk, Ashley; Dabul, Samalia; Koch, Walter J; Lymperopoulos, Anastasios
2017-11-01
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β 1 AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca 2+ -ATPase) in vivo and in vitro in a β 1 AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β 1 AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure. © 2017 American Heart Association, Inc.
Jiang, M; Xu, A; Jones, D L; Narayanan, N
2004-09-01
This study investigated the effects of l-thyroxine-induced hyperthyroidism on Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaM kinase II)-mediated sarcoplasmic reticulum (SR) protein phosphorylation, SR Ca(2+) pump (Ca(2+)-ATPase) activity, and contraction duration in slow-twitch soleus muscle of the rabbit. Phosphorylation of Ca(2+)-ATPase and phospholamban (PLN) by endogenous CaM kinase II was found to be significantly lower (30-50%) in soleus of the hyperthyroid compared with euthyroid rabbit. Western blotting analysis revealed higher levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1 ( approximately 150%) Ca(2+) pump isoform, unaltered levels of SERCA2 Ca(2+) pump isoform, and lower levels of PLN ( approximately 50%) and delta-, beta-, and gamma-CaM kinase II (40 approximately 70%) in soleus of the hyperthyroid rabbit. SR vesicles from hyperthyroid rabbit soleus displayed approximately twofold higher ATP-energized Ca(2+) uptake and Ca(2+)-stimulated ATPase activities compared with that from euthyroid control. The V(max) of Ca(2+) uptake (in nmol Ca(2+).mg SR protein(-1).min(-1): euthyroid, 818 +/- 73; hyperthyroid, 1,649 +/- 90) but not the apparent affinity of the Ca(2+)-ATPase for Ca(2+) (euthyroid, 0.97 +/- 0.02 microM, hyperthyroid, 1.09 +/- 0.04 microM) differed significantly between the two groups. CaM kinase II-mediated stimulation of Ca(2+) uptake by soleus muscle SR was approximately 60% lower in the hyperthyroid compared with euthyroid. Isometric twitch force of soleus measured in situ was significantly greater ( approximately 36%), and the time to peak force and relaxation time were significantly lower ( approximately 30-40%), in the hyperthyroid. These results demonstrate that thyroid hormone-induced transition in contractile properties of the rabbit soleus is associated with coordinate downregulation of the expression and function of PLN and CaM kinase II and selective upregulation of the expression and function of SERCA1, but not
Randomized Clinical Trials of Gene Transfer for Heart Failure with Reduced Ejection Fraction.
Penny, William F; Hammond, H Kirk
2017-05-01
Despite improvements in drug and device therapy for heart failure, hospitalization rates and mortality have changed little in the past decade. Randomized clinical trials using gene transfer to improve function of the failing heart are the focus of this review. Four randomized clinical trials of gene transfer in heart failure with reduced ejection fraction (HFrEF) have been published. Each enrolled patients with stable symptomatic HFrEF and used either intracoronary delivery of a virus vector or endocardial injection of a plasmid. The initial CUPID trial randomized 14 subjects to placebo and 25 subjects to escalating doses of adeno-associated virus type 1 encoding sarcoplasmic reticulum calcium ATPase (AAV1.SERCA2a). AAV1.SERCA2a was well tolerated, and the high-dose group met a 6 month composite endpoint. In the subsequent CUPID-2 study, 243 subjects received either placebo or the high dose of AAV1.SERCA2a. AAV1.SERCA2a administration, while safe, failed to meet the primary or any secondary endpoints. STOP-HF used plasmid endocardial injection of stromal cell-derived factor-1 to promote stem-cell recruitment. In a 93-subject trial of patients with ischemic etiology heart failure, the primary endpoint (symptoms and 6 min walk distance) failed, but subgroup analyses showed improvements in subjects with the lowest ejection fractions. A fourth trial randomized 14 subjects to placebo and 42 subjects to escalating doses of adenovirus-5 encoding adenylyl cyclase 6 (Ad5.hAC6). There were no safety concerns, and patients in the two highest dose groups (combined) showed improvements in left ventricular function (left ventricular ejection fraction and -dP/dt). The safety data from four randomized clinical trials of gene transfer in patients with symptomatic HFrEF suggest that this approach can be conducted with acceptable risk, despite invasive delivery techniques in a high-risk population. Additional trials are necessary before the approach can be endorsed for clinical
Transport mechanism of the sarcoplasmic reticulum Ca2+ -ATPase pump.
Møller, Jesper V; Nissen, Poul; Sørensen, Thomas L-M; le Maire, Marc
2005-08-01
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) belongs to the group of P-type ATPases, which actively transport inorganic cations across membranes at the expense of ATP hydrolysis. Three-dimensional structures of several transport intermediates of SERCA1a, stabilized by structural analogues of ATP and phosphoryl groups, are now available at atomic resolution. This has enabled the transport cycle of the protein to be described, including the coupling of Ca(2+) occlusion and phosphorylation by ATP, and of proton counter-transport and dephosphorylation. From these structures, Ca(2+)-ATPase gradually emerges as a molecular mechanical device in which some of the transmembrane segments perform Ca(2+) transport by piston-like movements and by the transmission of reciprocating movements that affect the chemical reactivity of the cytosolic globular domains.
Makanga, Martine; Dewachter, Céline; Maruyama, Hidekazu; Vuckovic, Aline; Rondelet, Benoit; Naeije, Robert; Dewachter, Laurence
2013-08-01
Bone morphogenetic proteins (BMP) have been shown to play crucial roles in not only lung and heart development, but also in the pathogenesis of pulmonary vascular remodeling in pulmonary hypertension (PH). We therefore hypothesized that BMP signaling could be altered in nitrofen-induced congenital diaphragmatic hernia (CDH) and associated PH. Pregnant rats were exposed to either 100 mg nitrofen or vehicle on embryonic day (E) 9.5. On E17 and E21, fetuses were delivered by cesarean section, killed and checked for left-sided CDH. The tissue was then harvested for pathobiological evaluation. In nitrofen-induced CDH, pulmonary expressions of BMP4, BMP receptor (BMPR) type 2 and Id1 decreased on E17 and E21. On E17, pulmonary gremlin-1 expression increased, while BMP7 decreased. In the lungs, Id1 expression was correlated to BMP4 and BMPR2 and inversely correlated to gremlin-1 expression. Myocardial expressions of BMPR2, BMPR1A, BMP7 and SERCA-2A decreased, while gremlin-1 and noggin expressions increased on E17. On E21, myocardial expressions of Id1 and SERCA-2A decreased, while gremlin-1 expression increased. Moreover, BMPR2 and BMPR1A expressions were correlated to SERCA-2A expression and inversely correlated to pro-apoptotic Bax/Bcl2 ratio within the myocardium. Downregulation of BMP signaling seems to contribute to pulmonary and myocardial anomalies observed in nitrofen-induced CDH.
NASA Astrophysics Data System (ADS)
Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul
1999-07-01
Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.
The modified Yi qi decoction protects cardiac ischemia-reperfusion induced injury in rats.
Yu, Xiao; Zhao, Xiao-Dong; Bao, Rong-Qi; Yu, Jia-Yu; Zhang, Guo-Xing; Chen, Jing-Wei
2017-06-21
To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MYQ was administrated orally for 1 week or 1 month. Both in 1 week and 1 month IR rat groups, cardiac function indexes were significantly impaired compared with sham group rats, accompanied with higher ratio of infarct size to risk size, decreased expressions of sodium calcium exchanger (NCX1) and sarcoplasmic reticulum Ca 2+ -ATPase (Serca2a), and different expressions of autophagic proteins, Beclin-1 and LC3. Treatment with MYQ (low or high dose) for 1 week showed no marked beneficial effects on cardiac function and cardiac injury (ratio of infarct size to risk size), although expressions of anti-apoptotic protein, Bcl-2, NCX1 and Serca2a were increased. Treatment with MYQ (low or high dose) for 1 month showed significantly improved effects on cardiac function and cardiac injury (ratio of infarct size to risk size), accompanied with increase of Bcl-2, NCX1 and Serca2a expressions, and decrease of Bax (a pro-apoptotic protein) and Beclin-1 expressions. The results show that MYQ have potential therapeutic effects on IR-induced cardiac injury, which may be through regulation of apoptotic proteins, cytosolic Ca 2+ handling proteins and autophagic proteins signal pathways.
Evans, A Mark; Fameli, Nicola; Ogunbayo, Oluseye A; Duan, Jingxian; Navarro-Dorado, Jorge
2016-08-01
Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.
Chen, Xuedi; Gao, Cuixia; Gong, Ningning; Wang, Yu; Tian, Limin
2018-01-01
The main purpose of this study was to explore the relationships between serca2a, Ryr2, adipokines, and the left ventricular function in the subclinical hypothyroidism with different TSH levels and to determine the impact of L-T4 treatment on these indexes. Sixty-five male Wistar rats were randomly divided into five groups: control group; sHT A, B, and C group; and sHT + T4 group. The sHT rats were induced by methimazole (MMI), and the sHT + T4 rats were administered with L-T4 treatment after 8 weeks of MMI administration. Serum TT4, TSH, APN, chemerin, and TNF- α were detected by radioimmunoassay kits and ELISA kits; left ventricular function was measured by PowerLab system via subclavian artery catheter. The expression of Serca2a, Ryr2, APN, chemerin, and TNF- α were detected by RT-PCR, Western blot, and immunohistochemistry. The sHT groups had significantly higher TSH, chemerin, and TNF- α and lower Serca2a, Ryr2, and APN. The left ventricular pressure and heart rate in sHT groups were significantly lower in control and sHT + T4 group. Histopathological examination revealed the pathological changes in the sHT rats' heart. L-T4 administration reduced TSH level and improved left ventricular function. TSH can impair left ventricular function by regulating several factors, and L-T4 treatment ameliorates it in sHT rats.
Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin
2017-01-01
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180
Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc; Brennen, W Nathaniel; Dalrymple, Susan; Dach, Ingrid; Olesen, Claus; Gurel, Bora; Demarzo, Angelo M; Wilding, George; Carducci, Michael A; Dionne, Craig A; Møller, Jesper V; Nissen, Poul; Christensen, S Brøgger; Isaacs, John T
2012-06-27
Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.
Wires, Emily S; Henderson, Mark J; Yan, Xiaokang; Bäck, Susanne; Trychta, Kathleen A; Lutrey, Molly H; Harvey, Brandon K
2017-01-01
The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.
Molina, Ezequiel J; Gupta, Dipin; Palma, Jon; Gaughan, John P; Macha, Mahender
2009-06-01
Heart failure is associated with abnormalities in betaAR cascade regulation, calcium cycling, expression of inflammatory mediators and apoptosis. Adenoviral mediated gene transfer of betaARKct has beneficial indirect effects on these pathologic processes upon the left ventricular myocardium. The concomitant biochemical changes that occur in the right ventricle have not been well characterized. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After a decrease in fractional shortening of 25% from baseline, intracoronary injection of adenoviral-betaARKct (n=14) or adenoviral-beta-galactosidase (control, n=13) was performed. Rats were randomly euthanized on post-operative day 7, 14 or 21. Protein analysis including RV myocardial levels of betaARKct, betaARK1, SERCA(2a), inflammatory tissue mediators (IL-1, IL-6 and TNF-alpha), apoptotic markers (bax and bak), and MAP kinases (jnk, p38 and erk) was performed. ANOVA was employed for group comparison. Adenoviral-betaARKct treated animals showed increased expression of betaARKct and decreased levels of betaARK1 compared with controls. This treatment group also demonstrated normalization of SERCA(2a) expression and decreased levels of the inflammatory markers IL-1, IL-6 and TNF-alpha. The pro-apoptotic markers bax and bak were similarly improved. Ventricular levels of the MAP kinase jnk were increased. Differences were most significant 7 days after gene transfer, but the majority of these changes persisted at 21 days. These results suggest that attenuation of the pathologic mechanisms of beta adrenergic receptor desensitization, SERCA(2a) expression, inflammation and apoptosis, not only occur in the left ventricle but also in the right ventricular myocardium after intracoronary gene transfer of betaARKct during heart failure.
Synergistic interactions of biotic and abiotic environmental stressors on gene expression.
Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E
2015-03-01
Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.
Influence of infrasound exposure on the whole L-type calcium currents in rat ventricular myocytes.
Pei, Zhaohui; Zhuang, Zhiqiang; Xiao, Pingxi; Chen, Jingzao; Sang, Hanfei; Ren, Jun; Wu, Zhenbiao; Yan, Guangmei
2009-06-01
This study was designed to examine the effect of infrasound exposure (5 Hz at 130 dB) on whole-cell L-type Ca2+ currents (WLCC) in rat ventricular myocytes and the underlying mechanism(s) involved. Thirty-two adult Sprague-Dawley rats were randomly assigned to infrasound exposure and control groups. [Ca2+](i), WLCC, mRNA expression of the a(1c) subunit of L-type Ca2+ channels (LCC), and SERCA2 protein were examined on day 1, 7, and 14 after initiation of infrasound exposure. Fluo-3/AM fluorescence and the laser scanning confocal microscope techniques were used to measure [Ca2+](i) in freshly isolated ventricular myocytes. The Ca2+ fluorescence intensity (FI), denoting [Ca2+](i) in cardiomyocytes, was significantly elevated in a time-dependent manner in the exposure groups. There was a significant increase in WLCC in the 1-day group and a further significant increase in the 7- and 14-day groups. LCC mRNA expression measured by RT-PCR revealed a significant rise in the 1-day group and a significant additional rise in the 7- and 14-day groups compared with control group. SERCA2 expression was significantly upregulated in the 1-day group followed by an overt decrease in the 7- and 14-day groups. Prolonged exposure of infrasound altered WLCC in rat cardiomyocytes by shifting the steady-state inactivation curves to the right (more depolarized direction) without altering the slope and biophysical properties of I (Ca,L). Taken together, our data suggest that changes in [Ca2+](I) levels as well as expression of LCC and SERCA2 may contribute to the infrasound exposure-elicited cardiac response.
Infrasound-induced hemodynamics, ultrastructure, and molecular changes in the rat myocardium.
Pei, Zhaohui; Sang, Hanfei; Li, Ruiman; Xiao, Pingxi; He, Jiangui; Zhuang, Zhiqiang; Zhu, Miaozhang; Chen, Jingzao; Ma, Hong
2007-04-01
Recent interest in adverse effects of infrasound on organisms arises from health concerns. We assessed the association between infrasound exposure of 5 Hz at 130 dB and changes of cardiac ultrastructure and function in rats. Thirty-two Sprague-Dawley rats were randomized into control, 1, 7, and 14 days groups for 2 h of infrasound once daily according to planned schedules. Changes of cardiac ultrastructure, hemodynamics indices, intracellular Ca(2+) concentrations ([Ca(2+)](i)), and sarcoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) were detected. Heart rates in 1 day group were significantly increased compared with control group and no significant changes in other groups. Left ventricular systolic pressures were significantly increased with time. Left ventricular diastolic end pressure and maximum rising rates of left ventricular pressure (+dl/dt) were significantly increased in 7 and 14 days groups and not changed in 1 day group, compared with control group. Maximum dropping rates of left ventricular pressure (-dl/dt) were significantly decreased in 7 and 14 days groups and not changed in 1 day group, compared with control group. In heart cells, there were several swelled mitochondria in 1 day group, more swelled mitochondria in 7 days group, platelet aggregation in the intercellular substance in 14 days group. [Ca(2+)](i) were significantly increased with time. There was a significant increase in SERCA2 in 1 day group, while a significant decrease in 7 and 14 days groups, compared with control group. Infrasound of 5 Hz at 130 dB can damage cardiac ultrastructure and function. Changes of [Ca(2+)](i) and SERCA2 play an important role in the secondary cardiac damage. (c) 2007 Wiley Periodicals, Inc.
2013-01-01
Background Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Methods Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa,L); and the enhancement in SERCA pump activity via phosphorylation of PLB. Results Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated β-adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa,L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Conclusions Our model provides
Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.
Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S
2012-04-04
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.
Ren, Jun; Li, Qun; Wu, Shan; Li, Shi-Yan; Babcock, Sara A.
2007-01-01
Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3–4 mo) and old (26–28 mo) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed ± dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and β-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling. PMID:17250874
Neymotin, Samuel A.; McDougal, Robert A.; Sherif, Mohamed A.; Fall, Christopher P.; Hines, Michael L.; Lytton, William W.
2015-01-01
Calcium (Ca2+) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron’s second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3), diffusible Ca2+, IP3 receptors (IP3Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. Ca2+ is released from ER stores via IP3Rs upon binding of IP3 and Ca2+. This results in Ca2+-induced-Ca2+-release (CICR) and increases Ca2+ spread. At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50–90µm /sec). Continuous ER showed high sensitivity to IP3R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP3R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca2+ substantially increased wave speed. An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. PMID:25734493
Wang, Xiaolong; Yu, Hao; You, Jiabin; Wang, Changliang; Feng, Chunmei; Liu, Zhaodi; Li, Ya; Wei, Rucheng; Xu, Siqi; Zhao, Rui; Wu, Xu; Zhang, Guohua
2018-05-22
Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yamei; Wang, Lingxian; Wang, Lu
2015-02-15
Liposarcoma is the most common soft tissue sarcoma with a high risk of relapse. Few therapeutic options are available for the aggressive local or metastatic disease. Here, we report that the clinically used proteasome inhibitor bortezomib exhibits significantly stronger cytotoxicity toward highly malignant human liposarcoma SW872-S cells compared with its parental SW872 cells, which is accompanied by enhanced activation of apoptotic signaling both in vitro and in vivo. Treatment of cells with Jun-N-terminal kinase (JNK) inhibitor SP60015 or the translation inhibitor cycloheximide ameliorated this enhanced apoptosis. Bortezomib inhibited MDR1 expression and function more effectively in SW872-S cells than in SW872more » cells, indicating that the increased cytotoxicity relies on the degree of proteasome inhibition. Furthermore, the pharmacological or genetic inhibition of sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2, which is highly expressed in SW872-S cells, resulted in partial reversal of cell growth inhibition and increase of MDR1 expression in bortezomib-treated SW872-S cells. These results show that bortezomib exhibits preferential cytotoxicity toward SW872-S cells possibly via highly expressed SERCA2-associated MDR1 suppression and suggest that bortezomib may serve as a potent agent for treating advanced liposarcoma. - Highlights: • We compare the cytotoxicity of different drugs between SW872-S and SW872 cells. • Highly malignant liposarcoma cells SW872-S show hypersensitivity to bortezomib. • Apoptotic signaling is robustly enhanced in bortezomib-treated SW872-S cells. • Bortezomib has strong suppression on MDR1 expression and function in SW872-S cells. • Inhibition of SERCA2 protects SW872-S cells from bortezomib.« less
Xing, T; Zhao, X; Wang, P; Chen, H; Xu, X; Zhou, G
2017-04-01
The objective of this study was to assess the effects of transport stress at high ambient temperatures on the oxidation status and the expression of essential elements responsible for the Ca transport (sarco- (endo-) plasmic reticulum Ca-ATPase (SERCA1) and the ryanodine receptor (RyR) in (PM) muscles of broilers. Briefly, Arbor Acres broiler chickens ( = 112) were randomly categorized into 2 treatments: unstressed control (C) and 0.5 h transport (T). Each treatment consisted of 8 replicates of 7 birds each. Birds were transported according to a designed protocol. PM muscle samples in T group were collected and classified as normal (T-NOR) or pale, soft, and exudative-like (T-PSE) using meat quality parameters. The results indicated that production of corticosterone (CORT) and reactive oxygen species (ROS) increased significantly after transportation ( < 0.05). Thiobarbituric acid reactive substance values and carbonyl contents increased significantly in the T group ( < 0.05). Moreover, the extent of lipid peroxidation and protein oxidation was more severe in the T-PSE group compared to the T-NOR group ( < 0.05). The mRNA and protein expression of SERCA1 and αRyR increased in the T-NOR group but decreased significantly in the T-PSE group compared to the CON group ( < 0.05). The mRNA expression of βRyR was found to be enhanced in the T-NOR group compared to the CON group, whereas there was no difference in the T-PSE group ( < 0.05). The results indicate that short-distance transport of broilers affects their physiological responses and biochemical changes which may lead to different oxidative states and, importantly, to different expressions of SERCA and RyR. These induced changes in abnormal sarcoplasmic Ca homeostasis have significant implications for the development of PSE-like meat.
Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua
2017-08-01
Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.
Itoh, S; Yanagimoto, T; Tagawa, S; Hashimoto, H; Kitamura, R; Nakajima, Y; Okochi, T; Fujimoto, S; Uchino, J; Kamataki, T
1992-03-24
P-450IIIA7 is a form of cytochrome P-450 which was isolated from human fetal livers and termed P-450HFLa. This form has been clarified to be expressed during fetal life specifically (Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. and Kamataki, T. (1990) Biochemistry 29, 4430-4433). In the present study, we isolated five independent clones which probably corresponded to the human P-450IIIA7 gene. These clones were completely sequenced, all exons, exon-intron junctions and the 5' flanking region from the cap site to-869. Although the sequences in the coding region were completely identical to P-450IIIA7, it is possible that genomic fragments sequenced in this study encode portions of other P-450IIIA7-related genes since we could not obtain a complete overlapping set of genomic clones. Within its 5' flanking sequence, the putative binding sites of several transcriptional regulatory factors existed. Among them, it was shown that a basic transcription element binding factor (BTEB) actually interacted with the 5' flanking region of this gene.
Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity
Bublitz, Maike; Kjellerup, Lasse; Cohrt, Karen O’Hanlon; Gordon, Sandra; Mortensen, Anne Louise; Clausen, Johannes D.; Pallin, Thomas David; Hansen, John Bondo; Fuglsang, Anja Thoe; Dalby-Brown, William
2018-01-01
We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles inhibit adenosine triphosphate (ATP) hydrolysis of the fungal H+-ATPase, depolarize the fungal plasma membrane and exhibit broad-spectrum antifungal activity. Comparative inhibition studies indicate that many tetrahydrocarbazoles also inhibit the mammalian Ca2+-ATPase (SERCA) and Na+,K+-ATPase with an even higher potency than Pma1. We have located the binding site for this compound class by crystallographic structure determination of a SERCA-tetrahydrocarbazole complex to 3.0 Å resolution, finding that the compound binds to a region above the ion inlet channel of the ATPase. A homology model of the Candida albicans H+-ATPase based on this crystal structure, indicates that the compounds could bind to the same pocket and identifies pocket extensions that could be exploited for selectivity enhancement. The results of this study will aid further optimization towards selective H+-ATPase inhibitors as a new class of antifungal agents. PMID:29293507
AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program
Jeong, Mark Y.; Kinugawa, Koichiro; Vinson, Charles; Long, Carlin S.
2005-01-01
Background Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure. Methods and Results Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of β-myosin heavy chain (βMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal α-actin (sACT) was increased, whereas expression for α-myosin heavy chain (αMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both αMHC and SERCA expression. Conclusions Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy. PMID:15795322
Bocchi, Leonardo; Savi, Monia; Naponelli, Valeria; Vilella, Rocchina; Sgarbi, Gianluca; Baracca, Alessandra; Solaini, Giancarlo; Bettuzzi, Saverio; Rizzi, Federica; Stilli, Donatella
2018-06-15
Dietary polyphenols from green tea have been shown to possess cardio-protective activities in different experimental models of heart diseases and age-related ventricular dysfunction. The present study was aimed at evaluating whether long term in vivo administration of green tea extracts (GTE), can exert positive effects on the normal heart, with focus on the underlying mechanisms. The study population consisted of 20 male adult Wistar rats. Ten animals were given 40 mL/day tap water solution of GTE (concentration 0.3%) for 4 weeks (GTE group). The same volume of water was administered to the 10 remaining control rats (CTRL). Then, in vivo and ex vivo measurements of cardiac function were performed in the same animal, at the organ (hemodynamics) and cellular (cardiomyocyte mechanical properties and intracellular calcium dynamics) levels. On cardiomyocytes and myocardial tissue samples collected from the same in vivo studied animals, we evaluated: (1) the intracellular content of ATP, (2) the endogenous mitochondrial respiration, (3) the expression levels of the Sarcoplasmic Reticulum Ca2+-dependent ATPase 2a (SERCA2), the Phospholamban (PLB) and the phosphorylated form of PLB, the L-type Ca2+ channel, the Na+-Ca2+ exchanger, and the ryanodine receptor 2. GTE cardiomyocytes exhibited a hyperdynamic contractility compared with CTRL (the rate of shortening and re-lengthening, the fraction of shortening, the amplitude of calcium transient, and the rate of cytosolic calcium removal were significantly increased). A faster isovolumic relaxation was also observed at the organ level. Consistent with functional data, we measured a significant increase in the intracellular ATP content supported by enhanced endogenous mitochondrial respiration in GTE cardiomyocytes, as well as higher values of the ratios phosphorylated-PLB/PLB and SERCA2/PLB. Long-term in vivo administration of GTE improves cell mechanical properties and intracellular calcium dynamics in normal cardiomyocytes
Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.
2016-01-01
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its
Høydal, Morten Andre; Kirkeby-Garstad, Idar; Karevold, Asbjørn; Wiseth, Rune; Haaverstad, Rune; Wahba, Alexander; Stølen, Tomas L; Contu, Riccardo; Condorelli, Gianluigi; Ellingsen, Øyvind; Smith, Godfrey L; Kemi, Ole J; Wisløff, Ulrik
2018-06-01
Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from patients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction coupling, cardiomyocyte contraction and relaxation, and Ca 2+ handling in post-myocardial-infarction (MI) patients at mid-stage of HF. Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy. Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when increasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we observed almost total breakdown of function in MI. Concurrently, we observed impaired Ca 2+ handling with more spontaneous Ca 2+ release events, increased diastolic Ca 2+ , lower Ca 2+ amplitude, and prolonged time to diastolic Ca 2+ removal in MI (P < 0.01). Significantly reduced transverse-tubule density (-35%, P < 0.01) and sarcoplasmic reticulum Ca 2+ adenosine triphosphatase 2a (SERCA2a) function (-26%, P < 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phosphorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function. Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca 2+ handling due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphorylation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca 2+ homeostasis and handling. This is the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human hearts at mid-stage of post-MI HF. © 2018 The Authors. ESC Heart
Characterization of Beta-leptinotarsin-h and the Effects of Calcium Flux Antagonists on its Activity
2005-04-07
A alone. a IP3R, IP3 receptor ; LO, ligand -operated; RyR, ryanodine receptor ; SERCA, sarcoplasmic reticulum endoplasmic reticulum Ca 2C ATPase; SO...observation eliminated non-selective cation channels such as nicotinic, glutamatergic, purinergic P2X , and serotoni- nergic 5-HT3 ligand -operated Ca 2C...nicardipine, nifedipine, SNX-482) was inhibitory. Selective inhibitors of ligand -operated, store-operated, and transduction-operated channels were also not
Wang, Yao; Wei, Su; Wang, Yi-Lu; Liu, Miao; Shang, Man; Zhang, Qi; Wu, Yan-Na; Liu, Ming-Lin; Song, Jun-Qiu; Liu, Yan-Xia
2017-08-15
To investigate the effects of circulating microvesicles derived from myocardial ischemia (I-MVs) on apoptosis in myocardial ischemia/reperfusion (I/R) injury in rats. I-MVs from rats undergoing myocardial left anterior descending (LAD) coronary artery ligation were isolated by ultracentrifugation from circulating blood and characterized by flow cytometry. I-MVs were administered intravenously (4.8 mg/kg) at 5 min before reperfusion procedure in I/R injury model which was induced by 30-min of ischemia and 120-min of reperfusion of LAD in rats. Treatment with I-MVssignificantly reduced the size of myocardial infarction, the activities of serum CK-MB and LDH, and the number of apoptotic cardiomyocytes. The activities of caspase 3, caspase 9 and caspase 12 in myocardium were also decreased significantly with I-MVs treatment. Moreover, the expression of Bax was decreased but Bcl-2 was increased. The expression of glucose regulated protein 78 (GRP78), sarco/endoplasmic reticulum Ca 2+ -ATPase 2 (SERCA2) and phosphorylated phospholamban (p-PLB) were increased after being treated with I-MVs. I-MVs could protect hearts from I/R injury in rats through SERCA2 and p-PLB of calcium regulatory proteins to alleviate intrinsic myocardial apoptosis including mitochondrial and endoplasmic reticulum pathways.
Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy
Kho, Changwon; Lee, Ahyoung; Hajjar, Roger J.
2013-01-01
Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure. PMID:23090087
Calderón, Juan C; Bolaños, Pura; Caputo, Carlo
2014-12-01
One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca
2013-01-01
Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation.
Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V
2017-07-15
Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony
p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies.
Bittremieux, Mart; Bultynck, Geert
2015-01-01
Ca(2+) transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca(2+) levels by enhancing sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity, ultimately promoting mitochondrial Ca(2+) overload. The boosting of "toxic" Ca(2+) signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca(2+) transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca(2+) uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca(2+) measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca(2+) signaling in dictating cell-death outcomes and by the success of anti-cancer treatments.
Das, Subhash K; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B; Hajjar, Roger J; Dyck, Jason R B; Kassiri, Zamaneh; Oudit, Gavin Y
2015-12-07
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.
Pessah, Isaac N.
2017-01-01
Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ryanodine receptor type 1 (RyR1), dihydropyridine receptor (DHPR), and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We assessed the impact of these chemicals on Ca2+ dynamics and signaling in embryonic skeletal myotubes through fluorescent Ca2+ imaging and measurement of resting membrane potential (Vm). TBBPA activated RyR1 and inhibited DHPR and SERCA, inducing a net efflux of Ca2+ from loaded microsomes, whereas BPA exhibited little or no activity at these targets. Regardless, both compounds disrupted the function of intact myotubes. TBBPA diminished and eventually abrogated Ca2+ transients, altered intracellular Ca2+ equilibrium, and caused Vm depolarization. For some cells, BPA caused rapid Ca2+ transient loss without marked changes in cytosolic and sarcoplasmic reticulum Ca2+ levels, likely owing to altered cellular excitability as a result of BPA-induced Vm hyperpolarization. BPA and TBBPA both interfere with skeletal muscle function through divergent mechanisms that impair excitation-contraction coupling and may be exemplary of their adverse outcomes in other muscle types. PMID:28143888
Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes
NASA Astrophysics Data System (ADS)
Naik, Parvaiz Ahmad; Pardasani, Kamal Raj
2015-06-01
Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.
Das, Subhash K.; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B.; Hajjar, Roger J.; Dyck, Jason R. B.; Kassiri, Zamaneh; Oudit, Gavin Y.
2015-01-01
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca2+ homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca2+ homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload. PMID:26638758
Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum
2012-04-01
Ekman and Jager, 1993) adapted from the ammonium molybdate/ malachite green method quan- tified Pi production by SERCA activity. Colorimetric reagent was...prepared by mixing one volume of 10% (w/v) (NH4)6Mo7O24– 4 H2O in 4M HCl with three volumes of 0.2% (w/v) malachite green in 4M HCl, followed by...seryl and threonyl residues in phosphoproteins using alkaline hydrolysis and malachite green. Anal. Biochem. 214, 138. Fulceri, R., Romani, A
A Thapsigargin-Resistant Intracellular Calcium Sequestering Compartment in Rat Brain
2000-03-31
touted as inhibitors of the PMCAs, but their effects have yet to be thoroughly examined on all P-type ATPases [23, 125]. SERCAs: a family ofP·type ATPases... effective in reducing the sensitivity to TG by 1aOO-fold [151]. The potent, seledive blockade of Ca2+ accumulation in the ER by TG has made it possible...accumulation while the calcium ionophore A23187 is 100%) effective [140]. Thus, 10-150/0 of net Ca2+ uptake into brain microsomal compartments is
Dufresne, Sébastien S; Boulanger-Piette, Antoine; Bossé, Sabrina; Argaw, Anteneh; Hamoudi, Dounia; Marcadet, Laetitia; Gamu, Daniel; Fajardo, Val A; Yagita, Hideo; Penninger, Josef M; Russell Tupling, A; Frenette, Jérôme
2018-04-24
/RANK interaction. The sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.
Pantos, Constantinos; Mourouzis, Iordanis; Malliopoulou, Vassiliki; Paizis, Ioannis; Tzeis, Stylianos; Moraitis, Panagiotis; Sfakianoudis, Konstantinos; Varonos, Dennis D; Cokkinos, Dennis V
2005-01-01
Hypothyroid heart displays a phenotype of cardioprotection against ischemia and this study investigated whether administration of dronedarone, an amiodarone-like compound that has been shown to preferentially antagonize thyroid hormone binding to thyroid hormone receptor alpha1 (TRalpha1), results in a similar effect. Dronedarone was given in Wistar rats (90 mg/kg, once daily (od) for 2 weeks) (DRON), while untreated animals served as controls (CONT). Hypothyroidism (HYPO) was induced by propylthiouracil administration. Isolated rat hearts were perfused in Langendorff mode and subjected to 20 minutes of zero-flow global ischemia (I) followed by 45 minutes of reperfusion (R). 3,5,3' Triiodothyronine remained unchanged while body weight and food intake were reduced. alpha-Myosin heavy chain (alpha-MHC) decreased in DRON while beta-myosin heavy chain (beta-MHC) and sarcoplasmic reticulum Ca2+ adenosine triphosphatase (ATPase) expression (SERCA) was similar to CONT. In HYPO, alpha-MHC and SERCA were decreased while beta-MHC was increased. Myocardial glycogen content was increased in both DRON and HYPO. In DRON, resting heart rate and contractility were reduced and ischemic contracture was significantly suppressed while postischemic left ventricular end-diastolic pressure and lactate dehydrogenase release (IU/L min) after I/R were significantly decreased. In conclusion, dronedarone treatment results in cardioprotection by selectively mimicking hypothyroidism. This is accompanied by a reduction in body weight because of the suppression of food intake. TRs might prove novel pharmacologic targets for the treatment of cardiovascular illnesses.
Cheng, Hongwei; Smith, Godfrey L.; Hancox, Jules C.; Orchard, Clive H.
2011-01-01
The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na–Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca2+]i transients from cells isolated from the rabbit AVN. Spontaneous [Ca2+]i transients were monitored from undialysed AVN cells at 37 °C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca2+]i transients. However, in voltage clamp experiments in addition to blocking NCX current (INCX) KB-R7943 partially inhibited L-type calcium current (ICa,L). Rapid reduction of external [Na+] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca2+]i transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca2+ release influences spontaneous activity in AVN cells, and that this occurs via [Ca2+]i-activated INCX; however, the inhibitory action of KB-R7943 on ICa,L means that care is required in the interpretation of data obtained using this compound. PMID:21163524
Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.
Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie
2017-10-01
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Tight coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes.
Sepp, Mervi; Sokolova, Niina; Jugai, Svetlana; Mandel, Merle; Peterson, Pearu; Vendelin, Marko
2014-01-01
The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis--sarcoplasmic reticulum Ca2+ ATPase (SERCA) and plasmalemma Na+/K+-ATPase (NKA). While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK), ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose.
Guleria, Ayushi; Thukral, Neha; Chandna, Sudhir
2018-04-15
Sf9 lepidopteran insect cells are 100-200 times more radioresistant than mammalian cells. This distinctive feature thus makes them suitable for studies exploring radioprotective molecular mechanisms. It has been established from previous studies of our group that downstream mitochondrial apoptotic signaling pathways in Sf9 cells are quite similar to mammalian cells, implicating the upstream signaling pathways in their extensive radioresistance. In the present study, intracellular and mitochondrial calcium levels remained unaltered in Sf9 cells in response to radiation, in sharp contrast to human (HEK293T) cells. The isolated mitochondria from Sf9 cells exhibited nearly 1.5 times greater calcium retention capacity than mammalian cells, highlighting their inherent stress resilience. Importantly, UPR/ER stress marker proteins (p-eIF2α, GRP4 and SERCA) remained unaltered by radiation and suggested highly attenuated ER and calcium stress. Lack of SERCA induction further corroborates the lack of radiation-induced calcium mobilization in these cells. The expression of CaMKII, an important effector molecule of calcium signaling, did not alter in response to radiation. Inhibiting CaMKII by KN-93 or suppressing CaM by siRNA failed to alter Sf9 cells response to radiation and suggests CaM-CaMKII independent radiation signaling. Therefore, this study suggests that attenuated calcium signaling/ER stress is an important determinant of lepidopteran cell radioresistance. Copyright © 2018 Elsevier Inc. All rights reserved.
Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan
2015-10-27
Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.
CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma
Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan
2015-01-01
Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+ refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC. PMID:26498680
Caffeine-induced [Ca2+] oscillations in neurones of frog sympathetic ganglia
Cseresnyés, Zoltán; Bustamante, Alexander I; Schneider, Martin F
1999-01-01
Single cell fluorimetry was used to monitor caffeine-induced oscillations of cytosolic [Ca2+] in frog sympathetic ganglion neurones in 2.0 mm K+ Ringer solution.[Ca2+] oscillations decreased in frequency and exhibited three different amplitude patterns after the first large peak of [Ca2+]: (a) a series of big oscillations (BOs) of constant large amplitude (300–;400 nm), (b) a series of much smaller oscillations (SOs) (40–60 nm), or (c) a series of decaying oscillations (DOs) of rapidly decreasing amplitude.A model in which the oscillation amplitude was determined by the Ca2+ content of the endoplasmic reticulum (ER) whereas the oscillation frequency was controlled by how rapidly the cytosolic [Ca2+] reached the threshold for Ca2+-induced Ca2+ release (CICR) was able to simulate each observed pattern by varying the level of activity of the ER Ca2+ pump (SERCA), CICR and release-activated Ca2+ transport (RACT). A cumulative, cytosolic Ca2+-dependent inactivation of the plasma membrane (PM) Ca2+ influx or of the Ca2+-sensitive leak coefficient of the ryanodine receptors caused the oscillation frequency to decrease in the model.Transitions between BOs and SOs and changes in [Ca2+] oscillations caused by ryanodine, thapsigargin, lanthanum and FCCP could also be simulated.We conclude that RACT, SERCA, CICR and Ca2+-dependent PM Ca2+ influx are major mechanisms underlying [Ca2+] oscillations in these neurones. PMID:9831718
Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon
2017-01-01
Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621
Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts.
Itoh, Hideki; Oyama, Kotaro; Suzuki, Madoka; Ishiwata, Shin'ichi
2014-01-01
Temperature-sensitive Ca(2+) dynamics occur primarily through transient receptor potential channels, but also by means of Ca(2+) channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca(2+)]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca(2+) burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca(2+) bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca(2+) bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca(2+) burst is caused by a transient imbalance in Ca(2+) flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca(2+)-regulated cellular functions.
Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts
Itoh, Hideki; Oyama, Kotaro; Suzuki, Madoka; Ishiwata, Shin’ichi
2014-01-01
Temperature-sensitive Ca2+ dynamics occur primarily through transient receptor potential channels, but also by means of Ca2+ channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca2+ concentration ([Ca2+]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca2+]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca2+ burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca2+ bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca2+ bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca2+ burst is caused by a transient imbalance in Ca2+ flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca2+-regulated cellular functions. PMID:27493505
Leon-Aparicio, Daniel; Chavez-Reyes, Jesus; Guerrero-Hernandez, Agustin
2017-07-01
It has been shown that 2-APB is a nonspecific modulator of ion channel activity, while most of the channels are inhibited by this compound, there are few examples of channels that are activated by 2-APB. Additionally, it has been shown that, 2-APB leads to a reduction in the luminal endoplasmic reticulum Ca 2+ level ([Ca 2+ ] ER ) and we have carried out simultaneous recordings of both [Ca 2+ ] i and the [Ca 2+ ] ER in HeLa cell suspensions to assess the mechanism involved in this effect. This approach allowed us to determine that 2-APB induces a reduction in the [Ca 2+ ] ER by activating an ER-resident Ca 2+ permeable channel more than by inhibiting the activity of SERCA pumps. Interestingly, this effect of 2-APB of reducing the [Ca 2+ ] ER is auto-limited because depends on a replete ER Ca 2+ store; a condition that thapsigargin does not require to decrease the [Ca 2+ ] ER . Additionally, our data indicate that the ER Ca 2+ permeable channel activated by 2-APB does not seem to participate in the ER Ca 2+ leak revealed by inhibiting SERCA pump with thapsigargin. This work suggests that, prolonged incubations with even low concentrations of 2-APB (5μM) would lead to the reduction in the [Ca 2+ ] ER that might explain the inhibitory effect of this compound on those signals that require Ca 2+ release from the ER store. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skeletal muscle proteins: a new approach to delimitate the time since death.
Foditsch, Elena Esra; Saenger, Alexandra Maria; Monticelli, Fabio Carlo
2016-03-01
Skeletal muscle tissue is proposed as a forensic model tissue with strong potential, as it is easily accessible and its true-to-life state structure and function is well known. Despite this strong potential, skeletal muscle degradation studies are rare. The aim of this study was to test if a skeletal muscle-based protein analysis is applicable to delimitate the time since death. Under standard conditions, two pigs were stored either at 22 °C for 5 days or 4 °C for 21 days. Their Mm. biceps femori were sampled periodically for analyses of ten skeletal muscle proteins postmortem. All analyzed proteins can serve as markers for a delimitation of the time since death. Desmin, nebulin, titin, and SERCA 1 displayed distinct protein patterns at certain points of time. The other five proteins, α-actinin, calsequestrin-1, laminin, troponin T-C, and SERCA 2, showed no degradation patterns within the analyzed postmortem time frame. Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.
Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy
Nowack, Julia; Giroud, Sylvain; Arnold, Walter; Ruf, Thomas
2017-01-01
The development of sustained, long-term endothermy was one of the major transitions in the evolution of vertebrates. Thermogenesis in endotherms does not only occur via shivering or activity, but also via non-shivering thermogenesis (NST). Mammalian NST is mediated by the uncoupling protein 1 in the brown adipose tissue (BAT) and possibly involves an additional mechanism of NST in skeletal muscle. This alternative mechanism is based on Ca2+-slippage by a sarcoplasmatic reticulum Ca2+-ATPase (SERCA) and is controlled by the protein sarcolipin. The existence of muscle based NST has been discussed for a long time and is likely present in all mammals. However, its importance for thermoregulation was demonstrated only recently in mice. Interestingly, birds, which have evolved from a different reptilian lineage than mammals and lack UCP1-mediated NST, also exhibit muscle based NST under the involvement of SERCA, though likely without the participation of sarcolipin. In this review we summarize the current knowledge on muscle NST and discuss the efficiency of muscle NST and BAT in the context of the hypothesis that muscle NST could have been the earliest mechanism of heat generation during cold exposure in vertebrates that ultimately enabled the evolution of endothermy. We suggest that the evolution of BAT in addition to muscle NST was related to heterothermy being predominant among early endothermic mammals. Furthermore, we argue that, in contrast to small mammals, muscle NST is sufficient to maintain high body temperature in birds, which have enhanced capacities to fuel muscle NST by high rates of fatty acid import. PMID:29170642
Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle.
Kovac, Jason R; Chrones, Tom; Sims, Stephen M
2008-01-01
Following smooth muscle excitation and contraction, depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) entry (CCE) to replenish stores and sustain cytoplasmic Ca(2+) (Ca(2+)(i)) elevations. The objectives of the present study were to characterize CCE and the Ca(2+)(i) dynamics underlying human colonic smooth muscle contraction by using tension recordings, fluorescent Ca(2+)-indicator dyes, and patch-clamp electrophysiology. The neurotransmitter acetylcholine (ACh) contracted tissue strips and, in freshly isolated colonic smooth muscle cells (SMCs), caused elevation of Ca(2+)(i) as well as activation of nonselective cation currents. To deplete Ca(2+)(i) stores, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors thapsigargin and cyclopiazonic acid were added to a Ca(2+)-free bathing solution. Under these conditions, addition of extracellular Ca(2+) (3 mM) elicited increased tension that was inhibited by the cation channel blockers SKF-96365 (10 microM) and lanthanum (100 microM), suggestive of CCE. In a separate series of experiments on isolated SMCs, SERCA inhibition generated a gradual and sustained inward current. When combined with high-speed Ca(2+)-imaging techniques, the CCE-evoked rise of Ca(2+)(i) was associated with inward currents carrying Ca(2+) that were inhibited by SKF-96365. Regional specializations in Ca(2+) influx and handling during CCE were observed. Distinct "hotspot" regions of Ca(2+) rise and plateau were evident in 70% of cells, a feature not previously recognized in smooth muscle. We propose that store-operated Ca(2+) entry occurs in hotspots contributing to localized Ca(2+) elevations in human colonic smooth muscle.
Pollak, Adam J.; Haghighi, Kobra; Kunduri, Swati; Arvanitis, Demetrios A.; Liu, Guan-Sheng; Singh, Vivek P.; Gonzalez, David J.; Sanoudou, Despina; Wiley, Sandra E.; Dixon, Jack E.; Kranias, Evangelia G.
2017-01-01
Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores. Histidine-rich Ca-binding protein (HRC) resides in the lumen of the SR, where it contributes to the regulation of Ca cycling by protecting stressed or failing hearts. The common Ser96Ala human genetic variant of HRC strongly correlates with life-threatening ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. However, the underlying molecular pathways of this disease remain undefined. Here, we demonstrate that family with sequence similarity 20C (Fam20C), a recently characterized protein kinase in the secretory pathway, phosphorylates HRC on Ser96. HRC Ser96 phosphorylation was confirmed in cells and human hearts. Furthermore, a Ser96Asp HRC variant, which mimics constitutive phosphorylation of Ser96, diminished delayed aftercontractions in HRC null cardiac myocytes. This HRC phosphomimetic variant was also able to rescue the aftercontractions elicited by the Ser96Ala variant, demonstrating that phosphorylation of Ser96 is critical for the cardioprotective function of HRC. Phosphorylation of HRC on Ser96 regulated the interactions of HRC with both triadin and SERCA2a, suggesting a unique mechanism for regulation of SR Ca homeostasis. This demonstration of the role of Fam20C-dependent phosphorylation in heart disease will open new avenues for potential therapeutic approaches against arrhythmias. PMID:28784772
Epp, Riley A; Susser, Shanel E; Morissette, Marc P; Kehler, D Scott; Jassal, Davinder S; Duhamel, Todd A
2013-01-01
This study tested the hypothesis that exercise training would prevent the development of diabetes-induced cardiac dysfunction and altered expression of sarcoplasmic reticulum Ca(2 +)-transport proteins in the low-dose streptozotocin-induced diabetic rats fed a high-fat diet (HFD+STZ). Male Sprague-Dawley rats (4 weeks old; 125-150 g) were made diabetic using a high-fat diet (40% fat, w/w) and a low-dose of streptozotocin (35 mg·(kg body mass)(-1)) by intravenous injection. Diabetic animals were divided among a sedentary group (Sed+HFD+STZ) or an exercise-trained group (Ex+HFD+STZ) that accumulated 3554 ± 338 m·day(-1) of voluntary wheel running (mean ± SE). Sedentary animals fed a low-fat diet served as the control (Sed+LFD). Oral glucose tolerance was impaired in the sedentary diabetic group (1179 ± 29; area under the curve (a.u.c.)) compared with that in the sedentary control animals (1447 ± 42 a.u.c.). Although left ventricular systolic function was unchanged by diabetes, impaired E/A ratios (i.e., diastolic function) and rates of pressure decay (-dP/dt) indicated the presence of diastolic dysfunction. Diabetes also reduced SERCA2a protein content and maximal SERCA2a activity (V(max)) by 21% and 32%, respectively. In contrast, the change in each parameter was attenuated by exercise training. Based on these data, it appears that exercise training prevented the development of diabetic cardiomyopathy and the dysregulation of sarcoplasmic reticulum protein content in an inducible animal model of type 2 diabetes.
Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun
2010-01-01
ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453
Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory
2008-01-01
Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534
Zhao, Fali; Fu, Lu; Yang, Wei; Dong, Yuhui; Yang, Jing; Sun, Shoubin; Hou, Yuling
2016-01-15
Baicalein is a widely used Chinese herbal medicine extracted from Labiatae plants Scutellaria baicalensis Georgi's dry root, which has multiple pharmacological activities. However, the precise mechanism of baicalein against myocardial remodeling remains poorly understood. The aim of our study was to investigate the underlying mechanism of baicalein treatment in rats model of heart failure (HF) and rat myocardial cells (H9C2). HF model was established by abdominal aorta constriction in rats and incubation with 50μM isoproterenol for 48h in H9C2 cells. Various molecular biological experiments were performed to assess the effects of baicalein on cardiac function, myocardial remodeling, apoptosis and Ca(2+) handling proteins. In the present study, first we found that baicalein alleviated HF in vivo. Additionally, treatment with baicalein inhibited the myocardial fibrosis, restrained the expression and activity of MMP2 and MMP9, and suppressed apoptosis in heart tissue. Moreover, baicalein could inhibit the cardiac myocyte hypertrophy and apoptosis induced by isoproterenol in vitro. Finally we found that baicalein could modulate the expressions and activities of Ca(2+) handling proteins, including downregulation of phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and expression of Na(+)/Ca(2+)-exchangers (NCX1), upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and ryanodine receptor 2 (RYR2). Baicalein also restrained the decreased SERCA activity induced by aortic banding. Our studies suggested that baicalein alleviated myocardial remodeling and improved cardiac function via modulation of Ca(2+) handling proteins, which may be a potential phytochemical flavonoid for therapeutics of HF. Copyright © 2015 Elsevier Inc. All rights reserved.
Lou, Qing; Fedorov, Vadim V.; Glukhov, Alexey V.; Moazami, Nader; Fast, Vladimir G.; Efimov, Igor R.
2011-01-01
Background Excitation-contraction (EC) coupling is altered in the end-stage heart failure (HF). However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective is to study functional remodeling of EC coupling and calcium handling in failing and nonfailing human hearts. Methods and Results We simultaneously optically mapped action potentials (AP) and calcium transients (CaT) in coronary-perfused left ventricular wedge preparations from nonfailing (n = 6) and failing (n = 5) human hearts. Our major findings are: (1) CaT duration minus AP duration was longer at sub-endocardium in failing compared to nonfailing hearts during bradycardia (40 beats/min). (2) The transmural gradient of CaT duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 beats/min). (3) CaT in failing hearts had a flattened plateau at the midmyocardium; and exhibited a “two-component” slow rise at sub-endocardium in three failing hearts. (4) CaT relaxation was slower at sub-endocardium than that at sub-epicardium in both groups. Protein expression of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) was lower at sub-endocardium than that at sub-epicardium in both nonfailing and failing hearts. SERCA2a protein expression at sub-endocardium was lower in hearts with ischemic cardiomyopathy compared with nonischemic cardiomyopathy. Conclusions For the first time, we present direct experimental evidence of transmural heterogeneity of EC coupling and calcium handling in human hearts. End-stage HF is associated with the heterogeneous remodeling of EC coupling and calcium handling. PMID:21502574
Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang
2015-07-01
Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mitochondrial calcium handling within the interstitial cells of Cajal
Cheng, Leo K.
2014-01-01
The interstitial cells of Cajal (ICC) drive rhythmic pacemaking contractions in the gastrointestinal system. The ICC generate pacemaking signals by membrane depolarizations associated with the release of intracellular calcium (Ca2+) in the endoplasmic reticulum (ER) through inositol-trisphosphate (IP3) receptors (IP3R) and uptake by mitochondria (MT). This Ca2+ dynamic is hypothesized to generate pacemaking signals by calibrating ER Ca2+ store depletions and membrane depolarization with ER store-operated Ca2+ entry mechanisms. Using a biophysically based spatio-temporal model of integrated Ca2+ transport in the ICC, we determined the feasibility of ER depletion timescale correspondence with experimentally observed pacemaking frequencies while considering the impact of IP3R Ca2+ release and MT uptake on bulk cytosolic Ca2+ levels because persistent elevations of free intracellular Ca2+ are toxic to the cell. MT densities and distributions are varied in the model geometry to observe MT influence on free cytosolic Ca2+ and the resulting frequencies of ER Ca2+ store depletions, as well as the sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) and IP3 agonist concentrations. Our simulations show that high MT densities observed in the ICC are more relevant to ER establishing Ca2+ depletion frequencies than protection of the cytosol from elevated free Ca2+, whereas the SERCA pump is more relevant to containing cytosolic Ca2+ elevations. Our results further suggest that the level of IP3 agonist stimulating ER Ca2+ release, subsequent MT uptake, and eventual activation of ER store-operated Ca2+ entry may determine frequencies of rhythmic pacemaking exhibited by the ICC across species and tissue types. PMID:24789203
Lautenschläger, Janin; Prell, Tino; Ruhmer, Julia; Weidemann, Lisa; Witte, Otto W; Grosskreutz, Julian
2013-09-01
Motor neurons vulnerable to the rapidly progressive deadly neurodegenerative disease amyotrophic lateral sclerosis (ALS) inherently express low amounts of calcium binding proteins (CaBP), likely to allow physiological motor neuron firing frequency modulation. At the same time motor neurons are susceptible to AMPA receptor mediated excitotoxicity and internal calcium deregulation which is not fully understood. We analysed ER mitochondria calcium cycle (ERMCC) dynamics with subsecond resolution in G93A hSOD1 overexpressing motor neurons as a model of ALS using fluorescent calcium imaging. When comparing vulnerable motor neurons and non-motor neurons from G93A hSOD1 mice and their non-transgenic littermates, we found a decelerated cytosolic calcium clearance in the presence of G93A hSOD1. While both non-transgenic as well as G93A hSOD1 motor neurons displayed large mitochondrial calcium uptake by the mitochondrial uniporter (mUP), the mitochondrial calcium extrusion system was altered in the presence of G93A hSOD1. In addition, ER calcium uptake by the sarco-/endoplasmic reticulum ATPase (SERCA) was increased in G93A hSOD1 motor neurons. In survival assays, blocking the mitochondrial sodium calcium exchanger (mNCE) by CGP37157 as well as inhibiting SERCA by cyclopiazonic acid showed protective effects against kainate induced excitotoxicity. Thus, our study shows for the first time that the functional consequence of G93A hSOD1 overexpression in intact motor neurons is indeed a disturbance of the ER mitochondria calcium cycle, and identified two promising targets for therapeutic intervention in the pathology of ALS. Copyright © 2013 Elsevier Inc. All rights reserved.
Middlekauff, Holly R.; Vigna, Chris; Verity, M. Anthony; Fonarow, Gregg C.; Horwich, Tamara B.; Hamilton, Michele A.; Shieh, Perry; Tupling, A. Russell
2012-01-01
Background In the failing human heart, abnormalities of Ca2+ cycling have been described, but there is scant knowledge about Ca2+ handling in the skeletal muscle of humans with HF. We tested the hypothesis that in humans with HF, Ca2+ cycling proteins in skeletal muscle are abnormal. Methods and Results Ten advanced HF patients (50.4±3.7 years), and 9 age matched controls underwent vastus lateralis biopsy. Western blot analysis showed that sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a, which is responsible for Ca2+ sequestration into the sarcoplasmic reticulum(SR), was lower in HF vs controls (4.8±0.5vs7.5±0.8AU, p=0.01). Although phospholamban (PLN), which inhibits SERCA2a, was not different in HF vs controls, phosphorylation (SER16 site) of PLN, which relieves this inhibition, was reduced (0.8±0.1vs3.9±0.9AU, p=0.004). Dihydropyridine receptors were reduced in HF, (2.1±0.4vs3.6±0.5AU, p=0.04). We tested the hypothesis that these abnormalities of Ca2+ handling protein content and regulation were due to increased oxidative stress, but oxygen radical scavenger proteins were not elevated in the skeletal muscle of HF patients. Conclusion In chronic HF, marked abnormalities of Ca2+ handling proteins are present in skeletal muscle, which mirror those in failing heart tissue. This suggests a common mechanism, such as chronic augmentation of sympathetic activity and autophosphorylation of Ca2+-calmodulin-dependent-protein kinase II. PMID:22939042
The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana.
