Against the grain: The physical properties of anisotropic partially molten rocks
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.
2014-12-01
Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.
Effects of sediment supply on surface textures of gravel-bed rivers
John M. Buffington; David R. Montgomery
1999-01-01
Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (Dâ50). We find that surface median grain size (...
Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Yeo, Eui-Joo; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei
2015-01-01
This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.
Choi, Yun-Sang
2015-01-01
This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle. PMID:26761884
NASA Astrophysics Data System (ADS)
Tahreen, N.; Zhang, D. F.; Pan, F. S.; Jiang, X. Q.; Li, D. Y.; Chen, D. L.
2016-12-01
Microstructure and texture evolution of as-extruded ZM31 magnesium alloys with different amounts of yttrium (Y) during pre- and post-deformation annealing were examined with special attention given to the effect of Y on recrystallization. It was observed that the extruded ZM31 alloys exhibited a basal texture with the basal planes parallel to the extrusion direction (ED). The compression of the extruded alloys in the ED to a strain amount of 10 pct resulted in c-axes of hcp unit cells rotating toward the anti-compression direction due to the occurrence of extension twinning. Annealing of the extruded alloys altered the microstructure and texture, and the subsequent compression after annealing showed a relatively weak texture and a lower degree of twinning. A reverse procedure of pre-compression and subsequent annealing was found to further weaken the texture with a more scattered distribution of orientations and to lead to the vanishing of the original basal texture. With increasing Y content, both the extent of extension twinning during compression and the fraction of recrystallization during annealing decreased due to the role of Y present in the substitutional solid solution and in the second-phase particles, leading to a significant increase in the compressive yield strength.
Paker, Ilgin; Matak, Kristen E
2016-01-15
Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P < 0.05) when analyzed immediately after cooling; however, gel chewiness, cohesiveness and firmness indicated by Kramer force benefited from 24 h at 4 °C gel setting when stored post-cooking. Gel-setting conditions had a greater (P < 0.05) effect on texture when directly analyzed and most changes occurred in no-set gels. There were significant (P < 0.05) changes between directly analyzed and post-cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.
Effects of sediment supply on surface textures of gravel‐bed rivers
Buffington, John M.; Montgomery, David R.
1999-01-01
Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (D50′). We find that surface median grain size (D50) varies inversely with sediment supply rate and systematically approaches the competent value (D50′) at low equilibrium transport rates. Furthermore, equilibrium transport rate is a power function of the difference between applied and critical shear stresses and is therefore a power function of the difference between competent and observed median grain sizes (D50′ and D50). Consequently, we propose that the difference between predicted and observed median grain sizes can be used to determine sediment supply rate in equilibrium channels. Our analysis framework collapses data from different studies toward a single relationship between sediment supply rate and surface grain size. While the approach appears promising, we caution that it has been tested only on a limited set of laboratory data and a narrow range of channel conditions.
NASA Astrophysics Data System (ADS)
Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina
2011-03-01
Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.
Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.
2014-03-01
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Bras, R. L.; Tucker, G. E.
2003-04-01
An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial networks.
NASA Astrophysics Data System (ADS)
Watson, H. C.; Yu, T.; Wang, Y.
2011-12-01
The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.
Application of Texture Analysis to Study Small Vessel Disease and Blood-Brain Barrier Integrity.
Valdés Hernández, Maria Del C; González-Castro, Victor; Chappell, Francesca M; Sakka, Eleni; Makin, Stephen; Armitage, Paul A; Nailon, William H; Wardlaw, Joanna M
2017-01-01
We evaluate the alternative use of texture analysis for evaluating the role of blood-brain barrier (BBB) in small vessel disease (SVD). We used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH) and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal-Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with Fazekas scores. Textural "homogeneity" increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural "homogeneity" increased with age, basal ganglia perivascular spaces scores ( p < 0.01) and SVD scores ( p < 0.05) and was significantly higher in hypertensive patients ( p < 0.002) and lacunar stroke ( p = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean = 65.6 years, SD = 11.3) predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast. A consistent general pattern of increasing textural "homogeneity" with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.
ERIC Educational Resources Information Center
Bilgin, Ibrahim
2006-01-01
The purpose of this study was to investigate the effectiveness of small group discussion on students' conceptual understanding of chemical equilibrium. Students' understanding of chemical equilibrium concepts was measured using the Misconception Identification Test. The test consisted of 30 items and administered as pre-posttests to a total of 81…
NASA Astrophysics Data System (ADS)
Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.
2012-04-01
The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde fractionation processes. Finally we show how, although the effective composition of symplectite growth is not easy to determine and quantify, it is possible to successfully model by constructing a series of phase equilibria calculations.
Texture Feature Extraction and Classification for Iris Diagnosis
NASA Astrophysics Data System (ADS)
Ma, Lin; Li, Naimin
Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.
Equilibrium of fluid membranes endowed with orientational order
NASA Astrophysics Data System (ADS)
Kumar Alageshan, Jaya; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan
2017-04-01
Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture) fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations governing their equilibrium shape, together with associated free boundary conditions. Our results are essential for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly under conditions in which shape deformations are large.
Youssef, M K; Barbut, S
2011-04-01
The effects of fat reduction (25.0%, 17.5%, and 10.0%) and substituting beef fat with canola oil or pre-emulsified canola oil (using soy protein isolate, sodium caseinate or whey protein isolate) on cooking loss, texture and color of comminuted meat products were investigated. Reducing fat from 25 to 10% increased cooking loss and decreased hardness. Canola oil or pre-emulsified treatments showed a positive effect on improving yield and restoring textural parameters. Using sodium caseinate to pre-emulsify the oil resulted in the highest hardness value. Cohesiveness was affected by fat type and level. The color of reduced fat meat batters was darker for all, except the beef fat treatments. Using canola oil or pre-emulsified oil resulted in a significant reduction in redness. The results show that pre-emulsification can offset some of the changes in reduced fat meat products when more water is used to substitute for the fat and that pre-emulsification can also help to produce a more stable meat matrix. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, W; Wang, J; Lu, W
Purpose: To identify the effective quantitative image features (radiomics features) for prediction of response, survival, recurrence and metastasis of hepatocellular carcinoma (HCC) in radiotherapy. Methods: Multiphase contrast enhanced liver CT images were acquired in 16 patients with HCC on pre and post radiation therapy (RT). In this study, arterial phase CT images were selected to analyze the effectiveness of image features for the prediction of treatment outcome of HCC to RT. Response evaluated by RECIST criteria, survival, local recurrence (LR), distant metastasis (DM) and liver metastasis (LM) were examined. A radiation oncologist manually delineated the tumor and normal liver onmore » pre and post CT scans, respectively. Quantitative image features were extracted to characterize the intensity distribution (n=8), spatial patterns (texture, n=36), and shape (n=16) of the tumor and liver, respectively. Moreover, differences between pre and post image features were calculated (n=120). A total of 360 features were extracted and then analyzed by unpaired student’s t-test to rank the effectiveness of features for the prediction of response. Results: The five most effective features were selected for prediction of each outcome. Significant predictors for tumor response and survival are changes in tumor shape (Second Major Axes Length, p= 0.002; Eccentricity, p=0.0002), for LR, liver texture (Standard Deviation (SD) of High Grey Level Run Emphasis and SD of Entropy, both p=0.005) on pre and post CT images, for DM, tumor texture (SD of Entropy, p=0.01) on pre CT image and for LM, liver (Mean of Cluster Shade, p=0.004) and tumor texture (SD of Entropy, p=0.006) on pre CT image. Intensity distribution features were not significant (p>0.09). Conclusion: Quantitative CT image features were found to be potential predictors of the five endpoints of HCC in RT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
Decameter-Scale Regolith Textures on Mercury
NASA Astrophysics Data System (ADS)
Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.
2018-05-01
Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.
The Graded Alluvial River: Variable Flow and the Dominant Discharge
NASA Astrophysics Data System (ADS)
Blom, A.; Arkesteijn, L.; Viparelli, E.
2016-12-01
We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.
Yildiz Turp, Gulen; Icier, Filiz; Kor, Gamze
2016-04-01
The objective of the current study was to improve the quality characteristics of ohmically pre-cooked beef meatballs via infrared cooking as a final stage. Samples were pre-cooked in a specially designed-continuous type ohmic cooker at a voltage gradient of 15.26 V/cm for 92 s. Infrared cooking was then applied to the pre-cooked samples at different combinations of heat fluxes (3.706, 5.678, and 8.475 kW/m(2)), application distances (10.5, 13.5, and 16.5 cm) and application durations (4, 8, and 12min). Effects of these parameters on color, texture and cooking characteristics of ohmically pre-cooked beef meatballs were investigated. The appearance of ohmically pre-cooked meatball samples was improved via infrared heating. A dark brown layer desired in cooked meatballs formed on the surface of the meatballs with lowest application distance (10.5 cm) and longest application duration (12 min). The texture of the samples was also improved with these parameters. However the cooking yield of the samples decreased at the longest application duration of infrared heating. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Musallam, Ramsey
Chemistry is a complex knowledge domain. Specifically, research notes that Chemical Equilibrium presents greater cognitive challenges than other topics in chemistry. Cognitive Load Theory describes the impact a subject, and the learning environment, have on working memory. Intrinsic load is the facet of Cognitive Load Theory that explains the complexity innate to complex subjects. The purpose of this study was to build on the limited research into intrinsic cognitive load, by examining the effects of using multimedia screencasts as a pre-training technique to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students. A convenience sample of 62 fourth-year high school students enrolled in an advanced chemistry course from a co-ed high school in urban San Francisco were given a chemical equilibrium concept pre-test. Upon conclusion of the pre-test, students were randomly assigned to two groups: pre-training and no pre-training. The pre-training group received a 10 minute and 52 second pre-training screencast that provided definitions, concepts and an overview of chemical equilibrium. After pre-training both group received the same 50-minute instructional lecture. After instruction, all students were given a chemical equilibrium concept post-test. Independent sample t-tests were conducted to examine differences in performance and intrinsic load. No significant differences in performance or intrinsic load, as measured by ratings of mental effort, were observed on the pre-test. Significant differences in performance, t(60)=3.70, p=.0005, and intrinsic load, t(60)=5.34, p=.0001, were observed on the post-test. A significant correlation between total performance scores and total mental effort ratings was also observed, r(60)=-0.44, p=.0003. Because no significant differences in prior knowledge were observed, it can be concluded that pre-training was successful at reducing intrinsic load. Moreover, a significant correlation between performance and mental effort strengthens the argument that performance measures can be used to approximate intrinsic cognitive load.
Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders
2017-06-22
In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
Meng, Jie; Zhu, Lijing; Zhu, Li; Xie, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; He, Jian; Ge, Yun; Zhou, Zhengyang; Yang, Xiaofeng
2017-11-03
To explore the value of whole-lesion apparent diffusion coefficient (ADC) histogram and texture analysis in predicting tumor recurrence of advanced cervical cancer treated with concurrent chemo-radiotherapy (CCRT). 36 women with pathologically confirmed advanced cervical squamous carcinomas were enrolled in this prospective study. 3.0 T pelvic MR examinations including diffusion weighted imaging (b = 0, 800 s/mm 2 ) were performed before CCRT (pre-CCRT) and at the end of 2nd week of CCRT (mid-CCRT). ADC histogram and texture features were derived from the whole volume of cervical cancers. With a mean follow-up of 25 months (range, 11 ∼ 43), 10/36 (27.8%) patients ended with recurrence. Pre-CCRT 75th, 90th, correlation, autocorrelation and mid-CCRT ADC mean , 10th, 25th, 50th, 75th, 90th, autocorrelation can effectively differentiate the recurrence from nonrecurrence group with area under the curve ranging from 0.742 to 0.850 (P values range, 0.001 ∼ 0.038). Pre- and mid-treatment whole-lesion ADC histogram and texture analysis hold great potential in predicting tumor recurrence of advanced cervical cancer treated with CCRT.
Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors
2011-12-01
synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean
Cruz, Giorman; Cruz-Tirado, J P; Delgado, Kevin; Guzman, Yorvin; Castro, Franco; Rojas, Meliza Lindsay; Linares, Guillermo
2018-01-01
In this work the effects of pre-drying and frying time on colour, oil, texture and sensorial acceptability (overall liking) of potato chips were evaluated. Potato chips were pre-dried for 0, 10, 20 and 30 min at 60 °C and fried in soybean oil at 190 °C for 60, 70 and 80 s. The colour parameters (L*, a* and b*) increased or decreased depending on the pre-drying and frying time. Hardness increased as the pre-drying and frying time increased. On the other hand, the water initially removed by pre-drying decrease the gradient of mass transfer (water-oil). The oil content reduced to (about 21%) in pre-dried samples when compared to control sample. Finally, sensorial evaluation showed that samples without pre-drying and/or fried for very short or very long times had low acceptance levels. The pre-drying and frying times influenced the colour, texture, water and oil content, and resulted into fried potato chips with better acceptance scores.
Out-of-equilibrium dynamics and extended textures of topological defects in spin ice
NASA Astrophysics Data System (ADS)
Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.
2016-09-01
Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .
Pre-cure freezing effect on physicochemical, texture and sensory characteristics of Iberian ham.
Pérez-Palacios, T; Ruiz, J; Martín, D; Barat, J M; Antequera, T
2011-04-01
The aim of this work was to investigate the effect of pre-cure freezing on the physicochemical, texture and sensory characteristics of raw and dry-cured hams. Both, refrigerated (R) and pre-cure frozen (F) hams showed the same weight losses during the processing. At the green stage F Iberian hams had lower moisture content, higher values of a* and chroma, lower hardness and chewiness and higher adhesiveness and springiness than R ones. However, at the end of the processing R and F Iberian hams only were different in salt content, F hams showing lower values than R ones. Sensory analysis of Iberian dry-cured ham did not show differences in salty taste. Panelist detected a higher fat hardness and lean pastiness in F than in R hams. The overall acceptability for both groups of dry-cured hams was between average and good.
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian
2017-05-01
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.
Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard
2017-02-01
To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.
The granulite suite: Impact melts and metamorphic breccias of the early lunar crust
NASA Astrophysics Data System (ADS)
Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.
1993-03-01
The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites probably formed by subsolidus annealing and recrystallization of fragmental or glassy protoliths. Examples of this type include 15418, 78155, and 79215. The other textural type consists of poikilitic to poikiloblastic rocks with euhedral to subhedral plagioclase and olivine enclosed by interstitial pyroxene. In some cases, the texture resembles that of an orthocumulate. Examples of this type include 60035, 67955, and 77017. Rounding of grain edges is common in poikilitic granulites, but the regular crystal shapes and widely dispersed dihedral angles show they are far from textural equilibrium.
The granulite suite: Impact melts and metamorphic breccias of the early lunar crust
NASA Technical Reports Server (NTRS)
Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.
1993-01-01
The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites probably formed by subsolidus annealing and recrystallization of fragmental or glassy protoliths. Examples of this type include 15418, 78155, and 79215. The other textural type consists of poikilitic to poikiloblastic rocks with euhedral to subhedral plagioclase and olivine enclosed by interstitial pyroxene. In some cases, the texture resembles that of an orthocumulate. Examples of this type include 60035, 67955, and 77017. Rounding of grain edges is common in poikilitic granulites, but the regular crystal shapes and widely dispersed dihedral angles show they are far from textural equilibrium. The textures of poikilitic granulites are more consistent with the formation of these rocks by crystallization from a melt than by subsolidus metamorphism. A few samples have been recognized with textural characteristics transitional between those of the granoblastic and poikiloblastic endmembers (e.g., 72559, 78527). Pyroxene compositions taken from the literature and determined for this study by electron microprobe were used to calculate equilibration temperatures. The Kretz Ca transfer (solvus) thermometer and the Lindsley and Anderson graphical method both give similar temperatures, which range from approximately 1000 to 1150 C. There is no apparent temperature difference between granoblastic and poikilitic varieties, but there is a hint in these data that the more ferroan varieties equilibrated to lower temperatures. Additional studies are in progress to test this possibility.
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo
2017-06-01
In C- and Al-free electrical steel, the increase in primary grain size with increasing pre-annealing temperature causes the transition in annealing texture after final annealing from {110} + {100} to {110}. The strip pre-annealed at 1073 K (800 °C) shows a low magnetic induction B8(T) of 1.784 T after final annealing. The strip pre-annealed at 1223 K (950 °C) shows a sharp {110}<001> Goss texture, producing a high magnetic induction B8(T) of 1.914 T comparable to that of the conventional electrical steels.
PROGRESS ON THE STUDY OF BETA TREATMENT OF URANIUM, AUGUST 1, 1961-NOVEMBER 30, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.; Wolff, A.K.
Variables affecting the texture and grain size of uranium during beta treatment are summarized. The effects of composition (ingot versus dingot), prior delta condition, prior texture, pre-quenching air delay, rod or tube size, quenching medium and applied stress on grain size, distontion, and G/sub 3/ gradients in the final beta-treated shapes are described. (N.W.R.)
Sukumaran, Anuraj T; Holtcamp, Alexander J; Campbell, Yan L; Burnett, Derris; Schilling, Mark W; Dinh, Thu T N
2018-06-07
The objective of this study was to determine the effects of deboning time (pre- and post-rigor), processing steps (grinding - GB; salting - SB; batter formulation - BB), and storage time on the quality of raw beef mixtures and vacuum-packaged cooked sausage, produced using a commercial formulation with 0.25% phosphate. The pH was greater in pre-rigor GB and SB than in post-rigor GB and SB (P < .001). However, deboning time had no effect on metmyoglobin reducing activity, cooking loss, and color of raw beef mixtures. Protein solubility of pre-rigor beef mixtures (124.26 mg/kg) was greater than that of post-rigor beef (113.93 mg/kg; P = .071). TBARS were increased in BB but decreased during vacuum storage of cooked sausage (P ≤ .018). Except for chewiness and saltiness being 52.9 N-mm and 0.3 points greater in post-rigor sausage (P = .040 and 0.054, respectively), texture profile analysis and trained panelists detected no difference in texture between pre- and post-rigor sausage. Published by Elsevier Ltd.
Birkeland, S; Akse, L
2010-01-01
Improved slaughtering procedures in the salmon industry have caused a delayed onset of rigor mortis and, thus, a potential for pre-rigor secondary processing. The aim of this study was to investigate the effect of rigor status at time of processing on quality traits color, texture, sensory, microbiological, in injection salted, and cold-smoked Atlantic salmon (Salmo salar). Injection of pre-rigor fillets caused a significant (P<0.001) contraction (-7.9%± 0.9%) on the caudal-cranial axis. No significant differences in instrumental color (a*, b*, C*, or h*), texture (hardness), or sensory traits (aroma, color, taste, and texture) were observed between pre- or post-rigor processed fillets; however, post-rigor (1477 ± 38 g) fillets had a significant (P>0.05) higher fracturability than pre-rigor fillets (1369 ± 71 g). Pre-rigor fillets were significantly (P<0.01) lighter, L*, (39.7 ± 1.0) than post-rigor fillets (37.8 ± 0.8) and had significantly lower (P<0.05) aerobic plate count (APC), 1.4 ± 0.4 log CFU/g against 2.6 ± 0.6 log CFU/g, and psychrotrophic count (PC), 2.1 ± 0.2 log CFU/g against 3.0 ± 0.5 log CFU/g, than post-rigor processed fillets. This study showed that similar quality characteristics can be obtained in cold-smoked products processed either pre- or post-rigor when using suitable injection salting protocols and smoking techniques. © 2010 Institute of Food Technologists®
Textured micrometer scale templates as light managing fabrication platform for organic solar cells
Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.
2016-07-26
A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
NASA Astrophysics Data System (ADS)
Li, Jiangyu; Bhattacharya, Kaushik
2002-08-01
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.
The effects of drying on physical properties of bilimbi slices (Averrhoa bilimbi l.)
NASA Astrophysics Data System (ADS)
Shahari, N.; Nursabrina, M.; Suhairah, A. Zai
2015-05-01
Physical appearance analyses of fruits are used to maintain food quality throughout and at the end of processing. However, control variables have to be designed to obtained the desired food quality. In the present study, the effects of pretreatment and drying air temperatures of 50°C, 60°C and 70°C on the drying kinetics of belimbi slices were investigated using a hot-air dryer. In order to investigate and select the appropriate drying model, seven experiment based mathematical drying models were fitted to the experimental data. According to the statistical criteria (R2, SSE and RMSE), a Logarithmic model was found to be the best model to describe the drying behaviour of belimbi slices at 40°C for control; The Page/modified Page model was the best model to describe drying behaviour at 40°C, 60°C pre-treatment and 50°C for the control and the Wang and Singh model fitted well for 50°C pre-treatment and 60°C for the control. Comparison between experiment based mathematical modelling with a single phase mathematical model shows that close agreement was produced. The qualities of belimbi slices in terms of colour, texture and shrinkage with different air temperature and pre-treatment were also investigated. Higher drying temperatures gives less drying time, a lighter colour but greater product shrinkage, whilst pre-treatment can reduce product shrinkage and drying time and can also give good texture properties. The results show that pre-treatment and the drying temperature are important to improve mass and heat transfer as well as the product characteristics such as colour, shrinkage and texture.
Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F
2017-08-01
Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong
2015-07-01
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.
Out-of-equilibrium chiral magnetic effect from chiral kinetic theory
NASA Astrophysics Data System (ADS)
Huang, Anping; Jiang, Yin; Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei
2018-02-01
Recently there has been significant interest in the macroscopic manifestation of chiral anomaly in many-body systems of chiral fermions. A notable example is the Chiral Magnetic Effect (CME). Enthusiastic efforts have been made to search for the CME in the quark-gluon plasma created in heavy ion collisions. A crucial challenge is that the extremely strong magnetic field in such collisions may last only for a brief moment and the CME current may have to occur at so early a stage that the quark-gluon matter is still far from thermal equilibrium. This thus requires modeling of the CME in an out-of-equilibrium setting. With the recently developed theoretical tool of chiral kinetic theory, we make a first phenomenological study of the CME-induced charge separation during the pre-thermal stage in heavy ion collisions. The effect is found to be very sensitive to the time dependence of the magnetic field and also influenced by the initial quark momentum spectrum as well as the relaxation time of the system evolution toward thermal equilibrium. Within the present approach, such pre-thermal charge separation is found to be modest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Pollom, E; Loo, B
Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this research is investigating which texture features extracted from FDG-PET images by gray-level co-occurrence matrix(GLCM) have a higher prognostic value than the other texture features. Methods: 21 non-small cell lung cancer(NSCLC) patients were approved in the study. Patients underwent 18F-FDG PET/CT scans with both pre-treatment and post-treatment. Firstly, the tumors were extracted by our house developed software. Secondly, the clinical features including the maximum SUV and tumor volume were extracted by MIM vista software, and texture features including angular second moment, contrast, inverse different moment, entropy and correlation were extracted using MATLAB.The differences can be calculatedmore » by using post-treatment features to subtract pre-treatment features. Finally, the SPSS software was used to get the Pearson correlation coefficients and Spearman rank correlation coefficients between the change ratios of texture features and change ratios of clinical features. Results: The Pearson and Spearman rank correlation coefficient between contrast and SUV maximum is 0.785 and 0.709. The P and S value between inverse difference moment and tumor volume is 0.953 and 0.942. Conclusion: This preliminary study showed that the relationships between different texture features and the same clinical feature are different. Finding the prognostic value of contrast and inverse difference moment were higher than the other three textures extracted by GLCM.« less
Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC
NASA Astrophysics Data System (ADS)
McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles
2017-08-01
In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.
NASA Astrophysics Data System (ADS)
Heo, N. H.; Yoon, G. G.