Urbina, Daniela C; Silva, Herman; Meisel, Lee A
2006-01-01
Thapsigargin, a specific inhibitor of most animal intracellular SERCA-type Ca2+ pumps present in the sarcoplasmic/endoplasmic reticulum, was originally isolated from the roots of the Mediterranean plant Thapsia gargancia L. Here, we demonstrate that this root-derived compound is capable of altering root gravitropism in Arabidopsis thaliana. Thapsigargin concentrations as low as 0.1 microM alter root gravitropism whereas under similar conditions cyclopiazonic acid does not. Furthermore, a fluorescently conjugated thapsigargin (BODIPY FL thapsigargin) suggests that target sites for thapsigargin are located in intracellular organelles in the root distal elongation zone and the root cap, regions known to regulate root gravitropism.
The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P
2016-08-01
recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca(2+) transient characteristics and showed a biphasic peak calcium-frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated increase in sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L-type channel and transient outward K(+) current activity and (3) Na(+) /K(+) pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca(2+) -frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca(2+) . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
The calcium–frequency response in the rat ventricular myocyte: an experimental and modelling study
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E.; Niederer, Steven A.
2016-01-01
predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca2+ transient characteristics and showed a biphasic peak calcium–frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated increase in sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L‐type channel and transient outward K+ current activity and (3) Na+/K+ pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca2+–frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca2+. PMID:26916026
Lamboley, C R; Wyckelsma, V L; Perry, B D; McKenna, M J; Lamb, G D
2016-08-01
Inactivity negatively impacts on skeletal muscle function mainly through muscle atrophy. However, recent evidence suggests that the quality of individual muscle fibers is also altered. This study examined the effects of 23 days of unilateral lower limb suspension (ULLS) on specific force and sarcoplasmic reticulum (SR) Ca(2+) content in individual skinned muscle fibers. Muscle biopsies of the vastus lateralis were taken from six young healthy adults prior to and following ULLS. After disuse, the endogenous SR Ca(2+) content was ∼8% lower in type I fibers and maximal SR Ca(2+) capacity was lower in both type I and type II fibers (-11 and -5%, respectively). The specific force, measured in single skinned fibers from three subjects, decreased significantly after ULLS in type II fibers (-23%) but not in type I fibers (-9%). Western blot analyses showed no significant change in the amounts of myosin heavy chain (MHC) I and MHC IIa following the disuse, whereas the amounts of sarco(endo)plasmic reticulum Ca(2+)-ATPase 1 (SERCA1) and calsequestrin increased by ∼120 and ∼20%, respectively, and the amount of troponin I decreased by ∼21%. These findings suggest that the decline in force and power occurring with muscle disuse is likely to be exacerbated in part by reductions in maximum specific force in type II fibers, and in the amount of releasable SR Ca(2+) in both fiber types, the latter not being attributable to a reduced calsequestrin level. Furthermore, the ∼3-wk disuse in human elicits change in SR properties, in particular a more than twofold upregulation in SERCA1 density, before any fiber-type shift. Copyright © 2016 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru
2010-06-11
Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less
Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping
2015-01-01
Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in
Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping
2016-02-01
Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cardiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca(2+)]i transient ([Ca(2+)]iT), and β-adrenergic hyporesponsiveness. We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca(2+)]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400 W, 10(-5)mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca(2+)]iT. In hypothyroidism, isoproterenol (10(-8)M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca(2+)]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca(2+)]iT. Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cardiomyocyte iNOS may promote progressive cardiac dysfunction in hypothyroidism. Copyright © 2015 Elsevier
Antenatal/early postnatal hypothyroidism alters arterial tone regulation in 2-week-old rats.
Sofronova, Svetlana I; Gaynullina, Dina K; Shvetsova, Anastasia A; Borzykh, Anna A; Selivanova, Ekaterina K; Kostyunina, Daria S; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S
2017-11-01
The mechanisms of vascular alterations resulting from early thyroid hormones deficiency are poorly understood. We tested the hypothesis that antenatal/early postnatal hypothyroidism would alter the activity of endothelial NO pathway and Rho-kinase pathway, which are specific for developing vasculature. Dams were treated with propylthiouracil (PTU, 7 ppm) in drinking water during gestation and 2 weeks after delivery, and their progeny had normal body weight but markedly reduced blood levels of thyroid hormones (ELISA). Small arteries from 2-week-old male pups were studied using wire myography, qPCR and Western blotting. Mesenteric arteries of PTU pups, compared to controls, demonstrated smaller maximum response to α 1 -adrenergic agonist methoxamine and reduced mRNA contents of smooth muscle differentiation markers α-actin and SERCA2A. Inhibition of basal NO synthesis by l-NNA led to tonic contraction of mesenteric arteries and augmented their contractile responses to methoxamine; both l-NNA effects were impaired in PTU pups. PTU pups demonstrated lower blood level of NO metabolites compared to control group (Griess reaction). Rho-kinase inhibitor Y27632 strongly reduced mesenteric arteries responses to methoxamine in PTU pups, that was accompanied by elevated Rho-kinase content in their arteries in comparison to control ones. Unlike mesenteric, saphenous arteries of PTU pups, compared to controls, had no changes in α-actin and SERCA2A contents and in responses to l-NNA and Y27632. In conclusion, thyroid hormones deficiency suppresses the anticontractile effect of NO and potentiates the procontractile Rho-kinase effects in mesenteric arteries of 2-week-old pups. Such alterations disturb perinatal cardiovascular homeostasis and might lead to cardiovascular pathologies in adulthood. © 2017 Society for Endocrinology.
Store-operated Ca2+ entry supports contractile function in hearts of hibernators
Nakipova, Olga V.; Averin, Alexey S.; Evdokimovskii, Edward V.; Pimenov, Oleg Yu.; Kosarski, Leonid; Ignat’ev, Dmitriy; Anufriev, Andrey; Kokoz, Yuri M.; Reyes, Santiago; Terzic, Andre; Alekseev, Alexey E.
2017-01-01
Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a range between 37°C and near freezing, exhibiting, among other features, a unique reversibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state relies on alterations of excitation contraction coupling, which becomes less-dependent from extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat hearts, did not reduce but rather potentiated contractility of PM from hibernating ground squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expression of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylborinate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from hibernating GS, but not from rats. During cooling-reheating cycles (30°C–7°C–30°C) of ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force at low temperatures, but precluded the contractility at 30°C before and after the cooling. Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC play a pivotal role in governing the ability of hibernator hearts to maintain their function during the transition in and out of hibernating states. PMID:28531217
Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun
2011-01-01
Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763
Ceylan-Isik, Asli F; Li, Qun; Ren, Jun
2011-10-10
Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland
Hu, Li-Yen R.; Ackermann, Maegen A.; Hecker, Peter A.; Prosser, Benjamin L.; King, Brendan; O’Connell, Kelly A.; Grogan, Alyssa; Meyer, Logan C.; Berndsen, Christopher E.; Wright, Nathan T.; Jonathan Lederer, W.; Kontrogianni-Konstantopoulos, Aikaterini
2017-01-01
Obscurins are cytoskeletal proteins with structural and regulatory roles encoded by OBSCN. Mutations in OBSCN are associated with the development of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Specifically, the R4344Q mutation present in immunoglobulin domain 58 (Ig58) was the first to be linked with the development of HCM. To assess the effects of R4344Q in vivo, we generated the respective knock-in mouse model. Mutant obscurins are expressed and incorporated normally into sarcomeres. The expression patterns of sarcomeric and Ca2+-cycling proteins are unaltered in sedentary 1-year-old knock-in myocardia, with the exception of sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase 2 (SERCA2) and pentameric phospholamban whose levels are significantly increased and decreased, respectively. Isolated cardiomyocytes from 1-year-old knock-in hearts exhibit increased Ca2+-transients and Ca2+-load in the sarcoplasmic reticulum and faster contractility kinetics. Moreover, sedentary 1-year-old knock-in animals develop tachycardia accompanied by premature ventricular contractions, whereas 2-month-old knock-in animals subjected to pressure overload develop a DCM-like phenotype. Structural analysis revealed that the R4344Q mutation alters the distribution of electrostatic charges over the Ig58 surface, thus interfering with its binding capabilities. Consistent with this, wild-type Ig58 interacts with phospholamban modestly, and this interaction is markedly enhanced in the presence of R4344Q. Together, our studies demonstrate that under sedentary conditions, the R4344Q mutation results in Ca2+ deregulation and spontaneous arrhythmia, whereas in the presence of chronic, pathological stress, it leads to cardiac remodeling and dilation. We postulate that enhanced binding between mutant obscurins and phospholamban leads to SERCA2 disinhibition, which may underlie the observed pathological alterations. PMID:28630914
The Endoplasmic Reticulum: A Central Player in Cell Signalling and Protein Synthesis
NASA Astrophysics Data System (ADS)
Llewelyn Roderick, H.; Berridge, Michael J.; Bootman, Martin D.
In addition to being the principle intracellular Ca 2+ store, the endoplasmic reticulum (ER) is the initial site of synthesis and folding of membrane and secretory proteins. These two roles of the ER are intimately linked. First, the function of many proteins involved in Ca 2+ handling are modulated by Ca 2+ and second, ER lumenal Ca 2+ modulates protein synthesis and folding. Within the ER, Ca 2+ is stored by low affinity high capacity Ca 2+ binding proteins and is maintained at a free concentration between 0.1 and 1 μM relative to 0.1 μM cytosolic Ca 2+. This concentration gradient is maintained by the action of the Sarco-Endoplasmic Reticulum ATPases (SERCa) which hydrolyse ATP to pump Ca 2+ into the ER. Following stimulation Ca 2+ is released from the ER through several classes of ligand gated channels. The most well characterized of these being the inositol 1,4,5-trisphosphate receptor ( IP 3 R) and the Ryanodine receptor (RyR) families of proteins. This release of Ca 2+ results in a drop of ER free Ca 2+ to levels as low as 10 μM. This decrease in lumenal Ca 2+ inhibits further release through the channels and increases the rate of re-sequestration of Ca 2+ into the ER by the SERCa pumps. Under these conditions, in addition to effects on Ca 2+ handling proteins, protein synthesis is inhibited, chaperones dissociate from their substrates, secondary modifications of proteins are inhibited and the retention of many proteins within the ER is lost. Furthermore, a signalling cascade resulting in the up-regulation of many proteins involved in protein folding and Ca 2+ homeostasis is initiated. This review will focus on the proteins involved in the regulation ER lumenal Ca 2+ and the role of ER lumenal Ca 2+ in cell signalling and protein synthesis.
Tribulova, Narcis; Seki, Shingo; Radosinska, Jana; Kaplan, Peter; Babusikova, Eva; Knezl, Vladimir; Mochizuki, Seibu
2009-12-01
Using whole-heart preparations, we tested our hypothesis that Ca(2+) handling is closely related to cell-to-cell coupling at the gap junctions and that both are critical for the development and particularly the termination of ventricular fibrillation (VF) and hence the prevention of sudden arrhythmic death. Intracellular free calcium concentration ([Ca(2+)](i)), ECG, and left ventricular pressure were continuously monitored in isolated guinea pig hearts before and during development of low K(+)-induced sustained VF and during its conversion into sinus rhythm facilitated by stobadine. We also examined myocardial ultrastructure to detect cell-to-cell coupling alterations. We demonstrated that VF occurrence was preceded by a 55.9% +/- 6.2% increase in diastolic [Ca(2+)](i), which was associated with subcellular alterations indicating Ca(2+) overload of the cardiomyocytes and disorders in coupling among the cells. Moreover, VF itself further increased [Ca(2+)](i) by 58.2% +/- 3.4% and deteriorated subcellular and cell-to-cell coupling abnormalities that were heterogeneously distributed throughout the myocardium. In contrast, termination of VF and its conversion into sinus rhythm was marked by restoration of basal [Ca(2+)](i), resulting in recovery of intercellular coupling linked with synchronous contraction. Furthermore, we have shown that hearts exhibiting lower SERCA2a (sarcoplasmic reticulum Ca(2+)-ATPase) activity and abnormal intercellular coupling (as in older guinea pigs) are more prone to develop Ca(2+) overload associated with cell-to-cell uncoupling than hearts with higher SERCA2a activity (as in young guinea pigs). Consequently, young animals are better able to terminate VF spontaneously. These findings indicate the crucial role of Ca(2+) handling in relation to cell-to-cell coupling in both the occurrence and termination of malignant arrhythmia.
Gravina, Fernanda S.; van Helden, Dirk F.; Kerr, Karen P.; de Oliveira, Ramatis B.; Jobling, Phillip
2014-01-01
Background/Aims The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Methodology/Principal Findings Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Conclusions/Significance Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the
Gravina, Fernanda S; van Helden, Dirk F; Kerr, Karen P; de Oliveira, Ramatis B; Jobling, Phillip
2014-01-01
The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.
Caddy, J; Isa, S; Mainwaring, L S; Adam, E; Roberts, A; Lang, D; Morris, R H K; Thomas, A W; Webb, R
2010-10-01
Given the safety concerns expressed over negative cardiovascular outcomes resulting from the clinical use of rosiglitazone, and the view that rosiglitazone exerts PPARγ-independent effects alongside its insulin-sensitising PPARγ-dependent effects, we hypothesised that rosiglitazone may trigger Unfolded Protein Responses (UPRs) due to disruptions in [Ca(2+)](i) homeostasis within two cardiovascular cell types: monocytic (MM6) and vascular smooth muscle (A7r5) cells. In microsomal samples derived from both cell types, pre-incubation with rosiglitazone rapidly (30min) brought about concentration-dependent PPARγ-independent inhibition of Ca(2+)ATPase activity (IC(50) ∼2μM). Fluo-3 fluorimetric data demonstrated in intact cells that 1h treatment with 1 or 10μM rosiglitazone caused Ca(2+) ions to leak into the cytoplasm. Gene expression analysis showed that within 4h of rosiglitazone exposure, the UPR transcription factor XBP-1 was activated (likely due to corresponding ER Ca(2+) depletion), and the UPR target genes BiP and SERCA2b were subsequently upregulated within 24-72h. After 72h 1 or 10μM rosiglitazone treatment, microsomal Ca(2+)ATPase activity increased to >2-fold of that seen in control microsomes, while [Ca(2+)](i) returned to basal, indicating that UPR-triggered SERCA2b upregulation was responsible for enhanced enzymatic Ca(2+) sequestration within the ER. This appeared to be sufficient to replenish ER Ca(2+) stores and restore normal cell physiology, as cell viability levels were not decreased due to rosiglitazone treatment throughout a 2-week study. Thus, incubation with 1-10μM rosiglitazone triggers the UPR, but does not prove cytotoxic, in cells of the cardiovascular system. This observation provides an important contribution to the current debate over the use of rosiglitazone in the clinical treatment of Type-2 Diabetes. Copyright © 2010 Elsevier Inc. All rights reserved.
Disbalance of calcium regulation-related genes in broiler hearts induced by selenium deficiency.
Zhang, Ziwei; Liu, Man; Guan, Zhenqiong; Yang, Jie; Liu, Zhonghua; Xu, Shiwen
2017-06-01
Dietary selenium (Se) deficiency may influence the calcium (Ca) homeostasis in broilers. Our objective was to investigate the effects of Se deficiency on Ca regulation-related genes in broiler hearts. In the present study, 1-day-old broilers were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 35 days. We examined the mRNA expression levels of 15 Ca regulation-related genes (ITPR 1, ITPR 2, ITPR3, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, TRPC1, TRPC3, stromal interacting molecule 1, ORAI1, calmodulin (CaLM) and calreticulin (CRT) in broiler hearts. Then, Kyoto Encyclopedia of Genes and Genomes analysis, protein-protein interactions (PPI) analysis and correlation analysis were performed to analyse the relationships between these genes. The results showed that the mRNA expression levels of ITPR 1, ITPR 2, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, CaLM and CRT were generally decreased by Se deficiency, while mRNA expression levels of TRPC1, TRPC3, stromal interacting molecule 1, ORAI1 and ITPR3 were increased by Se deficiency. Kyoto Encyclopedia of Genes and Genomes and PPI analysis showed that these Ca regulation-related genes are involved in the Ca signalling pathway and a total of 15 PPIs with a combined score of >0.4 were obtained. In conclusion, the results demonstrated that Se deficiency might cause heart injury via modulating the Ca-related pathway genes, and then induce Ca 2+ overload in the heart of broilers.
Faria, Thaís de Oliveira; Costa, Gustavo Pinto; Almenara, Camila Cruz Pereira; Angeli, Jhuli Keli; Vassallo, Dalton Valentim; Stefanon, Ivanita; Vassallo, Paula Frizera
2014-01-01
Right ventricle systolic dysfunction is a major risk factor for death and heart failure after myocardial infarction (MI). Heavy metal exposure has been associated with the development of several cardiovascular diseases, such as MI. The aim of this study was to investigate whether chronic exposure to low doses of mercury chloride (HgCl2) enhances the functional deterioration of right ventricle strips after MI. Male Wistar rats were divided into four groups: Control (vehicle); HgCl2 (exposure during 4 weeks- 1st dose 4.6 µg/kg, subsequent dose 0.07 µg/kg/day, i.m. to cover daily loss); MI surgery induced and HgCl2-MI groups. One week after MI, the morphological and hemodynamic measurements and isometric tension of right ventricle strips were investigated. The chronic HgCl2 exposure did not worsen the injury compared with MI alone in the morphological or hemodynamic parameters evaluated. At basal conditions, despite similar maximum isometric force at L-max, relaxation time was increased in the MI group but unaffected in the HgCl2-MI compared to the Control group. Impairment of the sarcoplasmic reticulum (SR) function and reduction in the sarcolemmal calcium influx were observed in MI group associated with SERCA2a reduction and increased PLB protein expression. Induction of MI in chronic HgCl2 exposed rats did not cause any alteration in the developed force at L-max, lusitropic function or −dF/dt except for a tendency of a reduction SR function. These findings could be partially explained by the normalization in the sarcolemmal calcium influx and the increase in NCX protein expression observed only in this group. These results suggest that chronic exposure to low doses of HgCl2 prevents the impaired SR function and the reduced sarcolemmal calcium influx observed in MI likely by acting on NCX, PLB and SERCA2a protein expression. PMID:24748367
Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.
2012-01-01
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the
Calcium Signaling enhancement during oocyte maturation
NASA Astrophysics Data System (ADS)
Jung, Peter; Ullah, Ghanim; Machaca, Khaled
2006-03-01
A Ca2+ signal with a special spatial and temporal characteristic universally removes cell-cycle arrest after fertilization of a mature egg cell. The Ca2+ signal is characterized by a fast rise of intracellular Ca2+ and a slow decay on the time scale of minutes. We use computational modeling of Ca2+ release on the microscale (Ca2+ puffs) and cell-scale in conjunction with experimental knowledge of the changes in the Ca2+ signaling apparatus during oocyte maturation and changing signaling patterns to explore the relationship between organization and sensitivity of IP3 receptors and SERCA pumps and the resulting signaling patterns. We hypothesize that potentiation of the IP3 receptors during oocyte maturation is the main cause for the differentiation in the signaling patterns.
Surfactant bilayers maintain transmembrane protein activity.
Rayan, Gamal; Adrien, Vladimir; Reffay, Myriam; Picard, Martin; Ducruix, Arnaud; Schmutz, Marc; Urbach, Wladimir; Taulier, Nicolas
2014-09-02
In vitro studies of membrane proteins are of interest only if their structure and function are significantly preserved. One approach is to insert them into the lipid bilayers of highly viscous cubic phases rendering the insertion and manipulation of proteins difficult. Less viscous lipid sponge phases are sometimes used, but their relatively narrow domain of existence can be easily disrupted by protein insertion. We present here a sponge phase consisting of nonionic surfactant bilayers. Its extended domain of existence and its low viscosity allow easy insertion and manipulation of membrane proteins. We show for the first time, to our knowledge, that transmembrane proteins, such as bacteriorhodopsin, sarcoplasmic reticulum Ca(2+)ATPase (SERCA1a), and its associated enzymes, are fully active in a surfactant phase. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance
Krishna, Sanjeev; Woodrow, Charles J.; Staines, Henry M.; Haynes, Richard K.; Mercereau-Puijalon, Odile
2006-01-01
There are more than half a billion cases of malaria every year. Combinations of an artemisinin with other antimalarial drugs are now recommended treatments for Plasmodium falciparum malaria in most endemic areas. These treatment regimens act rapidly to relieve symptoms and effect cure. There is considerable controversy on how artemisinins work and over emerging indications of resistance to this class of antimalarial drugs. Several individual molecules have been proposed as targets for artemisinins, in addition to the idea that artemisinins might have many targets at the same time. Our suggestion that artemisinins inhibit the parasite-encoded sarco–endoplasmic reticulum Ca2+-ATPase (SERCA) PfATP6 has gained support from recent observations that a polymorphism in the gene encoding PfATP6 is associated with in vitro resistance to artemether in field isolates of P. falciparum. PMID:16616639
Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J; Shukla, Anil K; Wang, Lu; Bammler, Theo K; Qian, Wei-Jun; Marcinek, David J
2018-05-23
Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown
Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A
2003-03-01
A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs
Bernal-Ramírez, Judith; Lozano, Omar; Oropeza-Almazán, Yuriana; Castillo, Elena Cristina; Garza, Jesús Roberto; García, Noemí; Vela, Jorge; Ortega, Eduardo; Torre-Amione, Guillermo; Ornelas-Soto, Nancy
2017-01-01
Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death. NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown
Rhodiola Inhibits Atrial Arrhythmogenesis in a Heart Failure Model.
Liu, Shuen-Hsin; Hsiao, Ya-Wen; Chong, Eric; Singhal, Rahul; Fong, Man-Cai; Tsai, Yung-Nan; Hsu, Chiao-Po; Chen, Yao-Chang; Chen, Yi-Jen; Chiou, Chuen-Wang; Chiang, Shuo-Ju; Chang, Shih-Lin; Chen, Shih-Ann
2016-09-01
Rhodiola, a popular plant in Tibet, has been proven to decrease arrhythmia. The aim of this study was to elucidate the molecular mechanism and electrophysiological properties of rhodiola in the suppression of atrial fibrillation. This study consisted of 3 groups as follows: Group 1: normal control rabbits (n = 5); Group 2: rabbits with heart failure (HF) created by coronary ligation and who received 2 weeks of water orally as a placebo (n = 5); and Group 3: rabbits with HF who received 2 weeks of a rhodiola 270 mg/kg/day treatment orally (n = 5). The monophasic action potential, histology, and real-time polymerase chain reaction (RT-PCR) analysis of ionic channels and PI3K/AKT/eNOS were examined. Compared with the HF group, attenuated atrial fibrosis (35.4 ± 17.4% vs. 16.9 ± 8.4%, P = 0.05) and improved left ventricular (LV) ejection fraction (51.6 ± 3.4% vs. 68.0 ± 0.5%, P = 0.001) were observed in the rhodiola group. The rhodiola group had a shorter ERP (85.3 ± 6.8 vs. 94.3 ± 1.2, P = 0.002), APD90 (89.3 ± 1.5 vs. 112.7 ± 0.7, P < 0.001) in the left atrium (LA), and decreased AF inducibility (0.90 ± 0.04 vs. 0.42 ± 0.04, P < 0.001) compared with the HF group. The mRNA expressions of Kv1.4, Kv1.5, Kv4.3, KvLQT1, Cav1.2, and SERCA2a in the HF LA were up-regulated after rhodiola treatment. The rhodiola-treated HF LA demonstrated higher mRNA expression of PI3K-AKT compared with the HF group. Rhodiola reversed LA electrical remodeling, attenuated atrial fibrosis and suppressed AF in rabbits with HF. The beneficial electrophysiological effect of rhodiola may be related to upregulation of Kv1.4, Kv1.5, Kv4.3, KvLQT1, Cav1.2, SERCA2a, and activation of PI3K/AKT signaling. © 2016 Wiley Periodicals, Inc.
Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People
Mosole, Simone; Zampieri, Sandra; Furlan, Sandra; Carraro, Ugo; Löefler, Stefan; Kern, Helmut; Volpe, Pompeo
2018-01-01
Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins. PMID:29662923
Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T
1993-12-01
CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.
Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism
Herrera, Jose Luis; Reis, Felipe C. G.
2017-01-01
Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis. PMID:29086530
NASA Astrophysics Data System (ADS)
Restrepo, Simon; Basler, Konrad
2016-08-01
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.
Current perspectives on the mechanism of action of artemisinins.
Golenser, Jacob; Waknine, Judith H; Krugliak, Miriam; Hunt, Nicholas H; Grau, Georges E
2006-12-01
Artemisinin derivatives are the most recent single drugs approved and introduced for public antimalarial treatment. Although their recommended use is for treatment of Plasmodium falciparum infection, these drugs also act against other parasites, as well as against tumor cells. The mechanisms of action attributed to artemisinin include interference with parasite transport proteins, disruption of parasite mitochondrial function, modulation of host immune function and inhibition of angiogenesis. Artemisinin combination therapies are currently the preferred treatment for malaria. These combinations may prevent the induction of parasite drug resistance. However, in view of the multiple mechanisms involved, especially when additional drugs are used, the combined therapy should be carefully examined for antagonistic effects. It is now a general theory that the crucial mechanism is interference with plasmodial SERCA. Therefore, future development of resistance may be associated with overproduction or mutations of this transporter. However, a general mechanism, such as alterations in general drug transport pathways, is feasible. In this article, we review the evidence for each mechanism of action suggested.
Coulon, Philippe; Herr, David; Kanyshkova, Tatyana; Meuth, Patrick; Budde, Thomas; Pape, Hans-Christian
2009-01-01
The nucleus reticularis thalami (NRT) is a layer of inhibitory neurons that surrounds the dorsal thalamus. It appears to be the 'pacemaker' of certain forms of slow oscillations in the thalamus and was proposed to be a key determinant of the internal attentional searchlight as well as the origin of hypersynchronous activity during absence seizures. Neurons of the NRT exhibit a transient depolarization termed low threshold spike (LTS) following sustained hyperpolarization. This is caused by the activation of low-voltage-activated Ca2+ channels (LVACC). Although the role of these channels in thalamocortical oscillations was studied in great detail, little is known about the downstream intracellular Ca2+ signalling pathways and their feedback onto the oscillations. A signalling triad consisting of the sarco(endo)plasmic reticulum calcium ATPase (SERCA), Ca2+ activated K+ channels (SK2), and LVACC is active in dendrites of NRT neurons and shapes rhythmic oscillations. The aim of our study was to find out (i) if and how Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyR) can be evoked in NRT neurons and (ii) how the released Ca2+ affects burst activity. Combining electrophysiological, immunohistochemical, and two-photon Ca2+ imaging techniques, we show that CICR in NRT neurons takes place by a cell-type specific coupling of LVACC and RyR. CICR could be evoked by the application of caffeine, by activation of LVACC, or by repetitive LTS generation. During the latter, CICR contributed 30% to the resulting build-up of [Ca2+]i. CICR was abolished by cyclopiazonic acid, a specific blocker for SERCA, or by high concentrations of ryanodine (50 microM). Unlike other thalamic nuclei, in the NRT the activation of high-voltage-activated Ca2+ channels failed to evoke CICR. While action potentials contributed little to the build-up of [Ca2+]i upon repetitive LTS generation, the Ca2+ released via RyR significantly reduced the number of action potentials during an LTS and
Modeling CICR in rat ventricular myocytes: voltage clamp studies
2010-01-01
Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics
Calcium regulation in crustaceans during the molt cycle: a review and update.
Ahearn, Gregory A; Mandal, Prabir K; Mandal, Anita
2004-02-01
Epithelial cells of the gut, gills, antennal glands and integument regulate calcium concentrations in crustaceans during the molt cycle. A cellular calcium transport model has been proposed suggesting the presence of calcium pumps, cation antiporters and calcium channels in transporting epithelial membranes that regulate the movements of this cation across the cell layer. Basolateral calcium transport during postmolt appears mainly regulated by the low affinity NCX antiporter, while calcium regulating 'housekeeping' activities of these cells in intermolt are controlled by the high affinity calcium ATPase (PMCA). A model is proposed for the involvement of the epithelial ER in the massive transepithelial calcium fluxes that occur during premolt and postmolt. This model involves the endoplasmic reticulum SERCA and RyR proteins and proposed cytoplasmic unstirred layers adjacent to apical and basolateral plasma membranes where calcium activities may largely exceed those in the bulk cytoplasmic phase. A result of the proposed transepithelial calcium transport model is that large quantities of calcium can be moved through these cells by these processes without affecting the low, and carefully controlled, bulk cytoplasmic calcium activities.
Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy
Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del
2010-01-01
Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882
Guo, Bing; Zhang, Wangang; Tume, Ron K; Hudson, Nicholas J; Huang, Feng; Yin, Yan; Zhou, Guanghong
2016-05-01
Eight pale, soft and exudative (PSE) and eight reddish-pink, firm and non-exudative (RFN) porcine longissimus muscle samples were selected based on pH and L* at 1h postmortem (PM), and drip loss at 24h PM, and used to evaluate the cellular calcium and apoptosis status. We found that SERCA1 was decreased, while IP3R was decreased in PSE meat (P<0.05), indicative of the overloaded sarcoplasmic calcium status. In PSE meat, the pro-apoptotic factor BAX was increased while the anti-apoptotic factor Bcl-2 was decreased (P<0.05). The significantly increased activity of caspase 3 and the expression of its cleavage fragment suggested higher apoptotic potential in PSE meat compared with RFN meat (P<0.05). Moreover, the significantly higher expression level of cytochrome C (P<0.05) suggests the important role of mitochondria during apoptosis appearance in PSE meat. Taken together, our data inferred that the calcium channel disorder present in PSE meat was associated with the increased apoptotic potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
A robust method to screen detergents for membrane protein stabilization, revisited.
Champeil, Philippe; Orlowski, Stéphane; Babin, Simon; Lund, Sten; le Maire, Marc; Møller, Jesper; Lenoir, Guillaume; Montigny, Cédric
2016-10-15
This report is a follow up of our previous paper (Lund, Orlowski, de Foresta, Champeil, le Maire and Møller (1989), J Biol Chem 264:4907-4915) showing that solubilization in detergent of a membrane protein may interfere with its long-term stability, and proposing a protocol to reveal the kinetics of such irreversible inactivation. We here clarify the fact that when various detergents are tested for their effects, special attention has of course to be paid to their critical micelle concentration. We also investigate the effects of a few more detergents, some of which have been recently advertised in the literature, and emphasize the role of lipids together with detergents. Among these detergents, lauryl maltose neopentyl glycol (LMNG) exerts a remarkable ability, even higher than that of β-dodecylmaltoside (DDM), to protect our test enzyme, the paradigmatic P-type ATPase SERCA1a from sarcoplasmic reticulum. Performing such experiments for one's favourite protein probably remains useful in pre-screening assays testing various detergents. Copyright © 2016 Elsevier Inc. All rights reserved.
Advances in gene therapy for heart failure.
Fish, Kenneth M; Ishikawa, Kiyotake
2015-04-01
Chronic heart failure is expected to increase its social and economic burden as a consequence of improved survival in patients with acute cardiac events. Cardiac gene therapy holds significant promise in heart failure treatment for patients with currently very limited or no treatment options. The introduction of adeno-associated virus (AAV) gene vector changed the paradigm of cardiac gene therapy, and now it is the primary vector of choice for chronic heart failure gene therapy in clinical and preclinical studies. Recently, there has been significant progress towards clinical translation in this field spearheaded by AAV-1 mediated sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) gene therapy targeting chronic advanced heart failure patients. Meanwhile, several independent laboratories are reporting successful gene therapy approaches in clinically relevant large animal models of heart failure and some of these approaches are expected to enter clinical trials in the near future. This review will focus on gene therapy approaches targeting heart failure that is in clinical trials and those close to its initial clinical trial application.
Quantification and characterization of grouped type I myofibers in human aging.
Kelly, Neil A; Hammond, Kelley G; Stec, Michael J; Bickel, C Scott; Windham, Samuel T; Tuggle, S Craig; Bamman, Marcas M
2018-01-01
Myofiber type grouping is a histological hallmark of age-related motor unit remodeling. Despite the accepted concept that denervation-reinnervation events lead to myofiber type grouping, the completeness of those conversions remains unknown. Type I myofiber grouping was assessed in vastus lateralis biopsies from Young (26 ± 4 years; n = 27) and Older (66 ± 4 years; n = 91) adults. Grouped and ungrouped type I myofibers were evaluated for phenotypic differences. Higher type I grouping in Older versus Young was driven by more myofibers per group (i.e., larger group size) (P < 0.05). In Older only, grouped type I myofibers displayed larger cross-sectional area, more myonuclei, lower capillary supply, and more sarco(endo)plasmic reticulum calcium ATPase I (SERCA I) expression (P < 0.05) than ungrouped type I myofibers. Grouped type I myofibers retain type II characteristics suggesting that conversion during denervation-reinnervation events is either progressive or incomplete. Muscle Nerve 57: E52-E59, 2018. © 2017 Wiley Periodicals, Inc.
Wang, Yuanzhong; Zhou, Dujin; Phung, Sheryl; Warden, Charles; Rashid, Rumana; Chan, Nymph; Chen, Shiuan
2017-02-21
Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells. We have further found that EnR stress response down-regulates ERα expression through the protein kinase RNA-like EnR kinase (PERK) arm, and SGK3 retains ERα expression and signaling by preventing excessive EnR stress. Our study reveals regulation of ERα expression mediated by the EnR stress response and the feed-forward regulation between SGK3 and ERα in breast cancer. Given SGK3 inhibition reduces AI-resistant cell survival by eliciting excessive EnR stress and also depletes ERα expression/function, we propose SGK3 inhibition as a potential effective treatment of acquired AI-resistant breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.
One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.more » - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.« less
Chen, Ling; Song, Hong; Wang, Youhua; Lee, Jane C; Kotlikoff, Michael I; Pritchard, Tracy J; Paul, Richard J; Zhang, Jin; Blaustein, Mordecai P
2015-09-01
Arterial myocytes express α1-catalytic subunit isoform Na(+) pumps (75-80% of total), which are ouabain resistant in rodents, and high ouabain affinity α2-Na(+) pumps. Mice with globally reduced α2-pumps (but not α1-pumps), mice with mutant ouabain-resistant α2-pumps, and mice with a smooth muscle (SM)-specific α2-transgene (α2 (SM-Tg)) that induces overexpression all have altered blood pressure (BP) phenotypes. We generated α2 (SM-DN) mice with SM-specific α2 (not α1) reduction (>50%) using nonfunctional dominant negative (DN) α2. We compared α2 (SM-DN) and α2 (SM-Tg) mice to controls to determine how arterial SM α2-pumps affect vasoconstriction and BP. α2 (SM-DN) mice had elevated basal mean BP (mean BP by telemetry: 117 ± 4 vs. 106 ± 1 mmHg, n = 7/7, P < 0.01) and enhanced BP responses to chronic ANG II infusion (240 ng·kg(-1)·min(-1)) and high (6%) NaCl. Several arterial Ca(2+) transporters, including Na(+)/Ca(2+) exchanger 1 (NCX1) and sarcoplasmic reticulum and plasma membrane Ca(2+) pumps [sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and plasma membrane Ca(2+)-ATPase 1 (PMCA1)], were also reduced (>50%). α2 (SM-DN) mouse isolated small arteries had reduced myogenic reactivity, perhaps because of reduced Ca(2+) transporter expression. In contrast, α2 (SM-Tg) mouse aortas overexpressed α2 (>2-fold), NCX1, SERCA2, and PMCA1 (43). α2 (SM-Tg) mice had reduced basal mean BP (104 ± 1 vs. 109 ± 2 mmHg, n = 15/9, P < 0.02) and attenuated BP responses to chronic ANG II (300-400 ng·kg(-1)·min(-1)) with or without 2% NaCl but normal myogenic reactivity. NCX1 expression was inversely related to basal BP in SM-α2 engineered mice but was directly related in SM-NCX1 engineered mice. NCX1, which usually mediates arterial Ca(2+) entry, and α2-Na(+) pumps colocalize at plasma membrane-sarcoplasmic reticulum junctions and functionally couple via the local Na(+) gradient to help regulate cell Ca(2+). Altered Ca(2+) transporter expression in
Eshima, Hiroaki; Poole, David C; Kano, Yutaka
2015-07-15
In Type 1 diabetes, skeletal muscle resting intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca(2+)]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca(2+)]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2 ) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca(2+) imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL (P < 0.05) but not SOL. In recovery, SOL [Ca(2+)]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca(2+)]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca(2+)]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca(2+)]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca(2+)-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30-40%, P < 0.05). However, Pmv(O2) recovery kinetics were markedly slowed in EDL such that mean Pmv(O2) was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca(2+)]i. In contrast, this was not the case for SOL (P > 0.05) in that
Beraldo, F H; Sartorello, R; Lanari, R D; Garcia, C R
2001-06-01
The fluorescent calcium probe, Fluo-3, AM was used to measure the intracellular calcium concentration in red blood cells (RBCs) of the teiid lizards Ameiva ameiva and Tupinambis merianae. The cytosolic [Ca2+] is maintained around 20 nM and the cells contain membrane-bound Ca2+ pools. One pool appears to be identifiable with the endoplasmic reticulum (ER) inasmuch as addition of the sarco-endoplasmic reticulum Ca2+ ATPase, SERCA, inhibitor thapsigargin induces an increase in cytosolic [Ca2+ both in the presence and in the absence of extracellular Ca2+. In addition to the ER, an acidic compartment appears to be involved in Ca2+ storage, as collapse of intracellular pHgradients by monensin, a Na+ -H+ exchanger, and nigericin, a K+ -H+ exchanger, induce the release of Ca2+ from internal pools. A vacuolar H+ pump, sensitive to NBD-Cl and bafilomycin appears to be necessary to load the acidic Ca2+ pools. Finally, the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c in the cells from both lizard species, mostly by mobilization of the cation from internal stores. Copyright 2001 Harcourt Publishers Ltd.
Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago
2015-11-01
Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.
Michelangeli, Francesco; Ogunbayo, Oluseye A; Wootton, Laura L; Lai, Pei F; Al-Mousa, Fawaz; Harris, Robert M; Waring, Rosemary H; Kirk, Christopher J
2008-11-25
Alkylphenols such as nonylphenol are pollutants that are widely dispersed within our environment. They bio-accumulate within man, with levels in the muM concentration range reported in human tissues. These chemicals act as endocrine disruptors, having xenoestrogenic activity. More recently alkylphenols have also been shown to affect Ca2+ signalling pathways. Here we show that alkylphenols are potent inhibitors of sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) activity. For linear chain alkylphenols the potency of inhibition is related to chain length, with the IC50 values for inhibition ranging from 8 microM for 4-n-nonylphenol (C9) to 1.3 mM for 4-n-propylphenol (C3). Branched chain alkylphenols generally had lower potencies than their linear chain counterparts, however, good correlations for all alkylphenols were observed between their Ca2+ pump inhibition and hydrophobicity, molecular volume and flexibility, indicating that these parameters are all important factors. Alkylphenols cause abnormal elevations of intracellular [Ca2+] within TM4 Sertoli cells (cells involved in sperm maturation) depolarise their mitochondria and induce cell death in these cells, in an alkyl chain size-dependent manner.
Schuppe, Eric R; Petersen, John O; Fuxjager, Matthew J
2018-05-31
Many animals perform elaborate physical displays for social communication. Identifying molecular mechanisms that co-evolve with these complex behavioral signals can therefore help reveal how forces of selection shape animal design. To study this issue, we examine gene expression profiles in select skeletal muscles that actuate woodpecker drum displays. This remarkable whole-body signal is produced when individuals rapidly hammer their bill against trees. We find that, compared to muscles that play no part in producing this behavior, the main muscle used to drum abundantly expresses two genes that encode proteins that support myocytic calcium (Ca 2+ ) handling dynamics-namely parvalbumin (PV) and sarcoplasmic reticulum Ca 2+ ATPase (SERCA1). Meanwhile, we find no such difference in the expression of another gene similarly vital to Ca 2+ handling, the ryanodine receptor (RYR1). These differences are not present in a non-woodpecker species, which readily produce much slower drum-like movements for foraging (but not social signaling). Our data therefore point to an association between the fast drum displays of woodpeckers and muscle-specific expression of genes whose protein products enhance select aspects of myocytic Ca 2+ handling. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A.; Hake, J.; McCammon, J. A.
2012-01-01
We introduce a computational pipeline and suite of software tools for the approximation of diffusion-limited binding based on a recently developed theoretical framework. Our approach handles molecular geometries generated from high-resolution structural data and can account for active sites buried within the protein or behind gating mechanisms. Using tools from the FEniCS library and the APBS solver, we implement a numerical code for our method and study two Ca2+-binding proteins: troponin C and the sarcoplasmic reticulum Ca2+ ATPase. We find that a combination of diffusional encounter and internal ‘buried channel’ descriptions provides superior descriptions of association rates, improving estimates by orders of magnitude.
Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.
Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko
2017-07-17
Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.
Calcium movements during pigment aggregation in freshwater shrimp chromatophores.
Ribeiro, Márcia; McNamara, John Campbell
2007-02-01
Pigment granule migration within crustacean chromatophores provides an excellent model with which to investigate cytoplasmic movements, given the antagonistic, neurosecretory peptide regulation of granule translocation, and the absence of innervation in these large, brightly colored cells. Red pigment-concentrating hormone (RPCH) induces pigment aggregation in shrimp chromatophores via an increase in intracellular Ca2+; however, how this increase is brought about is not known. To examine the putative Ca2+ movements leading to pigment translocation in red, ovarian chromatophores of the freshwater shrimp, Macrobrachium olfersii, this study manipulates intra- and extracellular Ca2+ employing ER Ca2+-ATPase inhibitors, ryanodine-sensitive, ER Ca2+ channel blockers, and EDTA/EGTA-buffered A23187/Ca2+-containing salines. Our findings reveal that during pigment aggregation, cytosolic Ca2+ apparently increases from an intracellular source, the abundant SER, loaded by the SERCA and released through ryanodine-sensitive receptor/channels, triggered by capacitative calcium influx and/or calcium-induced calcium release mechanisms. Aggregation also depends on external calcium, which may modulate RPCH/receptor coupling. Such calcium-regulated pigment movements form the basis of a complex system of chromatic adaptation, which confers selective advantages like camouflage and protection against ultra-violet radiation to this palaemonid shrimp.
Kooptiwut, Suwattanee; Mahawong, Pitchnischa; Hanchang, Wanthanee; Semprasert, Namoiy; Kaewin, Suchada; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai
2014-01-01
Estrogen can improve glucose homeostasis not only in diabetic rodents but also in humans. However, the molecular mechanism by which estrogen prevents pancreatic β-cell death remains unclear. To investigate this issue, INS-1 cells, a rat insulinoma cell line, were cultured in medium with either 11.1mM or 40mM glucose in the presence or the absence of estrogen. Estrogen significantly reduced apoptotic β-cell death by decreasing nitrogen-induced oxidative stress and the expression of the ER stress markers GRP 78, ATF6, P-PERK, PERK, uXBP1, sXBP1, and CHOP in INS-1 cells after prolonged culture in medium with 40mM glucose. In contrast, estrogen increased the expression of survival proteins, including sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA-2), Bcl-2, and P-p38, in INS-1 cells after prolonged culture in medium with 40mM glucose. The cytoprotective effect of estrogen was attenuated by addition of the estrogen receptor (ERα and ERβ) antagonist ICI 182,780 and the estrogen membrane receptor inhibitor G15. We showed that estrogen decreases not only oxidative stress but also ER stress to protect against 40mM glucose-induced pancreatic β-cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.
Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line.
Shima, Ai; Morimoto, Yuya; Sweeney, H Lee; Takeuchi, Shoji
2018-06-18
This paper describes a method to construct three-dimensional (3D) contractile human skeletal muscle tissues from a cell line. The 3D tissue was fabricated as a fiber-based structure and cultured for two weeks under tension by anchoring its both ends. While myotubes from the immortalized human skeletal myocytes used in this study never contracted in the conventional two-dimensional (2D) monolayer culture, myotubes in the 3D tissue showed spontaneous contraction at a high frequency and also reacted to the electrical stimulation. Immunofluorescence revealed that the myotubes in the 3D tissues had sarcomeres and expressed ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). In addition, intracellular calcium oscillations in the myotubes in the 3D tissue were observed. These results indicated that the 3D culture enabled the myocyte cell line to reach a more highly matured state compared to 2D culture. Since contraction is the most significant feature of skeletal muscle, we believe that our 3D human muscle tissue with the contractile ability would be a useful tool for both basic biology research and drug discovery as one of the muscle-on-chips. Copyright © 2018. Published by Elsevier Inc.
Wan, Xuebin; Wang, Dan; Xiong, Qi; Xiang, Hong; Li, Huanan; Wang, Hongshuai; Liu, Zezhang; Niu, Hongdan; Peng, Jian; Jiang, Siwen; Chai, Jin
2016-11-11
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Jorge, Luciana; Rodrigues, Bruno; Rosa, Kaleizu Teodoro; Malfitano, Christiane; Loureiro, Tatiana Carolina Alba; Medeiros, Alessandra; Curi, Rui; Brum, Patricia Chakur; Lacchini, Silvia; Montano, Nicola; De Angelis, Kátia; Irigoyen, Maria-Cláudia
2011-04-01
To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO(2) max). Left ventricular function was evaluated non-invasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 ± 6%) compared with SI (34 ± 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.
Distributions of experimental protein structures on coarse-grained free energy landscapes
Liu, Jie; Jernigan, Robert L.
2015-01-01
Predicting conformational changes of proteins is needed in order to fully comprehend functional mechanisms. With the large number of available structures in sets of related proteins, it is now possible to directly visualize the clusters of conformations and their conformational transitions through the use of principal component analysis. The most striking observation about the distributions of the structures along the principal components is their highly non-uniform distributions. In this work, we use principal component analysis of experimental structures of 50 diverse proteins to extract the most important directions of their motions, sample structures along these directions, and estimate their free energy landscapes by combining knowledge-based potentials and entropy computed from elastic network models. When these resulting motions are visualized upon their coarse-grained free energy landscapes, the basis for conformational pathways becomes readily apparent. Using three well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational changes provide meaningful insights into the functional dynamics and suggest transition pathways between different conformational states. As a further example, we also show that Monte Carlo simulations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven conformational changes. PMID:26723638
Patient-Specific Induced Pluripotent Stem Cell as a Model for Familial Dilated Cardiomyopathy
Sun, Ning; Yazawa, Masayuki; Liu, Jianwei; Han, Leng; Sanchez-Freire, Veronica; Abilez, Oscar J.; Navarrete, Enrique G.; Hu, Shijun; Wang, Li; Lee, Andrew; Pavlovic, Aleksandra; Lin, Shin; Chen, Rui; Hajjar, Roger J.; Snyder, Michael P.; Dolmetsch, Ricardo E.; Butte, Manish J.; Ashley, Euan A.; Longaker, Michael T.; Robbins, Robert C.; Wu, Joseph C.
2013-01-01
Dilated cardiomyopathy (DCM) is the most common cardiomyopathy, characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific models, investigating underlying mechanisms, and optimizing therapy. Here we generated cardiomyocytes (CMs) from iPSCs derived from patients of a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to the control healthy individuals in the same family cohort, DCM iPSC-CMs exhibited altered Ca2+ handling, decreased contractility, and abnormal sarcomeric α-actinin distribution. When stimulated with β-adrenergic agonist, DCM iPSC-CMs showed characteristics of failure such as reduced beating rates, compromised contraction, and significantly more cells with abnormal sarcomeric α-actinin distribution. β-adrenergic blocker treatment and over-expression of sarcoplasmic reticulum Ca2+ ATPase (Serca2a) improved DCM iPSC-CMs function. Our study demonstrated that human DCM iPSC-CMs recapitulated to some extent the disease phenotypes morphologically and functionally, and thus can serve as a useful platform for exploring molecular and cellular mechanisms and optimizing treatment of this particular disease. PMID:22517884
Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L.
2017-01-01
Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca2+-dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca2+imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca2+oscillations in BON. UTP evoked a biphasic concentration-dependent Ca2+response. Cells responded in the order of UTP, ATP > UTPγS > UDP >> MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y4, 50% cells), UDP (P2Y6, 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca2+responses were blocked with inhibitors of PLC, IP3R, SERCA Ca2+pump, La3+sensitive Ca2+channels or chelation of intracellular free Ca2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca2+pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca2+currents (ICa), Vm-depolarization and inhibited IK (not IA) currents. An IKv7.2/7.3 K+ channel blocker XE-991 mimicked UTP-induced Vm-depolarization and blocked UTP-responses. XE-991 blocked IK and UTP caused further reduction. La3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca
Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L
2017-01-01
Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca 2+ -dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca 2+ imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca 2+ oscillations in BON. UTP evoked a biphasic concentration-dependent Ca 2+ response. Cells responded in the order of UTP, ATP > UTPγS > UDP > MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y 4 , 50% cells), UDP (P2Y 6 , 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca 2+ responses were blocked with inhibitors of PLC, IP3R, SERCA Ca 2+ pump, La 3+ sensitive Ca 2+ channels or chelation of intracellular free Ca 2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca 2+ pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca 2+ currents (I Ca ), V m -depolarization and inhibited I K (not I A ) currents. An I Kv 7.2/7.3 K + channel blocker XE-991 mimicked UTP-induced V m -depolarization and blocked UTP-responses. XE-991 blocked I K and UTP caused further reduction. La 3+ or PLC inhibitors blocked UTP depolarization
Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M
2016-06-15
Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it
Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.
2016-01-01
Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was
Šimurda, Jiří; Orchard, Clive H.
2014-01-01
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient. PMID:24971358
Lim, Yi-Cheng; Budin, Siti Balkis; Othman, Faizah; Latip, Jalifah; Zainalabidin, Satirah
2017-07-01
Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max , suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca 2+ channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.
Dissection of the Effects of Quercetin on Mouse Myocardium.
Santos, Michel Santana; Oliveira, Evaleide Diniz; Santos-Miranda, Artur; Cruz, Jader Santos; Gondim, Antônio Nei Santana; Menezes-Filho, José Evaldo Rodrigues; Souza, Diego Santos; Pinho-da-Silva, Leidiane; Jesus, Itamar Couto Guedes; Roman-Campos, Danilo; Guatimosim, Silvia; Lara, Aline; Conde-Garcia, Eduardo Antônio; Vasconcelos, Carla Maria Lins
2017-06-01
Quercetin is a plant flavonoid with several biological activities. This study aimed to describe quercetin effects on contractile and electrophysiological properties of the cardiac muscle as well as on calcium handling. Quercetin elicited positive inotropism that was significantly reduced by propranolol indicating an involvement of the sympathetic nervous system. In cardiomyocytes, 30 μM quercetin increased I Ca,L at 0 mV from -0.95 ± 0.01 A/F to -1.21 ± 0.08 A/F. The membrane potential at which 50% of the channels are activated (V 0.5 ) shifted towards more negative potentials from -13.06 ± 1.52 mV to -19.26 ± 1.72 mV and did not alter the slope factor. Furthermore, quercetin increased [Ca 2+ ] i transient by 28% when compared to control. Quercetin accelerated [Ca 2+ ] i transient decay time, which could be attributed to SERCA activation. In resting cardiomyocytes, quercetin did not change amplitude or frequency of Ca 2+ sparks. In isolated heart, quercetin increased heart rate and decreased PRi, QTc and duration of the QRS complex. Thus, we showed that quercetin activates β-adrenoceptors, leading to increased L-type Ca 2+ current and cell-wide intracellular Ca 2+ transient without visible changes in Ca 2+ sparks. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Kumar, Vikas; Aneesh, Kumar A; Kshemada, K; Ajith, Kumar G S; Binil, Raj S S; Deora, Neha; Sanjay, G; Jaleel, A; Muraleedharan, T S; Anandan, E M; Mony, R S; Valiathan, M S; Santhosh, Kumar T R; Kartha, C C
2017-08-17
We evaluated the cardioprotective effect of Amalaki Rasayana (AR), a rejuvenating Ayurvedic drug prepared from Phyllanthus emblica fruits in the reversal of remodeling changes in pressure overload left ventricular cardiac hypertrophy (LVH) and age-associated cardiac dysfunction in male Wistar rats. Six groups (aging groups) of 3 months old animals were given either AR or ghee and honey (GH) orally; seventh group was untreated. Ascending aorta was constricted using titanium clips in 3 months old rats (N = 24; AC groups) and after 6 months, AR or GH was given for further 12 months to two groups; one group was untreated. Histology, gene and protein expression analysis were done in heart tissues. Chemical composition of AR was analyzed by HPLC, HPTLC and LC-MS. AR intake improved (P < 0.05) cardiac function in aging rats and decreased LVH (P < 0.05) in AC rats as well as increased (P < 0.05) fatigue time in treadmill exercise in both groups. In heart tissues of AR administered rats of both the groups, SERCA2, CaM, Myh11, antioxidant, autophagy, oxidative phosphorylation and TCA cycle proteins were up regulated. ADRB1/2 and pCREB expression were increased; pAMPK, NF-kB were decreased. AR has thus a beneficial effect on myocardial energetics, muscle contractile function and exercise tolerance capacity.
Hoefig, Carolin S; Harder, Lisbeth; Oelkrug, Rebecca; Meusel, Moritz; Vennström, Björn; Brabant, Georg; Mittag, Jens
2016-07-01
Thyroid hormones play a major role in body homeostasis, regulating energy expenditure and cardiovascular function. Given that obese people or athletes might consider rapid weight loss as beneficial, voluntary intoxication with T4 preparations is a growing cause for thyrotoxicosis. However, the long-lasting effects of transient thyrotoxicosis are poorly understood. Here we examined metabolic, thermoregulatory, and cardiovascular function upon induction and recovery from a 2-week thyrotoxicosis in male C57BL/6J mice. Our results showed that T4 treatment caused tachycardia, decreased hepatic glycogen stores, and higher body temperature as expected; however, we did not observe an increase in brown fat thermogenesis or decreased tail heat loss, suggesting that these tissues do not contribute to the hyperthermia induced by thyroid hormone. Most interestingly, when the T4 treatment was ended, a pronounced bradycardia was observed in the animals, which was likely caused by a rapid decline of T3 even below baseline levels. On the molecular level, this was accompanied by an overexpression of cardiac phospholamban and Serca2a mRNA, supporting the hypothesis that the heart depends more on T3 than T4. Our findings therefore demonstrate that a transient thyrotoxicosis can have pathological effects that even persist beyond the recovery of serum T4 levels, and in particular the observed bradycardia could be of clinical relevance when treating hyperthyroid patients.
Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.
Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller
2016-12-01
Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.
Yon, Marianne; Pickavance, Lucy; Yanni Gerges, Joseph; Davis, Gershan; Wilding, John; Jian, Kun; Hart, George; Boyett, Mark
2016-01-01
Introduction. Obesity is increasingly common and is associated with an increased prevalence of cardiac arrhythmias. The aim of this study was to see whether in obesity there is proarrhythmic gene expression of ventricular ion channels and related molecules. Methods and Results. Rats were fed on a high-fat diet and compared to control rats on a normal diet (n = 8). After 8 weeks, rats on the high-fat diet showed significantly greater weight gain and higher adiposity. Left ventricle samples were removed at 8 weeks and mRNA expression of ion channels and other molecules was measured using qPCR. Obese rats had significant upregulation of Cav1.2, HCN4, Kir2.1, RYR2, NCX1, SERCA2a, and RYR2 mRNA and downregulation of ERG mRNA. In the case of HCN4, it was confirmed that there was a significant increase in protein expression. The potential effects of the mRNA changes on the ventricular action potential and intracellular Ca2+ transient were predicted using computer modelling. Modelling predicted prolongation of the ventricular action potential and an increase in the intracellular Ca2+ transient, both of which would be expected to be arrhythmogenic. Conclusion. High-fat diet causing obesity results in arrhythmogenic cardiac gene expression of ion channels and related molecules. PMID:27747100
Brunschwig, Christel; Lawrence, Nina; Taylor, Dale; Abay, Efrem; Njoroge, Mathew; Basarab, Gregory S; Le Manach, Claire; Paquet, Tanya; Gonzàlez Cabrera, Diego; Nchinda, Aloysius T; de Kock, Carmen; Wiesner, Lubbe; Denti, Paolo; Waterson, David; Blasco, Benjamin; Leroy, Didier; Witty, Michael J; Donini, Cristina; Duffy, James; Wittlin, Sergio; White, Karen L; Charman, Susan A; Jiménez-Díaz, Maria Belén; Angulo-Barturen, Iñigo; Herreros, Esperanza; Gamo, Francisco Javier; Rochford, Rosemary; Mancama, Dalu; Coetzer, Theresa L; van der Watt, Mariëtte E; Reader, Janette; Birkholtz, Lyn-Marie; Marsh, Kennan C; Solapure, Suresh M; Vanaerschot, Manu; Fidock, David A; Fish, Paul V; Siegl, Peter; Smith, Dennis A; Wirjanata, Grennady; Noviyanti, Rintis; Price, Ric N; Marfurt, Jutta; Silue, Kigbafori D; Street, Leslie J; Chibale, Kelly
2018-06-25
The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite lifecycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activity than MMV048 and was more potent against resistant P. falciparum and P. vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in P. berghei and humanized P. falciparum NOD- scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vitro intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next generation Plasmodium PI4K inhibitor, the combined preclinical data suggest that UCT943 has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent and block the transmission of malaria. Copyright © 2018 American Society for Microbiology.
Heterogeneous expression of Ca(2+) handling proteins in rabbit sinoatrial node.
Musa, Hanny; Lei, Ming; Honjo, Hauro; Jones, Sandra A; Dobrzynski, Halina; Lancaster, Mathew K; Takagishi, Yoshiko; Henderson, Zaineb; Kodama, Itsuo; Boyett, Mark R
2002-03-01
We investigated the densities of the L-type Ca(2+) current, i(Ca,L), and various Ca(2+) handling proteins in rabbit sinoatrial (SA) node. The density of i(Ca,L), recorded with the whole-cell patch-clamp technique, varied widely in sinoatrial node cells. The density of i(Ca,L) was significantly (p<0.001) correlated with cell capacitance (measure of cell size) and the density was greater in larger cells (likely to be from the periphery of the SA node) than in smaller cells (likely to be from the center of the SA node). Immunocytochemical labeling of the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger, sarcoplasmic reticulum Ca(2+) release channel (RYR2), and sarcoplasmic reticulum Ca(2+) pump (SERCA2) also varied widely in SA node cells. In all cases there was significantly (p<0.05) denser labeling of cells from the periphery of the SA node than of cells from the center. In contrast, immunocytochemical labeling of the Na(+)-K(+) pump was similar in peripheral and central cells. We conclude that Ca(2+) handling proteins are sparse and poorly organized in the center of the SA node (normally the leading pacemaker site), whereas they are more abundant in the periphery (at the border of the SA node with the surrounding atrial muscle).
Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W
2017-01-01
Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N -desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca 2+ /Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.
Roberto, Roncon-Albuquerque
2018-01-01
Puromycin aminonucleoside-induced nephrotic syndrome (PAN-NS) is characterized by cardiac remodeling and increased local inflammatory activity. Patients with NS and animal models of NS have vitamin D3 deficiency. The aim of the present study was to evaluate the influence of calcitriol on cardiac remodeling and local inflammatory state in PAN-NS rat model. Male Sprague-Dawley rats were injected with PAN or vehicle on day 0. PAN and control rats were divided into two subgroups for the administration of calcitriol (PAN-D and Ct-D groups) or the vehicle (PAN-V and Ct-V groups) during 21 days. On day 21, the renal function, metabolic balance, calcitriol and FGF-23 plasma levels, prohypertrophy and proinflammatory markers (ET-1, TGF-β1, TNF-α, and IL-1β), and calcium signaling molecules (PLB and SERCA-2a) were evaluated. Twenty-one days after injection, PAN-V group presented cardiac hypertrophy and a modulation of proinflammatory markers local expression. Calcitriol treatment of PAN rats prevented cardiac hypertrophy and was associated with marked reduction in the cardiac expression levels of proinflammatory markers. Our results suggest that vitamin D3 deficiency in PAN-NS may contribute to cardiac remodeling and to the increase in local inflammatory activity. Calcitriol treatment prevents both cardiac repercussions and local inflammatory processes in PAN-NS. PMID:29607318
Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.
Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua
2018-04-01
Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine
2015-11-01
Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.
Rusek, Jakub; Thiel, Michaela; Wolinska, Justyna; Laforsch, Christian
2017-01-01
Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems. However, the impacts of microplastics, consisting of a large variety of synthetic polymers, on freshwater organisms remains poorly understood. We examined the effects of two polymer mixtures on the morphology, life history and on the molecular level of the waterflea Daphnia magna (three different clones). Microplastic particles of ~40 μm were supplied at a low concentration (1% of the food particles) leading to an average of ~30 particles in the digestive tract which reflects a high microplastic contamination but still resembles a natural situation. Neither increased mortality nor changes on the morphological (body length, width and tail spine length) or reproductive parameters were observed for adult Daphnia. The analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of morphological traits (body length, width and tail spine length). For adult Daphnia, alterations in expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of other genes involved in body function and body composition (i.e. SERCA) were observed already 48h after exposure. We anticipate that the adverse effects of microplastic might be influenced by many additional factors like size, shape, type and even age of the particles and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in a natural multi-stressor environment. PMID:29145427
Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M
2012-05-01
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of antioxidants on apoptosis induced by dasatinib and nilotinib in K562 cells.
Damiano, Sara; Montagnaro, Serena; Puzio, Maria V; Severino, Lorella; Pagnini, Ugo; Barbarino, Marcella; Cesari, Daniele; Giordano, Antonio; Florio, Salvatore; Ciarcia, Roberto
2018-06-01
In clinical practice for the treatment of chronic myeloid leukemia, second generation of tyrosine kinase inhibitors such as Nilotinib (NIL) specific and potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL and Src family kinase were developed to clinically overcome imatinib resistance. In this study, we wanted to test the ability of some antioxidants such Resveratrol (RES) or a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) or δ-tocotrienol (δ-TOCO) to interact with DAS and NIL on viability, reactive oxygen species (ROS) production, lipid peroxidation, and apoptosis. To test the possible mechanisms of action of such antioxidants, we utilized N-acetyl-L-cysteine (NAC) a specific inhibitor ROS production or PP1 a specific Src tyrosine kinase inhibitor or BAPTA a specific chelator of intracellular calcium. Our data demonstrated: 1) RES, rMnSOD, δ-TOCO, and NAC, at dose used, significantly reduced the intracellular levels of MDA induced by DAS or NIL; 2) RES, rMnSOD, and δ-TOCO increased the intracellular ROS levels; 3) The increase ROS levels is related to higher levels of oligonucleosomesi induced by DAS and NIL and that NAC significantly reduced this activity. Interestingly, our data showed that apoptotic activity of DAS and NIL have significantly increased the production of oligonucleosomes by triggering excessive ROS generation as well as functionality of SERCA receptors. © 2018 Wiley Periodicals, Inc.
Effects of atorvastatin and losartan on monocrotaline-induced pulmonary artery remodeling in rats.
Xie, Liangdi; Lin, Peisen; Xie, Hong; Xu, Changsheng
2010-01-01
Structural remodeling of pulmonary artery plays an important role in maintaining sustained pulmonary arterial hypertension (PAH). The anti-remodeling effects of statins have been reported in systemic hypertension. In this study, we studied the effects of atovastatin (Ato) or losartan (Los) in monocrotaline (MCL)-induced pulmonary artery remodeling using a rat model. Forty Sprague-Dawley (SD) rats were randomly assigned into four groups (n = 10): normal control (Ctr), PAH, PAH treated with Los, and PAH treated with Ato. We found that in the Los- or Ato-treated group, the mean pulmonary arterial pressure, right heart hypertrophy index, ratio of wall/lumen thickness (WT%), as well as the wall/lumen area (WA%) were significantly reduced compared to the PAH group. Also in pulmonary arteries dissected from rats in the Ato- or Los-treated group, in both mRNA and protein levels, the expression of α1C subunit of voltage-gated calcium channel (Ca(v)α1c) was downregulated, while sarcoplasmic/endoplasmic reticulum calcium-ATPase (SERCA-2a) and inositol 1,4,5 triphosphate receptor 1 (IP3R-1) upregulated. However, the mRNA level of RyR-3 subunit of calcium regulating channel was increased, whereas its protein level was reduced in the treated groups. Our results suggest that atorvastatin or losartan may regress the remodeling of the pulmonary artery in pulmonary hypertensive rats, with differential expression of calcium regulating channels.
Relling, David P; Esberg, Lucy B; Fang, Cindy X; Johnson, W Thomas; Murphy, Eric J; Carlson, Edward C; Saari, Jack T; Ren, Jun
2006-03-01
Obesity is associated with dyslipidemia, which leads to elevated triglyceride and ceramide levels, apoptosis and compromised cardiac function. To determine the role of high-fat diet-induced obesity on cardiomyocyte function, weanling male Sprague-Dawley rats were fed diets incorporating 10% of kcal or 45% of kcal from fat. Mechanical function of ventricular myocytes was evaluated including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening and relengthening (+/- dl/dt). Intracellular Ca properties were assessed using fluorescent microscopy. High-fat diet induced hyperinsulinemic insulin-resistant obesity with depressed PS, +/- dl/dt, prolonged TPS/TR90 reduced intracellular Ca release and Ca clearing rate in the absence of hypertension, diabetes, lipotoxicity and apoptosis. Myocyte responsiveness to increased stimulus frequency and extracellular Ca was compromised. SERCA2a and phospholamban levels were increased, whereas phosphorylated phospholamban and potassium channel (Kv1,2) were reduced in high-fat diet group. High-fat diet upregulated the forkhead transcription factor Foxo3a, and suppressed mitochondrial aconitase activity without affecting expression of the caloric sensitive gene silent information regulator 2 (Sir2), protein nitrotyrosine formation, lipid peroxidation and apoptosis. Levels of endothelial nitric oxide synthase (NOS), inducible NOS, triglycerides and ceramide were similar between the two groups. Collectively, our data show that high-fat diet-induced obesity resulted in impaired cardiomyocyte function, upregulated Foxo3a transcription factor and mitochondrial damage without overt lipotoxicity or apoptosis.
Kim, Hye Won; Li, Hongliang; Kim, Han Sol; Shin, Sung Eun; Jung, Won-Kyo; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Choi, Il-Whan; Firth, Amy L; Bang, Hyoweon; Park, Won Sun
2016-09-01
We investigated the vasorelaxant effect of repaglinide and its related signaling pathways using phenylephrine (Phe)-induced pre-contracted aortic rings. Repaglinide induced vasorelaxation in a concentration-dependent manner. The repaglinide-induced vasorelaxation was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor (L-NAME) and a small-conductance Ca(2+)-activated K(+) (SKCa) channel inhibitor (apamin) did not alter the vasorelaxant effect of repaglinide on endothelium-intact arteries. Pretreatment with an adenylyl cyclase inhibitor (SQ 22536) or a PKA inhibitor (KT 5720) effectively reduced repaglinide-induced vasorelaxation. Also, pretreatment with a guanylyl cyclase inhibitor (ODQ) or a PKG inhibitor (KT 5823) inhibited repaglinide-induced vasorelaxation. However, pretreatment with a voltage-dependent K(+) (Kv) channel inhibitor (4-AP), ATP-sensitive K(+) (KATP) channel inhibitor (glibenclamide), large-conductance Ca(2+)-activated K(+) (BKCa) channel inhibitor (paxilline), or the inwardly rectifying K(+) (Kir) channel inhibitor (Ba(2+)) did not affect the vasorelaxant effect of repaglinide. Furthermore, pretreatment with a Ca(2+) inhibitor (nifedipine) and a sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor (thapsigargin) did not affect the vasorelaxant effect of repaglinide. The vasorelaxant effect of repaglinide was not affected by elevated glucose (50mM). Based on these results, we conclude that repaglinide induces vasorelaxation via activation of adenylyl cyclase/PKA and guanylyl cyclase/PKG signaling pathways independently of the endothelium, K(+) channels, Ca(2+) channels, and intracellular Ca(2+) ([Ca(2+)]i). Copyright © 2016 Elsevier Inc. All rights reserved.
Imhof, Hannes K; Rusek, Jakub; Thiel, Michaela; Wolinska, Justyna; Laforsch, Christian
2017-01-01
Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems. However, the impacts of microplastics, consisting of a large variety of synthetic polymers, on freshwater organisms remains poorly understood. We examined the effects of two polymer mixtures on the morphology, life history and on the molecular level of the waterflea Daphnia magna (three different clones). Microplastic particles of ~40 μm were supplied at a low concentration (1% of the food particles) leading to an average of ~30 particles in the digestive tract which reflects a high microplastic contamination but still resembles a natural situation. Neither increased mortality nor changes on the morphological (body length, width and tail spine length) or reproductive parameters were observed for adult Daphnia. The analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of morphological traits (body length, width and tail spine length). For adult Daphnia, alterations in expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of other genes involved in body function and body composition (i.e. SERCA) were observed already 48h after exposure. We anticipate that the adverse effects of microplastic might be influenced by many additional factors like size, shape, type and even age of the particles and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in a natural multi-stressor environment.
Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.
André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier
2011-11-01
Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.
Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew
2016-01-01
Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792
Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang
2013-10-01
Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Fang, Hsin-Yuan; Hung, Meng-Yu; Lin, Yueh-Min; Pandey, Sudhir; Chang, Chia-Chien; Lin, Kuan-Ho; Shen, Chia-Yao; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang
2018-01-01
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Greenhouse gas emissions and N turnover along an altitudinal gradient at Mt. Kilimanjaro, Tanzania.
NASA Astrophysics Data System (ADS)
Gütlein, Adrian; Gerschlauer, Friederike; Zistl-Schlingmann, Marcus; Dannenmann, Michael; Meier, Rudolf; Kolar, Alison; Butterbach-Bahl, Klaus; Kiese, Ralf
2016-04-01
Worldwide climate and land-use change force alterations in various ecosystem properties and functions such as diversity and activity of soil microbial communities which are responsible for biogeochemical processes like soil nitrogen (N) turnover and associated greenhouse gas (GHG) exchange. Tropical deforestation is highest in Africa and despite the importance of those ecosystems to global climate and biogeochemical cycles, data for greenhouse gas exchange is still rare (Serca et al., 1994, Werner et al., 2007) and no study regarding N turnover processes has been published yet. For that reason, we focused on seven different land-use types extending along an altitudinal gradient (950 -- 3880m) at Mt. Kilimanjaro, East Africa, covering (semi-) natural savanna, two montane forests and one afro alpine ecosystem, an extensive agroforest (homegarden) and an intensively managed coffee plantation. On all ecosystems we measured CO_2, CH4 and N_2O fluxes and gross rates of ammonification, nitrification, N immobilization, and dissimilatory nitrate reduction to ammonium (DNRA). GHG results reveal pronounced N_2O fluxes depending mainly on soil moisture and to a lesser extent on soil temperature. Emissions are highest during the rainy seasons while lowest at dry season conditions. The largest N_2O emissions are recognizable at Ocotea forest, most likely due to the generally higher SOC/ totN and wetter conditions favoring formation and emission of N_2O via denitrification. Soils of the studied ecosystems were a sink of atmospheric CH
Dai, De-Zai
2015-11-15
Over the period 1995-2012, David Triggle was a frequent visitor to the China Pharmaceutical University in Nanjing, China making many important contributions that enhanced the activities of the Research Division of Pharmacology at the University. In addition to providing collegial advice and facilitating interactions with the international pharmacological community, Professor Triggle's international reputation as a thought leader in the field of ion channel research and drug discovery provided important insights into the potential pathophysiological and therapeutic effects of targeting ion channels. This included the L-type calcium channel and the outward delayed rectified potassium currents of rapid (IKr) and slow (IKs) components in the myocardium. The Nanjing research team had been particularly interested in ion channel dysfunction in the context of cardiac arrhythmias, remodeling and drug discovery. With Professor Triggle's assistance, the relationship between an increase in ICa.L and other biological events including an enhancement of IKr and IKr currents, NADPH oxidase and endothelin receptor activation, down regulation of calcium modulating protein FKBP12.6, sarco/endoplasmic reticulum Ca(2+)ATPse (SERCA2A) and calsequens 2 (CASQ2), calcium leak at the diastole and endoplasmic reticulum stress, were evaluated and are discussed. Additionally, the organization of several international symposia was greatly enhanced by input from Professor Triggle as were the published research manuscripts in international pharmacology journals. During his association with the China Pharmaceutical University, Professor Triggle aided in enhancing the scientific standing of the Pharmacology department and was a highly effective ambassador for international research cooperation. Copyright © 2015. Published by Elsevier Inc.
Brendel, Alexander; Renziehausen, Jana; Behl, Christian; Hajieva, Parvana
2014-01-01
Parkinson's disease is an age-associated disorder characterized by selective degeneration of dopaminergic neurons. The molecular mechanisms underlying the selective vulnerability of this subset of neurons are, however, not fully understood. Employing SH-SY5Y neuroblastoma cells and primary mesencephalic neurons, we here demonstrate a significant increase in cytosolic calcium after inhibition of mitochondrial complex I by means of MPP(+), which is a well-established environmental toxin-based in vitro model of Parkinson's disease. This increase in calcium is correlated with a downregulation of the neuron-specific plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2). Interestingly, two other important mediators of calcium efflux, sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), and Na(+)-Ca(2+)-exchanger (NCX), remained unaltered, indicating a specific role of PMCA2 in maintaining calcium homeostasis in neurons. The observed PMCA2 downregulation was accompanied by reduced levels of phosphorylated CREB protein, an intracellular signaling molecule and transcriptional regulator. In order to investigate the potential influence of PMCA2 on neuronal vulnerability, experimental downregulation of PMCA2 by means of siRNA was performed. The results demonstrate a significant impairment of cell survival under conditions of PMCA2 suppression. Hence, in our cell models increased cytosolic calcium levels as a consequence of insufficient calcium efflux lead to an increased vulnerability of neuronal cells. Moreover, overexpression of PMCA2 rendered the neurons significantly resistant to complex I inhibition. Our findings point toward a dysregulation of calcium homeostasis in Parkinson's disease and suggest a potential molecular mechanism of neurodegeneration via PMCA2. Copyright © 2013 Elsevier Inc. All rights reserved.
A Separate Pool of Cardiac Phospholemman That Does Not Regulate or Associate with the Sodium Pump
Wypijewski, Krzysztof J.; Howie, Jacqueline; Reilly, Louise; Tulloch, Lindsay B.; Aughton, Karen L.; McLatchie, Linda M.; Shattock, Michael J.; Calaghan, Sarah C.; Fuller, William
2013-01-01
Phospholemman (PLM), the principal quantitative sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. Much like phospholamban, which regulates the related ATPase SERCA, PLM is reported to oligomerize. We investigated subpopulations of PLM in adult rat ventricular myocytes based on phosphorylation status. Co-immunoprecipitation identified two pools of PLM: one not associated with the sodium pump phosphorylated at Ser63 and one associated with the pump, both phosphorylated at Ser68 and unphosphorylated. Phosphorylation of PLM at Ser63 following activation of PKC did not abrogate association of PLM with the pump, so its failure to associate with the pump was not due to phosphorylation at this site. All pools of PLM co-localized to cell surface caveolin-enriched microdomains with sodium pump α subunits, despite the lack of caveolin-binding motif in PLM. Mass spectrometry analysis of phosphospecific immunoprecipitation reactions revealed no unique protein interactions for Ser63-phosphorylated PLM, and cross-linking reagents also failed to identify any partner proteins for this pool. In lysates from hearts of heterozygous transgenic animals expressing wild type and unphosphorylatable PLM, Ser63-phosphorylated PLM co-immunoprecipitated unphosphorylatable PLM, confirming the existence of PLM multimers. Dephosphorylation of the PLM multimer does not change sodium pump activity. Hence like phospholamban, PLM exists as a pump-inhibiting monomer and an unassociated oligomer. The distribution of different PLM phosphorylation states to different pools may be explained by their differential proximity to protein phosphatases rather than a direct effect of phosphorylation on PLM association with the pump. PMID:23532852
Kim, Hyun-Soo; Hwang, Ki-Chul
2010-01-01
Purpose Ca2+ homeostasis plays an important role in myocardial cell injury induced by hypoxia-reoxygenation, and prevention of intracellular Ca2+ overload is key to cardioprotection. Even though thiopental is a frequently used anesthetic agent, little is known about its cardioprotective effects, particulary in association with Ca2+ homeostasis. We investigated whether thiopental protects cardiomyocytes against hypoxia-reoxygenation injury by regulating Ca2+ homeostasis. Materials and Methods Neonatal rat cardiomyocytes were isolated. Cardiomyocytes were exposed to different concentrations of thiopental and immediately replaced in the hypoxic chamber to maintain hypoxia. After 1 hour of exposure, a culture dish was transferred to the CO2 incubator and cells were incubated at 37℃ for 5 hours. At the end of the experiments, the authors assessed cell protection using immunoblot analysis and caspase activity. The mRNA of genes involved in Ca2+ homeostasis, mitochondrial membrane potential, and cellular Ca2+ levels were examined. Results In thiopental-treated cardiomyocytes, there was a decrease in expression of the proapoptotic protein Bax, caspase-3 activation, and intracellular Ca2+ content. In addition, both enhancement of anti-apoptotic protein Bcl-2 and activation of Erk concerned with survival were shown. Furthermore, thiopental attenuated alterations of genes involving Ca2+ regulation and significantly modulated abnormal changes of NCX and SERCA2a genes in hypoxia-reoxygenated neonatal cardiomyocytes. Thiopental suppressed disruption of mitochondrial membrane potential (ΔΨm) induced by hypoxia-reoxygenation. Conclusion Thiopental is likely to modulate expression of genes that regulate Ca2+ homeostasis, which reduces apoptotic cell death and results in cardioprotection. PMID:20191008
Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L
2017-08-01
Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.
Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A
2016-11-01
This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.
The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work
Balaban, Robert S.
2009-01-01
The heart is capable of balancing the rate of mitochondrial ATP production with utilization continuously over a wide range of activity. This results in a constant phosphorylation potential despite a large change in metabolite turnover. The molecular mechanisms responsible for generating this energy homeostasis are poorly understood. The best candidate for a cytosolic signaling molecule reflecting ATP hydrolysis is Ca2+. Since Ca2+ initiates and powers muscle contraction as well as serves as the primary substrate for SERCA, Ca2+ is an ideal feed-forward signal for priming ATP production. With the sarcoplasmic reticulum to cytosolic Ca2+ gradient near equilibrium with the free energy of ATP, cytosolic Ca2+ release is exquisitely sensitive to the cellular energy state providing a feedback signal. Thus, Ca2+ can serve as a feed-forward and feedback regulator of ATP production. Consistent with this notion is the correlation of cytosolic and mitochondrial Ca2+ with work in numerous preparations as well as the localization of mitochondria near Ca2+ release sites. How cytosolic Ca2+ signaling might regulate oxidative phosphorylation is a focus of this review. The relevant Ca2+ sensitive sites include several dehydrogenases and substrate transporters together with a post-translational modification of F1-FO-ATPase and cytochrome oxidase. Thus, Ca2+ apparently activates both the generation of the mitochondrial membrane potential as well as utilization to produce ATP. This balanced activation extends the energy homeostasis observed in the cytosol into the mitochondria matrix in the never resting heart. PMID:19481532
Sucharov, Carmen C.; Helmke, Steve M.; Langer, Stephen J.; Perryman, M. Benjamin; Bristow, Michael; Leinwand, Leslie
2004-01-01
Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure. PMID:15367688
Structure and mechanism of Zn2+-transporting P-type ATPases
Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C.; Nissen, Poul; Gourdon, Pontus
2014-01-01
Zinc is an essential micronutrient for all living organisms, required for signaling and proper function of a range of proteins involved in e.g. DNA-binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements2,3. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 and 2.7 Å resolution, respectively. The structures reveal a similar fold as the Cu+-ATPases with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including Cys392, Cys394 and Asp714. The pathway closes in the E2.Pi state where Asp714 interacts with the conserved Lys693, which possibly stimulates Zn2+ release as a built-in counter-ion, as also proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter-transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases, and show at the same time structural features of the extracellular release pathway that resemble the PII-type ATPases such as the sarco(endo)plasmic reticulum Ca2+-ATPase4,5 (SERCA) and Na+,K+-ATPase6. PMID:25132545
Benoist, David; Stones, Rachel; Benson, Alan P.; Fowler, Ewan D.; Drinkhill, Mark J.; Hardy, Matthew E.L.; Saint, David A.; Cazorla, Olivier; Bernus, Olivier; White, Ed
2014-01-01
We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca2+]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations. PMID:25016242
Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.
2012-01-01
Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, Sarco(endo)plasmic reticulum Ca2+ ATPase 1 (Serca1/Atp2a1), and cardiac troponin T (cTNT). Based on these observations, the development of small molecule ligands that target specifically expanded DM1 repeats could serve as therapeutics. In the present study, computational screening was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of inhibitors of the RNA-protein complex with low micromolar IC50’s, which are >20-fold more potent than the query compounds, were identified. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with virtual screening. PMID:22300544
Effects of severe caloric restriction from birth on the hearts of adult rats.