2010-04-01
The solubility of sulfur is calculated in 0.1 %Mn-added 3 %Si-Fe alloys. The segregation kinetics of sulfur is compared in the alloy containing 95 ppm sulfur, depending on the annealing atmosphere. The effects of pre-annealing and annealing atmosphere on final annealing texture are investigated. Segregation behaviors of sulfur at free surfaces and grain boundaries are compared and, during the selective growth, the importance of the grain boundary concentration of sulfur is emphasized. Finally, a correlation between the development of the annealing texture and segregation kinetics of sulfur in the alloy strip is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, G; Cunliffe, A; Armato, S
2015-06-15
Purpose: To determine whether the addition of standardized uptake value (SUV) statistical variables to CT lung texture features can improve a predictive model of radiation pneumonitis (RP) development in patients undergoing radiation therapy. Methods: Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were retrospectively collected including pre-therapy PET/CT scans, pre-/posttherapy diagnostic CT scans and RP status. Twenty texture features (firstorder, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. The mean, maximum, standard deviation, and 50th–95th percentiles of the SUV valuesmore » for all lung voxels in the corresponding PET scans were acquired. For each texture feature, a logistic regression-based classifier consisting of (1) the average change in that texture feature value between the pre- and post-therapy CT scans and (2) the pre-therapy SUV standard deviation (SUV{sub SD}) was created. The RP-classification performance of each logistic regression model was compared to the performance of its texture feature alone by computing areas under the receiver operating characteristic curves (AUCs). T-tests were performed to determine whether the mean AUC across texture features changed significantly when SUV{sub SD} was added to the classifier. Results: The AUC for single-texturefeature classifiers ranged from 0.58–0.81 in high-dose (≥ 30 Gy) regions of the lungs and from 0.53–0.71 in low-dose (< 10 Gy) regions. Adding SUVSD in a logistic regression model using a 50/50 data partition for training and testing significantly increased the mean AUC by 0.08, 0.06 and 0.04 in the low-, medium- and high-dose regions, respectively. Conclusion: Addition of SUVSD from a pre-therapy PET scan to a single CT-based texture feature improves RP-classification performance on average. These findings demonstrate the potential for more accurate prediction of RP using information from multiple imaging modalities. Supported, in part, by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under grant number T32 EB002103; SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. HA receives royalties through the University of Chicago for computer-aided diagnosis technology.« less
NASA Astrophysics Data System (ADS)
Kaya, Ebru
2013-05-01
This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of chemical equilibrium was taught by using argumentative practices and the participants were encouraged to participate in the lessons actively. However, the instructor taught the same subject by using the lecturing method without engaging argumentative activities in the control group. The Chemical Equilibrium Concept Test and Written Argumentation Survey were administered to all participants to assess their conceptual understanding and the quality of their arguments, respectively. The analysis of covariance results indicate that argumentation practices significantly improved conceptual understanding of the experimental group when compared to the control group. Furthermore, the results show that the pre-service teachers exposed to argumentative practices constructed more quality arguments than those in the control group after the instruction. Based on these results, it can be concluded that the instruction based on argumentative practices is effective in concept teaching in science education. Therefore, argumentation should be explicitly taught in teacher education besides elementary and secondary education.
NASA Astrophysics Data System (ADS)
Tiwari, Pallavi; Danish, Shabbar; Madabhushi, Anant
2014-03-01
Laser interstitial thermal therapy (LITT) has recently emerged as a new treatment modality for cancer pain management that targets the cingulum (pain center in the brain), and has shown promise over radio-frequency (RF) based ablation which is reported to provide temporary relief. One of the major advantages enjoyed by LITT is its compatibility with magnetic resonance imaging (MRI), allowing for high resolution in vivo imaging to be used in LITT procedures. Since laser ablation for pain management is currently exploratory and is only performed at a few centers worldwide, its short-, and long-term effects on the cingulum are currently unknown. Traditionally treatment effects are evaluated by monitoring changes in volume of the ablation zone post-treatment. However, this is sub-optimal since it involves evaluating a single global parameter (volume) to detect changes pre-, and post-MRI. Additionally, the qualitative observations of LITT-related changes on multi-parametric MRI (MPMRI) do not specifically address differentiation between the appearance of treatment related changes (edema, necrosis) from recurrence of the disease (pain recurrence). In this work, we explore the utility of computer extracted texture descriptors on MP-MRI to capture early treatment related changes on a per-voxel basis by extracting quantitative relationships that may allow for an in-depth understanding of tissue response to LITT on MRI, subtle changes that may not be appreciable on original MR intensities. The second objective of this work is to investigate the efficacy of different MRI protocols in accurately capturing treatment related changes within and outside the ablation zone post-LITT. A retrospective cohort of studies comprising pre- and 24-hour post-LITT 3 Tesla T1-weighted (T1w), T2w, T2-GRE, and T2-FLAIR acquisitions was considered. Our scheme involved (1) inter-protocol as well as inter-acquisition affine registration of pre- and post-LITT MRI, (2) quantitation of MRI parameters by correcting for intensity drift in order to examine tissue-specific response, and (3) quantification of MRI maps via texture and intensity features to evaluate changes in MR markers pre- and post-LITT. A total of 78 texture features comprising of non-steerable and steerable gradient and second order statistical features were extracted from pre- and post-LITT MP-MRI on a per-voxel basis. Quantitative, voxel-wise comparison of the changes in MRI texture features between pre-, and post-LITT MRI indicate that (a) steerable and non-steerable gradient texture features were highly sensitive as well as specific in predicting subtle micro-architectural changes within and around the ablation zone pre- and post-LITT, (b) FLAIR was identified as the most sensitive MRI protocol in identifying early treatment changes yielding a normalized percentage change of 360% within the ablation zone relative to its pre-LITT value, and (c) GRE was identified as the most sensitive MRI protocol in quantifying changes outside the ablation zone post-LITT. Our preliminary results thus indicate great potential for non-invasive computerized MRI features in determining localized micro-architectural focal treatment related changes post-LITT.
Material quality assessment of silk nanofibers based on swarm intelligence
NASA Astrophysics Data System (ADS)
Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir
2013-02-01
In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
Moran, L; O'Sullivan, M G; Kerry, J P; Picard, B; McGee, M; O'Riordan, E G; Moloney, A P
2017-03-01
Bulls and steers (n=60) were assigned to a pre-finishing grazing period and subsequently finished on concentrates or offered concentrates without grazing until slaughter (19months). Colour and pH of longissimus thoracis were measured (48h post-slaughter), and samples collected for proximate composition, collagen, sarcomere length, muscle fibre and enzymatic profile analysis. Steaks for texture, cook loss and sensory were aged (14days). Castration increased intramuscular fat content, cook loss and myosin isoforms IIa and I proportions, and decreased IIx proportion (P<0.05). Steer meat was positively correlated to overall tenderness, texture and acceptability (P<0.05). The presence of a pre-finishing grazing period decreased intramuscular fat and increased the proportion of IIa compared with animals on concentrates, while no differences were found in sensory. Muscle colour, collagen, sarcomere length and instrumental texture were not modified by diet or castration. In conclusion, beef sensory characteristics were unaffected by diet, whereas castration resulted in a small improvement; however all the treatments produced an acceptable product. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A
2008-10-01
Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.
NASA Astrophysics Data System (ADS)
Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike
2017-04-01
Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward chemical equilibrium. In line with this, a strong correlation was found between experimental and natural bubble textures (bubble number densities, shapes, sizes and distributions), having implications for interpreting bubbles in volcanic rocks and quantifying magma ascent rates. Next step will be to perform in situ decompression experiments to simulate both degassing and crystallization of basaltic magma during ascent in the shallow volcanic conduit (P < 50 MPa), using synchrotron X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.
Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.
1976-01-01
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite 'Permian temperatures' implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant. The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite 'stewed in its own juices'. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures. ?? 1976 Springer-Verlag.
Development of textured magnesium oxide templates and bicrystals using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Vallejo, Ronald N.
Recently, there has been an increased research effort in the deposition of near-single-crystal thin films on substrates that do not provide a template for epitaxial crystalline film growth. Ion beam assisted deposition (IBAD) has been demonstrated as one of the most promising methods to artificially control the texture in thin films. Biaxially textured MgO templates of 10 nm thickness were successfully fabricated on glass and silicon substrates without any buffer layers using IBAD. This work has shed insights on several issues. First, surface morphology ˜ 1 nm or better is only a necessary condition for textured IBAD-MgO, but not a sufficient condition. Additional surface preparation must be provided for nucleation and subsequent formation of the textured IBAD-MgO templates. Second, the role of buffer layer on IBAD-MgO texturing. It was found that the ion beam pre-exposure of the substrates prior to IBAD processing provided a sufficient condition for the nucleation and subsequent texture formation of the IBAD grown films. The ion pre-exposure replaced the need for buffer layers in silicon and glass substrates. Finally, by pre-exposing the substrates to Ar + ions, it was found that the ion beam modified the surface and improved the surface roughness of the glass substrates. Textured MgO epi templates were demonstrated for the first time on polymer based substrates (polyimide). This is a crucial step in the realization of epitaxial suspended devices. To achieve an epitaxial film on a sacrificial layer, an epitaxial template film must first be grown prior to subsequent film growth. The role of ion pre-exposure and buffer layer on texture formation was investigated in this part of the work. This thesis also presents groundbreaking results on the fabrication of bicrystal MgO films and bicrystal networks using ion beam assisted deposition. Highly oriented bicrystals, with a common (100) out-of-plane orientation and (110) in-plane orientations having a tilt angle of 45° and 20° have been successfully fabricated. This method has also been used to fabricate two dimensional bicrystal MgO networks in the micrometer scale. The same strategy can be applied to generate nanometer scale bicrystal networks of desired patterns.
Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant
NASA Astrophysics Data System (ADS)
Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.
2017-11-01
We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.
Hughes, Brianna H; Greenberg, Neil J; Yang, Tom C; Skonberg, Denise I
2015-01-01
High-pressure processing (HPP) is used to increase meat safety and shelf-life, with conflicting quality effects depending on rigor status during HPP. In the seafood industry, HPP is used to shuck and pasteurize oysters, but its use on abalones has only been minimally evaluated and the effect of rigor status during HPP on abalone quality has not been reported. Farm-raised abalones (Haliotis rufescens) were divided into 12 HPP treatments and 1 unprocessed control treatment. Treatments were processed pre-rigor or post-rigor at 2 pressures (100 and 300 MPa) and 3 processing times (1, 3, and 5 min). The control was analyzed post-rigor. Uniform plugs were cut from adductor and foot meat for texture profile analysis, shear force, and color analysis. Subsamples were used for scanning electron microscopy of muscle ultrastructure. Texture profile analysis revealed that post-rigor processed abalone was significantly (P < 0.05) less firm and chewy than pre-rigor processed irrespective of muscle type, processing time, or pressure. L values increased with pressure to 68.9 at 300 MPa for pre-rigor processed foot, 73.8 for post-rigor processed foot, 90.9 for pre-rigor processed adductor, and 89.0 for post-rigor processed adductor. Scanning electron microscopy images showed fraying of collagen fibers in processed adductor, but did not show pressure-induced compaction of the foot myofibrils. Post-rigor processed abalone meat was more tender than pre-rigor processed meat, and post-rigor processed foot meat was lighter in color than pre-rigor processed foot meat, suggesting that waiting for rigor to resolve prior to processing abalones may improve consumer perceptions of quality and market value. © 2014 Institute of Food Technologists®
This paper employs analytical and numerical general equilibrium models to examine the significance of pre-existing factor taxes for the costs of pollution reduction under a wide range of environmental policy instruments. Pre-existing taxes imply significantly ...
A Transmission Electron Microscope Study of Experimentally Shocked Pregraphitic Carbon
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1995-01-01
A transmission electron microscope study of experimental shock metamorphism in natural pre-graphitic carbon simulates the response of the most common natural carbons to increased shock pressure. The d-spacings of this carbon are insensitive to the shock pressure and have no apparent diagnostic value, but progressive comminution occurs in response to increased shock pressure up to 59.6 GPa. The function, P = 869.1 x (size(sub minimum )(exp -0.83), describes the relationship between the minimum root-mean-square subgrain size (nm) and shock pressure (GPa). While a subgrain texture of natural pregraphitic carbons carries little information when pre-shock textures are unknown, this texture may go unnoticed as a shock metamorphic feature.
NASA Astrophysics Data System (ADS)
Tel, E.; Kaplan, A.; Aydın, A.; Özkorucuklu, S.; Büyükuslu, H.; Yıldırım, G.
2010-08-01
Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, ( n,xt) reactions for some target nuclei as 16O, 27Al, 59Co and 209Bi have been investigated up to 45 MeV incident neutron energy. In the calculations of the triton emission spectra, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.
Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang
2014-06-15
Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.
2016-04-01
Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of the Etnean crust, which have promoted shorter residence times and higher eruption frequency.
Ryu, Ju Seok; Park, Donghwi; Oh, Yoongul; Lee, Seok Tae; Kang, Jin Young
2016-01-01
Background/Aims The purpose of this study was to develop new parameters of high-resolution manometry (HRM) and to applicate these to quantify the effect of bolus volume and texture on pharyngeal swallowing. Methods Ten healthy subjects prospectively swallowed dry, thin fluid 2 mL, thin fluid 5 mL, thin fluid 10 mL, and drinking twice to compare effects of bolus volume. To compare effect of texture, subjects swallowed thin fluid 5 mL, yogurt 5 mL, and bread twice. A 32-sensor HRM catheter and BioVIEW ANALYSIS software were used for data collection and analysis. HRM data were synchronized with kinematic analysis of videofluoroscopic swallowing study (VFSS) using epiglottis tilting. Results Linear correlation analysis for volume showed significant correlation for area of velopharynx, duration of velopharynx, pre-upper esophageal sphincter (UES) maximal pressure, minimal UES pressure, UES activity time, and nadir UES duration. In the correlation with texture, all parameters were not significantly different. The contraction of the velopharynx was faster than laryngeal elevation. The durations of UES relaxation was shorter in the kinematic analysis than HRM. Conclusions The bolus volume was shown to have significant effect on pharyngeal pressure and timing, but the texture did not show any effect on pharyngeal swallowing. The parameters of HRM were more sensitive than those of kinematic analysis. As the parameters of HRM are based on precise anatomic structure and the kinematic analysis reflects the actions of multiple anatomic structures, HRM and VFSS should be used according to their purposes. PMID:26598598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Ahmed A., E-mail: asaleh@uow.edu.au
Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration.more » It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.« less
NASA Astrophysics Data System (ADS)
Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni
2016-04-01
Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.
Method of sputter etching a surface
Henager, Jr., Charles H.
1984-01-01
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.
Method of sputter etching a surface
Henager, C.H. Jr.
1984-02-14
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.
Jet-conversion photons from an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Bhattacharya, Lusaka; Roy, Pradip
2010-10-01
We calculate the pT distributions of jet-conversion photons from a quark-gluon plasma with pre-equilibrium momentum-space anisotropy. A phenomenological model has been used for the time evolution of the hard momentum scale phard(τ) and anisotropy parameter ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of the jet-conversion photon pT distribution. For example, with fixed initial condition pre-equilibrium anisotropy, we predict a significant enhancement of the jet-photon pT distribution in the entire region, whereas for pre-equilibrium anisotropy with fixed final multiplicity (FFM), suppression of the jet-conversion photon pT distribution is observed. The results with FFM (as it is the most realistic situation) have been compared with high pT PHENIX photon data. It is found that the data are reproduced well if the isotropization time lies within 1.5 fm/c.
Experimentally reproduced textures and mineral chemistries of high-titanium mare basalts
NASA Technical Reports Server (NTRS)
Usselman, T. M.; Lofgren, G. E.; Williams, R. J.; Donaldson, C. H.
1975-01-01
Many of the textures, morphologies, and mineral chemistries of the high-titanium mare basalts have been experimentally duplicated using single-stage cooling histories. Lunar high-titanium mare basalts are modeled in a 1 m thick gravitationally differentiating flow based on cooling rates, thermal models, and modal olivine contents. The low-pressure equilibrium phase relations of a synthetic high-titanium basalt composition were investigated as a function of oxygen fugacity, and petrographic criteria are developed for the recognition of phenocrysts which were present in the liquid at the time of eruption.
ERIC Educational Resources Information Center
Kaya, Ebru
2013-01-01
This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of…
Improved Simulation of the Pre-equilibrium Triton Emission in Nuclear Reactions Induced by Nucleons
NASA Astrophysics Data System (ADS)
Konobeyev, A. Yu.; Fischer, U.; Pereslavtsev, P. E.; Blann, M.
2014-04-01
A new approach is proposed for the calculation of non-equilibrium triton energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines models describing the nucleon pick-up, the coalescence and the triton knock-out processes. Emission and absorption rates for excited particles are represented by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from exciton configurations starting from (2p,1h) states. The contribution of the direct nucleon pick-up is described phenomenologically. Multiple pre-equilibrium emission of tritons is accounted for. The calculated triton energy distributions are compared with available experimental data.
Metal catalyst technique for texturing silicon solar cells
Ruby, Douglas S.; Zaidi, Saleem H.
2001-01-01
Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.
NASA Astrophysics Data System (ADS)
Xu, Jianxin; Liang, Hong
2013-07-01
Terrestrial laser scanning creates a point cloud composed of thousands or millions of 3D points. Through pre-processing, generating TINs, mapping texture, a 3D model of a real object is obtained. When the object is too large, the object is separated into some parts. This paper mainly focuses on problem of gray uneven of two adjacent textures' intersection. The new algorithm is presented in the paper, which is per-pixel linear interpolation along loop line buffer .The experiment data derives from point cloud of stone lion which is situated in front of west gate of Henan Polytechnic University. The model flow is composed of three parts. First, the large object is separated into two parts, and then each part is modeled, finally the whole 3D model of the stone lion is composed of two part models. When the two part models are combined, there is an obvious fissure line in the overlapping section of two adjacent textures for the two models. Some researchers decrease brightness value of all pixels for two adjacent textures by some algorithms. However, some algorithms are effect and the fissure line still exists. Gray uneven of two adjacent textures is dealt by the algorithm in the paper. The fissure line in overlapping section textures is eliminated. The gray transition in overlapping section become more smoothly.
Slope instability caused by small variations in hydraulic conductivity
Reid, M.E.
1997-01-01
Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.
Discriminating Majorana neutrino textures in light of the baryon asymmetry
NASA Astrophysics Data System (ADS)
Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar
2015-06-01
We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.
Spreading of a pendant liquid drop underneath a textured substrate
NASA Astrophysics Data System (ADS)
Mistry, Aashutosh; Muralidhar, K.
2018-04-01
A pendant drop spreading underneath a partially wetting surface from an initial shape to its final equilibrium configuration and contact angle is studied. A mathematical formulation that quantifies spreading behavior of liquid drops over textured surfaces is discussed. The drop volume and the equilibrium contact angle are treated as parameters in the study. The unbalanced force at the three-phase contact line is modeled as being proportional to the degree of departure from the equilibrium state. Model predictions are verified against the available experimental data in the literature. Results show that the flow dynamics is strongly influenced by the fluid properties, drop volume, and contact angle of the liquid with the partially wetting surface. The drop exhibits rich dynamical behavior including inertial oscillations and gravitational instability, given that gravity tries to detach the drop against wetting contributions. Flow characteristics of drop motion, namely, the radius of the footprint, slip length, and dynamic contact angle in the pendant configuration are presented. Given the interplay among the competing time-dependent forces, a spreading drop can momentarily be destabilized and not achieve a stable equilibrium shape. Instability is then controlled by the initial drop shape as well. The spreading model is used to delineate stable and unstable regimes in the parameter space. Predictions of the drop volume based on the Young-Laplace equation are seen to be conservative relative to the estimates of the dynamical model discussed in the present study.
NASA Astrophysics Data System (ADS)
Waters, L.; Lange, R. A.
2016-12-01
Detailed mapping of the Long Valley (CA) region (Hildreth, 2004) reveals that the eruption of the Late Bishop Tuff (LBT) is followed by eruption of the Early Rhyolites (ER), which are obsidian lavas. The obsidians are paradoxical, as they erupted effusively, contain multiple phases (some of which vary in composition), and yet, they are crystal-poor. The obsidians are saturated in ≥7 phases (plagioclase + orthopyroxene + ilmenite + titanomagnetite + biotite + apatite + zircon ± pyrrhotite). Plagioclase and orthopyroxene crystals have rounded edges accompanying euhedral margins, and large (>200µm) ilmenites have swallow-tail growth. Plagioclase and orthopyroxene span a compositional range between An20-45 and En43-58, respectively, and phase equilibrium experiments confirm that these are phenocrysts, despite their complex textures. Pre-eruptive temperatures and fO2 values are calculated applying Fe-Ti oxide thermometry to all possible oxide pairs and range from 724-861°C and ΔNNO -0.3 to -0.9, respectively. Application of the plagioclase hygrometer to crystals in ER obsidians reveals pre-eruptive H2O contents of 3-5wt%. We propose that mineral compositions and textures within the ER obsidians record rapid growth due to degassing-induced crystallization of a superheated melt. Superheating is required to explain the origin of the ER lavas as it eliminates nucleation sites, requiring crystallization to occur on nuclei that form during degassing enabling effusive eruption of crystal-poor lavas. The ER obsidians differ from the LBT in their crystallinities (<5% vs. >12%), phenocryst phases (e.g., sanidine is absent in ER obsidians), plagioclase compositions (An20-45 vs. An20-29), and fO2 values (ΔNNO < -0.3 vs. +0.5), which suggests that the ER lavas may not be derived from the LBT reservoir. Rather, we hypothesize that the ER phenocryst assemblage, reduced fO2 values, and requirement for superheating can be explained if the obsidians formed as partial melts of a mixed lithology, consisting of pre-existing crust and an additional component with low fO2. We propose that the reduced component in the ER source is aesthenospheric basalt, which suggests that a transition in mantle source, from subduction-modified lithosphere to asthenosphere, has occurred beneath Long Valley.
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn
2014-11-01
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Afshari, Roya; Khaksar, Ramin; Mohammadifar, Mohammad Amin; Amiri, Zohre; Komeili, Rozita; Khaneghah, Amin Mousavi
2015-01-01
Summary In this study, the D-optimal mixture design methodology was applied to determine the optimised proportions of inulin, β-glucan and breadcrumbs in formulation of low-fat beef burgers containing pre-emulsified canola and olive oil blend. Also, the effect of each of the ingredients individually as well as their interactions on cooking characteristics, texture, colour and sensory properties of low-fat beef burgers were investigated. The results of this study revealed that the increase of inulin content in the formulations of burgers led to lower cooking yield, moisture retention and increased lightness, overall acceptability, mouldability and desired textural parameters. In contrast, incorporation of β-glucan increased the cooking yield, moisture retention and decreased lightness, overall acceptability, mouldability and desired textural parameters of burger patties. The interaction between inulin and β-glucan improved the cooking characteristics of the burgers without significantly negative effect on the colour or sensory properties. The results of the study clearly stated that the optimum mixture for the burger formulation consisted of (in g per 100 g): inulin 3.1, β-glucan 2.2 and breadcrumbs 2.7. The texture parameters and cooking characteristics were improved by using the mixture of inulin, β-glucan and breadcrumbs, without any negative effects on the sensory properties of the burgers. PMID:27904378
Brown, Marissa D; Chambers, Delores H
2015-12-01
This research determined the sensory characteristics of currently available plain yogurts available in U.S. supermarkets and examined how 3 "more sustainable" prototypes compared. The prototypes, nonfat set-style yogurts pre-acidified after pasteurization with lemon juice or citric acid at 80 ppm to pH 6.2, had shorter fermentation times than the lab-made control. These reduced fermentation times could result in energy reductions and potentially substantiate a "sustainable" marketing claim, a concept gaining traction with consumers. Twenty-six commercial yogurts, varying in percent milk fat, milk source (organic or conventional), and processing (set-style, stirred, or strained/Greek-style), were also included. Using descriptive sensory analysis, a 6-person highly trained panel scored the intensity of 25 flavor and 10 texture attributes on a 15-point scale. Three replications were carried out, and all samples were tested at least 10 d prior to the end of their shelf-lives. The samples differed for 19 flavor and all 10 texture attributes. Cluster analysis indicated approximately 7 flavor and 5 texture clusters. The prototype pre-acidified with lemon juice was similar to category leaders nonfat yogurt varieties. The prototype pre-acidified with citric acid was similar in texture but was less sour. Although no legal definitions exist for "sustainable," the prototypes' sensory characteristics are comparable to those of popular yogurts indicating potential market viability. This research also demonstrates potential for making yogurt that is in line with growing consumer expectations for sustainability. Despite the current diversity, several combinations of flavor and texture were not represented. © 2015 Institute of Food Technologists®
Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.
Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio
2017-01-01
Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.
Coelho, Cláudia; Oliveira, Ana Sofia; Pereira, Manuel Fernando R; Nunes, Olga C
2006-11-16
In the present study, the effect of the textural and surface chemistry properties of the activated carbon were evaluated in a combined treatment system to remove the herbicide molinate from waters. The process consists of an initial adsorption step followed by the bio-regeneration of the activated carbon through the utilization of a defined bacterial mixed culture (DC), previously described as able to mineralize molinate. Molinate adsorption and partial bio-regeneration was favoured with activated carbons with larger pores, consisting mainly of meso and macropores. In order to study the effect of different surface chemical characteristics while maintaining the original textural properties, a commercial activated carbon was submitted to thermal and nitric acid treatments. The thermal treatment improved the molinate adsorption capacity of activated carbon. However, the bio-regeneration of the nitric acid oxidised activated carbon was slightly higher. With all the activated carbon materials used it was observed that the biological consumption of molinate present in the liquid phase displaced the equilibrium towards the activated carbon partial regeneration.
Microstructural evidence of melting in crustal rocks (Invited)
NASA Astrophysics Data System (ADS)
Holness, M. B.; Cesare, B.; Sawyer, E. W.