Melo, Dirceu Sousa; Riul, Tania Regina; Esteves, Elizabeth Adriana; Moraes, Patrícia Lanza; Ferreira, Fernanda Oliveira; Gavioli, Mariana; Alves, Márcia Netto Magalhães; Almeida, Pedro William Machado; Guatimosim, Silvia; Ferreira, Anderson José; Dias Peixoto, Marco Fabricio
2013-08-01
There has been increasing evidence suggesting that a severe caloric restriction (SCR) (above 40%) has beneficial effects on the hearts of rats. However, most of the reports have focused on the effects of SCR that started in adulthood. We investigated the consequences of SCR on the hearts of rats subjected to SCR since birth (CR50). From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Thereafter, a maximal aerobic test was performed to indirectly evaluate global cardiovascular function. Indices of contractility (+dT/dt) and relaxation (-dT/dt) were analyzed in isolated heart preparation, and cardiomyocyte diameter, number, density, and myocardium collagen content were obtained through histologic analysis. Ventricular myocytes were isolated, using standard methods to evaluate phosphorylated AKT levels, and Ca(2+) handling was evaluated with a combination of Western blot analysis, intracellular Ca(2+) imaging, and confocal microscopy. CR50 rats exhibited increased aerobic performance and cardiac function, as shown by the increase in ±dT/dt. Despite the smaller cardiomyocyte diameter, CR50 rats had an increased heart-body weight ratio, increased cardiomyocyte density and number, and similar levels of myocardium collagen content, compared with AL rats. AKT was hyperphosphorylated in cardiomyocytes from CR50 rats, and there were no significant differences in Ca(2+) transient and SERCA2 levels in cardiomyocytes between CR50 and AL rats. Collectively, these observations reveal the beneficial effects of a 50% caloric restriction on the hearts of adult rats restricted since birth, which might involve cardiomyocyte AKT signaling.
Jessup, Jewell A; Westwood, Brian M; Chappell, Mark C; Groban, Leanne
2009-08-01
Hypertension and left ventricular (LV) hypertrophy often precede diastolic dysfunction and are risk factors for diastolic heart failure. Although pharmacologic inhibition of the renin-angiotensin system (RAS) improves diastolic function and functional capacity in hypertensive patients with LV hypertrophy, the effects of combination therapy with an angiotensin converting enzyme inhibitor (ACEi) and an angiotensin receptor blocker (ARB) are unclear. We assessed the effects of the combined 10-week administration of lisinopril (10 mg/kg/ day, p.o.) and losartan (10 mg/kg/day, p.o.) (LIS/LOS) on diastolic function and LV structure in seven young (5 weeks), prehypertensive congenic mRen2.Lewis male rat, a model of tissue renin overexpression and angiotensin II (Ang II)-dependent hypertension compared to vehicle (VEH) treated (n = 7), age-matched rats. Systolic blood pressures were 64% lower with the combination therapy (p < 0.001), but there were no differences in heart rate or systolic function between groups. RAS inhibition increased myocardial relaxation, defined by tissue Doppler mitral annular descent (e') by 2.2 fold (p < 0.001). The preserved lusitropy in the LIS/LOS-treated rats was accompanied by a reduction in phospholamban-to-SERCA2 ratio (p < 0.001). Despite lower relative wall thicknesses (VEH: 1.56+/-0.17 versus LIS/LOS: 0.78+/-0.05) and filling pressures, defined by the transmitral Doppler-to-mitral annular descent ratio (E/e', VEH: 28.7+/-1.9 versus LIS/LOS: 17.96+/-1.5), no differences in cardiac collagen were observed. We conclude that the lusitropic benefit of early dual RAS blockade may be due to improved vascular hemodynamics and/or cardiac calcium handling rather than effects on extracellular matrix reduction.
Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter
2013-01-01
Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.
Brault, Jeffrey J.; Pizzimenti, Natalie M.; Dentel, John N.; Wiseman, Robert W.
2013-01-01
Muscle contractions strongly activate p38 MAP kinases, but the precise contraction-associated sarcoplasmic event(s) (e.g. force production, energetic demands and/or calcium cycling) that activate these kinases are still unclear. We tested the hypothesis that during contraction the phosphorylation of p38 isoforms is sensitive to the increase in ATP demand relative to ATP supply. Energetic demands were inhibited using N-benzyl-p-toluene sulphonamide (BTS, type II actomyosin) and cyclopiazonic acid (CPA, SERCA). Extensor digitorum longus muscles from Swiss Webster mice were incubated in Ringer’s solution (37°C) with or without inhibitors and then stimulated at 10 Hz for 15 min. Muscles were immediately freeze-clamped for metabolite and western blot analysis. BTS and BTS+CPA treatment decreased force production by 85%, as measured by the tension time integral, while CPA alone potentiated force by 310%. In control muscles, contractions resulted in a 73% loss of ATP content and a concomitant 7-fold increase in IMP content, a measure of sustained energetic imbalance. BTS or CPA treatment lessened the loss of ATP, but BTS+CPA treatment completely eliminated the energetic imbalance since ATP and IMP levels were nearly equal to those of non-stimulated muscles. The independent inhibition of cytosolic ATPase activities had no effect on contraction-induced p38 MAPK phosphorylation, but combined treatment prevented the increase in phosphorylation of the γ isoform while the α/βisoforms unaffected. These observations suggest that an energetic signal may trigger phosphorylation of the p38γ isoform while other factors are involved in activating the α/β isoforms, and also may explain how contractions differentially activate signaling pathways. PMID:23296747
Sturek, Michael
2011-08-01
Chronic exercise attenuates coronary artery disease (CAD) in humans largely independent of reductions in risk factors; thus major protective mechanisms of exercise are directly within the coronary vasculature. Further, tight control of diabetes, e.g., blood glucose, can be detrimental. Accordingly, knowledge of mechanisms by which exercise attenuates diabetic CAD could catalyze development of molecular therapies. Exercise attenuates CAD (atherosclerosis) and restenosis in miniature swine models, which enable precise control of exercise parameters (intensity, duration, and frequency) and characterization of the metabolic syndrome (MetS) and diabetic milieu. Intracellular Ca(2+) is a pivotal second messenger for coronary smooth muscle (CSM) excitation-contraction and excitation-transcription coupling that modulates CSM proliferation, migration, and calcification. CSM of diabetic dyslipidemic Yucatan swine have impaired Ca(2+) extrusion via the plasmalemma Ca(2+) ATPase (PMCA), downregulation of L-type voltage-gated Ca(2+) channels (VGCC), increased Ca(2+) sequestration by the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA), increased nuclear Ca(2+) localization, and greater activation of K channels by Ca(2+) release from the SR. Endurance exercise training prevents Ca(2+) transport changes with virtually no effect on the diabetic milieu (glucose, lipids). In MetS Ossabaw swine transient receptor potential canonical (TRPC) channels are upregulated and exercise training reverses expression and TRPC-mediated Ca(2+) influx with almost no change in the MetS milieu. Overall, exercise effects on Ca(2+) signaling modulate CSM phenotype. Future studies should 1) selectively target key Ca(2+) transporters to determine definitively their causal role in atherosclerosis and 2) combine mechanistic studies with clinical outcomes, e.g., reduction of myocardial infarction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwadlo, Carolin; Borlak, Juergen
2005-09-15
The molecular pathology of cardiac hypertrophy is multifactorial with transcript regulation of ion channels, ion exchangers and Ca{sup 2+}-handling proteins being speculative. We therefore investigated disease-associated changes in gene expression of various ion channels and their receptors as well as ion exchangers, cytoskeletal proteins and Ca{sup 2+}-handling proteins in normotensive and spontaneously hypertensive (SHR) rats. We also compared experimental findings with results from hypertrophic human hearts, previously published (Borlak, J., and Thum, T., 2003. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 17, 1592-1608). We observed significant (P < 0.05) induction in transcript level of ATP-drivenmore » ion exchangers (Atp1A1, NCX-1, SERCA2a), ion channels (L-type Ca{sup 2+}-channel, K{sub ir}3.4, Na{sub v}1.5) and RyR-2 in hypertrophic hearts, while gene expression was repressed in diseased human hearts. Further, the genes coding for calreticulin and calmodulin, PMCA 1 and 4 as well as {alpha}-skeletal actin were significantly (P < 0.05) changed in hypertrophic human heart, but were unchanged in hypertrophic left ventricles of the rat heart. Notably, transcript level of {alpha}- and {beta}-MHC, calsequestrin, K{sub ir}6.1 (in the right ventricle only), phospholamban as well as troponin T were repressed in both diseased human and rat hearts. Our study enabled an identification of disease-associated candidate genes. Their regulation is likely to be the result of an imbalance between pressure load/stretch force and vascular tonus and the observed changes may provide a rational for the rhythm disturbances observed in patients with cardiac hypertrophy.« less
Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato
2017-06-25
Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Jun; Miller, Marina; Unno, Hirotoshi; Rosenthal, Peter; Sanderson, Michael J; Broide, David H
2017-09-07
Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3 Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3 Zp3-Cre mice, which do not have a blood supply. Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3 Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca 2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G
2013-01-01
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.
Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E
2014-03-01
Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.
The plasma membrane calcium pumps: focus on the role in (neuro)pathology.
Brini, Marisa; Carafoli, Ernesto; Calì, Tito
2017-02-19
The plasma membrane Ca 2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It is organized in the plasma membrane with ten transmembrane helices and two main cytosolic loops, one of which contains the catalytic center. It also contains a long C-terminal tail that houses the binding site for calmodulin, the main regulator of the activity of the pump. The pump also contains a number of other regulators, among them acidic phospholipids, kinases, and numerous protein interactors. Separate genes code for 4 basic pump isoforms in mammals, additional isoform complexity being generated by the alternative splicing of primary transcripts. Pumps 1 and 4 are expressed ubiquitously, pumps 2 and 3 are tissue restricted, with preference for the nervous system. In essentially all cells, the pump coexists with much more powerful systems that clear Ca 2+ from the cytosol, e.g. the SERCA pump and the Na + /Ca 2+ exchanger. Its role in the global regulation of cellular Ca 2+ homeostasis is thus quantitatively marginal: its main function is the regulation of Ca 2+ signaling in selected sub-plasma membrane microdomains where Ca 2+ modulated interactors also reside. Malfunctions of the pump linked to genetic mutations are now described with increasing frequency, the disease phenotypes being especially severe in the nervous system where isoforms 2 and 3 predominate. The analysis of the pump defects suggests that the disease phenotypes are likely to be related to the imperfect modulation of Ca 2+ signaling in selected sub-plasma membrane microdomains, leading to the defective control of the activity of important Ca 2+ dependent interactors. Copyright © 2016 Elsevier Inc. All rights reserved.
Radwański, Przemysław B.; Ho, Hsiang-Ting; Veeraraghavan, Rengasayee; Brunello, Lucia; Liu, Bin; Belevych, Andriy E.; Unudurthi, Sathya D.; Makara, Michael A.; Priori, Silvia G.; Volpe, Pompeo; Armoundas, Antonis A.; Dillmann, Wolfgang H.; Knollmann, Bjorn C.; Mohler, Peter J.; Hund, Thomas J.; Györke, Sándor
2016-01-01
Background Cardiac arrhythmias are a leading cause of death in the US. Vast majority of these arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with increased levels of circulating catecholamines and involve abnormal impulse formation secondary to aberrant Ca2+ and Na+ handling. However, the mechanistic link between β-AR stimulation and the subcellular/molecular arrhythmogenic trigger(s) remains elusive. Methods and Results We performed functional and structural studies to assess Ca2+ and Na+ signaling in ventricular myocyte as well as surface electrocardiograms in mouse models of cardiac calsequestrin (CASQ2)-associated CPVT. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) that colocalize with RyR2 and Na+/Ca2+ exchanger (NCX) are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR-mediated activation of CAMKII subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Conclusion These data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and Nav1.6 in particular can serve as a potential antiarrhythmic therapy. PMID:27747307
Oxidative stress and protein aggregation during biological aging.
Squier, T C
2001-09-01
represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy
Turdi, Subat; Hu, Nan; Ren, Jun
2013-01-01
Objectives The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. Methods Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca2+ property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca2+ regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). Results High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser307), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. Conclusions These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca2+ defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation. PMID:23667647
Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.
2016-01-01
Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836
Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean
2012-11-01
The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.
Bish, Lawrence T; Sleeper, Meg M; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E; Buchlis, George; Hui, Daniel; High, Katherine A; Gao, Guangping; Wilson, James M; Sweeney, H Lee
2011-08-01
Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.
Bossu, Alexandre; Kostense, Amée; Beekman, Henriette D M; Houtman, Marien J C; van der Heyden, Marcel A G; Vos, Marc A
2018-05-16
Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na + /K + -transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP). In isolated normal canine ventricular cardiomyocytes, istaroxime (0.3-10 μM) evoked no afterdepolarizations and significantly shortened action potential duration (APD) at 3 and 10 μM. Istaroxime at 3 μg/kg/min significantly increased left ventricular (LV) contractility (dP/dt+) and relaxation (dP/dt-) respectively by 81 and 94% in anesthetized control dogs (n = 6) and by 61 and 49% in anesthetized CAVB dogs (n = 7) sensitive to dofetilide-induced TdP. While istaroxime induced no ventricular arrhythmias in control conditions, only single ectopic beats occurred in 2/7 CAVB dogs, which were preceded by increase of short-term variability of repolarization (STV) and T wave alternans in LV unipolar electrograms. Istaroxime pre-treatment (3 μg/kg/min for 60 min) did not alleviate dofetilide-induced increase in repolarization and STV, and mildly reduced incidence of TdP from 6/6 to 4/6 CAVB dogs. In six CAVB dogs with dofetilide-induced TdP, administration of istaroxime (90 μg/kg/5 min) suppressed arrhythmic episodes in two animals. Taken together, inotropic and lusitropic properties of istaroxime in CAVB dogs were devoid of significant proarrhythmic effects in sensitive CAVB dogs, and istaroxime provides a moderate antiarrhythmic efficacy in prevention and suppression of dofetilide-induced TdP. Copyright © 2018. Published by Elsevier Ltd.
Camerino, Giulia Maria; Cannone, Maria; Giustino, Arcangela; Massari, Ada Maria; Capogrosso, Roberta Francesca; Cozzoli, Anna; De Luca, Annamaria
2014-11-01
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Orai3 channel is the 2-APB-induced endoplasmic reticulum calcium leak.
Leon-Aparicio, Daniel; Pacheco, Jonathan; Chavez-Reyes, Jesus; Galindo, Jose M; Valdes, Jesus; Vaca, Luis; Guerrero-Hernandez, Agustin
2017-07-01
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca 2+ leak using synthetic Ca 2+ indicators that report changes in both the cytoplasmic ([Ca 2+ ] i ) and the luminal ER ([Ca 2+ ] ER ) Ca 2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca 2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca 2+ ] ER but did not decrease the ER Ca 2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP 3 R and only Orai3 channel supported the 2-APB-induced ER Ca 2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca 2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca 2+ leak but did not modify the ER Ca 2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca 2+ ] i response after TG but only when the ER store had been overloaded with Ca 2+ by eliminating the acidic internal Ca 2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca 2+ leak but forms an ER Ca 2+ leak channel that is limiting the overloading with Ca 2+ of the ER store. Copyright © 2017 Elsevier Ltd. All rights reserved.
Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production
Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese
2017-01-01
Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092
Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes
Werneck-de-Castro, Joao P.; Fonseca, Tatiana L.; Ignacio, Daniele L.; Fernandes, Gustavo W.; Andrade-Feraud, Cristina M.; Lartey, Lattoya J.; Ribeiro, Marcelo B.; Ribeiro, Miriam O.; Gereben, Balazs
2015-01-01
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers. PMID:26214036
Rincon, Melvin Y; VandenDriessche, Thierry; Chuah, Marinee K
2015-10-01
Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca(2+)-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
NASA Technical Reports Server (NTRS)
Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)
2000-01-01
BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.
The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy
Rowland, Leslie A.; Bal, Naresh C.; Periasamy, Muthu
2016-01-01
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates
Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.
2014-01-01
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122
Shiah, Amy A.; Gandra, Paulo G.; Hogan, Michael C.
2013-01-01
The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca2+-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca2+ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca2+-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca2+ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca2+]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca2+]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca2+]c and the increase in basal [Ca2+]c did not occur with BTS incubation. The progressively slower Ca2+ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca2+ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca2+ pumping rate during fatiguing contractions. PMID:23678027
Nogueira, Leonardo; Shiah, Amy A; Gandra, Paulo G; Hogan, Michael C
2013-07-15
The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca²⁺-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca²⁺ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca²⁺-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca²⁺ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca²⁺]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca²⁺]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca²⁺]c and the increase in basal [Ca²⁺]c did not occur with BTS incubation. The progressively slower Ca²⁺ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca²⁺ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca²⁺ pumping rate during fatiguing contractions.
Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart
Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich
2013-01-01
Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371
Fowler, Ewan D; Drinkhill, Mark J; Norman, Ruth; Pervolaraki, Eleftheria; Stones, Rachel; Steer, Emma; Benoist, David; Steele, Derek S; Calaghan, Sarah C; White, Ed
2018-07-01
Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β 1 -adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ± 1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca 2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca 2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca 2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by β 1 -adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lima-Leopoldo, Ana Paula; Leopoldo, André S; da Silva, Danielle C T; do Nascimento, André F; de Campos, Dijon H S; Luvizotto, Renata A M; de Deus, Adriana F; Freire, Paula P; Medeiros, Alessandra; Okoshi, Katashi; Cicogna, Antonio C
2014-09-15
Few studies have evaluated the relationship between the duration of obesity, cardiac function, and the proteins involved in myocardial calcium (Ca(2+)) handling. We hypothesized that long-term obesity promotes cardiac dysfunction due to a reduction of expression and/or phosphorylation of myocardial Ca(2+)-handling proteins. Thirty-day-old male Wistar rats were distributed into two groups (n = 10 each): control (C; standard diet) and obese (Ob; high-fat diet) for 30 wk. Morphological and histological analyses were assessed. Left ventricular cardiac function was assessed in vivo by echocardiographic evaluation and in vitro by papillary muscle. Cardiac protein expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), calsequestrin, L-type Ca(2+) channel, and phospholamban (PLB), as well as PLB serine-16 phosphorylation (pPLB Ser(16)) and PLB threonine-17 phosphorylation (pPLB Thr(17)) were determined by Western blot. The adiposity index was higher (82%) in Ob rats than in C rats. Obesity promoted cardiac hypertrophy without alterations in interstitial collagen levels. Ob rats had increased endocardial and midwall fractional shortening, posterior wall shortening velocity, and A-wave compared with C rats. Cardiac index, early-to-late diastolic mitral inflow ratio, and isovolumetric relaxation time were lower in Ob than in C. The Ob muscles developed similar baseline data and myocardial responsiveness to increased extracellular Ca(2+). Obesity caused a reduction in cardiac pPLB Ser(16) and the pPLB Ser(16)/PLB ratio in Ob rats. Long-term obesity promotes alterations in diastolic function, most likely due to the reduction of pPLB Ser(16), but does not impair the myocardial Ca(2+) entry and recapture to SR. Copyright © 2014 the American Physiological Society.
Ali, Muhammad Y; Pavasovic, Ana; Dammannagoda, Lalith K; Mather, Peter B; Prentis, Peter J
2017-01-01
Systemic acid-base balance and osmotic/ionic regulation in decapod crustaceans are in part maintained by a set of transport-related enzymes such as carbonic anhydrase (CA), Na + /K + -ATPase (NKA), H + -ATPase (HAT), Na + /K + /2Cl - cotransporter (NKCC), Na + /Cl - /HCO[Formula: see text] cotransporter (NBC), Na + /H + exchanger (NHE), Arginine kinase (AK), Sarcoplasmic Ca +2 -ATPase (SERCA) and Calreticulin (CRT). We carried out a comparative molecular analysis of these genes in three commercially important yet eco-physiologically distinct freshwater crayfish , Cherax quadricarinatus, C. destructor and C. cainii , with the aim to identify mutations in these genes and determine if observed patterns of mutations were consistent with the action of natural selection. We also conducted a tissue-specific expression analysis of these genes across seven different organs, including gills, hepatopancreas, heart, kidney, liver, nerve and testes using NGS transcriptome data. The molecular analysis of the candidate genes revealed a high level of sequence conservation across the three Cherax sp. Hyphy analysis revealed that all candidate genes showed patterns of molecular variation consistent with neutral evolution. The tissue-specific expression analysis showed that 46% of candidate genes were expressed in all tissue types examined, while approximately 10% of candidate genes were only expressed in a single tissue type. The largest number of genes was observed in nerve (84%) and gills (78%) and the lowest in testes (66%). The tissue-specific expression analysis also revealed that most of the master genes regulating pH and osmoregulation (CA, NKA, HAT, NKCC, NBC, NHE) were expressed in all tissue types indicating an important physiological role for these genes outside of osmoregulation in other tissue types. The high level of sequence conservation observed in the candidate genes may be explained by the important role of these genes as well as potentially having a number of
Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model
Fauconnier, Jérémy; Cellier, Laura; Tamareille, Sophie; Gharib, Abdallah; Chevrollier, Arnaud; Loufrani, Laurent; Grenier, Céline; Kamel, Rima; Sarzi, Emmanuelle; Lacampagne, Alain; Ovize, Michel; Henrion, Daniel; Reynier, Pascal; Lenaers, Guy; Mirebeau-Prunier, Delphine
2016-01-01
Background Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. Objectives To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. Methods and Results We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. Conclusion Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity. PMID:27723783
Diniz, Gabriela Placoná; Lino, Caroline Antunes; Guedes, Elaine Castilho; Moreira, Luana do Nascimento; Barreto-Chaves, Maria Luiza Morais
2015-09-01
Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.
Røe, Åsmund T.; Aronsen, Jan Magnus; Skårdal, Kristine; Hamdani, Nazha; Linke, Wolfgang A.; Danielsen, Håvard E.; Sejersted, Ole M.; Sjaastad, Ivar; Louch, William E.
2017-01-01
Abstract Aims Concentric hypertrophy following pressure-overload is linked to preserved systolic function but impaired diastolic function, and is an important substrate for heart failure with preserved ejection fraction. While increased passive stiffness of the myocardium is a suggested mechanism underlying diastolic dysfunction in these hearts, the contribution of active diastolic Ca2+ cycling in cardiomyocytes remains unclear. In this study, we sought to dissect contributions of passive and active mechanisms to diastolic dysfunction in the concentrically hypertrophied heart following pressure-overload. Methods and results Rats were subjected to aortic banding (AB), and experiments were performed 6 weeks after surgery using sham-operated rats as controls. In vivo ejection fraction and fractional shortening were normal, confirming preservation of systolic function. Left ventricular concentric hypertrophy and diastolic dysfunction following AB were indicated by thickening of the ventricular wall, reduced peak early diastolic tissue velocity, and higher E/e’ values. Slowed relaxation was also observed in left ventricular muscle strips isolated from AB hearts, during both isometric and isotonic stimulation, and accompanied by increases in passive tension, viscosity, and extracellular collagen. An altered titin phosphorylation profile was observed with hypophosphorylation of the phosphosites S4080 and S3991 sites within the N2Bus, and S12884 within the PEVK region. Increased titin-based stiffness was confirmed by salt-extraction experiments. In contrast, isolated, unloaded cardiomyocytes exhibited accelerated relaxation in AB compared to sham, and less contracture at high pacing frequencies. Parallel enhancement of diastolic Ca2+ handling was observed, with augmented NCX and SERCA2 activity and lowered resting cytosolic [Ca2+]. Conclusion In the hypertrophied heart with preserved systolic function, in vivo diastolic dysfunction develops as cardiac fibrosis and
Rain, Silvia; Bos, Denielli da Silva Goncalves; Handoko, M. Louis; Westerhof, Nico; Stienen, Ger; Ottenheijm, Coen; Goebel, Max; Dorfmüller, Peter; Guignabert, Christophe; Humbert, Marc; Bogaard, Harm‐Jan; dos Remedios, Cris; Saripalli, Chandra; Hidalgo, Carlos G.; Granzier, Henk L.; Vonk‐Noordegraaf, Anton; van der Velden, Jolanda; de Man, Frances S.
2014-01-01
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2
Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles
2013-01-01
Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca2+ concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca2+ indicator dye. Using pharmacological antagonists of receptors and Ca2+ channels, the variations in intracellular Ca2+ concentration were found independent of the activation of voltage-operatedCa2+ channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) or H+-ATPase and antagonists of the store-operated Ca2+ entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca2+. Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca2+ from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca2+ from lysosomes, modifies the steady-state level of reticular Ca2+ stores and finally activates the Store-Operated Calcium Entry complex. PMID:23152983
Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles
2013-05-01
Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca(2+) concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca(2+) indicator dye. Using pharmacological antagonists of receptors and Ca(2+) channels, the variations in intracellular Ca(2+) concentration were found independent of the activation of voltage-operated Ca(2+) channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) or H(+)-ATPase and antagonists of the store-operated Ca(2+) entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca(2+). Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca(2+) from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca(2+) from lysosomes, modifies the steady-state level of reticular Ca(2+) stores and finally activates the Store-Operated Calcium Entry complex. © 2012 Blackwell Publishing Ltd.
Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice.
Lian, Hong; Wang, Xiaojian; Wang, Juan; Liu, Ning; Zhang, Li; Lu, Yingdong; Yang, Yanmin; Zhang, Lianfeng
2015-04-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia, causing substantial cardiovascular morbidity and mortality. The renin-angiotensin system (RAS) has been shown to be involved in the pathophysiology of AF. The (pro)renin receptor [(p)RR] is the last identified member of RAS. However, the role of (p)RR in AF is still unknown. Circulating levels of (p)RR were determined using an immunosorbent assay in 22 patients with AF (paroxysmal or persistent) and 22 healthy individuals. The plasma levels of (p)RR increased 3.6-fold in AF patients (P<0.001), indicating a relationship between (p)RR and AF. To investigate the role of (p)RR in the regulation of cardiac arrhythmia, we generated a transgenic mouse with overexpression of human (p)RR gene specifically in the heart. Electrocardiograms from (p)RR transgenic mice showed typical atrial flutter since 2 months, then spontaneously converted to atrial fibrillation by 10 months. The atria of the transgenic mice demonstrated significant dilation and fibrosis, and exhibited a high incidence of sudden death. Additionally, the genes of SERCA and HCN4, which are involved in the electrophysiology of AF, were significantly down-regulated and up-regulated respectively in transgenic mice atria. The phosphorylation of Erk1/2 significantly increased in the atria of the transgenic mice, and the activated Erk1/2 was found predominantly in cardiac fibroblasts, suggesting that the transgenic (p)RR gene may induce atrial fibrillation by activation of Erk1/2 in the cardiac fibroblasts of the atria. (p)RR promotes atrial structural and electrical remodeling in vivo, which indicates that (p)RR plays an important role in the pathological development of AF. Copyright © 2015. Published by Elsevier Ireland Ltd.
Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y
2017-01-23
Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.
Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C
2013-01-01
Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660
Sleeper, Meg M.; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E.; Buchlis, George; Hui, Daniel; High, Katherine A.; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee
2011-01-01
Abstract Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways. PMID:21542669
Zhang, Yingmei; Han, Xuefeng; Hu, Nan; Huff, Anna F.; Gao, Feng; Ren, Jun
2014-01-01
Caloric restriction leads to changes in heart geometry and function although the underlying mechanism remains elusive. Autophagy, a conserved pathway for degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of Akt2 in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved. Wild-type (WT) and Akt2 knockout mice were caloric restricted (by 40%) for 30 weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, autophagy and its regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased left ventricular mass, left ventricular diameters and cardiac output), cardiomyocyte contractile and intracellular Ca2+ properties associated with dampened SERCA2a phosphorylation, upregulated phospholamban and autophagy (Beclin-1, Atg7, LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK, Akt2 and the Akt downstream signal molecule TSC2, the effects of which with the exception of autophagy protein markers (Beclin-1, Atg7, LC3B) and AMPK were mitigated or significantly alleviated by Akt2 knockout. Lysosomal inhibition using bafilomycin A1 negated Akt2 knockout-induced protective effect on p62. Evaluation of downstream signaling molecules of Akt and AMPK including mTOR and ULK1 revealed that caloric restriction suppressed and promoted phosphorylation of mTOR and ULK1, respectively, without affecting total mTOR and ULK1 expression. Akt2 knockout significantly augmented caloric restriction-induced responses on mTOR and ULK1. Taken together, these data suggest a beneficial role of Akt2 knockout in preservation of cardiac homeostasis against prolonged caloric restriction-induced pathological changes possibly through facilitating autophagy. PMID:24368095
Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.
2009-01-01
Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664
Jo, Sunhwan; Bahar, Ivet; Roux, Benoît
2014-01-01
Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results
Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B. Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J
2016-01-01
This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miR) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258
Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela
2013-01-01
Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120
Jin, Hongwei; Welzig, Charles M; Aronovitz, Mark; Noubary, Farzad; Blanton, Robert; Wang, Bo; Rajab, Mohammad; Albano, Alfred; Link, Mark S; Noujaim, Sami F; Park, Ho-Jin; Galper, Jonas B
2017-09-01
The incidence of sudden arrhythmic death is markedly increased in diabetics. The purpose of this study was to develop a mouse model for postmyocardial infarction (post-MI) ventricular tachycardia (VT) in the diabetic heart and determine the mechanism of an antiarrhythmic effect of statins. ECG transmitters were implanted in wild-type (WT), placebo, and pravastatin-treated type I diabetic Akita mice. MIs were induced by coronary ligation, and Ca 2+ transients were studied by optical mapping, and Ca 2+ transients and sparks in left ventricular myocytes (VM) by the Ionoptix system and confocal microscopy. Burst pacing of Akita mouse hearts resulted in rate-related QRS/T-wave alternans, which was attenuated in pravastatin-treated mice. Post-MI Akita mice developed QRS/T-wave alternans and VT at 2820 ± 879 beats per mouse, which decreased to 343 ± 115 in pravastatin-treated mice (n = 13, P <.05). Optical mapping demonstrated pacing-induced VT originating in the peri-infarction zone and Ca 2+ alternans, both attenuated in hearts of statin-treated mice. Akita VM displayed Ca 2+ alternans, and triggered activity as well as increased Ca 2+ transient decay time (Tau), Ca 2+ sparks, and cytosolic Ca 2+ and decreased SR Ca 2+ stores all of which were in part reversed in cells from statin treated mice. Homogenates of Akita ventricles demonstrated decreased SERCA2a/PLB ratio and increased ratio of protein phosphatase (PP-1) to the PP-1 inhibitor PPI-1 which were reversed in homogenates of pravastatin-treated Akita mice. Pravastatin decreased the incidence of post-MI VT and Ca 2+ alternans in Akita mouse hearts in part by revering abnormalities of Ca 2+ handling via the PP-1/PPI-1 pathway. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
ACUTE EFFECT OF ETHANOL ON HEPATIC RETICULAR G6Pase AND Ca2+ POOL
Jacobs-Harper, Amy; Crumbly, Ashlee; Romani, Andrea
2012-01-01
Background Hydrolysis of glucose 6-phosphate via glucose 6-phosphatase enlarges the reticular Ca2+ pool of the hepatocyte. Exposure of liver cells to ethanol impairs reticular Ca2+ homeostasis. The present study investigated the effect of acute ethanol administration on glucose 6-phosphate supported Ca2+ accumulation in liver cells. Methods Total microsomes were isolated from rat livers acutely perfused with varying doses of ethanol (0.01%, 0.1%, or 1% v/v) for 8 minutes. Calcium uptake was assessed by 45Ca redistribution. Inorganic phosphate (Pi) formation was measured as an indicator of glucose 6-phosphatase hydrolytic activity. Results Glucose 6-phosphate-supported Ca2+ uptake decreased in a manner directly proportional to the dose of ethanol infused in the liver whereas Ca2+ uptake via SERCA pumps was decreased by ~25% only at the highest dose of alcohol administered. The reduced accumulation of Ca2+ within the microsomes resulted in a smaller IP3-induced Ca2+ release. Kinetic assessment of IP3 and passive Ca2+ release indicated a faster mobilization in microsomes from ethanol-treated livers, suggesting alcohol-induced alteration of Ca2+ releasing mechanisms. Pre-treatment of livers with chloromethiazole or dithio-threitol, but not 4-methyl-pyrazole prevented the inhibitory effect of ethanol on glucose 6-phosphatase activity and Ca2+ homeostasis. Conclusions Liver glucose 6-phosphatase activity and IP3-mediated Ca2+ release are rapidly inhibited following acute (8 min) exposure to ethanol, thus compromising the ability of the endoplasmic reticulum to dynamically modulate Ca2+ homeostasis in the hepatocyte. The protective effect of chloromethiazole and di-thio-threitol suggests that the inhibitory effect of ethanol is mediated through its metabolism via reticular cyP4502E1 and consequent free radicals formation. PMID:22958133
Carneiro-Júnior, Miguel Araujo; Quintão-Júnior, Judson Fonseca; Drummond, Lucas Rios; Lavorato, Victor Neiva; Drummond, Filipe Rios; da Cunha, Daise Nunes Queiroz; Amadeu, Marco Aurélio; Felix, Leonardo Bonato; de Oliveira, Edilamar Menezes; Cruz, Jader Santos; Prímola-Gomes, Thales Nicolau; Mill, José Geraldo; Natali, Antonio José
2013-04-01
. Exercise training increased [Ca(2+)]i transient (NC8, 2.39±0.06F/F0 vs. NT8, 2.72±0.06F/F0; HC8, 2.28±0.05F/F0 vs. HT8, 2.82±0.05F/F0; P<0.05), and cell contractility (NC8, 7.4±0.3% vs. NT8, 8.4±0.3%; HC8, 6.8±0.3% vs. HT8, 7.8±0.3%; P<0.05). Furthermore, exercise normalized the expression of ANF, skeletal α-actin, and the α/β-MHC ratio in HT8 rats, augmented the expression of SERCA2a (NC8, 0.93±0.15 vs. NT8, 1.49±0.14; HC8, 0.83±0.13 vs. HT8, 1.32±0.14; P<0.05) and PLBser16 (NC8, 0.89±0.18 vs. NT8, 1.23±0.17; HC8, 0.77±0.17 vs. HT8, 1.32±0.16; P<0.05), and reduced PLBt/SERCA2a (NC8, 1.21±0.19 vs. NT8, 0.50±0.21; HC8, 1.38±0.17 vs. HT8, 0.66±0.21; P<0.05). However, all these adaptations returned to control values within 4weeks of detraining in both SHR and normotensive control animals. In conclusion, low-intensity endurance training induces positive benefits to left ventricular myocyte mechanical and molecular properties, which are reversed within 4weeks of detraining. Copyright © 2013 Elsevier Ltd. All rights reserved.
Weerateerangkul, Punate; Shinlapawittayatorn, Krekwit; Palee, Siripong; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2017-11-01
Testosterone deficiency in elderly men increases the risk of cardiovascular disease. In bilateral orchiectomized (ORX) animals, impaired cardiac Ca 2+ regulation was observed, and this impairment could be improved by testosterone replacement, indicating the important role of testosterone in cardiac Ca 2+ regulation. However, the temporal changes of Ca 2+ dyshomeostasis in testosterone-deprived conditions are unclear. Moreover, the effects of early vs. late testosterone replacement are unknown. We hypothesized that the longer the deprivation of testosterone, the greater the impairment of cardiac Ca 2+ homeostasis, and that early testosterone replacement can effectively reduce this adverse effect. Male Wistar rats were randomly divided into twelve groups, four sets of three. The first set were ORX for 2, 4 and 8 weeks, the second set were sham-operated groups of the same periods, the third set were ORX for 8 weeks coupled with a subcutaneous injection of vehicle (control), testosterone during weeks 1-8 (early replacement) or testosterone during weeks 5-8 (late replacement), and finally the 12-week sham-operated, ORX and ORX treated with testosterone groups. Cardiac Ca 2+ transients (n=4-5/group), L-type calcium current (I Ca-L ) (n=4/group), Ca 2+ regulatory proteins (n=6/group) and cardiac function (n=5/group) were determined. In the ORX rats, impaired cardiac Ca 2+ transients and reduced I Ca-L were observed initially 4 weeks after ORX as shown by decreased Ca 2+ transient amplitude, rising rate and maximum and average decay rates. No alteration of Ca 2+ regulatory proteins such as the L-type Ca 2+ channels, ryanodine receptor type 2, Na + -Ca 2+ exchangers and SERCA2a were observed. Early testosterone replacement markedly improved cardiac Ca 2+ transients, whereas late testosterone replacement did not. The cardiac contractility was also improved after early testosterone replacement. Impaired cardiac Ca 2+ homeostasis is time-dependent after testosterone
Houweling, Peter J.; Quinlan, Kate G. R.; Murphy, Robyn; Wagner, Sören; Friedrich, Oliver; North, Kathryn N.
2015-01-01
Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more “energy efficient” in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR) are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i) an increased rate of decay of the twitch transient; (ii) a fourfold increase in the rate of SR Ca2+ leak; (iii) a threefold increase in the rate of SR Ca2+ pumping; and (iv) enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments during
Rico-Ramírez, Adriana M; Roberson, Robert W; Riquelme, Meritxell
2018-03-27
In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (Spk) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the Spk and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the Spk and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the Spk. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi. Copyright © 2018. Published by Elsevier Inc.
Plattner, Helmut
2015-03-01
The ciliated protozoan, Paramecium tetraurelia has a high basic Ca(2+) leakage rate which is counteracted mainly by export through a contractile vacuole complex, based on its V-type H(+)-ATPase activity. In addition Paramecium cells dispose of P-type Ca(2+)-ATPases, i.e. a plasmamembrane and a sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (PMCA, SERCA). Antiporter systems are to be expected, as inferred from indirect evidence. Among the best known cytosolic Ca(2+)-binding proteins, calmodulin activates Ca(2+) influx channels in the somatic cell membrane, but inactivates Ca(2+) influx channels in cilia, where it, thus, ends ciliary reversal induced by depolarization via channels in the somatic cell membrane. Centrin inactivates Ca(2+) signals after stimulation by its high capacity/low affinity binding sites, whereas its high affinity sites regulate some other functions. Cortical Ca(2+) stores (alveolar sacs) are activated during stimulated trichocyst exocytosis and thereby mediate store-operated Ca(2+) entry (SOCE). Ca(2+) release channels (CRCs) localised to alveoli and underlying SOCE are considered as Ryanodine receptor-like proteins (RyR-LPs) which are members of a CRC family with 6 subfamilies. These also encompass genuine inositol 1,4,5-trisphosphate receptors (IP3Rs) and intermediates between the two channel types. All IP3R/RyR-type CRCs possess six carboxyterminal transmembrane domains (TMD), with a pore domain between TMD 5 and 6, endowed with a characteristic selectivity filter. There are reasons to assume a common ancestor molecule for such channels and diversification further on in evolution. The distinct distribution of specific CRCs in the different vesicles undergoing intracellular trafficking suggests constitutive formation of very locally restricted Ca(2+) signals during vesicle-vesicle interaction. In summary, essential steps of Ca(2+) signalling already occur at this level of evolution, including an unexpected multitude of CRCs. For dis
Ye, Zhi-Wei; Zhang, Jie; Ancrum, Tiffany; Manevich, Yefim; Townsend, Danyelle M.
2017-01-01
Abstract Aims: S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. Results: We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2−/−) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2−/− cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). Innovation: Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. Conclusions: Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR
Ribeiro Júnior, R F; Ronconi, K S; Jesus, I C G; Almeida, P W M; Forechi, L; Vassallo, D V; Guatimosim, S; Stefanon, I; Fernandes, A A
2018-01-15
Testosterone may affect myocardial contractility since its deficiency decreases the contraction and relaxation of the heart. Meanwhile, testosterone replacement therapy has raised concerns because it may worsen cardiac dysfunction and remodeling after myocardial infarction (MI). In this study, we evaluate cardiac contractility 60 days after MI in rats with suppressed testosterone. Male Wistar rats underwent bilateral orchidectomy one week before the ligation of the anterior descending left coronary artery. The animals were divided into orchidectomized (OCT); MI; orchidectomized + MI (OCT + MI); orchidectomized + MI + testosterone (OCT + MI + T) and control (Sham) groups. Eight weeks after MI, papillary muscle contractility was analyzed under increasing calcium (0.62, 1.25, 2.5 and 3.75 mM) and isoproterenol (10 -8 to 10 -2 M) concentrations. Ventricular myocytes were isolated for intracellular calcium measurements and assessment of Ca 2+ handling proteins. Contractility was preserved in the orchidectomized animals after myocardial infarction and was reduced when testosterone was replaced (Ca 2+ 3.75 mM: Sham: 608 ± 70 (n = 11); OCT: 590 ± 37 (n = 16); MI: 311 ± 33* (n = 9); OCT + MI: 594 ± 76 (n = 7); OCT + MI + T: 433 ± 38* (n=4), g/g *p < 0.05 vs Sham). Orchidectomy also increased the Ca 2+ transient amplitude of the ventricular myocytes and SERCA-2a protein expression levels. PLB phosphorylation levels at Thr 17 were not different in the orchidectomized animals compared to the Sham animals but were reduced after testosterone replacement. CAMKII phosphorylation and protein nitrosylation increased in the orchidectomized animals. Our results support the view that testosterone deficiency prevents MI contractility dysfunction by altering the key proteins involved in Ca 2+ handling. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Wei; Guo, Rui; Ren, Jun
2011-01-01
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3 g/kg/d, i.p.) for 3 days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential autophagy markers, Akt and AMPK and their downstream signaling mTOR. Ethanol challenge altered cardiac geometry and function evidenced by enlarged ventricular end systolic and diastolic diameters, decreased cell shortening and intracellular Ca2+ rise, prolonged relengthening and intracellular Ca2+ decay, as well as reduced SERCA Ca2+ uptake, the effects of which were mitigated by ALDH2. Ethanol challenge facilitated myocardial autophagy as evidenced by enhanced expression of Beclin, ATG7 and LC3B II, as well as mTOR dephosphorylation, which was alleviated by ALDH2. Ethanol challenge-induced cardiac defect and apoptosis were reversed by the ALDH-2 agonist Alda-1, the autophagy inhibitor 3-MA, and the AMPK inhibitor compound C whereas the autophagy inducer rapamycin and the AMPK activator AICAR mimicked or exacerbated ethanol-induced cell injury. Ethanol promoted or suppressed phosphorylation of AMPK and Akt, respectively, in FVB but not ALDH2 murine hearts. Moreover, AICAR nullified Alda-1-induced protection against ethanol-triggered autophagic and functional changes. Ethanol increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by Alda-1 and 3-MA. Lysosomal inhibition using bafilomycin A1, E64D and pepstatin A obliterated Alda-1- but not ethanol-induced responses in GFP-LC3 puncta. Our results suggested that ALDH2 protects against ethanol toxicity through altered Akt and AMPK signaling and regulation of autophagic flux. PMID:21871561
Kronenbitter, Annette; Funk, Florian; Hackert, Katarzyna; Gorreßen, Simone; Glaser, Dennis; Boknik, Peter; Poschmann, Gereon; Stühler, Kai; Isić, Malgorzata; Krüger, Martina; Schmitt, Joachim P
2018-06-01
Changes in the nonischemic remote myocardium of the heart contribute to left ventricular dysfunction after ischemia and reperfusion (I/R). Understanding the underlying mechanisms early after I/R is crucial to improve the adaptation of the viable myocardium to increased mechanical demands. Here, we investigated the role of myocyte Ca 2+ handling in the remote myocardium 24 h after 60 min LAD occlusion. Cardiomyocytes isolated from the basal noninfarct-related parts of wild type mouse hearts demonstrated depressed beat-to-beat Ca 2+ handling. The amplitude of the Ca 2+ transients as well as the kinetics of Ca 2+ transport were reduced by up to 25%. These changes were associated with impaired sarcomere contraction. While expression levels of Ca 2+ regulatory proteins were unchanged in remote myocardium compared to the corresponding regions of sham-operated hearts, mobility shift analyses of phosphorylated protein showed 2.9 ± 0.4-fold more unphosphorylated phospholamban (PLN) monomers, the PLN species that inhibits the Ca 2+ ATPase SERCA2a (P ≤ 0.001). Phospho-specific antibodies revealed normal phosphorylation of PLN at T17 in remote myocardium, but markedly reduced phosphorylation at its PKA-dependent phosphorylation site, S16 (P ≤ 0.01). The underlying cause involved enhanced activity of protein phosphatases, particularly PP2A (P ≤ 0.01). In contrast, overall PKA activity was normal. The PLN interactome, as determined by co-immunoprecipitation and mass spectrometry, and the phosphorylation state of PKA targets other than PLN were also unchanged. Isoproterenol enhanced cellular Ca 2+ cycling much stronger in remote myocytes than in healthy controls and improved sarcomere function. We conclude that the reduced phosphorylation state of PLN at S16 impairs myocyte Ca 2+ cycling in the remote myocardium 24 h after I/R and contributes to contractile dysfunction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pelzl, Lisann; Elsir, Bhaeldin; Sahu, Itishri; Bissinger, Rosi; Singh, Yogesh; Sukkar, Basma; Honisch, Sabina; Schoels, Ludger; Jemaà, Mohamed; Lang, Elisabeth; Storch, Alexander; Hermann, Andreas; Stournaras, Christos; Lang, Florian
2017-01-01
The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment. © 2017 The
Pahlavan, Sara; Morad, Marin
2017-09-01
The details of cardiac Ca 2+ signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca 2+ probes localized to dyadic junctions. To critically monitor ryanodine receptors' (RyR2) Ca 2+ nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, K d =150nM, or FKBP-GCaMP6, K d =240nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80nm). The punctate z-line patterns of FKBP, 2 -targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2-3s) to detect Ca 2+ sparks, but the probe was effective in marking where Fluo-4 Ca 2+ sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca 2+ signals that: a) had faster kinetics and activated synchronous with I Ca 3 but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca 2+ sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca 2+ in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ren, Jun; Yang, Lifang; Zhu, Li; Xu, Xihui; Ceylan, Asli F; Guo, Wei; Yang, Jian; Zhang, Yingmei
2017-10-01
Aging is accompanied with unfavorable geometric and functional changes in the heart involving dysregulation of Akt and autophagy. This study examined the impact of Akt2 ablation on life span and cardiac aging as well as the mechanisms involved with a focus on autophagy and mitochondrial integrity. Cardiac geometry, contractile, and intracellular Ca 2+ properties were evaluated using echocardiography, IonOptix ® edge-detection and fura-2 techniques. Levels of Sirt1, mitochondrial integrity, autophagy, and mitophagy markers were evaluated using Western blot. Our results revealed that Akt2 ablation prolonged life span (by 9.1%) and alleviated aging (24 months)-induced unfavorable changes in myocardial function and intracellular Ca 2+ handling (SERCA2a oxidation) albeit with more pronounced cardiac hypertrophy (58.1%, 47.8%, and 14.5% rises in heart weight, wall thickness, and cardiomyocyte cross-sectional area). Aging downregulated levels of Sirt1, increased phosphorylation of Akt, and the nuclear transcriptional factor Foxo1, as well as facilitated acetylation of Foxo1, the effects of which (except Sirt1 and Foxo1 acetylation) were significantly attenuated or negated by Akt2 ablation. Advanced aging disturbed autophagy, mitophagy, and mitochondrial integrity as evidenced by increased p62, decreased levels of beclin-1, Atg7, LC3B, BNIP3, PTEN-induced putative kinase 1 (PINK1), Parkin, UCP-2, PGC-1α, and aconitase activity, the effects of which were reversed by Akt2 ablation. Aging-induced cardiomyocyte contractile dysfunction and loss of mitophagy were improved by rapamycin and the Sirt1 activator SRT1720. Activation of Akt using insulin or Parkin deficiency prevented SRT1720-induced beneficial effects against aging. In conclusion, our data indicate that Akt2 ablation protects against cardiac aging through restored Foxo1-related autophagy and mitochondrial integrity. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Zhang, Yingmei; Han, Xuefeng; Hu, Nan; Huff, Anna F; Gao, Feng; Ren, Jun
2014-06-01
Caloric restriction leads to changes in heart geometry and function although the underlying mechanism remains elusive. Autophagy, a conserved pathway for degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of Akt2 in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved. Wild-type (WT) and Akt2 knockout mice were calorie restricted (by 40%) for 30weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, autophagy and its regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased left ventricular mass, left ventricular diameters and cardiac output), cardiomyocyte contractile and intracellular Ca(2+) properties associated with dampened SERCA2a phosphorylation, upregulated phospholamban and autophagy (Beclin-1, Atg7, LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK, Akt2 and the Akt downstream signal molecule TSC2, the effects of which with the exception of autophagy protein markers (Beclin-1, Atg7, LC3B) and AMPK were mitigated or significantly alleviated by Akt2 knockout. Lysosomal inhibition using bafilomycin A1 negated Akt2 knockout-induced protective effect on p62. Evaluation of downstream signaling molecules of Akt and AMPK including mTOR and ULK1 revealed that caloric restriction suppressed and promoted phosphorylation of mTOR and ULK1, respectively, without affecting total mTOR and ULK1 expression. Akt2 knockout significantly augmented caloric restriction-induced responses on mTOR and ULK1. Taken together, these data suggest a beneficial role of Akt2 knockout in preservation of cardiac homeostasis against prolonged caloric restriction-induced pathological changes possibly through facilitating autophagy. This article is part of a Special Issue entitled "Protein Quality
Stenzig, Justus; Schneeberger, Yvonne; Löser, Alexandra; Peters, Barbara S; Schaefer, Andreas; Zhao, Rong-Rong; Ng, Shi Ling; Höppner, Grit; Geertz, Birgit; Hirt, Marc N; Tan, Wilson; Wong, Eleanor; Reichenspurner, Hermann; Foo, Roger S-Y; Eschenhagen, Thomas
2018-07-01
Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes. Young male Wistar rats were subjected to PO by transverse aortic constriction (TAC) or to sham surgery. Rats from both groups received solvent or 12.5 mg/kg body weight of the non-nucleosidic DNMT inhibitor RG108, initiated on the day of the intervention. After 4 weeks, we analysed cardiac function by MRI, fibrosis with Sirius Red staining, gene expression by RNA sequencing and qPCR, and DNA methylation by reduced representation bisulphite sequencing (RRBS). RG108 attenuated the ~70% increase in heart weight/body weight ratio of TAC over sham to 47% over sham, partially rescued reduced contractility, diminished the fibrotic response and the downregulation of a set of genes including Atp2a2 (SERCA2a) and Adrb1 (beta1-adrenoceptor). RG108 was associated with significantly lower global DNA methylation in cardiomyocytes by ~2%. The differentially methylated pathways were "cardiac hypertrophy", "cell death" and "xenobiotic metabolism signalling". Among these, "cardiac hypertrophy" was associated with significant methylation differences in the group comparison sham vs. TAC, but not significant between sham+RG108 and TAC+RG108 treatment, suggesting that RG108 partially prevented differential methylation. However, when comparing TAC and TAC+RG108, the pathway cardiac hypertrophy was not significantly differentially methylated. DNMT inhibitor treatment is associated with attenuation of cardiac hypertrophy and moderate changes in cardiomyocyte DNA methylation. The
Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy
2011-01-01
Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (Tb), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low Tb. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of Tb and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms. PMID
Pavasovic, Ana; Dammannagoda, Lalith K.; Mather, Peter B.; Prentis, Peter J.
2017-01-01
Systemic acid-base balance and osmotic/ionic regulation in decapod crustaceans are in part maintained by a set of transport-related enzymes such as carbonic anhydrase (CA), Na+/K+-ATPase (NKA), H+-ATPase (HAT), Na+/K+/2Cl− cotransporter (NKCC), Na+/Cl−/HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3− cotransporter (NBC), Na+/H+ exchanger (NHE), Arginine kinase (AK), Sarcoplasmic Ca+2-ATPase (SERCA) and Calreticulin (CRT). We carried out a comparative molecular analysis of these genes in three commercially important yet eco-physiologically distinct freshwater crayfish, Cherax quadricarinatus, C. destructor and C. cainii, with the aim to identify mutations in these genes and determine if observed patterns of mutations were consistent with the action of natural selection. We also conducted a tissue-specific expression analysis of these genes across seven different organs, including gills, hepatopancreas, heart, kidney, liver, nerve and testes using NGS transcriptome data. The molecular analysis of the candidate genes revealed a high level of sequence conservation across the three Cherax sp. Hyphy analysis revealed that all candidate genes showed patterns of molecular variation consistent with neutral evolution. The tissue-specific expression analysis showed that 46% of candidate genes were expressed in all tissue types examined, while approximately 10% of candidate genes were only expressed in a single tissue type. The largest number of genes was observed in nerve (84%) and gills (78%) and the lowest in testes (66%). The tissue-specific expression analysis also revealed that most of the master genes regulating pH and osmoregulation (CA, NKA, HAT, NKCC, NBC, NHE) were expressed in all tissue types indicating an important physiological role
Effect of TGFβ on calcium signaling in megakaryocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jing; Schmid, Evi; Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen
2015-05-22
TGFβ is a powerful regulator of megakaryocyte maturation and platelet formation. As previously shown for other cell types, TGFβ may up-regulate the expression of the serum & glucocorticoid inducible kinase SGK1, an effect requiring p38 kinase. SGK1 has in turn recently been shown to participate in the regulation of cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}) in megakaryocytes and platelets. SGK1 phosphorylates the IκB kinase (IKKα/β), which in turn phosphorylates the inhibitor protein IκBα resulting in nuclear translocation of nuclear factor NFκB. Genes up-regulated by NFκB include Orai1, the pore forming ion channel subunit accomplishing store operated Ca{sup 2+} entrymore » (SOCE). The present study explored whether TGFβ influences Ca{sup 2+} signaling in megakaryocytes. [Ca{sup 2+}]{sub i} was determined by Fura-2 fluorescence and SOCE from the increase of [Ca{sup 2+}]{sub i} following re-addition of extracellular Ca{sup 2+} after store depletion by removal of extracellular Ca{sup 2+} and inhibition of the sarcoendoplasmatic Ca{sup 2+} ATPase (SERCA) with thapsigargin (1 μM). As a result, TGFβ (60 ng, 24 h) increased SOCE, an effect significantly blunted by p38 kinase inhibitor Skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) and NFκB inhibitor wogonin (100 μM). In conclusion, TGFβ is a powerful regulator of store operated Ca{sup 2+} entry into megakaryocytes, an effect mediated by a signaling cascade involving p38 kinase, SGK1 and NFκB. - Highlights: • TGFβ up-regulates store operated Ca{sup 2+} entry (SOCE) in megakaryocytes. • The effect of TGFβ on SOCE is blunted by p38 kinase inhibitor Skepinone-L. • The effect of TGFβ on SOCE is virtually abrogated by SGK1 inhibitor EMD638683. • The effect of TGFβ on SOCE is almost abolished by NFκB inhibitor wogonin. • The effect of TGFβ is expected to enhance sensitivity of platelets to activation.« less
Jessica, Sabourin; Angèle, Boet; Catherine, Rucker-Martin; Mélanie, Lambert; Ana-Maria, Gomez; Jean-Pierre, Benitah; Frédéric, Perros; Marc, Humbert; Fabrice, Antigny
2018-05-01
Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca 2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca 2+ remodeling. After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca 2+ ] i transients and increased sarcoplasmic reticulum (SR) Ca 2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser 16 -phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca 2+ -ATPase) pump abundance. Moreover, after PH induction, Ca 2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca 2+ -release-activated Ca 2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca 2+ ] i transients amplitude, the SR Ca 2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. These new findings demonstrate RV
Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy; Bruns, Ute
2011-04-13
Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b)), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b). Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b) and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms.