2010-12-01
The signature of the former presence of melt on a microscopic scale is highly variable, subject to modification both during the melting event and during its subsequent history. Static pyrometamorphism results in melt films on grain boundaries between reactant phases. If a volume increase is involved, melting results in hydrofracture. On a longer timescale, as demonstrated by fragments of the crustal source in lava flows at El Hoyazo (SE Spain), melt occurs throughout the rock. These examples are highly unusual: the great majority of rocks that underwent melting cooled more slowly, permitting microstructural modification driven by a combination of textural equilibration, reaction and deformation. In the absence of deformation, and at constant temperature, melt-bearing rocks approach textural equilibrium, characterised by uniform grain size, smoothly curved grain boundaries and the establishment at all three-grain junctions of the equilibrium dihedral angle. The dihedral angle controls melt connectivity, with consequences for melt mobility and rock rheology. However, deformation is the rule rather than the exception in regional metamorphic terrains with profound effects on melt distribution. If deformation occurs predominantly by diffusive processes, textural equilibration can keep pace. At higher deformation rates melt is squeezed into planar pockets aligned parallel to the shearing direction or perpendicular to the extensional stress. Microstructures formed during solidification are controlled by cooling rate, H2O, and the size of the melt pockets. Large pockets solidify to look like igneous rocks. In small pores the supersaturation required for crystal growth is high and melt persist to lower temperatures, even being preserved as tiny glassy inclusions (“nanogranites”) in regional terranes. The pore size effect changes crystallization order, resulting in small, highly cuspate grains on grain boundaries with low dihedral angles. Crystallisation microstructures of poly-component liquids are highly dependent on diffusion rates, and therefore H2O content. Dry conditions result in diffusion-limited crystallisation to form intergrowths and symplectites (e.g. granophyre). The cooling rate must be slow in order to nucleate and grow individual grains from the melt. If the melt was primarily concentrated in thick films on grain boundaries this results in the “string of beads” texture. If there is sufficient water, and the rocks stay sufficiently hot, the microstructures will move towards a granular texture, driven by the reduction in interfacial energy. Highly cuspate pseudomorphs of melt at three-grain junctions will become rounded as the dihedral angle increases (generally towards the range 110-140°). Melt-related microstructures are more likely to be retained in dry rocks: in migmatite terranes in which melting was driven by infiltration of aqueous fluids and where melt extraction wasn’t pervasive, microstructures are likely to have been significantly modified by sub-solidus recrystallisation, especially likely if the rock underwent intense deformation on the retrograde path.
NASA Astrophysics Data System (ADS)
Han, Jangmi; Brearley, Adrian J.
2017-03-01
We have studied four melilite-rich calcium-aluminum-rich inclusions (CAIs) from the Allan Hills A77307 CO3.0 chondrite using transmission electron microscopy with the focused ion beam sample preparation technique. This type of CAI represents one of the dominant types of refractory inclusions in CO3 chondrites. Individual melilite-rich CAIs 04-07 record complex formational histories involving high-temperature gas-solid condensation that occurred under both equilibrium and disequilibrium conditions. CAI 04 contains two texturally- and compositionally-distinct occurrences of perovskite: fine-grained perovskite within a melilite-rich core and aggregates of perovskite grains that surround the core. The perovskite in the core was probably involved in a disequilibrium reaction with early equilibrium condensates (e.g., melilite and spinel) and a nebular gas to form Al-Ti-rich diopside, followed by a later condensation of the perovskite aggregates under equilibrium conditions. CAI 05 has a compact melilite-rich core surrounded by a porous mantle, and likely formed by at least two different condensation events under equilibrium and disequilibrium conditions. In CAI 06, complex intergrowth layers of spinel and diopside surrounding a melilite-rich core indicate disequilibrium reaction of spinel and melilite with a nebular gas to form Al-Ti-rich diopside following core formation by equilibrium condensation. CAI 07 is dominated by melilite with a narrow compositional range and equilibrated textures, suggesting its formation by equilibrium condensation over a limited temperature range. Collectively, we infer that the melilite-rich inclusions formed by a generalized sequence of high-temperature gas-solid condensation that involved: (1) formation of CAI cores by aggregation of primary equilibrium condensates (i.e., perovskite, spinel, and melilite), (2) back-reactions of the primary core minerals with a nebular gas under disequilibrium conditions, forming diopside that evolves in composition from Al-Ti-rich at the interface with the inclusion core to Al-Ti-poor on the exterior of the inclusions. The change in formation conditions may have been achieved by transport and injection of the core materials into a region of a partially-condensed gas that still contained refractory elements in the gas phase.
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Wallmann, Harvey W; Gillis, Carrie B; Alpert, Patricia T; Miller, Sally K
2009-01-01
The purpose of this pilot study is to assess the impact of a senior jazz dance class on static balance for healthy women over 50 years of age using the NeuroCom Smart Balance Master System (Balance Master). A total of 12 healthy women aged 54-88 years completed a 15-week jazz dance class which they attended 1 time per week for 90 min per class. Balance data were collected using the Sensory Organization Test (SOT) at baseline (pre), at 7 weeks (mid), and after 15 weeks (post). An equilibrium score measuring postural sway was calculated for each of six different conditions. The composite equilibrium score (all six conditions integrated to 1 score) was used as an overall measure of balance. Repeated measures analyses of variance (ANOVAs) were used to compare the means of each participant's SOT composite equilibrium score in addition to the equilibrium score for each individual condition (1-6) across the 3 time points (pre, mid, post). There was a statistically significant difference among the means, p < .0005. Pairwise (Bonferroni) post hoc analyses revealed the following statistically significant findings for SOT composite equilibrium scores for the pre (67.33 + 10.43), mid (75.25 + 6.97), and post (79.00 + 4.97) measurements: premid (p = .008); prepost (p < .0005); midpost (p = .033). In addition, correlational statistics were used to determine any relationship between SOT scores and age. Results indicated that administration of a 15-week jazz dance class 1 time per week was beneficial in improving static balance as measured by the Balance Master SOT.
Pre-equilibrium dynamics and heavy-ion observables
NASA Astrophysics Data System (ADS)
Heinz, Ulrich; Liu, Jia
2016-12-01
To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU [C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199 (2016) 61] we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment < pT2 > of the proton transverse momentum spectrum, to identify optimized values for the switching time τs from pre-equilibrium to hydrodynamics, the specific shear viscosity η / s, the normalization factor of the temperature-dependent specific bulk viscosity (ζ / s) (T), and the switching temperature Tsw from viscous hydrodynamics to the hadron cascade UrQMD. With the optimized parameters, we predict and compare with experiment the pT-distributions of π, K, p, Λ, Ξ and Ω yields and their elliptic flow coefficients, focusing specifically on the mass-ordering of the elliptic flow for protons and Lambda hyperons which is incorrectly described by VISHNU without pre-equilibrium flow.
Semantic attributes based texture generation
NASA Astrophysics Data System (ADS)
Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa
2018-04-01
Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.
The strain path dependence of plastic deformation response of AA5754: Experiment and modeling
NASA Astrophysics Data System (ADS)
Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.
2013-12-01
This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.
NASA Technical Reports Server (NTRS)
Blander, M.; Planner, H. N.; Keil, K.; Nelson, L. S.; Richardson, N. L.
1976-01-01
Laser-melted magnesium silicate droplets were supercooled 400-750 C below their equilibrium liquidus temperatures before crystallization and their texture was compared with that of meteoritic and lunar chondrules. Crystal morphology, width and texture were studied in relation to nucleation temperature and bulk composition. It was found that the only phase to nucleate from the forsterite-enstatite normative melts was forsterite. Highly siliceous glass, about 65% SiO2 by weight, was identified interstitially to the forsterite crystals in seven of the MgSiO4 spherules and was thought to be present in all.
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
Development of low friction snake-inspired deterministic textured surfaces
NASA Astrophysics Data System (ADS)
Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.
2016-06-01
The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang
2010-10-01
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.
For decades, biomonitoring organisms have been used to assess the bioavailability of hydrophobic organic contaminants (HOCs) at contaminated sediment Superfund sites across the country. Specific applications include evaluating remedy effectiveness and pre- and post-remediation l...
NASA Astrophysics Data System (ADS)
Waters, Laura E.; Andrews, Benjamin J.
2016-10-01
The Glass Mountain obsidians (Long Valley, CA) are crystal poor (<8 vol%) and highly evolved (high SiO2, low Sr), and therefore, their formation required extremely efficient separation of melts from a crystal-rich source. A petrologic and experimental investigation of the mineral phases in Glass Mountain lavas identifies conditions under which phenocrysts grew and the driving mechanism for crystallization, which places constraints on the possible processes that generated the obsidians. The obsidian in this study (GM-11) is saturated in nine phases (sanidine + quartz + plagioclase + titanomagnetite + ilmenite + zircon + apatite + allanite + biotite), and results of high-resolution SEM compositional mapping and electron microprobe analysis reveal that individual sanidine crystals are normally zoned and span a range of compositions (Or40-78). Sanidines have a "granophyric" texture, characterized by intergrowths of quartz and sanidine. Mineral phases in the natural sample are compared to H2O-saturated phase equilibrium experiments conducted in cold-seal pressure vessels, over a range of conditions (700-850 °C; 75-225 MPa), and all are found to be plausible phenocrysts. Comparison of sanidine compositions from the natural sample with those grown in phase equilibrium experiments demonstrates that sanidine in the natural sample occurs in a reduced abundance. Further comparison with phase equilibrium experiments suggests that sanidine compositions track progressive loss of dissolved melt water (±cooling), suggesting that crystallization in the natural obsidian was driven predominantly by degassing resulting from decompression. It is paradoxical that an effusively (slowly) erupted lava should contain multiple phenocryst phases, including sanidine crystals that span a range of compositions with granophyric textures, and yet remain so crystal poor. To resolve this paradox, it is necessary that the solidification mechanism (degassing or cooling) that produced the sanidine crystals (and other mineral phases) must have an associated kinetic effect(s) that efficiently hinders crystal nucleation and growth. Decompression experiments conducted in this study and from the literature collectively demonstrate that the simplest way to inhibit nucleation during degassing-induced crystallization is to initiate degassing ± cooling from superliquidus conditions, and therefore, the Glass Mountain obsidians were superheated prior to crystallization.
Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.
2010-01-01
The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.
NASA Astrophysics Data System (ADS)
Dupuis, M.; Hilaire, S.; Péru, S.; Bauge, E.; Kerveno, M.; Dessagne, P.; Henning, G.
2017-09-01
Direct inelastic scattering to discrete excitations and pre-equilibrium emission are described within a microscopic model. Nuclear structure information are obtained in the (Quasi) Random Phase Approximation ((Q)RPA) framework implemented with the Gogny force. The relevant optical and transition potentials are build considering the JLM folding model. Various successful applications are shown for (n,n), (n,n'), (n,xn) and (n,xnγ) reactions for spherical and axially deformed even-even or odd targets. The rearrangement corrections to transition potentials and the contribution of unnatural parity excitations to pre-equilibrium emission are discussed. Our model predictions for (n,n'γ) reactions, for intra- and inter-band transitions in 238U, and for the 239Pu(n,2n) cross section are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Coroller, T; Niu, N
2015-06-15
Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
Game theory-based visual tracking approach focusing on color and texture features.
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin
2017-07-20
It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Dogan, Alev
2016-01-01
This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…
NASA Astrophysics Data System (ADS)
Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile
2017-02-01
Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.
NASA Technical Reports Server (NTRS)
Paque, Julie M.; Lofgren, Gary E.; Le, Loan
2000-01-01
The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.
Dynamic wetting and spreading and the role of topography.
McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J
2009-11-18
The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.
NASA Astrophysics Data System (ADS)
An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.
2017-01-01
An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.
The timing of galvanic vestibular stimulation affects responses to platform translation
NASA Technical Reports Server (NTRS)
Hlavacka, F.; Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
We compared the effects of galvanic vestibular stimulation applied at 0, 0.5, 1.5 and 2.5 s prior to a backward platform translation on postural responses. The effect of the galvanic stimulation was largest on the final equilibrium position of the center of pressure (CoP). The largest effects occurred for the 0.5 and 0-s pre-period, when the dynamic CoP pressure changes in response to both the galvanic stimulus and the platform translation coincided. The shift in the final equilibrium position was also larger than the sum of the shifts for the galvanic stimulus and the platform translation alone for the 0.5 and 0-s pre-periods. The initial rate of change of the CoP response to the platform translation was not significantly affected in any condition. Changes in the peak CoP position could be accounted for by local interaction of CoP velocity changes induced by the galvanic and translation responses alone, but the changes in final equilibrium position could only be accounted for by a change in global body orientation. These findings suggest that the contribution of vestibulospinal information is greatest during the dynamic phase of the postural response, and that the vestibular system contributes most to the later components of the postural response, particularly to the final equilibrium position. These findings suggest that a nonlinear interaction between the vestibular signal induced by the galvanic current and the sensory stimuli produced by the platform translation occurs when the two stimuli are presented within 1 s, during the dynamic phase of the postural response to the galvanic stimulus. When presented at greater separations in time, the stimuli appear to be treated as independent events, such that no interaction occurs. Copyright 1999 Elsevier Science B.V.
Iqbal, Abdullah; Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul
2010-03-01
Images of three qualities of pre-sliced pork and Turkey hams were evaluated for colour and textural features to characterize and classify them, and to model the ham appearance grading and preference responses of a group of consumers. A total of 26 colour features and 40 textural features were extracted for analysis. Using Mahalanobis distance and feature inter-correlation analyses, two best colour [mean of S (saturation in HSV colour space), std. deviation of b*, which indicates blue to yellow in L*a*b* colour space] and three textural features [entropy of b*, contrast of H (hue of HSV colour space), entropy of R (red of RGB colour space)] for pork, and three colour (mean of R, mean of H, std. deviation of a*, which indicates green to red in L*a*b* colour space) and two textural features [contrast of B, contrast of L* (luminance or lightness in L*a*b* colour space)] for Turkey hams were selected as features with the highest discriminant power. High classification performances were reached for both types of hams (>99.5% for pork and >90.5% for Turkey) using the best selected features or combinations of them. In spite of the poor/fair agreement among ham consumers as determined by Kappa analysis (Kappa-value<0.4) for sensory grading (surface colour, colour uniformity, bitonality, texture appearance and acceptability), a dichotomous logistic regression model using the best image features was able to explain the variability of consumers' responses for all sensorial attributes with accuracies higher than 74.1% for pork hams and 83.3% for Turkey hams. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.
2014-09-01
This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage following RT. Presented, in part at the IASLC 15th World Conference on Lung Conference, Sydney, AUS (2013).
Shikha Ojha, K; Granato, Daniel; Rajuria, Gaurav; Barba, Francisco J; Kerry, Joseph P; Tiwari, Brijesh K
2018-01-15
The effects of ultrasound (US) frequency, addition of Lactobacillus sakei culture and drying time on key nutritional (protein, amino acids, and organic acids) and physicochemical properties (texture and colour) of cultured and uncultured beef jerky were evaluated. Cultured and uncultured jerky samples were subjected to US frequencies of 25kHz, 33kHz and 45kHz for 30min prior to marination and drying. Principal component analysis demonstrated a significant effect of beef jerky processing conditions on physicochemical properties. Taurine content of jerky samples was found to increase with an increase in ultrasonic frequencies for cultured samples. No significant changes in colour values were observed for ultrasound pre-treated and control samples. Interactive effects of culture treatment, drying and ultrasonic frequency were observed. This study demonstrates that the nutritional profile of beef jerky can be improved through the incorporation of L. sakei. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laws of spreading: When hydrodynamic equations are not enough
NASA Astrophysics Data System (ADS)
Kavehpour, Pirouz; Mohammad Karim, Alireza; Rothstein, Jonathan; Davis, Stephen
2017-11-01
For nearly 50 years, most of the researchers in the area of wetting and spreading have used a relationship between the dynamics contact angle and velocity and the equilibrium contact angle. Different forms of this relationship are known as Tanner's law, Hoffman-Voinov-Tanner law or Cox model, all of them are derived based on hydrodynamics assumptions. In this talk, we will discuss several common situations that this relationship is not valid and we propose a new way to look at spreading problem and its underlying physics. Our experimental result agrees with this interpretation of spreading dynamics. In addition, the experimental study has been performed using forced spreading with tensiometer to obtain the dependence of dynamic contact angle to the contact line velocity to describe the spreading dynamics of Newtonian liquids on the micro-textured surfaces. The effect of the geometrical descriptions of the micro-posts along with the physical properties of liquids on the spreading dynamics on micro-textured Teflon plates have been also studied. It was shown that hydrodynamic results are not valid for certain combination of fluid/solid systems.
Natural fracking and the genesis of five-element veins
NASA Astrophysics Data System (ADS)
Markl, Gregor; Burisch, Mathias; Neumann, Udo
2016-08-01
Hydrothermal Ag-Co-Ni-Bi-As (five-element vein type) ore deposits show very conspicuous textures of the native elements silver, bismuth, and arsenic indicating formation from a rapid, far-from-equilibrium process. Such textures include up to dm-large tree- and wire-like aggregates overgrown by Co-Ni-Fe arsenides and mostly carbonates. Despite the historical and contemporary importance of five-element vein type deposits as sources of silver, bismuth, and cobalt, and despite of spectacular museum specimens, their process of formation is not yet understood and has been a matter of debate since centuries. We propose, based on observations from a number of classical European five-element vein deposits and carbon isotope analyses, that "natural fracking," i.e., liberation of hydrocarbons or hydrocarbon-bearing fluids during break up of rocks in the vicinity of an active hydrothermal system and mixing between these hydrocarbons (e.g., methane and/or methane-bearing fluids) and a metal-rich hydrothermal fluid is responsible for ore precipitation and the formation of the unusual ore textures and assemblages. Thermodynamic and isotope mixing calculations show that the textural, chemical, and isotopic features of the investigated deposits can entirely be explained by this mechanism.
Vibration health monitoring for tensegrity structures
NASA Astrophysics Data System (ADS)
Ashwear, Nasseradeen; Eriksson, Anders
2017-02-01
Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Toth, Robert; Rusu, Mirabela; Sperling, Dan; Lepor, Herbert; Futterer, Jurgen; Madabhushi, Anant
2013-03-01
Laser interstitial thermal therapy (LITT) has recently shown great promise as a treatment strategy for localized, focal, low-grade, organ-confined prostate cancer (CaP). Additionally, LITT is compatible with multi-parametric magnetic resonance imaging (MP-MRI) which in turn enables (1) high resolution, accurate localization of ablation zones on in vivo MP-MRI prior to LITT, and (2) real-time monitoring of temperature changes in vivo via MR thermometry during LITT. In spite of rapidly increasing interest in the use of LITT for treating low grade, focal CaP, very little is known about treatment-related changes following LITT. There is thus a clear need for studying post-LITT changes via MP-MRI and consequently to attempt to (1) quantitatively identify MP-MRI markers predictive of favorable treatment response and longer term patient outcome, and (2) identify which MP-MRI markers are most sensitive to post-LITT changes in the prostate. In this work, we present the first attempt at examining focal treatment-related changes on a per-voxel basis (high resolution) via quantitative evaluation of MR parameters pre- and post-LITT. A retrospective cohort of MP-MRI data comprising both pre- and post- LITT T2-weighted (T2w) and diffusion-weighted (DWI) acquisitions was considered, where DWI MRI yielded an Apparent Diffusion Co-efficient (ADC) map. A spatially constrained affine registration scheme was implemented to first bring T2w and ADC images into alignment within each of the pre- and post-LITT acquisitions, following which the pre- and post-LITT acquisitions were aligned. Pre- and post-LITT MR parameters (T2w intensity, ADC value) were then standardized to a uniform scale (to correct for intensity drift) and then quantified via the raw intensity values as well as via texture features derived from T2w MRI. In order to quantify imaging changes as a result of LITT, absolute differences were calculated between the normalized pre- and post-LITT MRI parameters. Quantitatively combining the ADC and T2w MRI parameters enabled construction of an integrated MP-MRI difference map that was highly indicative of changes specific to the LITT ablation zone. Preliminary quantitative comparison of the changes in different MR parameters indicated that T2w texture may be highly sensitive as well as specific in identifying changes within the ablation zone pre- and post-LITT. Visual evaluation of the differences in T2w texture features pre- and post-LITT also appeared to provide an indication of LITT-related effects such as edema. Our preliminary results thus indicate great potential for non-invasive MP-MRI imaging markers for determining focal treatment related changes, and hence long- and short-term patient outcome.
The Ratios of Pre-emulsified Duck Skin for Optimized Processing of Restructured Ham.
Shim, Jae-Yun; Kim, Tae-Kyung; Kim, Young-Boong; Jeon, Ki-Hong; Ahn, Kwang-Il; Paik, Hyun-Dong; Choi, Yun-Sang
2018-02-01
The purpose of this study was to investigate the quality of duck ham formulated with duck skin through the pre-emulsification process. The experiments to investigate the quality characteristics of duck ham were carried out to measure proximate composition, cooking loss, emulsion stability, pH, color, texture profile analysis, apparent viscosity, and sensory characteristics. Duck ham was prepared with various ratios of duck skin in pre-emulsion as follows: Control (duct skin 30%), T1 (duck skin 20% + pre-emulsified duck skin 10%), T2 (duck skin 15% + pre-emulsified duck skin 15%), T3 (duck skin 10% + pre-emulsified duck skin 20%), and T4 (pre-emulsified duck skin 30%). As the ratio of duck skin to pre-emulsified skin changed, the quality of duck ham in terms of moisture content, fat content, cooking loss, emulsion stability, lightness, textural analysis, apparent viscosity, and overall acceptability changed. The moisture content of T2 was the highest ( p <0.05) and that of the control and T4 was the lowest ( p <0.05). The fat content of control was higher than all treatments ( p <0.05). T2 had the lowest values in cooking loss, total expressible fluid, fat separation, hardness, springiness, and gumminess ( p <0.05). The score of overall acceptability of all treatments with pre-emulsified skin was higher than control ( p <0.05). Therefore, the pre-emulsification process can improve the quality characteristics of duck ham and 1:1 ratio of duck skin and pre-emulsified skin was the proper ratio to improve the quality characteristics of duck ham.
Simulating X-ray bursts with a radiation hydrodynamics code
NASA Astrophysics Data System (ADS)
Seong, Gwangeon; Kwak, Kyujin
2018-04-01
Previous simulations of X-ray bursts (XRBs), for example, those performed by MESA (Modules for Experiments in Stellar Astrophysics) could not address the dynamical effects of strong radiation, which are important to explain the photospheric radius expansion (PRE) phenomena seen in many XRBs. In order to study the effects of strong radiation, we propose to use SNEC (the SuperNova Explosion Code), a 1D Lagrangian open source code that is designed to solve hydrodynamics and equilibrium-diffusion radiation transport together. Because SNEC is able to control modules of radiation-hydrodynamics for properly mapped inputs, radiation-dominant pressure occurring in PRE XRBs can be handled. Here we present simulation models for PRE XRBs by applying SNEC together with MESA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho
2015-11-15
A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less
Costa, Marion P; Frasao, Beatriz S; Silva, Adriana Cristina O; Freitas, Mônica Q; Franco, Robson M; Conte-Junior, Carlos A
2015-09-01
Cupuassu is an acidic fruit that has a characteristic aroma, flavor, and texture; its fiber-rich pulp can provide a different consistency than other fruit pulps. Goat milk is an excellent source of amino acids, fatty acids, and minerals, and is widely used for processing fermented milks, such as yogurt. However, compared with cow milk yogurts, it is difficult to make goat milk yogurts with a good consistency. Therefore, it is necessary to use certain technological strategies. This study was carried out to investigate the possibility of adding cupuassu pulp, probiotic (Lactobacillus acidophilus LA-5), and prebiotic (inulin) to improve the texture of goat milk yogurt. A total of 6 treatments were performed: natural (N), probiotic (Pro), prebiotic (Pre), synbiotic (S), cupuassu (C), and probiotic with cupuassu (PC). The viability of probiotic in yogurts (Pro, S, and PC) was evaluated. In addition, instrumental analyses (pH, color, apparent viscosity, and texture) were performed to evaluate the influence of these different ingredients on goat milk yogurts. The probiotic bacteria remained viable (≥7 log cfu·mL(-1)) throughout the 28d of refrigerated storage, which exceeded the minimum count required to confer probiotic physiological benefits. The pH levels of the yogurts inoculated with L. acidophilus (Pro, S, and PC) were lower than others yogurts (N, Pre, and C). However, all yogurt samples underwent gradual decreases in pH until 7 to 14d of storage. The lightness (L*) was affected initially by addition of all ingredients (cupuassu pulp, probiotic, and prebiotic). The addition of cupuassu pulp (C and PC) increased the L* during the period of storage. Apparent viscosity and firmness decreased in the PC yogurt. The consistency was highest in the yogurts with added prebiotic (Pre and S) than the other yogurts (N, Pro, C, and PC) at the end of the storage period (d 28). The cohesiveness remained constant in all yogurts (N, Pro, Pre, S, C, and PC). Based on the results obtained from the current study, it was concluded that cupuassu pulp addition improves the texture of goat milk yogurts. Therefore, this pulp could be an important technological strategy for the dairy goat industry. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Muscle Protein Profiles Used for Prediction of Texture of Farmed Salmon (Salmo salar L.).