Soglia, F; Mudalal, S; Babini, E; Di Nunzio, M; Mazzoni, M; Sirri, F; Cavani, C; Petracci, M
2016-03-01
Only a few years ago, the poultry industry began to face a recent abnormality in breast meat, known as wooden breast, which frequently overlaps with white striping. This study aimed to assess the impact of wooden breast abnormality on quality traits of meat. For this purpose, 32 normal (NRM), 32 wooden (WB), and 32 wooden and white-striped (WB/WS) Pectoralis major muscles were selected from the same flock of heavy broilers (males, Ross 708, weighing around 3.7 kg) in the deboning area of a commercial processing plant at 3 h postmortem and used to assess histology, proximate (moisture, protein, fat, ash, and collagen) and mineral composition (Mg, K, P, Na and Ca), sarcoplasmic and myofibrillar protein patterns, and technological traits of breast meat. Compared to the normal group, WB/WS fillets showed more severe histological lesions characterized by fiber degeneration, fibrosis, and lipidosis, coupled with a significantly harder texture. With regard to proximate and mineral composition, abnormal samples exhibited significantly (P < 0.001) higher moisture, fat, and collagen contents coupled with lower (P < 0.001) amounts of protein and ash. Furthermore, increased calcium (131 vs. 84 mg kg(-1); P < 0.05) and sodium (741 vs. 393 mg kg(-1); P < 0.001) levels were found in WB/WS meat samples. The SDS-PAGE analysis revealed a significantly lower amount of calcium-ATPase (SERCA, 114 kDa), responsible for the translocation of Ca ions across the membrane, in normal breasts compared to abnormal ones. As for meat quality traits, fillets affected by wooden abnormality exhibited significantly (P < 0.001) higher ultimate pH and lower water-holding/water-binding capacity. In particular, compared to normal, abnormal samples showed reduced marinade uptake coupled with increased drip loss and cooking losses as well. In conclusion, this study revealed that meat affected by wooden breast or both wooden breast and white striping abnormalities exhibit poorer nutritional value, harder
Domenighetti, Andrea A; Danes, Vennetia R; Curl, Claire L; Favaloro, Jennifer M; Proietto, Joseph; Delbridge, Lea M D
2010-04-01
There is clinical evidence to suggest that impaired myocardial glucose uptake contributes to the pathogenesis of hypertrophic, insulin-resistant cardiomyopathy. The goal of this study was to determine whether cardiac deficiency of the insulin-sensitive glucose transporter, GLUT4, has deleterious effect on cardiomyocyte excitation-contraction coupling. Cre-Lox mouse models of cardiac GLUT4 knockdown (KD, 85% reduction) and knockout (KO, >95% reduction), which exhibit similar systemic hyperinsulinemic and hyperglycemic states, were investigated. The Ca(2+) current (I(Ca)) and Na(+)-Ca(2+) exchanger (NCX) fluxes, Na(+)-H(+) exchanger (NHE) activity, and contractile performance of GLUT4-deficient myocytes was examined using whole-cell patch-clamp, epifluorescence, and imaging techniques. GLUT4-KO exhibited significant cardiac enlargement characterized by cardiomyocyte hypertrophy (40% increase in cell area) and fibrosis. GLUT4-KO myocyte contractility was significantly diminished, with reduced mean maximum shortening (5.0+/-0.4% vs. 6.2+/-0.6%, 5 Hz). Maximal rates of shortening and relaxation were also reduced (20-25%), and latency was delayed. In GLUT4-KO myocytes, the I(Ca) density was decreased (-2.80+/-0.29 vs. -5.30+/-0.70 pA/pF), and mean I(NCX) was significantly increased in both outward (by 60%) and inward (by 100%) directions. GLUT4-KO expression levels of SERCA2 and RyR2 were reduced by approximately 50%. NHE-mediated H(+) flux in response to NH(4)Cl acid loading was markedly elevated GLUT4-KO myocytes, associated with doubled expression of NHE1. These findings demonstrate that, independent of systemic endocrinological disturbance, cardiac GLUT4 deficiency per se provides a lesion sufficient to induce profound alterations in cardiomyocyte Ca(2+) and pH homeostasis. Our investigation identifies the cardiac GLUT4 as a potential primary molecular therapeutic target in ameliorating the functional deficits associated with insulin-resistant cardiomyopathy
[Dentistry in Korean during the Japanese occupation].
Shin, Jae-Eu
2004-12-01
The Japanese introduction of dentistry into Korea was for treating the Japanese residing in Korea Noda-Oji was the first Japanese dentist for Japanese people in Korea in 1893, and Narajaki doyoyo, an invited dentist was posted in the Korean headquarter of Japanese army in September, 1905. The imperialist Japan licensed the dental technicians (yipchisa) without limit and controlled them generously so they could practice dentistry freely. This measure was contrary to that in Japan. (In Japan no new dental technician was licensed.) Komori, a dental technician opened his laboratory at Chungmuro in 1902. The dental technician had outnumbered by 1920. In 1907, the first Korean dental technician Sung-Ryong Choi practiced dentistry in Jongno. The imperialist Japan made the regulations for dental technicians to set a limit to the advertisement and medical practice of dental technicians. The first Korean dentists Suk-Tae Ham was register No. 1 in the dentist license. The Kyungsung dental school was established by Nagira Dasoni for the purpose of educating some Korean people that contributed to Japanese colonization. It made progress with the help of Japan, it was was given the approval of the establishment of the professional school in January the 25th, 1929. It was intended to produce Korean dentists in the first place but became the school for Japanese students later on. The association of Chosun dentist, which had been founded by Narajaki doyoyo, was managed by Japanese dentists in favor of the colonial ruling. The Hansung Association of Dentists established in 1925 was the organization made by the necessity of the association for Koreans only. The Japanese forcefully annexed the Association of Hansung Dentists (Koreans only) to the Association of Kyungsung Dentists to avoid collective actions of Korean dentists in the name of 'Naesunilche' -- 'Japan and Korea and one'. Their invading intention was shown in the event of 'decayed tooth preventive day'. Japanese controlled
NASA Astrophysics Data System (ADS)
Rustemeier, Elke; Ziese, Markus; Raykova, Kristin; Meyer-Christoffer, Anja; Schneider, Udo; Finger, Peter; Becker, Andreas
2017-04-01
FDD-V1 based on ETCCDI diagnoses were detected particularly in regions with large precipitation totals especially in Africa in the ITCZ area and in Indonesia. The overall comparison reveals geo-spatially heterogeneous results with areas of similar precipitation characteristics, but also areas that still remain challenging for the reanalysis' fidelity to represent the FDM-V7 and FDD-F1 based diagnostics. The results serve good guidance where improvements of the future IFS model versions should be most effective. Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A. and Plummer, N. (2001): Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization. Poli, P., H. Hersbach, D. Tan, D. Dee, J.-N. Thépaut, A. Simmons, C. Peubey, P. Laloy-aux, T. Komori, P. Berrisford, R. Dragani, Y. Trémolet, E. H ´lm, M. Bonavita, L. Isaksen und M. Fisher (2013): The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C), ERA Report Series 14, http://www.ecmwf.int/publications/library/do/references/show?id=90833) Schneider, Udo, Andreas Becker, Peter Finger, Anja Meyer-Christoffer, Bruno Rudolf und Markus Ziese (2015): GPCC Full Data Reanalysis Version 7.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. DOI: 10.5676/DWD_GPCC/FD_M_V7_100
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-12-01
The relationship between sarcoplasmic reticulum (SR) Ca(2+) content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca(2+) content and maximal Ca(2+) capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca(2+) content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca(2+) per litre of fibre, respectively), with virtually all of this Ca(2+) evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg(2+)] solution (only 0.08 ± 0.01 and <0.07 mmol l(-1), respectively, remaining). The maximal Ca(2+) content that could be reached with SR Ca(2+) loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l(-1) in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca(2+) release and subsequent Ca(2+) reloading similarly indicated that (i) maximal SR Ca(2+) content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca(2+) content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3-fold more CSQ1 and ∼5-fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca(2+) content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-01-01
The relationship between sarcoplasmic reticulum (SR) Ca2+ content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca2+ content and maximal Ca2+ capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca2+ content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca2+ per litre of fibre, respectively), with virtually all of this Ca2+ evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg2+] solution (only 0.08 ± 0.01 and <0.07 mmol l−1, respectively, remaining). The maximal Ca2+ content that could be reached with SR Ca2+ loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l−1 in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca2+ release and subsequent Ca2+ reloading similarly indicated that (i) maximal SR Ca2+ content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca2+ content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3–fold more CSQ1 and ∼5–fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca2+ content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2. PMID:24127619
CYP2E1 overexpression inhibits microsomal Ca2+-ATPase activity in HepG2 cells.
Caro, Andres A; Evans, Kerry L; Cederbaum, Arthur I
2009-01-31
Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca2+-ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cell line: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca2+-dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca2+-dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes versus 4.7 nmol Pi/min/mg protein in microsomes). Saturation curves with Ca2+ or ATP showed that CYP2E1 overexpression produced a decrease in Vmax but did not affect the Km for either Ca2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATP-dependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2mM N-acetylcysteine prevented the decrease in microsomal Ca2+-ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca2+-ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.
Bovo, Elisa; Huke, Sabine; Blatter, Lothar A; Zima, Aleksey V
2017-03-01
Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PKA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca 2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca 2+ ] and intra-SR [Ca 2+ ] SR were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PKA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10μM) increased Ca 2+ spark frequency approximately two-fold. This effect was associated with an increase in SR Ca 2+ load from 0.84 to 1.24mM. PKA inhibitory peptide (PKI; 10μM) abolished the cAMP-dependent increase of SR Ca 2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca 2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its "basal" level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca 2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca 2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PKA has a complex effect on SR Ca 2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca 2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca 2+ leak. Copyright © 2017 Elsevier
Cooper, Leroy L; Li, Weiyan; Lu, Yichun; Centracchio, Jason; Terentyeva, Radmila; Koren, Gideon; Terentyev, Dmitry
2013-01-01
Ageing is associated with a blunted response to sympathetic stimulation and an increased risk of arrhythmia and sudden cardiac death. Aberrant calcium (Ca2+) handling is an important contributor to the electrical and contractile dysfunction associated with ageing. Yet, the specific molecular mechanisms underlying abnormal Ca2+ handling in ageing heart remain poorly understood. In this study, we used ventricular myocytes isolated from young (5–9 months) and old (4–6 years) rabbit hearts to test the hypothesis that changes in Ca2+ homeostasis are caused by post-translational modification of ryanodine receptors (RyRs) by mitochondria-derived reactive oxygen species (ROS) generated in the ageing heart. Changes in parameters of Ca2+ handling were determined by measuring cytosolic and intra-sarcoplasmic reticulum (SR) Ca2+ dynamics in intact and permeabilized ventricular myocytes using confocal microscopy. We also measured age-related changes in ROS production and mitochondria membrane potential using a ROS-sensitive dye and a mitochondrial voltage-sensitive fluorescent indicator, respectively. In permeablized myocytes, ageing did not change SERCA activity and spark frequency but decreased spark amplitude and SR Ca2+ load suggesting increased RyR activity. Treatment with the antioxidant dithiothreitol reduced RyR-mediated SR Ca2+ leak in permeabilized myocytes from old rabbit hearts to the level comparable to young. Moreover, myocytes from old rabbits had more depolarized mitochondria membrane potential and increased rate of ROS production. Under β-adrenergic stimulation, Ca2+ transient amplitude, SR Ca2+ load, and latency of pro-arrhythmic spontaneous Ca2+ waves (SCWs) were decreased while RyR-mediated SR Ca2+ leak was increased in cardiomyocytes from old rabbits. Additionally, with β-adrenergic stimulation, scavenging of mitochondrial ROS in myocytes from old rabbit hearts restored redox status of RyRs, which reduced SR Ca2+ leak, ablated most SCWs, and increased
Zhang, Li; Cheng, Xian; Xu, Shichen; Bao, Jiandong; Yu, Huixin
2018-06-01
Thyroid cancer is the most common endocrine tumor. Our previous studies have demonstrated that curcumin can induce apoptosis in human papillary thyroid carcinoma BCPAP cells. However, the underlined mechanism has not been clearly elucidated. Endoplasmic reticulum (ER) is a major organelle for synthesis, maturation, and folding proteins as well as a large store for Ca. Overcoming chronically activated ER stress by triggering pro-apoptotic pathways of the unfolded protein response (UPR) is a novel strategy for cancer therapeutics. Our study aimed to uncover the ER stress pathway involved in the apoptosis caused by curcumin. BCPAP cells were treated with different doses of curcumin (12.5-50 μM). Annexin V/PI double staining was used to determine cell apoptosis. Rhod-2/AM calcium fluorescence probe assay was performed to measure the calcium level of endoplasmic reticulum. Western blot was used to examine the expression of ER stress marker C/EBP homologous protein 10 (CHOP) and glucose-regulated protein 78 (GRP78). X-box binding protein1 (XBP-1) spliced form was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). Curcumin significantly inhibited anchorage-independent cell growth and induced apoptosis in BCPAP cells. Curcumin induced ER stress and UPR responses in a dose- and time-dependent manner, and the chemical chaperone 4-phenylbutyrate (4-PBA) partially reversed the antigrowth activity of curcumin. Moreover, curcumin significantly increased inositol-requiring enzyme 1α (IRE1α) phosphorylation and XBP-1 mRNA splicing to induce a subsets of ER chaperones. Increased cleavage of activating transcription factor 6 (ATF6), which enhances expression of its downstream target CHOP was also observed. Furthermore, curcumin induced intracellular Ca influx through inhibition of the sarco-endoplasmic reticulum ATPase 2A (SERCA2) pump. The increased cytosolic Ca then bound to calmodulin to activate calcium/calmodulin-dependent protein kinase II (Ca
Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens
2018-02-01
The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P < 0.05) and dystrophin was higher (P < 0.05) in ST muscle fibers, and sarcoplasmic reticulum calcium ATPase 1 (SERCA1) was lower (P < 0.05) in fast twitch muscle fibers. Running economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P < 0.05) after the intervention in the normal condition, but unchanged in the ST glycogen-depleted condition. Ten kilometer performance was improved (P < 0.01) by 3.2% (43.7 ± 1.0 vs. 45.2 ± 1.2 min) and 3.9% (45.8 ± 1.2 vs. 47.7 ± 1.3 min) in the normal and the ST glycogen-depleted condition, respectively. VO 2 -max was the same, but vVO 2 -max was 2.0% higher (P < 0.05; 19.3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Mustroph, Julian; Wagemann, Olivia; Lebek, Simon; Tarnowski, Daniel; Ackermann, Jasmin; Drzymalski, Marzena; Pabel, Steffen; Schmid, Christof; Wagner, Stefan; Sossalla, Samuel; Maier, Lars S; Neef, Stefan
2018-03-01
Ethanol has acute negative inotropic and arrhythmogenic effects. The underlying mechanisms, however, are largely unknown. Sarcoplasmic reticulum Ca 2+ -leak is an important mechanism for reduced contractility and arrhythmias. Ca 2+ -leak can be induced by oxidative stress and Ca 2+ /Calmodulin-dependent protein kinase II (CaMKII). Therefore, we investigated the influence of acute ethanol exposure on excitation-contraction coupling in atrial and ventricular cardiomyocytes. Isolated human atrial and murine atrial or ventricular cardiomyocytes were preincubated for 30 min and then superfused with control solution or solution containing ethanol. Ethanol had acute negative inotropic and positive lusitropic effects in human atrial muscle strips and murine ventricular cardiomyocytes. Accordingly, Ca 2+ -imaging indicated lower Ca 2+ -transient amplitudes and increased SERCA2a activity, while myofilament Ca 2+ -sensitivity was reduced. SR Ca 2+ -leak was assessed by measuring Ca 2+ -sparks. Ethanol induced severe SR Ca 2+ -leak in human atrial cardiomyocytes (calculated leak: 4.60 ± 0.45 mF/F 0 vs 1.86 ± 0.26 in control, n ≥ 80). This effect was dose-dependent, while spontaneous arrhythmogenic Ca 2+ -waves increased ~5-fold, as investigated in murine cardiomyocytes. Delayed afterdepolarizations, which can result from increased SR Ca 2+ -leak, were significantly increased by ethanol. Measurements using the reactive oxygen species (ROS) sensor CM-H 2 DCFDA showed increased ROS-stress in ethanol treated cells. ROS-scavenging with N-acetylcysteine prevented negative inotropic and positive lusitropic effects in human muscle strips. Ethanol-induced Ca 2+ -leak was abolished in mice with knockout of NOX2 (the main source for ROS in cardiomyocytes). Importantly, mice with oxidation-resistant CaMKII (Met281/282Val mutation) were protected from ethanol-induced Ca 2+ -leak. We show for the first time that ethanol acutely induces strong SR Ca 2+ -leak, also altering
Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2.
Luyten, Tomas; Welkenhuyzen, Kirsten; Roest, Gemma; Kania, Elzbieta; Wang, Liwei; Bittremieux, Mart; Yule, David I; Parys, Jan B; Bultynck, Geert
2017-06-01
Previous work revealed that intracellular Ca 2+ signals and the inositol 1,4,5-trisphosphate (IP 3 ) receptors (IP 3 R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP 3 Rs and Ca 2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca 2+ -chelating agent. To elucidate the IP 3 R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP 3 R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP 3 R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca 2+ or by knocking out IP 3 Rs. Finally, we investigated whether resveratrol by itself induced Ca 2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca 2+ ATPase (SERCA) activity nor the IP 3 -induced Ca 2+ release nor the basal Ca 2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP 3 -induced Ca 2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca 2+ signals by itself, it acutely decreased the ER Ca 2+ -store content irrespective of the presence or absence of IP 3 Rs, leading to a dampened agonist-induced Ca 2+ signaling. In conclusion, these results reveal that IP 3 Rs and cytosolic Ca 2+ signaling are fundamentally important for driving autophagic flux
NASA Astrophysics Data System (ADS)
Nurkowski, Janusz
2014-12-01
problematyczne. W przypadku skał przewodzących (nasączonych solanką) istnieje ryzyko zwarcia ścieżki rezystancyjnej do podłoża. Często naklejenie tensometru jest niemożliwe w przypadku skał słabo zwięzłych (fliszowe). Inne metody pomiaru np. transformator różnicowy z ruchomym rdzeniem (LVDT) ma ograniczoną odporność na wysokie ciśnienie i temperaturę i zbyt duże rozmiary. Czujnik LDT (Local Deformation Transducer), czyli naklejony tensometr rezystancyjny na sprężystą taśmę stalową, ma ograniczony zakres pomiaru deformacji do kilku procent i małą czułość. Opracowano nową metodę pomiaru odkształcenia opartą na jednowarstwowej, bezrdzeniowej cewce indukcyjnej, wykonanej z cienkiego sprężystego drutu (0,2 mm) i średnicy zwojów kilku milimetrów. Tak wykonany czujnik jest instalowany do zaczepów zamontowanych na badanej próbce (rys. 1 i 2). Odkształcenie próbki powoduje zmianę długości cewki (czujnika), a zatem jej indukcyjności. Czujnik stanowi indukcyjną część generatora LC, umieszczonego na zewnątrz komory. Zmiana indukcyjności skutkuje zmianą częstotliwości drgań, którą łatwo zmierzyć z dużą precyzją. Prostota czujnika gwarantuje jego dużą odporność na ciśnienie hydrostatyczne, temperaturę i udary mechaniczne. Minimalizacja błędów spowodowanych zmiennym ciśnieniem i temperaturą realizowana jest dwoma sposobami. Po pierwsze, czujnik wykonano z wysokorezystywnego drutu, co skutkuje dużymi termicznymi zmianami jego rezystancji, które zmieniają częstotliwość drgań (poprawka częstotliwości w generatorze Colpitts'a (4) przeciwstawnie do wpływu temperatury na indukcyjność czujnika (rozszerzalność termiczna). Umożliwia to prawie całkowitą kompensację termiczną czujnika w kilkunastostopniowym zakresie (rys. 4). Drugim sposobem jest użycie czujnika referencyjnego wykonanego w identyczny sposób jak czujnik pomiarowy, który jest zamocowany na wsporniku o znanej ściśliwości i rozszerzalno
Groban, L; Lin, M; Kassik, K A; Ingram, R L; Sonntag, W E
2011-04-01
The primary goal of growth hormone (GH) replacement is to promote linear growth in children with growth hormone deficiency (GHD). GH and insulin-like growth factor-1 (IGF-1) are also known to have roles in cardiac development and as modulators of myocardial structure and function in the adult heart. However, little is known about cardiac diastolic function in young adults with childhood onset GH deficiency in which GH treatment was discontinued following puberty. The aim of the study was to evaluate the effects of long standing GHD and peri-pubertal or continuous GH replacement therapy on diastolic function in the adult dwarf rat. The dwarf rat, which possesses a mutation in a transcription factor necessary for development of the somatotroph, does not exhibit the normal peri-pubertal rise in GH around day 28 and was used to model childhood or early-onset GHD (EOGHD). In another group of male dwarfs, GH replacement therapy was initiated at 4 weeks of age when GH pulsatility normally begins. Ten weeks after initiation of injections, GH-treated dwarf rats were divided into 2 groups; continued treatment with GH for 12 weeks (GH-replete) or treatment with saline for 12 weeks. This latter group models GH supplementation during adolescence with GHD beginning in adulthood (adult-onset GHD; AOGHD). Saline-treated heterozygous (HZ) rats were used as age-matched controls. At 26 weeks of age, cardiac function was assessed using invasive or noninvasive (conventional and tissue Doppler) indices of myocardial contractility and lusitropy. Systolic function, as determined by echocardiography, was similar among groups. Compared with HZ rats and GH-replete dwarfs, the EOGHD group exhibited significant reductions in myocardial relaxation and increases in left ventricular filling pressure, indicative of moderate diastolic dysfunction. This was further associated with a decrease in the cardiac content of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), one of the important cardiac calcium
Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea.
Wright, Marietta F; Bowdridge, Elizabeth; McDermott, Erica L; Richardson, Samuel; Scheidler, James; Syed, Qaisar; Bush, Taylor; Inskeep, E Keith; Flores, Jorge A
2014-03-01
Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells
Zhong, Weixia; Chebolu, Seetha; Darmani, Nissar A
2016-04-01
Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non
Maxwell, Joshua T; Blatter, Lothar A
2017-06-15
+ ] SR was smaller than nj-SR [Ca 2+ ] SR . Similarly, Ca 2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca 2+ sparks) but smaller depletion (Ca 2+ blinks) than release from nj-SR. During AP-induced Ca 2+ release the rise of [Ca 2+ ] i detected at individual release sites of the nj-SR preceded the depletion of [Ca 2+ ] SR , and during this latency period a transient elevation of [Ca 2+ ] SR occurred. We propose that Ca 2+ release from nj-SR is activated by cytosolic and luminal Ca 2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca 2+ uptake by sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA) at the propagation front elevates local [Ca 2+ ] SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction.
Yockman, James W; Kastenmeier, Andrew; Erickson, Harold M; Brumbach, Jonathan G; Whitten, Matthew G; Albanil, Aida; Li, Dean Y; Kim, Sung Wan; Bull, David A
2008-12-18
-261]. This new breed of polymer(s) may allow for decreased doses and use of new molecular mechanisms not previously available due to low transfection efficiencies. Little development has been seen in the use of new gene agents for treatment of myocardial ischemia and infarction. Current treatment consists of using mitogenic factors, described decades earlier, alone or in combination to spur angiogenesis or modulating intracellular Ca2+ homeostasis through SERCA2a but to date, failed to demonstrate clinical efficacy. Recent data suggests that axonal guidance cues also act on vasculature neo-genesis and provide a new means of investigation for treatment.
Haynes, Richard K; Cheu, Kwan-Wing; N'Da, David; Coghi, Paolo; Monti, Diego
2013-08-01
peroxide forms heme adducts that apparently inherit the exquisite cytotoxicities of the parent peroxide in one way or another. In a subsequent review, we screen the third and fourth hypotheses: the SERCA hypothesis wherein artemisinins modulate operation of the malaria parasite sarcoendo plasmic reticulum calcium pump SERCA Ca(2+)-ATPase ATP6 and the co-factor hypothesis wherein artemisinins act as oxidant drugs through rapidly oxidizing reduced conjugates of flavin cofactors, or those of flavin cofactor precursors such as riboflavin, and other susceptible endogenous substrates that play a role in maintaining intraparasitic redox homeostasis. For the C-radical hypothesis, details of in vitro chemical studies in the context of established chemistry of C-radicals and their ability to react with radical trapping agents such as nitroso compounds, cyclic nitrones, persistent nitroxyl radicals and atmospheric oxygen (dioxygen) are summarized. Overall, there is no correlation between antimalarial activities and abilities of the derived C-radicals to react with trapping agents in a chemical flask. This applies in particular to the reactions of C-radicals from artemisinins and steroidal tetraoxanes with the trapping agents vis-a-vis those from adamantyl capped systems. In an intraparasitic medium, it is not possible to intercept C-radicals either through use of a vast excess of a nitroxyl radical or dioxygen. The lack of correlation of antimalarial activities also applies to the Fe(2+)-mediated decomposition of artemisinins and synthetic peroxides, where literature data taken as indicating otherwise are critically assessed. The antagonism to antimalarial activities of artemisinins exerted by desferrioxamine (DFO) and related Fe(3+)-chelating agents is due to formation of stable chelates with bioavailable Fe(3+) that shuts down redox cycling through Fe(2+) and the subsequent generation of reactive oxygen species (ROS) via the Fenton reaction. The generation of ROS by Fe(2
NASA Astrophysics Data System (ADS)
Pomykała, Radosław
2013-06-01
Most of the coal gasification plants based of one of the three main types of reactors: fixed bed, fluidized bed or entrained flow. In recent years, the last ones, which works as "slagging" reactors (due to the form of generated waste), are very popular among commercial installations. The article discusses the characteristics of the waste from coal gasification in entrained flow reactors, obtained from three foreign installations. The studies was conducted in terms of the possibilities of use these wastes in mining technologies, characteristic for Polish underground coal mines. The results were compared with the requirements of Polish Standards for the materials used in hydraulic backfill as well as suspension technology: solidification backfill and mixtures for gob caulking. Większość przemysłowych instalacji zgazowania węgla pracuje w oparciu o jeden z trzech głównych typów reaktorów: ze złożem stałym, dyspersyjny lub fluidalny. W zależności od rodzaju reaktora oraz szczegółowych rozwiązań instalacji, powstające uboczne produkty zgazowania mogą mieć różną postać. Zależy ona w dużej mierze od stosunku temperatury pracy reaktora do temperatury topnienia części mineralnych zawartych w paliwie, czyli do temperatury mięknienia i topnienia popiołu. W ostatnich latach bardzo dużą popularność wśród instalacji komercyjnych zdobywają reaktory dyspersyjne "żużlujące". W takich instalacjach żużel jest wychwytywany i studzony po wypłynięciu z reaktora. W niektórych przypadkach oprócz żużla powstaje jeszcze popiół lotny, wychwytywany w systemach odprowadzania spalin. Może być on pozyskiwany oddzielnie lub też zawracany do komory reaktora, gdzie ulega stopieniu. Wszystkie z analizowanych odpadów - trzy żużle oraz popiół pochodzą właśnie z tego typu instalacji. Tylko z jednej z nich pozyskano zarówno żużel jak i popiół, z pozostałych dwóch jedynie żużel. Odpady te powstały, jako uboczny produkt zgazowania w