Ørnholt-Johansson, Gine; Frosch, Stina; Gudjónsdóttir, María; Wulff, Tune; Jessen, Flemming
2017-04-26
A soft texture is undesired in Atlantic salmon as it leads to downgrading and reduced yield, yet it is a factor for which the cause is not fully understood. This lack of understanding highlights the need for identifying the cause of the soft texture and developing solutions by which the processing industry can improve the yield. Changes in muscle protein profiles can occur both pre- and postharvest and constitute an overall characterization of the muscle properties including texture. The aim of this study was to investigate this relationship between specific muscle proteins and the texture of the salmon fillet. Samples for 2D-gel-based proteomics were taken from the fillet above the lateral line at the same position as where the texture had been measured. The resulting protein profiles were analyzed using multivariate data analysis. Sixteen proteins were found to correlate to the measured texture, showing that it is possible to predict peak force based on a small subset of proteins. Additionally, eight of the 16 proteins were identified by tandem mass spectrometry including serum albumin, dipeptidyl peptidase 3, heat shock protein 70, annexins, and a protein presumed to be a titin fragment. It is contemplated that the identification of these proteins and their significance for the measured texture will contribute to further understanding of the Atlantic salmon muscle texture.
Changes in contact angle providing evidence for surface alteration in multi-component solid foods
NASA Astrophysics Data System (ADS)
Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2015-11-01
Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.
Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S
2008-11-15
The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.
The structure and spectrum of the accretion shock in the atmospheres of young stars
NASA Astrophysics Data System (ADS)
Dodin, Alexandr
2018-04-01
The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.
Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy
NASA Astrophysics Data System (ADS)
Penlington, Alex
Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
Choi, Min-Sung; Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; n Lee, Soo-Yeo; Kim, Cheon-Jei
2014-01-01
The effects of replacing pork back fat with brewer's spent grain (BSG) pre-emulsion for physicochemical, textural properties, and sensory evaluations of reduced-fat chicken sausages are evaluated. Control was prepared with 15% pork back fat, and three reduced-fat chicken sausages were formulated with the replacement of 20, 25, and 30% pork back fat with BSG pre-emulsion. The pH level of reduced-fat sausages formulated with BSG pre-emulsion is lower than that of the control (p<0.05). The redness, yellowness, and apparent viscosity of reduced-fat chicken sausages increase proportionally with increasing BSG pre-emulsion (p<0.05). With increasing BSG pre-emulsion concentration, the fat contents and energy values are decreased in reduced-fat chicken sausages (p<0.05). The BSG pre-emulsion improves the hardness, gumminess, and chewiness of reduced-fat chicken sausages (p<0.05), and the reduction in fat and the addition of BSG pre-emulsion had no influence on the cohesiveness of the chicken sausage. And there is no significant difference in the overall acceptability among control, T1 (chicken sausage with 20% of BSG pre-emulsion, 10% of fat addition), and T2 (chicken sausage with 25% of BSG pre-emulsion, 5% of fat addition) (p>0.05). Therefore, our results indicate that BSG is effective dietary fiber source for manufacturing of reduced-fat meat product and suggest that 20-25% of BSG pre-emulsion is suitable for pork back fat in chicken sausages. PMID:26760933
Valous, Nektarios A; Drakakis, Konstantinos; Sun, Da-Wen
2010-10-01
The visual texture of pork ham slices reveals information about the different qualities and perceived image heterogeneity, which is encapsulated as spatial variations in geometry and spectral characteristics. Detrended Fluctuation Analysis (DFA) detects long-range correlations in nonstationary spatial sequences, by a self-similarity scaling exponent alpha. In the current work, the aim is to investigate the usefulness of alpha, using different colour channels (R, G, B, L*, a*, b*, H, S, V, and Grey), as a quantitative descriptor of visual texture in sliced ham surface patterns for the detection of long-range correlations in unidimensional spatial series of greyscale intensity pixel values at 0 degrees , 30 degrees , 45 degrees , 60 degrees , and 90 degrees rotations. Images were acquired from three qualities of pre-sliced pork ham, typically consumed in Ireland (200 slices per quality). Results indicated that the DFA approach can be used to characterize and quantify the textural appearance of the three ham qualities, for different image orientations, with a global scaling exponent. The spatial series extracted from the ham images display long-range dependence, indicating an average behaviour around 1/f-noise. Results indicate that alpha has a universal character in quantifying the visual texture of ham surface intensity patterns, with no considerable crossovers that alter the behaviour of the fluctuations. Fractal correlation properties can thus be a useful metric for capturing information embedded in the visual texture of hams. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen
2012-07-01
In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.
NASA Astrophysics Data System (ADS)
Sagapuram, Dinakar
Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for basal slip exhibits ductile tensile-type fracture. A two-fold increase in ductility is also observed for the LSEM sheet under uniaxial tensile testing without significant changes in the strength. Among texture and microstructure (grain size), texture is shown to be more critical for Mg sheet formability. However, in conjunction with a favorable texture, fine recrystallized microstructure provides for additional enhancement of strain-hardening capacity and formability. In-situ imaging of material flow during uniaxial tensile testing revealed new, interesting flow localization phenomena and fracture behavior. It is shown that the deformation behavior of Mg sheet is highly texture dependent, and also radically different from that of conventional ductile metals both in terms of necking and fracture. The implications of these observations for the LDH test results and formability of Mg sheet, in general, are briefly discussed.
Afoakwa, Emmanuel Ohene; Budu, Agnes Simpson; Merson, Alan Bullock
2007-06-01
The response surface methodology and central composite rotatable design for K=3 was used to study the combined effect of blanching, soaking and sodium hexametaphosphate salt concentration on moisture, ash, leached solids, phytates, tannins and hardness of bambara groundnut during canning. Regression models were developed to predict the effects of the processing parameters on the studied indices. Significant interactions were observed between all the factors with high regression coefficients (64.4-82.6%). Blanching and soaking of the seeds prior to canning led to increases in moisture content and leached solids, while significant decreases were observed for phytates, tannins and hardness of the canned bambara groundnuts. Increasing the concentration of sodium salt added during soaking caused significant (P
NASA Astrophysics Data System (ADS)
Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.
2016-07-01
The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.
Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M
2016-01-01
Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan–Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Results: Kaplan–Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. PMID:27319577
Molina, David; Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M
2016-07-04
The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T 1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Heterogeneity measures computed on the post-contrast pre-operative T 1 weighted MR images of patients with GBM are predictors of survival. Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.
Modeling a distribution of point defects as misfitting inclusions in stressed solids
NASA Astrophysics Data System (ADS)
Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.
2014-05-01
The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
NASA Astrophysics Data System (ADS)
Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.
2010-06-01
Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
Conceptual definition of porosity function for coarse granular porous media with fixed texture
NASA Astrophysics Data System (ADS)
Shokri, Morteza
2018-06-01
Porous media's porosity value is commonly taken as a constant for a given granular texture free from any type of imposed loads. Although such definition holds for those media at hydrostatic equilibrium, it might not be hydrodynamically true for media subjected to the flow of fluids. This article casts light on an alternative vision describing porosity as a function of fluid velocity, though the media's solid skeleton does not undergo any changes and remain essentially intact. Carefully planned laboratory experiments support such as hypothesis and may help reducing reported disagreements between observed and actual behaviors of nonlinear flow regimes. Findings indicate that the so-called Stephenson relationship that enables estimating actual flow velocity is a case that holds true only for the Darcian conditions. In order to investigate the relationship, an accurate permeability should be measured. An alternative relationship, therefore, has been proposed to estimate actual pore flow velocity. On the other hand, with introducing the novel concept of effective porosity, that should be determined not only based on geotechnical parameters, but also it has to be regarded as a function of the flow regime. Such a porosity may be affected by the flow regime through variations in the effective pore volume and effective shape factor. In a numerical justification of findings, it is shown that unsatisfactory results, obtained from nonlinear mathematical models of unsteady flow, may be due to unreliable porosity estimates.
Huber, Patrick
2015-03-18
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Huber, Patrick
2015-03-01
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Blaker, Kendra M; Plotto, Anne; Baldwin, Elizabeth A; Olmstead, James W
2014-01-01
BACKGROUND Fruit texture is a primary selection trait in southern highbush blueberry (SHB) breeding to increase fresh fruit postharvest quality and consumer acceptance. A novel crisp fruit texture has recently been identified among SHB germplasm. In this study, we developed a common set of descriptors that align sensory evaluation of blueberry fruit texture with instrumental measures that could be used for quantitative measurements during pre- and postharvest evaluation. RESULTS Sensory and instrumental characteristics were measured in 36 and 49 genotypes in 2010 and 2011, respectively. A trained sensory panel evaluated fresh fruit based on five common textural attributes in 2010 and 2011: bursting energy, flesh firmness, skin toughness, juiciness and mealiness. Instrumental measures of compression and bioyield forces were significantly different among cultivars and correlated with sensory scores for bursting energy, flesh firmness and skin toughness (R > 0.7, except skin toughness in 2011), but correlations with sensory scores for juiciness and mealiness were low (R < 0.4). CONCLUSION The results of sensory and instrumental measures supported the use of both compression and bioyield force measures in distinguishing crisp from standard-texture genotypes, and suggest that crisp texture in SHB is related to the sensory perception of bursting energy, flesh firmness and skin toughness. PMID:24619938
Speck, Olga; Schlechtendahl, Mark; Borm, Florian; Kampowski, Tim; Speck, Thomas
2018-01-01
During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.
MRI textures as outcome predictor for Gamma Knife radiosurgery on vestibular schwannoma
NASA Astrophysics Data System (ADS)
Langenhuizen, P. P. J. H.; Legters, M. J. W.; Zinger, S.; Verheul, H. B.; Leenstra, S.; de With, P. H. N.
2018-02-01
Vestibular schwannomas (VS) are benign brain tumors that can be treated with high-precision focused radiation with the Gamma Knife in order to stop tumor growth. Outcome prediction of Gamma Knife radiosurgery (GKRS) treatment can help in determining whether GKRS will be effective on an individual patient basis. However, at present, prognostic factors of tumor control after GKRS for VS are largely unknown, and only clinical factors, such as size of the tumor at treatment and pre-treatment growth rate of the tumor, have been considered thus far. This research aims at outcome prediction of GKRS by means of quantitative texture feature analysis on conventional MRI scans. We compute first-order statistics and features based on gray-level co- occurrence (GLCM) and run-length matrices (RLM), and employ support vector machines and decision trees for classification. In a clinical dataset, consisting of 20 tumors showing treatment failure and 20 tumors exhibiting treatment success, we have discovered that the second-order statistical metrics distilled from GLCM and RLM are suitable for describing texture, but are slightly outperformed by simple first-order statistics, like mean, standard deviation and median. The obtained prediction accuracy is about 85%, but a final choice of the best feature can only be made after performing more extensive analyses on larger datasets. In any case, this work provides suitable texture measures for successful prediction of GKRS treatment outcome for VS.
BRAIN TUMOR SEGMENTATION WITH SYMMETRIC TEXTURE AND SYMMETRIC INTENSITY-BASED DECISION FORESTS.
Bianchi, Anthony; Miller, James V; Tan, Ek Tsoon; Montillo, Albert
2013-04-01
Accurate automated segmentation of brain tumors in MR images is challenging due to overlapping tissue intensity distributions and amorphous tumor shape. However, a clinically viable solution providing precise quantification of tumor and edema volume would enable better pre-operative planning, treatment monitoring and drug development. Our contributions are threefold. First, we design efficient gradient and LBPTOP based texture features which improve classification accuracy over standard intensity features. Second, we extend our texture and intensity features to symmetric texture and symmetric intensity which further improve the accuracy for all tissue classes. Third, we demonstrate further accuracy enhancement by extending our long range features from 100mm to a full 200mm. We assess our brain segmentation technique on 20 patients in the BraTS 2012 dataset. Impact from each contribution is measured and the combination of all the features is shown to yield state-of-the-art accuracy and speed.
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening
Rupp, Andre; Celikel, Tansu
2018-01-01
Abstract Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration. PMID:29662943
Charles, Mathilde; Corollaro, Maria Laura; Manfrini, Luigi; Endrizzi, Isabella; Aprea, Eugenio; Zanella, Angelo; Corelli Grappadelli, Luca; Gasperi, Flavia
2018-02-01
Texture is important in the preferences of apple consumers. Of the pre-harvest factors affecting fruit quality and especially texture, altitude and subsequent climatic conditions are crucial, determining differences in the physiological mechanisms of fruit growth, ripening stage and chemical composition, as demonstrated by several studies. This work applies a detailed sensory-instrumental protocol developed in a previous paper to investigate the impact of altitude, time of harvest and their cross-effect on sensory characteristics of apple, with a focus on texture. Sensory differences were found in relation to altitude, although the profile results were mainly affected by the time of harvest. Fruit from lower altitude was described as juicier, crunchier and sweeter than samples from higher altitude, which were floury, sourer and more astringent. Texture performance, soluble solids content and titratable acidity corroborated this sensory description. Moreover, anatomical data showed that fruit from lower altitude had a larger volume, a higher number of cells and a higher percentage of intercellular spaces. We demonstrated that differences between fruit from various altitudes can be perceived through human senses, and that the proposed sensory-instrumental tool can be used to describe such differences. This study brings more understanding about the impact of altitude and time of harvest on apple sensory properties. This work could support apple producers, from semi-mountainous regions (Alps, Tyrol, etc.), in advertising and valorising their products with their specific characteristics in a more efficient manner. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.
2014-01-01
Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard
2018-01-01
Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.
Mangolim, Camila Sampaio; da Silva, Thamara Thaiane; Fenelon, Vanderson Carvalho; Koga, Luciana Numata; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano; Matioli, Graciette
2017-01-01
Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use. PMID:28245244
Mangolim, Camila Sampaio; Silva, Thamara Thaiane da; Fenelon, Vanderson Carvalho; Koga, Luciana Numata; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano; Matioli, Graciette
2017-01-01
Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use.
Areeckal, Anu Shaju; Kamath, Jagannath; Zawadynski, Sophie; Kocher, Michel; S, Sumam David
2018-05-26
Osteoporosis is a bone disorder characterized by bone loss and decreased bone strength. The most widely used technique for detection of osteoporosis is the measurement of bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA). But DXA scans are expensive and not widely available in low-income economies. In this paper, we propose a low cost pre-screening tool for the detection of low bone mass, using cortical radiogrammetry of third metacarpal bone and trabecular texture analysis of distal radius from hand and wrist radiographs. An automatic segmentation algorithm to automatically locate and segment the third metacarpal bone and distal radius region of interest (ROI) is proposed. Cortical measurements such as combined cortical thickness (CCT), cortical area (CA), percent cortical area (PCA) and Barnett Nordin index (BNI) were taken from the shaft of third metacarpal bone. Texture analysis of trabecular network at the distal radius was performed using features obtained from histogram, gray level Co-occurrence matrix (GLCM) and morphological gradient method (MGM). The significant cortical and texture features were selected using independent sample t-test and used to train classifiers to classify healthy subjects and people with low bone mass. The proposed pre-screening tool was validated on two ethnic groups, Indian sample population and Swiss sample population. Data of 134 subjects from Indian sample population and 65 subjects from Swiss sample population were analysed. The proposed automatic segmentation approach shows a detection accuracy of 86% in detecting the third metacarpal bone shaft and 90% in accurately locating the distal radius ROI. Comparison of the automatic radiogrammetry to the ground truth provided by experts show a mean absolute error of 0.04 mm for cortical width of healthy group, 0.12 mm for cortical width of low bone mass group, 0.22 mm for medullary width of healthy group, and 0.26 mm for medullary width of low bone mass group. Independent sample t-test was used to select the most discriminant features, to be used as input for training the classifiers. Pearson correlation analysis of the extracted features with DXA-BMD of lumbar spine (DXA-LS) shows significantly high correlation values. Classifiers were trained with the most significant features in the Indian and Swiss sample data. Weighted KNN classifier shows the best test accuracy of 78% for Indian sample data and 100% for Swiss sample data. Hence, combined automatic radiogrammetry and texture analysis is shown to be an effective low cost pre-screening tool for early diagnosis of osteoporosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Textural-Contextual Labeling and Metadata Generation for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Kiang, Richard K.
1999-01-01
Despite the extensive research and the advent of several new information technologies in the last three decades, machine labeling of ground categories using remotely sensed data has not become a routine process. Considerable amount of human intervention is needed to achieve a level of acceptable labeling accuracy. A number of fundamental reasons may explain why machine labeling has not become automatic. In addition, there may be shortcomings in the methodology for labeling ground categories. The spatial information of a pixel, whether textural or contextual, relates a pixel to its surroundings. This information should be utilized to improve the performance of machine labeling of ground categories. Landsat-4 Thematic Mapper (TM) data taken in July 1982 over an area in the vicinity of Washington, D.C. are used in this study. On-line texture extraction by neural networks may not be the most efficient way to incorporate textural information into the labeling process. Texture features are pre-computed from cooccurrence matrices and then combined with a pixel's spectral and contextual information as the input to a neural network. The improvement in labeling accuracy with spatial information included is significant. The prospect of automatic generation of metadata consisting of ground categories, textural and contextual information is discussed.
Humans as holobionts: implications for prevention and therapy.
van de Guchte, Maarten; Blottière, Hervé M; Doré, Joël
2018-05-01
The human gut microbiota is increasingly recognized for its important or even decisive role in health. As it becomes clear that microbiota and host mutually affect and depend on each other in an intimate relationship, a holistic view of the gut microbiota-host association imposes itself. Ideally, a stable state of equilibrium, homeostasis, is maintained and serves health, but signs are that perturbation of this equilibrium beyond the limits of resilience can propel the system into an alternative stable state, a pre-disease state, more susceptible to the development of chronic diseases. The microbiota-host equilibrium of a large and growing proportion of individuals in Western society may represent such a pre-disease state and explain the explosive development of chronic diseases such as inflammatory bowel disease, obesity, and other inflammatory diseases. These diseases themselves represent other alternative stable states again and are therefore hard to cure. The holistic view of the microbiota-host association where feedback loops between microbiota and host are thought to maintain the system in a stable state-be it a healthy, pre-disease, or disease state-implies that integrated approaches, addressing host processes and microbiota, should be used to treat or prevent (pre-)disease.
Yi, Jisook; Lee, Young Han; Kim, Sang Kyum; Kim, Seung Hyun; Song, Ho-Taek; Shin, Kyoo-Ho; Suh, Jin-Suck
2018-05-01
This study aimed to compare computed tomography (CT) features, including tumor size and textural and histogram measurements, of giant-cell tumors of bone (GCTBs) before and after denosumab treatment and determine their applicability in monitoring GCTB response to denosumab treatment. This retrospective study included eight patients (male, 3; female, 5; mean age, 33.4 years) diagnosed with GCTB, who had received treatment by denosumab and had undergone pre- and post-treatment non-contrast CT between January 2010 and December 2016. This study was approved by the institutional review board. Pre- and post-treatment size, histogram, and textural parameters of GCTBs were compared by the Wilcoxon signed-rank test. Pathological findings of five patients who underwent surgery after denosumab treatment were evaluated for assessment of treatment response. Relative to the baseline values, the tumor size had decreased, while the mean attenuation, standard deviation, entropy (all, P = 0.017), and skewness (P = 0.036) of the GCTBs had significantly increased post-treatment. Although the difference was statistically insignificant, the tumors also exhibited increased kurtosis, contrast, and inverse difference moment (P = 0.123, 0.327, and 0.575, respectively) post-treatment. Histologic findings revealed new bone formation and complete depletion or decrease in the number of osteoclast-like giant cells. The histogram and textural parameters of GCTBs changed significantly after denosumab treatment. Knowledge of the tendency towards increased mean attenuation and heterogeneity but increased local homogeneity in post-treatment CT histogram and textural features of GCTBs might aid in treatment planning and tumor response evaluation during denosumab treatment. Copyright © 2018. Published by Elsevier B.V.
Materials science in pre-plated leadframes for electronic packages
NASA Astrophysics Data System (ADS)
Liu, Lilin
Au/Pd/Ni pre-plated leadframes (PPF) are high performance frames for accommodating high-end electronic packages. Cost and reliability are major concerns in their wide application. The present work, from a materials science point view, deepens the understanding of PPFs, optimizes the conventional PPFs, develops a novel PPF architecture and models the residual stress relaxation in heteroepitaxial thin films. The wire pull test, the solderability test, and High-Resolution Transmission Electron Microscopy (HRTEM) were employed to characterize the PPFs in order to understand the relationship between performance and microstructure. We optimized the electroplating profiles and determined the minimum thickness of the Pd layer with the PPF performance satisfying the industry standards. Further increasing the Pd layer thickness beyond the critical thickness will not enhance the performance more, but increase the product cost. With the optimized electroplating profile, the electroplated Au layer is epitaxially deposited on the Pd layer, and so does the Pd layer on the Ni layer. Misfit dislocations and nanotwins are present at the interface between the Pd and Ni layers, which are generated to release the about 10.4% misfit strain between the Pd and Ni lattices. This work demonstrates that the electro-deposition technique can electroplate epitaxy-like Pd films on the highly (200) textured Ni films, which are grown on the Cu substrates. A novel technique for impeding Cu out-diffusion in Cu alloy based pre-plated leadframes was developed by electroplating a 3-4 nm thick Sn layer on a Cu alloy base prior to electroplating a Ni layer. A 10-14 nm thick epitaxy-like and dense (Cu,Ni)3Sn intermetallic compound (IMC) layer is automatically formed en route of diffuse reaction, which leads to a drastic reduction in Cu out-diffusion and hence improves significantly the protection of the leadframes against oxidation and corrosion attack. The oxidation behaviours were quantified by Electron Diffraction X-ray (EX) incorporated in Scanning Electron Microscopy (SEM) in the present work, which is a good complementary to the traditional weight gain test by a balance. A diffusion/oxidation model was developed to estimate the effective diffusion coefficient of Cu in the formed IMC nanolayers. The estimated Cu diffusion coefficient in the IMC interlayer is about 1.6x10 -22m2/s at 250°C, which is around 7~11 orders lower than the interdiffusion coefficients for eta- Cu6Sn5 and epsilon- Cu3Sn phases at corresponding temperatures. Based on the dislocation theory of twinning, analytical solutions by using the hybrid superposition and Fourier transformation approach were derived for the calculation of various energies involved in the misfit twinning process. For a given epilayer thickness and lattice mismatch strain, the twin formation energy should reach its minimum to determine the twin width and a zero minimum formation energy determines the critical thickness for misfit twinning. The effect of elastic mismatch between the epilayer and the substrate on the critical thickness was studied comprehensively, revealing that an elastically soft epilayer has a large critical thickness. Moreover, a misfit-twin-and-perfect-dislocation predominance chart is constructed to predict the predominant regions of misfit twinning and perfect dislocation in the mismatch strain and the specific twin boundary energy domain. Multiple misfit twins in epilayer/substrate systems were studied by summing up the stress and displacement fields of individual twins. In principle, the energy minimization approach can be applied to multiple misfit twins, although only periodic arrays of parallel and alternating twins were investigated here in detail. The equilibrium twin width and equilibrium twin spacing of a periodic array of twins represent the misfit twin morphology. The theoretical results indicate that the difference in elastic constants between an epilayer and its substrate has great effects on the morphology of equilibrium twins. The theoretical predictions agree with experimental observations.
NASA Astrophysics Data System (ADS)
Marsudi, Hidayat, Noor; Wibowo, Ratno Bagus Edy
2017-12-01
In this article, we present a deterministic model for the transmission dynamics of HIV/AIDS in which condom campaign and antiretroviral therapy are both important for the disease management. We calculate the effective reproduction number using the next generation matrix method and investigate the local and global stability of the disease-free equilibrium of the model. Sensitivity analysis of the effective reproduction number with respect to the model parameters were carried out. Our result shows that efficacy rate of condom campaign, transmission rate for contact with the asymptomatic infective, progression rate from the asymptomatic infective to the pre-AIDS infective, transmission rate for contact with the pre-AIDS infective, ARV therapy rate, proportion of the susceptible receiving condom campaign and proportion of the pre-AIDS receiving ARV therapy are highly sensitive parameters that effect the transmission dynamics of HIV/AIDS infection.
Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dewen
The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less
Analysis of reversed torsion of FCC metals using polycrystal plasticity models
Guo, Xiao Qian; Wang, Huamiao; Wu, Pei Dong; ...
2015-06-19
Large strain behavior of FCC polycrystals during reversed torsion are investigated through the special purpose finite element based on the classical Taylor model and the elastic-viscoplastic self-consistent (EVPSC) model with various Self-Consistent Schemes (SCSs). It is found that the response of both the fixed-end and free-end torsion is very sensitive to the constitutive models. The models are assessed through comparing their predictions to the corresponding experiments in terms of the stress and strain curves, the Swift effect and texture evolution. It is demonstrated that none of the models examined can precisely predict all the experimental results. However, more careful observationmore » reveals that, among the models considered, the tangent model gives the worst overall performance. As a result, it is also demonstrated that the intensity of residual texture during reverse twisting is dependent on the amounts of pre-shear strain during forward twisting and the model used.« less
Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold*
Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico
2015-01-01
Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu
Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storagemore » applications.« less
Obsidian Pyroclasts: Where Do They Come From and What Can They Tell Us?
NASA Astrophysics Data System (ADS)
Watkins, J. M.; Gardner, J. E.; Befus, K.
2016-12-01
Models for how volcanic gases behave during volcanic eruptions are constructed from measurements of volatiles (δD, H2O and CO2) in melt that has been quenched to glass. Volatile measurements on obsidian pyroclasts from Mono Craters, California, have been central to the development of open- versus closed-system and equilibrium versus non-equilibrium degassing models, and these models have been applied to the interpretation of volatile data from volcanic centers worldwide. Even for the well-studied Mono Craters system, however, there are several different degassing models that are compatible with existing data, and the origin of the vesicle-poor obsidian pyroclasts (upon which the degassing models have been built) remains ambiguous. To better establish the link between the volatiles in the pyroclasts and volcanic eruption processes, we combine textural analysis with area maps of CO2 and H2O. We show that obsidian pyroclasts are heterogeneous with respect to dissolved CO2 and H2O, and that many clasts have multiple textural and chemical domains that are sutured together. The observations suggest that clasts are assembled from non-equilibrated juvenile melt and ash during repeated melt fracturing and healing, ash sintering, and shearing along conduit margins. Melt fracturing promotes gas extraction from magma, whereas healing promotes gas resorption and glass densification. Some of the clasts have bands or patches of elevated CO2 associated with cuspate vesicles, which are evidence for CO2-rich vapor fluxing through the magmatic system. Collectively, the data support a model of open-system, non-equilibrium degassing with intermittent regassing caused by increases in pressure and exposure to different vapor compositions.
Millan, C.; Wilson, T.; Paulsen, T.
2007-01-01
Microstructures in natural fractures in core recovered offshore from Cape Roberts, Ross Sea, Antarctica, provide new constraints on the relative timing of faulting and sedimentation in the Victoria Land Basin along the Transantarctic Mountain rift flank. This study characterizes the textures, fabrics and grain-scale structures from thin section analysis of samples of microfaults, veins, and clastic dikes. Microfaults are abundant and display two different types of textures, interpreted to record two different deformation modes: pre-lithification shearing and brittle faulting of cohesive sediment. Both clastic dikes and calcite veins commonly follow fault planes, indicating that injections of liquefied sediment and circulating fluids used pre-existing faults as conduits. The close association of clastic injections, diagenetic mineralization, and faulting indicates that faulting was synchronous with deposition in the rift basin
Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set
NASA Astrophysics Data System (ADS)
Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif
2018-03-01
Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
NASA Astrophysics Data System (ADS)
Naghavi, M. R.; Motamedi, E.; Nasiri, J.; Alizadeh, H.; Fattahi Moghadam, M. R.; Mashouf, A.
2015-01-01
In this investigation, the proficiency of a number of magnetic carbon-based nano-adsorbents is evaluated in pre-purification process of the crude paclitaxel extract obtained from fresh needles of yew tree ( Taxus baccata L.). The effectiveness and removal ability of color and impurities from crude extracts, for three novel candidate nano-adsorbents (i.e., Fe3O4 nanoparticles (Fe3O4Nps), graphite oxide (GO), and their hybrids Fe3O4Nps/GO) are compared with commercial graphite in three different solvents. In general, both HPLC and UV-Vis spectroscopy results demonstrate that in less polar solvent (i.e., dichloromethane), the adsorption is greatly affected by the electrostatic attractions, while in more polar solvents (i.e., acetone and ethanol) π-π electron interactions taking place between adsorbent and adsorbate are the most dominant factors in sorption. Considering decolorization efficiency, purity of taxol, recovery and reusability of adsorbents, Fe3O4Nps/GO (50 g/L) in dichloromethane is selected as the best medium for pre-purification of paclitaxel. Additionally, in kinetic studies the sorption equilibrium can be reached within 120 min, and the experimental data are well fitted by the pseudo-second-order model. The Langmuir sorption isotherm model correlates well with the sorption equilibrium data for the crude extract concentration (500-2,000 mg/L). Our findings display promising applications of Fe3O4Nps/GO, as a cost-effective nano-adsorbent, to provide a suitable vehicle toward improvement of paclitaxel pre-purification.
Texture analysis of common renal masses in multiple MR sequences for prediction of pathology
NASA Astrophysics Data System (ADS)
Hoang, Uyen N.; Malayeri, Ashkan A.; Lay, Nathan S.; Summers, Ronald M.; Yao, Jianhua
2017-03-01
This pilot study performs texture analysis on multiple magnetic resonance (MR) images of common renal masses for differentiation of renal cell carcinoma (RCC). Bounding boxes are drawn around each mass on one axial slice in T1 delayed sequence to use for feature extraction and classification. All sequences (T1 delayed, venous, arterial, pre-contrast phases, T2, and T2 fat saturated sequences) are co-registered and texture features are extracted from each sequence simultaneously. Random forest is used to construct models to classify lesions on 96 normal regions, 87 clear cell RCCs, 8 papillary RCCs, and 21 renal oncocytomas; ground truths are verified through pathology reports. The highest performance is seen in random forest model when data from all sequences are used in conjunction, achieving an overall classification accuracy of 83.7%. When using data from one single sequence, the overall accuracies achieved for T1 delayed, venous, arterial, and pre-contrast phase, T2, and T2 fat saturated were 79.1%, 70.5%, 56.2%, 61.0%, 60.0%, and 44.8%, respectively. This demonstrates promising results of utilizing intensity information from multiple MR sequences for accurate classification of renal masses.
Ganeshan, B; Miles, K A; Babikir, S; Shortman, R; Afaq, A; Ardeshna, K M; Groves, A M; Kayani, I
2017-03-01
The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. • CT texture-analysis (CTTA) provides prognostic information complementary to interim FDG-PET in Lymphoma. • Pre-treatment CTTA and interim PET status were significant predictors of progression-free survival. • Patients with negative interim PET could be further stratified by pre-treatment CTTA. • Provide precision surveillance where additional imaging reserved for patients at greatest recurrence-risk. • Assists in risk-adapted treatment strategy based on interim PET and CTTA.
Verma, Arun Kumar; Sharma, Brahma Deo; Banerjee, Rituparna
2012-07-01
There is growing demand for the meat products having healthier characteristics. In an endeavour to develop low-salt, low-fat and high-fibre chicken nuggets an investigation was carried out to observe the effects of partial replacement (40%) of sodium chloride in pre-standardised low-fat chicken nuggets (Control, 20 g kg⁻¹ NaCl) with a salt substitute blend as well as incorporation of bottle gourd (Lagenaria siceraria L.) in the resulting low-salt, low-fat products at three different levels, i.e. 50, 75 and 100 g kg⁻¹ (Treatments, 12 g kg⁻¹ NaCl) on the various quality attributes. Sodium chloride replacement decreased (P < 0.01) emulsion and product pH, cooking yield, moisture, ash, yellowness, hue value and textural properties. pH values, moisture and dietary fibre increased (P < 0.01) while cooking yield, % protein, textural properties and total cholesterol were decreased with the incorporation of bottle gourd in low-salt, low-fat nuggets. Sensory attributes of the product were not affected with salt replacement; however, inclusion of bottle gourd at higher levels decreased (P < 0.05) flavour and texture scores. The results suggest that low-salt, low-fat and high-fibre chicken nuggets can be developed with the use of a salt substitute blend and bottle gourd without affecting their acceptability. Copyright © 2012 Society of Chemical Industry.
Blaker, Kendra M; Plotto, Anne; Baldwin, Elizabeth A; Olmstead, James W
2014-10-01
Fruit texture is a primary selection trait in southern highbush blueberry (SHB) breeding to increase fresh fruit postharvest quality and consumer acceptance. A novel crisp fruit texture has recently been identified among SHB germplasm. In this study, we developed a common set of descriptors that align sensory evaluation of blueberry fruit texture with instrumental measures that could be used for quantitative measurements during pre- and postharvest evaluation. Sensory and instrumental characteristics were measured in 36 and 49 genotypes in 2010 and 2011, respectively. A trained sensory panel evaluated fresh fruit based on five common textural attributes in 2010 and 2011: bursting energy, flesh firmness, skin toughness, juiciness and mealiness. Instrumental measures of compression and bioyield forces were significantly different among cultivars and correlated with sensory scores for bursting energy, flesh firmness and skin toughness (R > 0.7, except skin toughness in 2011), but correlations with sensory scores for juiciness and mealiness were low (R < 0.4). The results of sensory and instrumental measures supported the use of both compression and bioyield force measures in distinguishing crisp from standard-texture genotypes, and suggest that crisp texture in SHB is related to the sensory perception of bursting energy, flesh firmness and skin toughness. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.
Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho
2013-01-01
Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution.
Collocation of equilibria in gravitational field of triangular body via mass redistribution
NASA Astrophysics Data System (ADS)
Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.
2018-05-01
We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.
The effect of texture granularity on texture synthesis quality
NASA Astrophysics Data System (ADS)
Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.
2015-09-01
Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.
Real-time volume rendering of 4D image using 3D texture mapping
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il
2001-05-01
Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.
Stern, L.A.; Brown, Gordon E.; Bird, D.K.; Jahns, R.H.; Foord, E.E.; Shigley, J.E.; Spaulding, L.B.
1986-01-01
Several layered pegmatite-aplite intrusives exposed at the Little Three mine, Ramona, display closely associated fine-grained to giant-textured mineral assemblages which are believed to have co-evolved from a hydrous aluminosilicate residual melt with an exsolved supercritical vapour phase. Calculations of phase relations between the major pegmatite-aplite mineral assemblages and supercritical aqueous fluid were made, assuming equilibrium and closed-system behaviour as a first-order model.-J.A.Z.
Shock Melting of Iron Silicide as Determined by In Situ X-ray Diffraction.
NASA Astrophysics Data System (ADS)
Newman, M.; Kraus, R. G.; Wicks, J. K.; Smith, R.; Duffy, T. S.
2016-12-01
The equation of state of core alloys at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the dynamics at the inner core boundary of the Earth and super-Earths. Here, we present a series of laser driven shock experiments on textured polycrystalline Fe-15Si. These experiments were conducted at the Omega and Omega EP laser facilities. Particle velocities in the Fe-15Si samples were measured using a line VISAR and were used to infer the thermodynamic state of the shocked samples. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of Fe-15Si in to hcp and B2 structures. This work examines the kinetic effects of decomposition due to the short time scale of dynamic compression experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Fe-15Si, which is a candidate for the composition in Earth's outer core. Our experimental results show a highly textured solid phase upon shock compression to pressures ranging from 170 to 300 GPa. Below 320 GPa, we observe diffraction peaks consistent with decomposition of the D03 starting material in to an hcp and a cubic (potentially B2) structure. Upon shock compression above 320 GPa, the intense and textured solid diffraction peaks give way to diffuse scattering and loss of texture, consistent with melting along the Hugoniot. When comparing these results to that of pure iron, we can ascertain that addition of 15 wt% silicon increases the equilibrium melting temperature significantly, or that the addition of silicon significantly increases the metastability of the solid phase, relative to the liquid. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan
2015-01-01
Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.
Generation of Strategies for Environmental Deception in Two-Player Normal-Form Games
2015-06-18
found in the literature is pre- sented by Kohlberg and Mertens [23]. A stable equilibrium by their definition is an equi- librium in an extensive-form...the equilibrium in this state provides them with an increased payoff. While interesting, Kohlberg and Mertens’ defi- 13 nition of equilibrium...stability used by Kohlberg and Mertens. Arsham’s work focuses on determining the amount by which a mixed-strategy Nash equilibrium’s payoff values can
Comer, J.; Ortoleva, P.
2007-01-01
Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.
Pyka, Thomas; Bundschuh, Ralph A; Andratschke, Nicolaus; Mayer, Benedikt; Specht, Hanno M; Papp, Laszló; Zsótér, Norbert; Essler, Markus
2015-04-22
Textural features in FDG-PET have been shown to provide prognostic information in a variety of tumor entities. Here we evaluate their predictive value for recurrence and prognosis in NSCLC patients receiving primary stereotactic radiation therapy (SBRT). 45 patients with early stage NSCLC (T1 or T2 tumor, no lymph node or distant metastases) were included in this retrospective study and followed over a median of 21.4 months (range 3.1-71.1). All patients were considered non-operable due to concomitant disease and referred to SBRT as the primary treatment modality. Pre-treatment FDG-PET/CT scans were obtained from all patients. SUV and volume-based analysis as well as extraction of textural features based on neighborhood gray-tone difference matrices (NGTDM) and gray-level co-occurence matrices (GLCM) were performed using InterView Fusion™ (Mediso Inc., Budapest). The ability to predict local recurrence (LR), lymph node (LN) and distant metastases (DM) was measured using the receiver operating characteristic (ROC). Univariate and multivariate analysis of overall and disease-specific survival were executed. 7 out of 45 patients (16%) experienced LR, 11 (24%) LN and 11 (24%) DM. ROC revealed a significant correlation of several textural parameters with LR with an AUC value for entropy of 0.872. While there was also a significant correlation of LR with tumor size in the overall cohort, only texture was predictive when examining T1 (tumor diameter < = 3 cm) and T2 (>3 cm) subgroups. No correlation of the examined PET parameters with LN or DM was shown. In univariate survival analysis, both heterogeneity and tumor size were predictive for disease-specific survival, but only texture determined by entropy was determined as an independent factor in multivariate analysis (hazard ratio 7.48, p = .016). Overall survival was not significantly correlated to any examined parameter, most likely due to the high comorbidity in our cohort. Our study adds to the growing evidence that tumor heterogeneity as described by FDG-PET texture is associated with response to radiation therapy in NSCLC. The results may be helpful into identifying patients who might profit from an intensified treatment regime, but need to be verified in a prospective patient cohort before being incorporated into routine clinical practice.
Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan
2016-01-01
Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo
2017-11-01
The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.
Martinez, Cristina S; Ribotta, Pablo D; Añón, María Cristina; León, Alberto E
2014-03-01
The technological and sensory quality of pasta made from bread wheat flour substituted with wholemeal amaranth flour (Amaranthus mantegazzianus) at four levels, 15, 30, 40 and 50% w/w was investigated. The quality of the resulted pasta was compared to that of control pasta made from bread wheat flour. The flours were analyzed for chemical composition and pasting properties. Cooking behavior, color, raw and cooked pasta texture, scanning electron microscopy and sensory evaluation were determined on samples. The pasta obtained from amaranth flour showed some detriment of the technological and sensory quality. So, a maximum substitution level of 30% w/w was defined. This is an equilibrium point between an acceptable pasta quality and the improved nutritional and functional properties from the incorporation of amaranth flour.
Thermally driven self-healing using copper nanofiber heater
NASA Astrophysics Data System (ADS)
Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.
2017-07-01
Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.
Emotional effects of dynamic textures
Toet, Alexander; Henselmans, Menno; Lucassen, Marcel P; Gevers, Theo
2011-01-01
This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures' area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval. PMID:23145257
Endo, Hiroshi; Ino, Shuichi; Fujisaki, Waka
2017-09-01
Because chewing sounds influence perceived food textures, unpleasant textures of texture-modified diets might be improved by chewing sound modulation. Additionally, since inhomogeneous food properties increase perceived sensory intensity, the effects of chewing sound modulation might depend on inhomogeneity. This study examined the influences of texture inhomogeneity on the effects of chewing sound modulation. Three kinds of nursing care foods in two food process types (minced-/puréed-like foods for inhomogeneous/homogeneous texture respectively) were used as sample foods. A pseudo-chewing sound presentation system, using electromyogram signals, was used to modulate chewing sounds. Thirty healthy elderly participants participated in the experiment. In two conditions with and without the pseudo-chewing sound, participants rated the taste, texture, and evoked feelings in response to sample foods. The results showed that inhomogeneity strongly influenced the perception of food texture. Regarding the effects of the pseudo-chewing sound, taste was less influenced, the perceived food texture tended to change in the minced-like foods, and evoked feelings changed in both food process types. Though there were some food-dependent differences in the effects of the pseudo-chewing sound, the presentation of the pseudo-chewing sounds was more effective in foods with an inhomogeneous texture. In addition, it was shown that the pseudo-chewing sound might have positively influenced feelings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zanini, Milko; Bagnasco, Annamaria; Catania, Gianluca; Aleo, Giuseppe; Sartini, Marina; Cristina, Maria Luisa; Ripamonti, Stefania; Monacelli, Fiammetta; Odetti, Patrizio; Sasso, Loredana
2017-12-01
To assess the effects of a texture-modified food program for dysphagia on the nutritional, biochemical and functional profile in a cohort of institutionalised older people in Italy. Dysphagic institutionalised older people, often also affected by dementia, are frequently exposed to malnutrition. Malnutrition in older people has negative effects on mortality, days of hospitalisation, infection, wound healing and risk of pressure injuries. Therefore, it is very important to prevent malnutrition in this frail population. A pre-post study without a control group. The study included 479 dysphagic institutionalised older people from 20 nursing homes. Anthropometrical, biochemical, nutritional and functional parameters were collected retrospectively, 6 months before the study intervention, at time zero and, prospectively for 6 months after implementing the NUTRICARE food programme, for a total of nine evaluations. The NUTRICARE programme includes meals without nutritional supplementation, and personalised levels of density, viscosity, texture and particle size. The total mean body mass index of our sample passed from 17.88-19.00; body weight averagely improved by 7.19%, as well as their nutritional and biochemical profiles. There was a progressive improvement of total protein and serum albumin values. Nutritional parameters (serum transferrin and lymphocytes) displayed similar changes. Plasma lymphocytes reached normal levels in 98.23% of the sample. Plasma creatinine levels remained steady throughout the study and within the normal range. No side effects were reported. The NUTRICARE food programme with a adequate proteins, calories, balanced nutritional and bromatological properties, and appropriate texture and palatability significantly improved the nutritional, biochemical and functional profile in a cohort of institutionalised dysphagic older people. The introduction of a balanced nutritional programme, using high-quality natural ingredients, appropriate texture and palatability can significantly improve health and quality of life in dysphagic older people. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2007-10-01
A modelling framework that incorporates the peculiarities of microstructural features, such as the spatial correlation of crystallographic orientations and morphological texture in piezoelectrics, is established. The mathematical homogenization theory of a piezoelectric medium is implemented using the finite element method by solving the coupled equilibrium electrical and mechanical fields. The dependence of the domain orientation on the macroscopic electromechanical properties of crystalline as well as polycrystalline ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (PMN-42% PT) is studied based on this model. The material shows large anisotropy in the piezoelectric coefficient ejK in its crystalline form. The homogenized electromechanical moduli of polycrystalline ceramic also exhibit significantly anisotropic behaviours. An optimum texture at which the piezoceramic exhibits its maximum longitudinal piezoelectric response is identified.
NASA Astrophysics Data System (ADS)
Jung, Kyung-Won; Choi, Brian Hyun; Ahn, Kyu-Hong; Lee, Sang-Hyup
2017-11-01
A novel magnetic adsorbent of Fe3O4/γ-Al2O3 hybrid composite (denoted as M-Fe/Al-H) was developed electrochemically via a sequential application of iron and aluminum electrodes in a one-pot fashion, which called here as electrode-alternation technique, followed by pyrolysis. Physical and chemical properties of the prepared adsorbents were characterized and their feasibility towards the removal of di-anionic azo dye Acid Black 1 (AB1) was assessed. Textural and structural characterization revealed that the prepared M-Fe/Al-H possesses superior properties than those of M-Fe (sole usage of iron electrode), which may improve the adsorption capacity. Kinetics revealed that the adsorption equilibrium was reached within 12 h with approximately 90% of the equilibrium adsorption capacity within the first 3 h. Comprehensive analysis using the pseudo-second order and intraparticle diffusion models indicated that the dominant mechanism of the reaction is film diffusion with intraparticle diffusion being the rate determining step. The adsorption equilibrium isotherm data were best represented by the Sips isotherm model, which found to be approximately 1501, 1786, and 1959 mg/g at 283, 293, and 303 K, respectively. The exceptional performance as well as its ease of separation allows M-Fe/Al-H to be a promising candidate as an effective for azo dye removal from various aqueous medium.
Preserving pre-rigor meat functionality for beef patty production.
Claus, J R; Sørheim, O
2006-06-01
Three methods were examined for preserving pre-rigor meat functionality in beef patties. Hot-boned semimembranosus muscles were processed as follows: (1) pre-rigor ground, salted, patties immediately cooked; (2) pre-rigor ground, salted and stored overnight; (3) pre-rigor injected with brine; and (4) post-rigor ground and salted. Raw patties contained 60% lean beef, 19.7% beef fat trim, 1.7% NaCl, 3.6% starch, and 15% water. Pre-rigor processing occurred at 3-3.5h postmortem. Patties made from pre-rigor ground meat had higher pH values; greater protein solubility; firmer, more cohesive, and chewier texture; and substantially lower cooking losses than the other treatments. Addition of salt was sufficient to reduce the rate and extent of glycolysis. Brine injection of intact pre-rigor muscles resulted in some preservation of the functional properties but not as pronounced as with salt addition to pre-rigor ground meat.
Intraoral radiographs texture analysis for dental implant planning.
Mundim, Mayara B V; Dias, Danilo R; Costa, Ronaldo M; Leles, Cláudio R; Azevedo-Marques, Paulo M; Ribeiro-Rotta, Rejane F
2016-11-01
Computer vision extracts features or attributes from images improving diagnosis accuracy and aiding in clinical decisions. This study aims to investigate the feasibility of using texture analysis of periapical radiograph images as a tool for dental implant treatment planning. Periapical radiograph images of 127 jawbone sites were obtained before and after implant placement. From the superimposition of the pre- and post-implant images, four regions of interest (ROI) were delineated on the pre-implant images for each implant site: mesial, distal and apical peri-implant areas and a central area. Each ROI was analysed using Matlab® software and seven image attributes were extracted: mean grey level (MGL), standard deviation of grey levels (SDGL), coefficient of variation (CV), entropy (En), contrast, correlation (Cor) and angular second moment (ASM). Images were grouped by bone types-Lekholm and Zarb classification (1,2,3,4). Peak insertion torque (PIT) and resonance frequency analysis (RFA) were recorded during implant placement. Differences among groups were tested for each image attribute. Agreement between measurements of the peri-implant ROIs and overall ROI (peri-implant + central area) was tested, as well as the association between primary stability measures (PIT and RFA) and texture attributes. Differences among bone type groups were found for MGL (p = 0.035), SDGL (p = 0.024), CV (p < 0.001) and En (p < 0.001). The apical ROI showed a significant difference from the other regions for all attributes, except Cor. Concordance correlation coefficients were all almost perfect (ρ > 0.93), except for ASM (ρ = 0.62). Texture attributes were significantly associated with the implant stability measures. Texture analysis of periapical radiographs may be a reliable non-invasive quantitative method for the assessment of jawbone and prediction of implant stability, with potential clinical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P
2017-04-01
Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?
Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G
2015-11-01
This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. © Georg Thieme Verlag KG Stuttgart · New York.
Phase diagram for a two-dimensional, two-temperature, diffusive XY model.
Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E
2010-10-01
Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.
Kim, Hyun-Wook; Lee, Yong Jae; Kim, Yuan H Brad
2016-06-01
The objectives of this study were to determine efficacy of a membrane filtration in soy hull pectin purification and evaluate combined effects of soy hull pectin and pre-emulsified fiber/oil (PE) on chemical composition and technological properties of low fat and low salt meat emulsions. Soy hull pectin was purified through two different methods (alcohol-washed (ASP) and membrane-filtered (MSP)). Insoluble soy hull residues after pectin extraction were incorporated with sunflower oil and water for the PE preparation. Meat emulsion was formulated with 58 % pork, 20 % ice, 20 % pork backfat, and 2 % NaCl as control. A total of six low fat and low salt meat emulsions (1 % NaCl and 10 % backfat) was manufactured with 1 % pectin (with/without ASP or MSP) and 10 % PE (with/without). The pectin content of ASP and MSP was 0.84 and 0.64 g L-galacturonic acid/g dry sample, respectively. The inclusion of soy hull pectin caused similar results on chemical composition, color, cooking loss, and texture of the meat emulsions, regardless of the purification method. In addition, positive impacts of the combined treatments with soy hull pectin and PE compared to single treatments on cooking loss and texture of the meat emulsions were observed. Results suggest that membrane filtration could be an effective alternative method to purify pectin, instead of alcohol-washing, and both soluble pectin and insoluble fiber from soy hulls could be used as a functional non-meat ingredient to manufacture various low fat and low salt meat products.
Bashir, Usman; Azad, Gurdip; Siddique, Muhammad Musib; Dhillon, Saana; Patel, Nikheel; Bassett, Paul; Landau, David; Goh, Vicky; Cook, Gary
2017-12-01
Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18 F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18 F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18 F-FDG PET in NSCLC.
Correcting anthropogenic ocean heat uptake estimates for the Little Ice Age
NASA Astrophysics Data System (ADS)
Gebbie, Geoffrey
2017-04-01
Estimates of anthropogenic ocean heat uptake typically assume that the ocean was in equilibrium during the pre-industrial era. Recent reconstructions of the Common Era, however, show a multi-century surface cooling trend before the Industrial Revolution. Using a time-evolving state estimation method, we find that the 1750 C.E. ocean must have been out of equilibrium in order to fit the H.M.S. Challenger, WOCE, and Argo hydrographic data. When the disequilibrated ocean conditions are taken into account, the inferred ocean heat uptake from 1750-2014 C.E. is revised due to the deep ocean memory of Little Ice Age surface forcing. These effects of ocean disequilibrium should also be considered when interpreting climate sensitivity estimates.
Motion-Induced Interruptions and Postural Equilibrium in Linear Lateral Accelerations
2013-09-01
model. 50 THIS PAGE INTENTIONALLY LEFT BLANK 51 APPENDIX A. PRE- AND POSTTEST QUESTIONNAIRES Pretest ...Screening and Pretest Q. Midtest Q. Posttest Q. Motion Profile/Noldus Video Researchers’ Data 3001 1-2-3-4 √ √ √ √ √ 3102 * 1-2-3-4...parameters and Motion-Induced Interruptions (MIIs) in a controlled environment, and (b) focus on the effect of the frequency (period) of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, S; Court, L; Briere, T
2014-06-15
Purpose: Radiation induced lung damage (RILD) is an important dose-limiting toxicity for patients treated with radiation therapy. Scoring systems for RILD are subjective and limit our ability to find robust predictors of toxicity. We investigate the dose and time-related response for texture-based lung CT image features that serve as potential quantitative measures of RILD. Methods: Pre- and post-RT diagnostic imaging studies were collected for retrospective analysis of 21 patients treated with photon or proton radiotherapy for NSCLC. Total lung and selected isodose contours (0–5, 5–15, 15–25Gy, etc.) were deformably registered from the treatment planning scan to the pre-RT and availablemore » follow-up CT studies for each patient. A CT image analysis framework was utilized to extract 3698 unique texture-based features (including co-occurrence and run length matrices) for each region of interest defined by the isodose contours and the total lung volume. Linear mixed models were fit to determine the relationship between feature change (relative to pre-RT), planned dose and time post-RT. Results: Seventy-three follow-up CT scans from 21 patients (median: 3 scans/patient) were analyzed to describe CT image feature change. At the p=0.05 level, dose affected feature change in 2706 (73.1%) of the available features. Similarly, time affected feature change in 408 (11.0%) of the available features. Both dose and time were significant predictors of feature change in a total of 231 (6.2%) of the extracted image features. Conclusion: Characterizing the dose and time-related response of a large number of texture-based CT image features is the first step toward identifying objective measures of lung toxicity necessary for assessment and prediction of RILD. There is evidence that numerous features are sensitive to both the radiation dose and time after RT. Beyond characterizing feature response, further investigation is warranted to determine the utility of these features as surrogates of clinically significant lung injury.« less
NASA Astrophysics Data System (ADS)
Wu, Huaping; Wu, Linzhi; Du, Shanyi
2008-04-01
The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.
Taste the feeling or feel the tasting: Tactile exposure to food texture promotes food acceptance.
Nederkoorn, Chantal; Theiβen, Julia; Tummers, Michelle; Roefs, Anne
2018-01-01
The texture of food can be a reason why children reject it: It matters if food is crispy, slimy, smooth or has pips and bits in it. In general, mere exposure is the best method to increase acceptance of food: becoming more familiar with a food by repeated exposure increases liking for it. However, exposure to texture can be difficult, as children can be reluctant to try tasting it. In the current study, it is tested if acceptance of a food with a specific texture is improved after exposure to the feel of it, with hands only. Sixty-six children (between 3 and 10 years old) were randomly assigned to either the exposure or control condition. In the exposure condition, children played with an colourless and odourless jelly with their hands and in the control group, children played a board game. Afterwards, children were asked to taste 3 desserts (in balanced order): smooth strawberry yoghurt, strawberry yoghurt with pieces and strawberry jelly. Results showed that the children in the exposure condition ate specifically more of the jelly dessert - the texture of which they had been pre-exposed to - compared to the children in control condition. No group differences were found for the other two desserts. The results imply that feeling the texture of a food with hands increases the acceptance of food with the same texture. Playing with food with hands seems therefore be a first step in getting familiar with food and might help to increase variety of food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Nehlawi, A; Saldo, J; Vega, L F; Guri, S
2013-05-01
The effects of an aerobic modified atmosphere packaging (MAP) (70% CO2, 15% O2 and 15% N2) with and without a CO2 3-h soluble gas stabilization (SGS) pre-treatment of chicken drumsticks were determined for various package and product quality characteristics. The CO2 dissolved into drumsticks was determined. The equilibrium between CO2 dissolved in drumsticks and CO2 in head space was reached within 48h after packaging, showing highest values of CO2 in SGS pre-treated samples. This greater availability of CO2 resulted in lower counts of TAB and Pseudomonas in SGS than in MAP drumsticks. Package collapse was significantly reduced in SGS samples. The average of CO2 dissolved in the MAP treatment was 567mg CO2kg(-1) of chicken and, 361mg CO2kg(-1) of chicken during the MAP treatment, in SGS pre-treated samples. This difference could be the quantity of CO2 dissolved during SGS pre-treatment. These results highlight the advantages of using SGS versus traditional MAP for chicken products preservation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Contributions of Uncertainty in Droplet Nucleation to the Indirect Effect in Global Models
NASA Astrophysics Data System (ADS)
Rothenberg, D. A.; Wang, C.; Avramov, A.
2016-12-01
Anthropogenic aerosol perturbations to clouds and climate (the indirect effect, or AIE) contribute significant uncertainty towards understanding contemporary climate change. Despite refinements over the past two decades, modern global aerosol-climate models widely disagree on the magnitude of AIE, and wholly disagree with satellite estimates. Part of the spread in estimates of AIE arises from a lack of constraints on what exactly comprised the pre-industrial atmospheric aerosol burden, but another component is attributable to inter-model differences in simulating the chain of aerosol-cloud-precipitation processes which ultimately produce the indirect effect. Thus, one way to help constrain AIE is to thoroughly investigate the differences in aerosol-cloud processes and interactions occurring in these models. We have configured one model, the CESM/MARC, with a suite of parameterizations affecting droplet activation. Each configuration produces similar climatologies with respect to precipitation and cloud macrophysics, but shows different sensitivies to aerosol perturbation - up to 1 W/m^2 differences in AIE. Regional differences in simulated aerosol-cloud interactions, especially in marine regions with little anthropogenic pollution, contribute to the spread in these AIE estimates. The baseline pre-industrial droplet number concentration in marine regions dominated by natural aerosol strongly predicts the magnitude of each model's AIE, suggesting that targeted observations of cloud microphysical properties across different cloud regimes and their sensitivity to aerosol influences could help provide firm constraints and targets for models. Additionally, we have performed supplemental fully-coupled (atmosphere/ocean) simulations with each model configuration, allowing the model to relax to equilibrium following a change in aerosol emissions. These simulations allow us to assess the slower-timescale responses to aerosol perturbations. The spread in fast model responses (which produce the noted changes in indirect effect or forcing) gives rise to large differences in the equilibrium climate state of each configuration. We show that these changes in equilibrium climate state have implications for AIE estimates from model configurations tuned to the present-day climate.
Automatic Texture Reconstruction of 3d City Model from Oblique Images
NASA Astrophysics Data System (ADS)
Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang
2016-06-01
In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.
NASA Astrophysics Data System (ADS)
Iwamatsu, Masao
2017-10-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.
NASA Astrophysics Data System (ADS)
Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.
2015-12-01
Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.
Dynamical generation of Floquet Majorana flat bands in s-wave superconductors
NASA Astrophysics Data System (ADS)
Poudel, A.; Ortiz, G.; Viola, L.
2015-04-01
We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s-wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support a Majorana pair per edge. In the first approach, a suitable modulation of the chemical potential simultaneously induces Majorana flat bands and dynamically activates a pre-existing chiral symmetry which is responsible for their protection. In the second approach, the application of effective parity kicks dynamically generates a desired chiral symmetry by suppressing chirality-breaking terms in the static Hamiltonian. Our results demonstrate how the use of time-dependent control enlarges the range of possibilities for realizing gapless topological superconductivity, potentially enabling access to topological states of matter that have no known equilibrium counterpart.
Estrada-Solís, Joaquín; Figueroa-Rodríguez, Katia A; Figueroa-Sandoval, Benjamín; Hernández-Rosas, Francisco; Hernández-Cazares, Aleida S
2016-08-01
Longissimus dorci (LD) samples of different origin (imported and domestic) with pre-treatments (imported meat stored at -18°C for 6months, domestic meat stored at -18°C for 10days, and domestic meat stored at 4°C for 24h) were cooked as barbacoa and frozen using two treatments (air blast and liquid immersion) and then evaluated after 30days of storage. The results showed that the origin and pre-treatment of meat affected L*, a*, instrumental texture and microstructure; that the storage time affected pH, aw, b* and microstructure; and that the freezing treatments did not affect the meat. Overall, the frozen cooked lamb dish barbacoa could present some problems at the conservation stage due to an increase in pH, aw and changes in microstructure; however, the physical traits (color and texture) remained mostly unchanged and depended more on the quality of the raw meat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boosting CNN performance for lung texture classification using connected filtering
NASA Astrophysics Data System (ADS)
Tarando, Sebastián. Roberto; Fetita, Catalin; Kim, Young-Wouk; Cho, Hyoun; Brillet, Pierre-Yves
2018-02-01
Infiltrative lung diseases describe a large group of irreversible lung disorders requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. This paper presents an original image pre-processing framework based on locally connected filtering applied in multiresolution, which helps improving the learning process and boost the performance of CNN for lung texture classification. By removing the dense vascular network from images used by the CNN for lung classification, locally connected filters provide a better discrimination between different lung patterns and help regularizing the classification output. The approach was tested in a preliminary evaluation on a 10 patient database of various lung pathologies, showing an increase of 10% in true positive rate (on average for all the cases) with respect to the state of the art cascade of CNNs for this task.
Toczek, Marta; Zielonka, Daniel; Zukowska, Paulina; Marcinkowski, Jerzy T; Slominska, Ewa; Isalan, Mark; Smolenski, Ryszard T; Mielcarek, Michal
2016-11-01
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Peng, Jinhua; Zhang, Zhen; Liu, Zhao; Li, Yaozu; Guo, Peng; Zhou, Wei; Wu, Yucheng
2018-03-08
Friction stir processing (FSP) was used to achieve grain refinement on Mg-Al-Zn alloys, which also brought in significant texture modification. The different micro-texture characteristics were found to cause irregular micro-hardness distribution in FSPed region. The effects of texture and grain size were investigated by comparative analyses with strongly textured rolling sheet. Grain refinement improved both strength and elongation in condition of a basal texture while such led to an increment in yield stress and a drop in elongation and ultimate stress when the basal texture was modified by FSP.
Feng, Xi; Sebranek, Joseph G; Lee, Hyun Yong; Ahn, Dong Uk
2016-11-01
The aim of this work was to evaluate the quality and sensory characteristics of RTE frankfurter-type sausage cured with celery juice powder and including red wine. Four frankfurter treatments including a conventionally cured treatment without red wine (control) and three treatments cured with pre-converted vegetable juice powder and 0%, 5% or 10% (v/w) red wine were prepared. Results showed that adding 5% red wine increased the a*-value, and the textural resilience, cohesiveness and springiness of the frankfurters, as well as decreased lipid/protein oxidation of the final products. Added wine also introduced new volatiles (alcohol and ester compounds) to the frankfurters. The principal component (PC) analysis showed that the pre-converted vegetable juice powder achieved the same effects as the conventional curing agents for typical frankfurter properties. However, the addition of excess amounts of red wine (10%) to the meat batter decreased the pH of meat batter and accelerated lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shock-induced kelyphite formation in the core of a complex impact crater
NASA Astrophysics Data System (ADS)
Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.
2017-10-01
We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This occurred as the shocked rock volume underwent post-shock expansion, forming the core of the central uplift, and was followed by variable textural re-equilibration. This study thus provides a microtextural and mineralogical perspective of the shock regime within confined crust immediately prior to and during central uplift formation.
Near-zero IR transmission of VO2 thin films deposited on Si substrate
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Koughia, Cyril; Li, Yuanshi; Cui, Xiaoyu; Ye, Fan; Shiri, Sheida; Sanayei, Mohsen; Wen, Shi-Jie; Yang, Qiaoqin; Kasap, Safa
2018-05-01
Vanadium dioxide (VO2) thin films of different thickness have been deposited on Si substrates by using DC magnetron sputtering. The effects of substrate pre-treatment by means of seeding (spin coating and ultrasonic bathing) and biasing on the structure and optical properties were investigated. Seeding results in a smaller grain size in the oxide film, whereas biasing results in square-textured crystals. VO2 thin films of 150 nm thick show a near-zero IR transmission in switched state. Especially, the 150 nm thick VO2 thin film with seeding treatment shows an enhanced switching efficiency.
Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning.
Zhang, Dongyu; Lin, Liang; Chen, Tianshui; Wu, Xian; Tan, Wenwei; Izquierdo, Ebroul
2017-01-01
Sketch portrait generation benefits a wide range of applications such as digital entertainment and law enforcement. Although plenty of efforts have been dedicated to this task, several issues still remain unsolved for generating vivid and detail-preserving personal sketch portraits. For example, quite a few artifacts may exist in synthesizing hairpins and glasses, and textural details may be lost in the regions of hair or mustache. Moreover, the generalization ability of current systems is somewhat limited since they usually require elaborately collecting a dictionary of examples or carefully tuning features/components. In this paper, we present a novel representation learning framework that generates an end-to-end photo-sketch mapping through structure and texture decomposition. In the training stage, we first decompose the input face photo into different components according to their representational contents (i.e., structural and textural parts) by using a pre-trained convolutional neural network (CNN). Then, we utilize a branched fully CNN for learning structural and textural representations, respectively. In addition, we design a sorted matching mean square error metric to measure texture patterns in the loss function. In the stage of sketch rendering, our approach automatically generates structural and textural representations for the input photo and produces the final result via a probabilistic fusion scheme. Extensive experiments on several challenging benchmarks suggest that our approach outperforms example-based synthesis algorithms in terms of both perceptual and objective metrics. In addition, the proposed method also has better generalization ability across data set without additional training.
NASA Astrophysics Data System (ADS)
Giacomoni, P. P.; Coltorti, M.; Bryce, J. G.; Fahnestock, M. F.; Guitreau, M.
2016-04-01
Coupled textural and in situ geochemical studies of clinopyroxene (cpx) phenocrysts, from both historical and recent eruptions of Mt. Etna volcano, provide a means to investigate the processes occurring in the deepest portion of the feeding system (>10 km depth). Five distinct textures were recognized: (1) normal oscillatory zoning, (2) normal zoning with Fe-rich rim, (3) sieve-textured core, (4) reverse oscillatory zoning, and (5) dusty rim. Electron microprobe analyses indicate an almost constant diopside-augite composition, with a slight enrichment in the enstatite for more recent erupted cpx. Core-to-rim compositional profiles, performed along the cpx, reveal distinct compositional characteristics. Normal oscillatory zoning is often characterized by a sharp increase in FeO (Δ ~ 2 wt%) accompanied by a drop in Al2O3 on the outermost 30 μm. Reverse oscillatory zoning, by contrast, exhibits a drop in FeO, Al2O3 (Δ ~ 2 wt%), and a remarkable crystal rim increase in MgO (up to 5 wt%). Similar compositional changes are evident in dusty-textured rims, which are characterized by dissolution edges and overgrowth containing glass pockets and channels. No significant compositional variations have been observed across crystals with sieve-textured cores. Trace element concentrations show enrichments in Sr, La, Zr, and REE, together with a decreasing La/Yb ratio (from ~7 to ~4) in rims of normally zoned crystals. Cpx with reverse zoning and dusty rims has low Sr, La, Zr, and REE contents toward crystal rims. Thermometers and barometers, based on equilibrium cpx-melt pairs, suggest that cpx cores start nucleating at 720 MPa, with the majority of them forming between 600 and 400 MPa but continuing to crystallize until very shallow depths (<100 MPa). Normal oscillatory-zoned phenocrysts surrounded by rims form at pressures shallower than 400 MPa, while reverse zoning and dusty rims occur between 400 and 500 MPa. Coupled petrologic and thermobarometric studies on both clinopyroxenes and plagioclases, associated with detailed textural and in situ geochemical analyses, are promising tools to reconstruct the entire magma ascent path beneath open-system volcanoes. At Mt. Etna, two distinct processes could account for the observed textures: Fe-rich rims in normal oscillatory-zoned crystals can be related to decompression-induced crystallization, while reverse zoning and dusty rims can be produced by mixing with a more basic magma at 400-500 MPa (i.e., ~10 km). Textural features are not restricted to a particular evolutionary phase of the volcano, which suggest that the deep feeding system has not changed significantly since the first alkaline volcanic phase.
Light-ion Production from O, Si, Fe and Bi Induced by 175 MeV Quasi-monoenergetic Neutrons
NASA Astrophysics Data System (ADS)
Bevilacqua, R.; Pomp, S.; Jansson, K.; Gustavsson, C.; Österlund, M.; Simutkin, V.; Hayashi, M.; Hirayama, S.; Naitou, Y.; Watanabe, Y.; Hjalmarsson, A.; Prokofiev, A.; Tippawan, U.; Lecolley, F.-R.; Marie, N.; Leray, S.; David, J.-C.; Mashnik, S.
2014-05-01
We have measured double-differential cross sections in the interaction of 175 MeV quasi-monoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compared our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.
Siva Kumar, Nadavala; Asif, Mohammad; Al-Hazzaa, Mansour I; Ibrahim, Ahmed A
2018-03-01
Most industrial waste discharges are often contaminated with phenolic compounds, which constitute a major source of water pollution owing to their toxicity and low biodegradability. Development of cost-effective treatment of such industrial wastewater is therefore of paramount importance. Towards this end, we explore the efficacy of Pine bark powder (PBP), which is an agricultural solid waste material, as a low-cost biosorbent without any pre-treatment, for the adsorptive removal of 2,4,6-trichlorophenol (2,4,6-TCP) from aqueous media. The PBP was thoroughly characterized and the effect of important adsorption parameters were examined in the present investigation. The batch equilibrium data were analyzed using well-known isotherm models. Freundlich isotherm model provided the best description of the equilibrium biosorption behavior. At 25 ± 1 °C, the maximum biosorption capacity (qmax) was 289.09 mg/g, which is higher than most biosorbents reported in the literature while the removal as high as 97% was obtained. Moreover, the biosorption process was fast, attaining equilibrium in less than 120 min of contact. The Elovich model accurately described the kinetics data. In view of high biosorption capacity and.
Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun
2015-01-01
Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.
Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Suratna; Goswami, Gaurav; Rangarajan, Raghavan
2015-06-01
We revisit the scenario where inflation is preceded by a radiation era by considering that the inflaton too could have been in thermal equilibrium early in the radiation era. Hence we take into account not only the effect of a pre-inflationary era on the inflaton mode functions but also that of a frozen thermal distribution of inflaton quanta. We initially discuss in detail the issues relevant to our scenario of a pre-inflationary radiation dominated era and then obtain the scalar power spectrum for this scenario. We find that the power spectrum is free from infrared divergences. We then use themore » WMAP and Planck data to determine the constraints on the inflaton comoving 'temperature' and on the duration of inflation. We find that the best fit value of the duration of inflation is less than 1 e-folding more than what is required to solve cosmological problems, while only an upper bound on the inflaton temperature can be obtained.« less
Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayani, Maryam Gholami; Reenaas, Turid Worren, E-mail: turid.reenaas@ntnu.no
2014-08-18
In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range ofmore » light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.« less
Processing and characterization of phase boundaries in ceramic and metallic materials
NASA Astrophysics Data System (ADS)
Zeng, Liang
The goal of this dissertation work was to explore and describe advanced characterization of novel materials processing. These characterizations were carried out using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction techniques. The materials studied included ceramics and metallic materials. The first part of this dissertation focuses on the processing, and the resulting interfacial microstructure of ceramics joined using spin-on interlayers. SEM, TEM, and indentation tests were used to investigate the interfacial microstructural and mechanical property evolution of polycrystalline zirconia bonded to glass ceramic MaCor(TM), and polycrystalline alumina to single crystal alumina. Interlayer assisted specimens were joined using a thin amorphous silica interlayer. This interlayer was produced by spin coating an organic based silica bond material precursor and curing at 200°C, followed by joining in a microwave cavity or conventional electric furnace. Experimental results indicate that in the joining of the zirconia and MaCor(TM) no significant interfacial microstructural and mechanical property differences developed between materials joined either with or without interlayers, due to the glassy nature of MaCor(TM). The bond interface was non-planar, as a result of the strong wetting of MaCor(TM) and silica and dissolution of the zirconia. However, without the aid of a silica interlayer, sapphire and 98% polycrystalline alumina failed to join under the experimental conditions under this study. A variety of interfacial morphologies have been observed, including amorphous regions, fine crystalline alumina, and intimate contact between the sapphire and polycrystalline alumina. In addition, the evolution of the joining process from the initial sputter-cure to the final joining state and joining mechanisms were characterized. The second part of this dissertation focused on the effects of working and heat treatment on microstructure, texture, phase boundary movement, and mechanical property evolution in Ti-6Al-4V wire. The as-received wire consisted of equilibrium a and metastable beta phases and had a moderately strong fiber texture with prism plane normals aligned with the wire axis. The wire was worked by extrusion, solution heat-treatment and water quenching, and aging. The extrusion process strengthened the as-received texture. After solutionization and quenching, microstrucual observations showed the presence of many needlelike martensitic platelets in the prior beta phase regions. Texture analysis revealed that a secondary fiber with basal plane normals aligned with the wire axis emerged at the expense of the initial texture, indicating that highly preferred phase boundary motion (variant selection) occurred during the beta → alpha transformation. The strength of the variant selection consistently increased with solutionization temperature and time. In addition, the effects of dislocation type and density on variant selections were further investigated. This implies that strategic prior deformation and heat treatment can be exploited to design the resulting texture and microstructure and consequently optimize the properties of titanium products.
NASA Astrophysics Data System (ADS)
Dilissen, Nicole; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Padrón-Navarta, José Alberto
2015-04-01
Arc volcanism, earthquakes and subduction dynamics are controlled by fluids from downgoing slabs and their effect on the melting and rheology of the overlying mantle wedge. High pressure dehydration of serpentinite in the slab and the subduction channel is considered as one of the main sources of fluids in subduction zones. Even though this metamorphic reaction is essential in subduction activities, the behavior of the fluids, the kinetics and thermodynamics during the breakdown reaction are still poorly understood. The Cerro del Almirez (Nevado-Filábride Complex, Betic Cordillera, SE Spain) uniquely preserves the dehydration front from antigorite serpentinite to chlorite-harzburgite and constitutes a unique natural laboratory to investigate high-pressure dehydration of serpentinite. This reaction occurred in a subduction setting releasing up to 13 wt% of water, contributing significantly to the supply of fluids to the overlying mantle wedge. A key to the understanding of the metamorphic conditions prevailing during serpentinite dehydration is to study the two prominent textures -granofels and spinifex-like chlorite harzburgite- occurring in this reaction product. The detailed texture differences in the Chl-harzburgite can provide insights into diverse kinetic and thermodynamic conditions of this dehydration reaction due to variations in effective pressure and drainage conditions. It has been proposed that difference in overpressure (P') and deviation from growth equilibrium, i.e. overstepping, is responsible for these two types of textures [Padrón-Navarta et al., 2011]. The magnitude and duration of P' is highly dependent on dehydration kinetics [Connolly, 1997]. The fast pressure drop, with spinifex-texture as a product, can be linked to draining events expected after hydrofracturing, which are recorded in grain size reduction zones in this massif. According to this hypothesis, mapping of textural variation in Chl-harzburgite might be used as a proxy to investigate the hydrodynamics of serpentinite dehydration reaction. During an intensive detailed field mapping of a well-exposed area of ca. 0.87 km2 in the W-SW part of the massif, we mapped textural variations of Chl-harzburgite every three to ten meters. Granofels and spinifex lenses occur within scales of decimetres to decametres. These spatial scale constrains can be linked to temporal scales of the reactions and to the spatial and temporal variation of fluid release during dehydration of serpentinite. REFERENCES Connolly, J. A. D. (1997), Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism, J. Geophys. Res.-Solid Earth, 102(B8), 18149-18173, doi:10.1029/97jb00731. Padrón-Navarta, J. A., V. López Sánchez-Vizcaíno, C. J. Garrido, and M. T. Gómez-Pugnaire (2011), Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, southern Spain), Journal of Petrology, 52(10), 2047-2078.
Recovery of Crystallographic Texture in Remineralized Dental Enamel
Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon
2014-01-01
Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity. PMID:25360532
Recovery of crystallographic texture in remineralized dental enamel.
Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon
2014-01-01
Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity.
Comparison of field and laboratory VNIR spectroscopy for profile soil property estimation
USDA-ARS?s Scientific Manuscript database
In-field, in-situ data collection with soil sensors has potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate important soil properties, such as soil carbon, nitrogen, water content, and texture. Most pre...
Evaluation of Liquid Detergents and Methods Used for Airfield Rubber Removal
2012-07-31
friction. Each detergent is applied to the pavement surface in controlled 50’ x 30’ patches. There were three patches placed for each detergent with...Measurements ..........................................................................................................16 6.3. Periodic Pavement Wetting...19 Figure 14. Pre-Cleaning Micro -Texture Data Graph (GT View Data
Computer simulations of nematic drops: Coupling between drop shape and nematic order
NASA Astrophysics Data System (ADS)
Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.
2012-07-01
We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.
NASA Technical Reports Server (NTRS)
Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.
1976-01-01
Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.
NASA Astrophysics Data System (ADS)
Azad, Bahram; Borhani, Ehsan
2016-03-01
This work is focused on the effect of pre-aging time on the properties of Al-2wt%Cu alloy processed by accumulative roll bonding (ARB) process. Following aged at 190 °C for 10 or 30 min, the samples were deformed up to a strain of 4.8 by the ARB process. The microstructure evolution was investigated by transmission electron microscope and electron backscattering diffraction analyzes. The results showed that the Al2Cu precipitates were formed with different sizes due to the different pre-aging times and the finer precipitates were more effective on the formation of high angle grain boundaries during the ARB process. The grain size of Aged-10 min and Aged-30 min specimens decreased to 400 nm and 420 nm, respectively, after 6 cycles of the ARB process. Also, the final texture after 6 cycles of the ARB process, shown in the {111} pole figure, were different depending on the starting microstructures. The mechanical properties of specimens were investigated by the Vickers microhardness measurements and the tensile tests. The results showed that the mechanical properties are affected by the starting microstructure. The mechanical properties of Aged-10 min specimen were different compared to Aged-30 min specimen due to the different size of the pre-existing precipitates. Although by continuing process, the precipitates were probably dissolved due to the heavy deformation.
Saha, A; Perumalla, A V S; Lee, Y; Meullenet, J F; Owens, C M
2009-06-01
Prerigor deboning and marination of broiler breast fillets are growing trends in the poultry industry. Marination can often enhance product attributes such as flavor, juiciness, and texture. The purpose of this study was to evaluate consumer acceptance of marinated broiler breast fillets deboned pre- (<4 h postmortem) and postrigor (>or= 4 h postmortem). A total of 400 broiler carcasses were processed using an inline system and deboned at various times: 0.25, 1.25, 2, 2.5, 3, 3.5, 4, 6, and 24 h postmortem. A 2-stage chilling system was used for all treatments with the exception of the 0.25 h treatment, which was deboned before chilling. After chilling, carcasses or fillets, or both, were aged on ice. Breast fillets were marinated with a 1% salt and 0.45% phosphate final concentration. Consumer sensory evaluations for moistness, tenderness, saltiness, flavor, and overall impression were obtained on all treatments using hedonic and just-about-right (JAR) scales. Although there were slight differences in hedonic ratings for overall impression, texture, and flavor of marinated breast fillets, all treatments could be categorized as "like slightly" to "like moderately." Using a JAR scale, only a small percentage of consumers (<18%) considered any of the treatments as "too tough." The scores for overall flavor or moistness were not affected by the deboning times because the majority of the people considered them to be JAR. Most the consumers reported the potential for purchase of the product as "probably would buy" to "may or may not buy." The results of this study indicate that marination of prerigor deboned meat (with 1% salt) is effective in producing product similar to marinated postrigor deboned meat, suggesting its effectiveness in improving meat quality attributes of early deboned meat.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.
2018-05-01
Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.
Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius
NASA Astrophysics Data System (ADS)
Balcone-Boissard, Hélène; Boudon, Georges; Villemant, Benoît.
2010-05-01
The 79AD eruption of Vesuvius, also known as the "Pompeii eruption", is the reference for one of the explosive eruptive styles, the plinian-type eruption. The eruption involved H2O-rich phonolitic magmas and is commonly divided into three phases: an initial phreatomagmatic phase, followed by a plinian event which produced a thick pumice fallout deposit and a final phase that was dominated by numerous column-collapse events. During the plinian phase, a first white pumice fallout was produced from a high steady eruptive column, followed by a grey pumice fallout originated by an oscillatory eruptive column with several partial column collapse events. This study focuses on the pumice fallout deposits, sampled in a proximal thick section, at the Terzigno quarry, 6 km southeast of the present crater. In order to constrain the degassing processes and the eruptive dynamics, major element compositions, residual volatile contents (H2O, Cl) and textural characteristics (vesicularity and microcrystallinity) were studied. A previous study that we performed on the pre-eruptive Cl content has shown that Cl may be used as an indicator of magma saturation with Cl-rich fluids and of pre-eruptive pressures. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior eruption. Large variations in residual volatile contents exist between the different eruptive units and textural features strongly differ between white and grey pumice clasts but also within the grey pumice clasts. The degassing processes were thus highly heterogeneous: the white pumice eruptive units represent a typical closed-system degassing evolution whereas the first grey pumice one, stored in the same pre-eruptive saturation conditions, follows a particular open-system degassing evolution. Here we propose a new model of the 79AD eruption where pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical parameters which determine the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. We suggest that the oscillatory regime that dominates the grey pumice eruptive phase is linked to the pre-eruptive water undersaturation of most part of the grey magma and to the time delays necessary for H2O exsolution.
NASA Astrophysics Data System (ADS)
Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra
2017-11-01
Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this alteration, RMNs still preserve primary crystallographic textures and heterogeneous chemical signatures. This heterogeneity in crystallographic relationships, which mostly suggest that RMNs pre-date their host, is consistent with the idea that there is not a dominant RMN forming process. Each RMN has experienced a complex history, supporting the suggestion of Daly et al. (2017), that RMNs may preserve a diverse pre-solar chemical signature inherited from the Giant Molecular Cloud.
Kinetic fractionation processes recorded in the stalagmites of some limestone caves in Korea
NASA Astrophysics Data System (ADS)
Woo, K. S.; Jo, K.; Edwards, L. R.; Cheng, H.; Wang, Y.; Yoon, H.
2006-12-01
Stable isotope data (oxygen and carbon) of carbonate minerals (mostly calcite, but sometimes aragonite) in stalagmites have been the most commonly and widely used proxies for paleoclimatic research. This is based upon the assumption that carbonate minerals precipitated in isotopic equilibrium with dripping waters from stalactites, thus should reflect paleoclimatic variations. The state of equilibrium, so called "Hendy Test", has been commonly used. Hendy (1971) showed that during kinetic fractionation both oxygen and carbon isotopes behaves in a similar way due to faster degassing rate of cabon dioxide, resulting in the enrichment of both isotopes. The stalagmites from three limestone caves (Gwaneum, Eden and Daeya Caves) in Korea were investigated to understand the effects of kinetic fractionation during their growth. The stalagmites are mostly composed of columnar calcites, but contains the layers of cave coral that is composed of fibrous calcite. The cave coral layers should have grown when the supply rate of dripping water decreased significantly. Stable isotope pattern in three stalagmites do not show the same pattern of disequilibrium process. The cave corals in the Eden stalagmite show the enriched carbon and oxygen isotope values (15 and 5 per mil, respectively) that has the same bimodal pattern as suggested by Hendy (1971). However, the cave corals in the Gwaneum stalagmites show the enriched carbon, but depleted oxygen isotope values (3 and 1 per mil, respectively). Also, the calcite layer precipitated in disequilibrium in the Daeya stalagmite show more enriched carbon isotope values by up to 6 per mil, but show more or less the same oxygen isotopic values, compared to the columnar calcite which was precipitated in equilibrium. Therefore, caution should be made to determine the state of equilibrium precipitation of carbonate minerals in stalagmites. The "Hendy Test" may not be the only solution because other types of speleothems can be formed in stalagmites as the supply rate of dripping water changes. Also, different texture in stalagmites can be used as another criteria to determine the degree of equilibrium.
A magnesium-induced triplex pre-organizes the SAM-II riboswitch
Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.
2017-01-01
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Meyer, M. L.; Ling, J. S.
1977-01-01
An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.
Al-Kadi, Omar S; Chung, Daniel Y F; Carlisle, Robert C; Coussios, Constantin C; Noble, J Alison
2015-04-01
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Jahani-Moghadam, M; Mahjoubi, E; Hossein Yazdi, M; Cardoso, F C; Drackley, J K
2015-06-01
Inclusion of forage and its physical form in starter may affect rumen development, average daily gain (ADG), and dry matter intake (DMI) of dairy calves. To evaluate the effects of forage and its physical form (chopped vs. pelleted) on growth of calves under a high milk feeding regimen, 32 Holstein calves (38.8±1.1kg) were assigned at birth to 1 of 3 treatments in a completely randomized block design. Dietary treatments (% of dry matter) were (1) 100% semi-texturized starter (CON); (2) 90% semi-texturized starter + 10% chopped alfalfa hay (mean particle size=5.4mm) as a total mixed ration (TMR; CH); and (3) 90% semi-texturized starter + 10% pelleted alfalfa (mean=5.8mm) hay as a TMR (PH). Data were subjected to mixed model analysis with contrasts used to evaluate effect of forage inclusion. Calves were weaned at 76 d of age and the experiment finished 2 wk after weaning. Individual milk and solid feed consumption were recorded daily. Solid feed consumption and ADG increased as age increased (effect of week), but neither forage inclusion nor physical form of forage affected these variables pre- or postweaning. Plasma urea N was affected by treatments such that the CON group had a lower concentration than forage-fed groups. Forage inclusion, but not physical form, resulted in increased total protein in plasma. Although days with elevated rectal temperature, fecal score, and general appearance were not affected by dietary treatments, calves fed alfalfa hay during the first month of life had fewer days with respiratory issues, regardless of physical form of hay. We concluded that provision of forage does have some beneficial effects in calves fed large amounts of milk replacer, but pelleted alfalfa hay did not result in any improvement in calf performance or health. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.
2015-01-01
Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137
NASA Astrophysics Data System (ADS)
Quang Tran, Danh; Li, Jin; Xuan, Fuzhen; Xiao, Ting
2018-06-01
Dielectric elastomers (DEs) are belonged to a group of polymers which cause a time-dependence deformation due to the effect of viscoelastic. In recent years, viscoelasticity has been accounted in the modeling in order to understand the complete electromechanical behavior of dielectric elastomer actuators (DEAs). In this paper, we investigate the actuation performance of a circular DEA under different equal, un-equal biaxial pre-stretches, based on a nonlinear rheological model. The theoretical results are validated by experiments, which verify the electromechanical constitutive equation of the DEs. The viscoelastic mechanical characteristic is analyzed by modeling simulation analysis and experimental to describe the influence of frequency, voltage, pre-stretch, and waveform on the actuation response of the actuator. Our study indicates that: The DEA with different equal or un-equal biaxial pre-stretches undergoes different actuation performance when subject to high voltage. Under an un-equal biaxial pre-stretch, the DEA deforms unequally and shows different deformation abilities in two directions. The relative creep strain behavior of the DEA due to the effect of viscoelasticity can be reduced by increasing pre-stretch ratio. Higher equal biaxial pre-stretch obtains larger deformation strain, improves actuation response time, and reduces the drifting of the equilibrium position in the dynamic response of the DEA when activated by step and period voltage, while increasing the frequency will inhibit the output stretch amplitude. The results in this paper can provide theoretical guidance and application reference for design and control of the viscoelastic DEAs.
Efficacy of a soy moisturizer in photoaging: a double-blind, vehicle-controlled, 12-week study.
Wallo, Warren; Nebus, Judith; Leyden, James J
2007-09-01
Serine protease inhibitors (soybean trypsin inhibitor [STI] and Bowman-Birk protease inhibitor [BBI]) found in soybeans have been shown to inhibit melanosome phagocytosis by keratinocytes via protease-activated receptor 2 (PAR-2). Pre-clinical studies have confirmed the skin lightening potential of these molecules. In this study, we investigated the efficacy of a novel soy moisturizer containing nondenaturated STI and BBI for the improvement of skin tone, pigmentation, and other photoaging attributes. Sixty-five women, with moderate facial photodamage, were enrolled in the 12-week, parallel, vehicle-controlled study. Efficacy was monitored through clinical observation, self-assessment, colorimetric evaluations, and digital photography. The results showed that the novel soy moisturizer was significantly more efficacious than the vehicle in improving mottled pigmentation, blotchiness, dullness, fine lines, overall texture, overall skin tone, and overall appearance. Differences were significant from week 2 to week 12 for all above parameters (except dullness which started at week 4). In this study, we found that a moisturizer containing stabilized soy extracts is safe and effective, and can be used to ameliorate overall skin tone and texture attributes of photoaging.
NASA Astrophysics Data System (ADS)
Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich
2015-01-01
Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing
2015-01-01
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue
NASA Astrophysics Data System (ADS)
Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.
2016-08-01
Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.
The effect of texture on the shaft surface on the sealing performance of radial lip seals
NASA Astrophysics Data System (ADS)
Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing
2014-07-01
On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.
The intermediate-age pre-cataclysmic variables SDSS J172406+562003 and RE J2013+4002
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Mitrofanova, A. A.; Vlasyuk, V. V.; Spiridonova, O. I.
2012-06-01
We have analyzed the physical status of the pre-cataclysmic variables SDSSJ172406+562003 and RE J2013+4002, which have evolved after their common-envelope stage a time t = 106-107 years. Spectroscopy and photometry of these systems were performed with the 6-m and 1-m telescopes of the Special Astrophysical Observatory. We demonstrate that emission lines in the spectra were formed solely by the reflection of radiation emitted by the white dwarfs on the surfaces of their cool companions, under conditions close to local thermodynamic equilibrium. These effects are also responsible for most of the objects' photometric variability amplitude. However, comparing the light curves of SDSS 172406 from different epochs, we find aperiodic brightness variations, probably due to spottedness of the surface of the secondary. Jointly analyzing the spectra, radial-velocity curves, and light curves of the pre-cataclysmic variables and modeling the reflection effects, we have derived their fundamental parameters. We demonstrate that the secondaries in these systems are consistent with evolutionary models for main-sequence stars and do not have the luminosity excesses characteristic of cool stars in young pre-cataclysmic variables.
NASA Astrophysics Data System (ADS)
Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David
2017-03-01
Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.
Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao
2016-01-01
A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762
NASA Astrophysics Data System (ADS)
Gao, Ruohan; Lassiter, John C.; Ramirez, Gabrielle
2017-01-01
Many monogenetic vents display systematic temporal-compositional variations over the course of eruption. Previous studies have proposed that these trends may reflect variable degrees of crustal assimilation, or melting and mixing of heterogeneous mantle source(s). Discrimination between these two endmember hypotheses is critical for understanding the plumbing systems of monogenetic volcanoes, which pose a significant volcanic hazard in many areas. In this study, we examine the Papoose Canyon (PC) monogenetic vent in the Big Pine Volcanic Field (BPVF), which had been well characterized for temporal-compositional variations in erupted basalts. We present new major and trace element and Sr-Nd-Pb-O isotopic data from the PC "crystal cargo" (phenocrysts and xenoliths). Comparison of "crystal cargo" and host basalt provides new constraints on the history of magma storage, fractionation, and crustal contamination that are obscured in the bulk basalts due to pre- and syn-eruptive magma mixing processes. The abundances of phenocrysts and ultramafic xenoliths in the PC sequence decrease up-section. Olivine and clinopyroxene phenocrysts span a wide range of Mg# (77-89). The majority of phenocrysts are more evolved than olivine or clinopyroxene in equilibrium with their host basalts (Mg# = 68- 71, equilibrium Fo ≈ 85- 89). In addition, the ultramafic xenoliths display cumulate textures. Olivine and clinopyroxene from ultramafic xenoliths have Mg# (73-87) similar to the phenocrysts, and lower than typical mantle peridotites. Sr-Nd-Pb isotope compositions of the xenoliths are similar to early PC basalts. Finally, many clinopyroxene phenocrysts and clinopyroxene in xenoliths have trace element abundances in equilibrium with melts that are more enriched than the erupted basalts. These features suggest that the phenocrysts and xenoliths derive from melt that is more fractionated and enriched than erupted PC basalts. Pressure constraints suggest phenocrysts and ultramafic xenoliths crystallized at ∼5-7 kbar, corresponding to mid-crust depths. Correlations between HFSE depletion and Sr-Nd-Pb isotopic compositions, high δ18 O values in olivines, and radiogenic Os isotopic compositions in whole rocks also suggest incorporation of a crustally contaminated component. We propose that the phenocrysts and ultramafic xenoliths derive from melts that ponded and fractionated and assimilated continental crust, possibly in mid-crustal sills. These melts were drained and mixed with more primitive melts as the eruption began, and the temporal-compositional trends and decreasing crystal phase abundances reflect gradual deflation and exhaustion of these sills as the eruption progressed. The isotopic variations in the PC sequence span much of the compositional range observed in the BPVF. Evidence for variable crustal contamination of PC basalts suggests that much of the isotopic variation observed in the BPVF may also reflect crustal contamination rather than mantle source heterogeneity as previously proposed. In addition, evidence of pre-eruptive magma ponding and fractionation, if applicable to other monogenetic vents, may have significant implications for monitoring and hazard assessment of monogenetic volcano fields.
NASA Astrophysics Data System (ADS)
Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.
2015-07-01
This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.
NASA Astrophysics Data System (ADS)
Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor
2015-04-01
The sphene-centered ocellar texture is a unique magma mixing feature characterized by leucocratic ocelli of sphene enclosed in a biotite/hornblende-rich matrix (Hibbard, 1991). The ocelli usually consist of plagioclase, K-feldspar and quartz with sphene crystals at its centre. Although geochemical and isotopic data provide concrete evidence for the interaction between two compositionally distinct magmas, the exact processes by which mixing takes place is yet uncertain. So, textural analysis can be used to decipher the behaviour of two disparate magmas during mixing. Presented work is being carried out on the sphene ocelli, occurring in hybrid rocks of the Nimchak Granite Pluton (NGP), to understand its formation while two compositionally different magmas come in contact and try to equilibrate. The NGP is ca. 1 km2in extent which has been extensively intruded by number of mafic dykes exhibiting well preserved magma mixing and mingling structures and textures in the Bathani Volcano-Sedimentary Sequence (BVSS) located on the northern fringe of the Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) of eastern Indian Shield. From petrographic and mineral chemical studies we infer that when basaltic magma intruded the crystallizing granite magma chamber, initially the two compositionally different magmas existed as separate entities. The first interaction that took place between the two phases is diffusion of heat from the relatively hotter mafic magma to the colder felsic one followed by diffusion of elemental components like K and incompatible elements from the felsic to the mafic domain. Once thermal equilibrium was attained between the mafic and felsic melts, the rheological contrasts between the two phases were greatly reduced. This allowed the felsic magma to back-vein into the mafic magma. The influx of back-veined felsic melt into the mafic system disrupted the equilibrium conditions in the mafic domain wherein minerals like amphibole, plagioclase and biotite were crystallizing. This led to the incongruent melting of amphibole and biotite to form liquids of sphene composition. Meanwhile, plagioclase continued to grow in the mafic-turned-hybrid system with a different composition after the advent of felsic melt as indicated by compositional zoning in plagioclase crystals. The newly produced sphene-liquid, owing to its higher affinity for felsic phase than mafic, got incorporated into the back-veining felsic melt forming a distinct liquid of its own. The felsic melt also incorporated crystallizing plagioclase grains in it from the mafic matrix. The mixture of felsic melt, sphene-liquid and plagioclase crystals flowed through the biotite, amphibole and plagioclase dominated matrix towards the low pressure zones to occupy the spherical void spaces left behind by escaping of gases/volatiles forming the sphene ocelli. Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.) Enclaves and granite petrology, 431-444.
NASA Astrophysics Data System (ADS)
Lin, Fu-Shiong; Starke, E. A.; Gysler, A.
1984-10-01
The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.
Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.
2015-02-01
The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.
Dust formation in LBV envelopes
NASA Astrophysics Data System (ADS)
Gail, H.-P.; Duschl, W. J.; Ferrarotti, A. S.; Weis, K.
2005-09-01
The condensation process for the peculiar element mixture of CNO cycle processed material in the pre-SN ejecta of massive stars is investigated. From thermodynamic equilibrium calculations it is shown that the most likely solids to be formed in CNO process equilibrated materials are solid FeSi, metallic Fe, and small quantities of forsterite (Mg2SiO4). Nucleation may be triggered by TiC. Some SiC may be formed by non-equilibrium condensation. As a case study for these substances the non-equilibrium dust condensation in the outflow is calculated for a simple stationary wind model which shows, that these dust species indeed can be formed in the ejecta.
Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.
Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis
2014-04-01
Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Phase equilibria study of pseudobrookite type minerals
NASA Technical Reports Server (NTRS)
Friel, J. J.
1974-01-01
Pseudobrookite, is found in volcanic rocks, and the mineral armalcolite ((Fe,Mg)Ti2O5) found in the Apollo 11 and subsequent lunar samples seems to be unique to the moon. In plutonic rocks on the earth, ilmenite and rutile were found with what appears to be an equilibrium liquidus texture, while on the moon armalcolite often appears to be the primary liquidus phase among Ti-oxides. This suggests that total pressure may be a factor in the formation of these minerals, and a knowledge of the phase relations in this system yields information about the pressure under which a given magma crystallized.
Irshad, A.; Sharma, B. D.; Ahmed, S. R.; Talukder, S.; Malav, O. P.; Kumar, Ashish
2016-01-01
Aim: The present study was conducted to develop a functional meat product by fortifying calcium (in the form of calcium lactate) with restructured buffalo meat loaf (RBML). Materials and Methods: Deboned buffalo meat obtained from the carcass of adult female buffalo within 5-6 h of slaughter and stored under frozen condition. Calcium fortified RBML were prepared by replacing the lean buffalo meat with calcium lactate powder at 0%, 1%, 1.25%, and 1.5% level through the pre-standardized procedure. The developed products were evaluated for physico-chemical properties, proximate composition, calcium concentration (mg/100 g), water activity (aw), Lovibond® tintometer color units, texture profile analysis (TPA), and sensory qualities as per-standard procedures. Results: Of the various product quality parameters evaluated, cooking yield (%), product pH, moisture (%), protein (%), fat (%), and water activity (aw) decreases significantly with increasing level of calcium lactate. Calcium content of fortified functional RBMLs was 135.02, 165.73, and 203.85 mg/100 g as compared to 6.48 mg/100 g in control. Most of the sensory scores at 1% and 1.25% levels of calcium lactate in treatment products remained comparable among themselves and control product, with a gradual decline. Conclusions: The present study concluded that 1.25% calcium lactate was the optimum level for the fortification of calcium in RBML without affecting the textural and sensory properties which could meet out 15% of recommended dietary allowance for calcium. PMID:27051201
Irshad, A; Sharma, B D; Ahmed, S R; Talukder, S; Malav, O P; Kumar, Ashish
2016-02-01
The present study was conducted to develop a functional meat product by fortifying calcium (in the form of calcium lactate) with restructured buffalo meat loaf (RBML). Deboned buffalo meat obtained from the carcass of adult female buffalo within 5-6 h of slaughter and stored under frozen condition. Calcium fortified RBML were prepared by replacing the lean buffalo meat with calcium lactate powder at 0%, 1%, 1.25%, and 1.5% level through the pre-standardized procedure. The developed products were evaluated for physico-chemical properties, proximate composition, calcium concentration (mg/100 g), water activity (aw), Lovibond(®) tintometer color units, texture profile analysis (TPA), and sensory qualities as per-standard procedures. Of the various product quality parameters evaluated, cooking yield (%), product pH, moisture (%), protein (%), fat (%), and water activity (aw) decreases significantly with increasing level of calcium lactate. Calcium content of fortified functional RBMLs was 135.02, 165.73, and 203.85 mg/100 g as compared to 6.48 mg/100 g in control. Most of the sensory scores at 1% and 1.25% levels of calcium lactate in treatment products remained comparable among themselves and control product, with a gradual decline. The present study concluded that 1.25% calcium lactate was the optimum level for the fortification of calcium in RBML without affecting the textural and sensory properties which could meet out 15% of recommended dietary allowance for calcium.
NASA Astrophysics Data System (ADS)
Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei
2014-03-01
Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.
Anawar, Hossain Md
2015-08-01
The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Texture etching of (100) silicon for solar cells
NASA Technical Reports Server (NTRS)
Dyer, L. D.
1985-01-01
A chemical means of creating the proper kind of light collection texture on (100) silicon slices is discussed. Texturing of (100) silicon surfaces in sodium or potassium hydroxides occurs by the growth of a reaction product in a random array of surface sites, which leads to pyramids remaining at the sites after other parts of the surface dissolve away. A new texture-promoting influence, a proximity effect, was discovered in this work. An attempt was made to quantify the various promotional effects. The purpose of the present paper is to: (1) explain in detail the attempt at understanding and quantifying texturing; (2) give an experimental description with observations on the proximity effect and the effect of additions of water glass that were discovered during this work; and (3) show that the precipitate or growth models account for almost all of the known promotional effects.
Coupled crystal orientation-size effects on the strength of nano crystals
Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi
2016-01-01
We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364
Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.
Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam
2015-03-30
Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yi, Jianyong; Zhou, Linyan; Bi, Jinfeng; Chen, Qinqin; Liu, Xuan; Wu, Xinye
2016-02-01
The effects of hot air drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MV), vacuum drying (VD) as pre-drying treatments for explosion puff drying (EPD) on qualities of jackfruit chips were studied. The lowest total color differences (∆E) were found in the FD-, MV- and VD-EPD dried chips. Volume expansion effect (9.2 %) was only observed in the FD-EPD dried chips, which corresponded to its well expanded honeycomb microstructures and high rehydration rate. Compared with AD-, IR-, MV- and VD-EPD, the FD-EPD dried fruit chips exhibited lower hardness and higher crispness, indicative of a crispier texture. FD-EPD dried fruits also obtained high retentions of ascorbic acid, phenolics and carotenoids compared with that of the other puffed products. The results of sensory evaluation suggested that the FD-EPD was a more beneficial combination because it enhanced the overall qualities of jackfruit chips. In conclusion, the FD-EPD could be used as a novel combination drying method for processing valuable and/or high quality fruit chips.
Identification of aggregates for Tennessee bituminous surface courses
NASA Astrophysics Data System (ADS)
Sauter, Heather Jean
Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.
NASA Astrophysics Data System (ADS)
Zhang, L.; Hao, T.; Zhao, B.
2009-12-01
Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.
NASA Astrophysics Data System (ADS)
Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.
2015-10-01
Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
NASA Astrophysics Data System (ADS)
Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene
2010-02-01
Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.
Hayob, J.L.; Bohlen, S.R.; Essene, E.J.
1993-01-01
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: {Mathematical expression} have been calibrated in the range 800-1100?? C and 12-26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40-70, using Ag80Pd20 capsules with {Mathematical expression} buffered at or near iron-wu??stite. Ilmenite compositions coexisting with orthopyroxene are {Mathematical expression} of 0.06 to 0.15 and {Mathematical expression} of 0.00 to 0.01, corresponding to KD values of 13.3, 10.2, 9.0 and 8.0 (??0.5) at 800, 900, 1000 and 1100?? C, respectively, where KD=(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculate a/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3-MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800-1100??C. ?? 1993 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Ian Schipper, C.; Mandon, Céline; Maksimenko, Anton; Castro, Jonathan M.; Conway, Chris E.; Hauer, Peter; Kirilova, Martina; Kilgour, Geoff
2017-10-01
Vesicles in volcanic rocks are physical records of magmatic degassing; however, the interpretation of their textures is complicated by resorption, coalescence, and collapse. We discuss the textural significance of vesicle-hosted vapor-phase cristobalite (high-T, low-P SiO2 polymorph), and its utility as a complement to textural assessments of magmatic degassing, using a representative dacite bomb erupted from White Island volcano (New Zealand) in 1999. Imaging in 2D (SEM) and 3D (CT) shows the bomb to have 56% bulk porosity, almost all of which is connected ( 99%) and devoid of SiO2 phases. The remaining ( 1%) of porosity is in isolated, sub-spherical vesicles that have corroded walls and contain small (< 30 μm across) prismatic vapor-phase cristobalite crystals (98.4 ± 0.4 wt.% SiO2 with diagnostic laser Raman spectra). Halogen degassing models show vapor-phase cristobalite to be indicative of closed-system chlorine and fluorine partitioning into H2O-rich fluid in isolated pores. At White Island, this occurred during shallow (< 100s of meters) ascent and extensive ( 50%) groundmass crystallization associated with slow cooling in a volcanic plug. Pristine textures in this White Island bomb demonstrate the link between pore isolation and vapor-phase cristobalite deposition. We suggest that because these crystals have higher preservation potential than the bubbles in which they form, they can serve as durable, qualitative textural indicators of halogen degassing and pre-quench bubble morphologies in slowly cooled volcanic rocks (e.g., lava flows and domes), even where emplacement mechanisms have overprinted original bubble textures.
Banchhor, Sumit K; Londhe, Narendra D; Araki, Tadashi; Saba, Luca; Radeva, Petia; Laird, John R; Suri, Jasjit S
2017-12-01
Planning of percutaneous interventional procedures involves a pre-screening and risk stratification of the coronary artery disease. Current screening tools use stand-alone plaque texture-based features and therefore lack the ability to stratify the risk. This IRB approved study presents a novel strategy for coronary artery disease risk stratification using an amalgamation of IVUS plaque texture-based and wall-based measurement features. Due to common genetic plaque makeup, carotid plaque burden was chosen as a gold standard for risk labels during training-phase of machine learning (ML) paradigm. Cross-validation protocol was adopted to compute the accuracy of the ML framework. A set of 59 plaque texture-based features was padded with six wall-based measurement features to show the improvement in stratification accuracy. The ML system was executed using principle component analysis-based framework for dimensionality reduction and uses support vector machine classifier for training and testing-phases. The ML system produced a stratification accuracy of 91.28%, demonstrating an improvement of 5.69% when wall-based measurement features were combined with plaque texture-based features. The fused system showed an improvement in mean sensitivity, specificity, positive predictive value, and area under the curve by: 6.39%, 4.59%, 3.31% and 5.48%, respectively when compared to the stand-alone system. While meeting the stability criteria of 5%, the ML system also showed a high average feature retaining power and mean reliability of 89.32% and 98.24%, respectively. The ML system showed an improvement in risk stratification accuracy when the wall-based measurement features were fused with the plaque texture-based features. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim
2018-01-01
Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD) classification accuracy of 93.33 (±3.52)%, sensitivity of 88.33 (± 4.12)%, and specificity of 96.89 (± 3.88)%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC) value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively. Our results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.
ERIC Educational Resources Information Center
Stone, Julie
2007-01-01
In an effort to provide an opportunity for her first graders to explore texture through an engaging subject, the author developed a three-part lesson that features fish in a mixed-media artwork: (1) Exploring Textured Paint; (2) Creating the Fish; and (3) Role Playing. In this lesson, students effectively explore texture through painting, drawing,…
NASA Astrophysics Data System (ADS)
Adetoro, Ajala Adewole; Sun, Haoyan; He, Shengyi; Zhu, Qingshan; Li, Hongzhong
2018-04-01
With respect to high efficient utilization of low-grade iron ore resource, the behavior of low-temperature "973 K to 1123 K (700 °C to 850 °C)" oxidation, on the phase transition of SA TTM ore (South African titanomagnetite), and its effect on subsequent reduction was investigated. The results showed that hematite and rutile are the oxidation product below 1048 K (775 °C), while pseudobrookite is the stable phase above 1073 K (800 °C). With the increase in temperature and oxidation time, there is a competitive relationship between the amount of hematite and pseudobrookite generated. The reduction efficiency of SA TTM was significantly improved by oxidation pretreatment, primarily due to the dissociation of titania-ferrous oxides to more easily reducible hematite. But the generation of pseudobrookite phase decreases the amount of free hematite available for reduction, which weakens the improvement effect of pre-oxidation. The equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with pre-oxidation treatment has been built. Finally, the reduction metallization degree for the first and second step can be improved averagely by 16.67 and 3.45 pct, respectively, for sample pre-oxidized at 1098 K (825 °C) for 15 and 90 minutes, while 26.96 and 7.4 pct, improvement is achieved for sample pre-oxidized at a lower temperature of 1048 K (775 °C) for 120 minutes.
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Experimental Data in Support of the 1991 Shock Classification of Chondrites
NASA Astrophysics Data System (ADS)
Schmitt, R. T.; Stoffler, D.
1995-09-01
We present results of shock recovery experiments performed on the H6(S1) chondrite Kernouv . These data and new observations on ordinary chondrites confirm the recently proposed classification system [1] and provide additional criteria for determining the shock stage, the shock pressure, and, under certain conditions, also the ambient (pre-shock) temperature during shock metamorphism of any chondrite sample. Two series of experiments at 293 K and 920 K and 10, 15, 20, 25, 30, 45, and 60 GPa were made with a high explosive device [2] using 0.5 mm thick disks of the Kernouv chondrite. Shock effects in olivine, orthopyroxene, plagioclase, and troilite and shock-induced melt products were studied by optical [3], electron optical and X-ray diffraction methods. All essential characteristics of the six progressive stages of shock metamorphism (S1 - S6) observed in natural samples of chondrites [1] have been reproduced experimentally except for opaque shock veins and the high pressure polymorphs of olivine and pyroxene (ringwoodite/wadsleyite and majorite), well known from naturally shocked chondrites. This is probably due to the special sample and containment geometry and the extremely short pressure pulses (0.2 - 0.8 microseconds) in the experiments. The shock experiments provided a clear understanding of the shock wave behavior of troilite and of the shock-induced melting, mobilization, and exsolution-recrystallization of composite troilite-metal grains. At 293 K troilite is monocrystalline up to 35 GPa displaying undulatory extinction from 10 to 25 GPa, partial recrystallization from 30 - 45 GPa, and complete recrystallization above 45 GPa. Local melting of troilite/metal grains starts at 30 GPa and composite grains displaying exsolution textures of both phases are formed which get mobilized and deposited into fractures of neighbouring silicate grains above 45 GPa. For a pre-shock temperature of 293 K the pressure at which diagnostic shock effects are formed, is somewhat lower in the experimentally shocked Kernouve than in single crystals [1] (Table 1). Based on the Kernouve calibration and on new observations made in natural samples of shocked chondrites an updated version of the 1991 shock classification system is given in Table 1 which holds for low temperatures. In general, the increase of the pre-shock temperature (e.g., 920 K) leads to a distinct decrease of the pressure at which certain shock effects are produced (Table 1). This effect, most distinct for recrystallization and melting phenomena in olivine and troilite, can be used as a pre-shock thermometer. Provided that a post-shock thermal event can be excluded, an estimate of the pre-shock ambient temperature of chondrites of shock stages S2 - S5 can be made by monitoring the texture of troilite. If troilite is monocrystalline, this temperature was low. Polycrystalline troilite indicates a pre-shock temperature higher than 300 K, probably as high as some 900 K. For chondrites of shock stage S6, the ambient pre-shock temperature exceeded 300 K distinctly if olivine near local melt zones lacks the yellow-brown staining characteristic for shock metamorphism at low temperatures. References: [1] Stoffler D. et al. (1991) GCA, 55, 3845-3867. [2] Stoffler D. and Langenhorst F. (1994) Meteoritics, 29, 155-181. [3] Schmitt R. T. et al. (1993) Meteoritics, 29, 529-530.
Iris recognition as a biometric method after cataract surgery
Roizenblatt, Roberto; Schor, Paulo; Dante, Fabio; Roizenblatt, Jaime; Belfort, Rubens
2004-01-01
Background Biometric methods are security technologies, which use human characteristics for personal identification. Iris recognition systems use iris textures as unique identifiers. This paper presents an analysis of the verification of iris identities after intra-ocular procedures, when individuals were enrolled before the surgery. Methods Fifty-five eyes from fifty-five patients had their irises enrolled before a cataract surgery was performed. They had their irises verified three times before and three times after the procedure, and the Hamming (mathematical) distance of each identification trial was determined, in a controlled ideal biometric environment. The mathematical difference between the iris code before and after the surgery was also compared to a subjective evaluation of the iris anatomy alteration by an experienced surgeon. Results A correlation between visible subjective iris texture alteration and mathematical difference was verified. We found only six cases in which the eye was no more recognizable, but these eyes were later reenrolled. The main anatomical changes that were found in the new impostor eyes are described. Conclusions Cataract surgeries change iris textures in such a way that iris recognition systems, which perform mathematical comparisons of textural biometric features, are able to detect these changes and sometimes even discard a pre-enrolled iris considering it an impostor. In our study, re-enrollment proved to be a feasible procedure. PMID:14748929
Iris recognition as a biometric method after cataract surgery.
Roizenblatt, Roberto; Schor, Paulo; Dante, Fabio; Roizenblatt, Jaime; Belfort, Rubens
2004-01-28
Biometric methods are security technologies, which use human characteristics for personal identification. Iris recognition systems use iris textures as unique identifiers. This paper presents an analysis of the verification of iris identities after intra-ocular procedures, when individuals were enrolled before the surgery. Fifty-five eyes from fifty-five patients had their irises enrolled before a cataract surgery was performed. They had their irises verified three times before and three times after the procedure, and the Hamming (mathematical) distance of each identification trial was determined, in a controlled ideal biometric environment. The mathematical difference between the iris code before and after the surgery was also compared to a subjective evaluation of the iris anatomy alteration by an experienced surgeon. A correlation between visible subjective iris texture alteration and mathematical difference was verified. We found only six cases in which the eye was no more recognizable, but these eyes were later reenrolled. The main anatomical changes that were found in the new impostor eyes are described. Cataract surgeries change iris textures in such a way that iris recognition systems, which perform mathematical comparisons of textural biometric features, are able to detect these changes and sometimes even discard a pre-enrolled iris considering it an impostor. In our study, re-enrollment proved to be a feasible procedure.
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.
1993-01-01
Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.
Dense Tracking and Mapping with a Quadrocopter
NASA Astrophysics Data System (ADS)
Sturm, J.; Bylow, E.; Kerl, C.; Kahl, F.; Cremers, D.
2013-08-01
In this paper, we present an approach for acquiring textured 3D models of room-sized indoor spaces using a quadrocopter. Such room models are for example useful for architects and interior designers as well as for factory planners and construction managers. The model is internally represented by a signed distance function (SDF) and the SDF is used to directly track the camera with respect to the model. Our solution enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern. Our system provides live feedback of the acquired 3D model to the user. The final model consisting of a textured 3D triangle mesh can be saved in several standard CAD file formats.
Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua
2014-01-01
To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer.
DOT National Transportation Integrated Search
2003-02-01
In order to better understand the effect of tire carcass construction and pavement texture on tire/pavement noise generation, a measurement program was conducted on a group of four automobile tires on three pavement textures. The tires included all c...
NASA Astrophysics Data System (ADS)
Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling
2016-12-01
The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Integrated fusion simulation with self-consistent core-pedestal coupling
Meneghini, O.; Snyder, P. B.; Smith, S. P.; ...
2016-04-20
In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Z eff.« less
Monje Moreno, José Manuel; Alvarez Amor, Leticia; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; Jáuregui-Lobera, Ignacio
2014-05-01
It has been found that the olfactorygustatory function is altered in patients with eating disorders, with an impairment affecting the perception of olfactory and gustatory stimuli. The aim was to explore the subjective reactivity after the exposure and tasting of foods with different gradient of sweetness and different fats textures. In addition, changes in the thought-shape fusion (TSF) cognitive distortion were assessed after tasting those different presentations as well as the correlations between the initial scores on TSF-Questionnaire (TSF-Q) and the different responses after that tasting. A total of 15 healthy controls and 23 outpatients with anorexia nervosa underwent two sessions of tasting (sweets with different gradient of sweetness and fats with different textures) and they filled several questionnaires (pre- and post-tasting) to measure their responses after tasting. Participants showed less "self-control" after tasting sweets. The score on TSF-Q increased significantly after the sweets tasting in the patients group. Patients had the worst response after tasting presentations with more quantity of glucose (less gradient of sweetness) than after tasting those with more amount of sucrose (much more sweetness). With respect to the fats, patients showed the worst reaction after tasting the most unfamiliar texture. Pre fats tasting TSF-Q scores correlated significantly with all responses in the patients group. Both psychological and biological (e.g. genetic) factors could be involved in the reactions of patients with anorexia nervosa after tasting sweets and fats. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Analyzing and improving surface texture by dual-rotation magnetorheological finishing
NASA Astrophysics Data System (ADS)
Wang, Yuyue; Zhang, Yun; Feng, Zhijing
2016-01-01
The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.
Ozmihci, Serpil; Kargi, Fikret
2006-11-01
Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
NASA Astrophysics Data System (ADS)
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu
2017-01-01
The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
Robustness of topological Hall effect of nontrivial spin textures
NASA Astrophysics Data System (ADS)
Jalil, Mansoor B. A.; Tan, Seng Ghee
2014-05-01
We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic vortices and skyrmions and investigate its possible application in the readback for magnetic memory based on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized THC values, which are related to topological invariants such as the winding number and polarity, and as such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size of spin texture elements and the influence of edges may cause them to deviate from their ideal configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in the presence of edge and finite size effects.
NASA Astrophysics Data System (ADS)
Stapley, Paul; Pozzo, Thierry
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.
USDA-ARS?s Scientific Manuscript database
The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
Constraining pre-eruptive volatile contents and degassing histories in submarine lavas
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.
2017-12-01
Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.
NASA Astrophysics Data System (ADS)
Santos, Felipe H.; Amaral, Wagner S.; Luvizotto, George L.; Martins de Sousa, Daniel F.
2018-03-01
We present in this paper petrologic data and discuss the pressure-temperature (P-T) metamorphic history of the neoproterozoic metasedimentary rocks of the Santa Filomena Complex, Riacho do Pontal Orogen, which is inserted in the southern portion of the Borborema Province (Northeast Brazil). Therefore, the data provide constraints on metamorphic evolution during Neoproterozoic Brasiliano Orogeny in Northeast Brazil. The rocks studied are aluminous schists and paragneisses. Silver-gray and red pelitic schists are intensely deformed, biotite-muscovite rich, contain centimeter-sized garnet, staurolite and kyanite porphyroblasts, and subordinately plagioclase and quartz. Paragneisses are from light gray to dark gray colored, medium to coarse-grained and display a well-spaced foliated matrix of biotite, and kyanite and garnet porphyroblasts. Locally, the schists and paragneisses are migmatized. Pressure-temperature modelling based on thermobarometric calculations indicate that metamorphism reached 643 °C with pressures estimated in 12 kbar. Pre-peak and post-peak metamorphic conditions are constrained by mineralogical and textural relationships: garnet inclusion-rich and inclusion-free (possible of higher T) are documented and the inclusion-rich core probably indicates a Sn-1 foliation that was transposed by Sn. The pre-peak stage most probably occurred close to 500 °C and 8 kbar, in upper greenschist to lower amphibolite facies metamorphism along kyanite stability field. We also propose that post-peak stage was associated with isothermal decompression along a possible path of tectonic exhumation in conditions of 600 °C and 7 kbar. To further evaluate the equilibrium condition, pressure-temperature pseudosections were calculated for the metasedimentary rocks. Thus, the estimated metamorphic peak took place in the upper amphibolite facies. A suggested clockwise pressure-temperature path is compatible with the regional tectonic setting of continent-continent collision which occurred in the Late Neoproterozoic of Borborema Province, during the Brasiliano Orogeny.
Pre- and postfire distribution of soil water repellency in a steep chaparral watershed
K. R. Hubbert; P. M. Wohlgemuth; H. K. Preisler
2008-01-01
The development and nature of water repellent soils and their spatial distribution on the landscape are not well understood relative to evaluating hillslope response to fire. Soil water repellency is particularly common in chaparral communities, due in part to the coarse-textured soils, and the high resin content of the organic litter. Objectives of this study were 1)...
NASA Astrophysics Data System (ADS)
Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba
2016-04-01
Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries, with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which are thought to have an asthenospheric origin [3]. Based on our study, the subcontinental lithospheric mantle beneath the western part of the CPR is not as homogeneous as it was reported before. The shallower part of the mantle lithosphere contains peridotites, where the pervasive deformation and subsequent thermal recovery of the upper mantle was followed by melt percolation events causing extensive metasomatism. This research was granted by the Hungarian Science Foundation (OTKA, 78425 to Cs. Szabó). K. Hidas' research leading to these results was funded by the European Union Framework Programme 7 (EU-FP7) Marie Curie postdoctoral grant PIEF-GA-2012- 327226. References: [1]Szabó, C. et al. 2004. Tectonophysics, 393(1), 119-137. [2] Tommasi, A., Vauchez, A. 2015. Tectonophysics, 661, 11-37. [3] Kovács, I. et al. 2012. Tectonophysics, 514, 168-179.
Grain formation in astronomical systems: A critical review of condensation processes
NASA Technical Reports Server (NTRS)
Donn, B.
1978-01-01
An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.
Petrology of peridotite xenoliths from the Miocene alkaline basalt from Baegryeong Island
NASA Astrophysics Data System (ADS)
Park, G. Y.; Kim, E.; Yang, K.
2017-12-01
Peridotite xenoliths occurring in late Miocene intraplate alkaline basalt from Baegryeong Island, west-northern part of the Korean peninsula, are mainly anhydrous spinel lherzolites. Their textures and chemical compositions give a deep insight for upper mantle. This study presents the results of modal, major composition of minerals and trace composition of clinopyroxene. The xenoliths display coarse grained protogranular through inequigranular to cumulate textures, grading into each other. They often show well-developed annealed textures and contain left-over olivine grains within orthopyroxene, suggesting that they went through static(±dynamic) recrystallization. The constituent minerals are compositionally homogeneous and appear to be equilibrated. The xenoliths are characterized by the high Mg#[=100×Mg/(Mg+Fetotal) atomic ratio] of olivine, orthopyroxene and clinopyroxene (89-93) and the Cr#[=100×Cr/(Cr+Al) atomic ratio] of spinel (9-15). The calculated equilibrium temperatures and oxygen fugacities resulted in 920-1070°C and ΔfO2 (QFM) = -1.5 -0.5, respectively. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting three types of REE patterns such as LREE-depleted, LREE-enriched and a enrichment in La over Ce, and depletion in high field strength elements(HFSE; Nb-Ta, Zr-Hf, Ti). From these trace element signatures, we thus propose the Baegryeong peridotite xenoliths represent residues left after early melt extraction, which was subsequently subjected to different degrees of modal/cryptic metasomatism by residual slab-derived, silica- and LREE-enriched fluids (or melts).
NASA Astrophysics Data System (ADS)
Yip, Stephen S. F.; Coroller, Thibaud P.; Sanford, Nina N.; Huynh, Elizabeth; Mamon, Harvey; Aerts, Hugo J. W. L.; Berbeco, Ross I.
2016-01-01
Change in PET-based textural features has shown promise in predicting cancer response to treatment. However, contouring tumour volumes on longitudinal scans is time-consuming. This study investigated the usefulness of contour propagation in texture analysis for the purpose of pathologic response prediction in esophageal cancer. Forty-five esophageal cancer patients underwent PET/CT scans before and after chemo-radiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumour ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. PET images were converted into 256 discrete values. Co-occurrence, run-length, and size zone matrix textures were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs from different algorithms were compared using Dice similarity index (DSI). Contours propagated by the fast-demons, fast-free-form and rigid algorithms did not fully capture the high FDG uptake regions of tumours. Fast-demons propagated ROIs had the least agreement with other contours (DSI = 58%). Moderate to substantial overlap were found in the ROIs propagated by all other algorithms (DSI = 69%-79%). Rigidly propagated ROIs with co-occurrence texture failed to significantly differentiate between responders and non-responders (AUC = 0.58, q-value = 0.33), while the differentiation was significant with other textures (AUC = 0.71‒0.73, p < 0.009). Among the deformable algorithms, fast-demons (AUC = 0.68‒0.70, q-value < 0.03) and fast-free-form (AUC = 0.69‒0.74, q-value < 0.04) were the least predictive. ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC = 0.72‒0.78, q-value < 0.01). Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, fast-demons, fast-free-form, and rigid algorithms should be applied with care due to their inferior performance compared to other algorithms.
Neutron emission in 19F-induced reactions
NASA Astrophysics Data System (ADS)
Acharya, Jaimin; Mukherjee, S.; Chatterjee, A.; Singh, N. L.; Ramachandran, K.; Rout, P. C.; Mahata, K.; Desai, Vishal; Mirgule, E. T.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Steyn, G. F.
2018-03-01
We measured neutron emission spectra for 19F-induced reactions on 181Ta, 89Y, and 51V at beam energies of 130, 140, 145, and 150 MeV. Measurements were made using liquid scintillator detectors at eight angles in the range of 25∘-143∘ using time-of-flight and pulse-shape discrimination. A comparison has been made with alice2014 and pace4 calculations to understand the role of incomplete fusion and pre-equilibrium effects. Global predictions with alice2014 without parameter adjustment gives a fair agreement with the measured data.
Slippage on a particle-laden liquid-gas interface in textured microchannels
NASA Astrophysics Data System (ADS)
Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.
2018-03-01
Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.
NASA Astrophysics Data System (ADS)
Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.
2017-04-01
Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.
Effects of pavement surface texture on noise and frictional characteristics.
DOT National Transportation Integrated Search
1987-02-01
An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...
NASA Astrophysics Data System (ADS)
DA Silva, L. M.
2015-12-01
Landscapes are mainly driven by river processes that control the dynamic reorganization of networks. Discovering and identifying whether river basins are in geometric equilibrium or disequilibrium requires an analysis of water divides, channels that shift laterally or expand upstream and river captures. Issues specifically discussed include the variation of drainage area change and erosion rates of the basins. In southeastern Brazil there are two main escarpments with extensive geomorphic surfaces: Serra do Mar and Serra da Mantiqueira Mountains. These landscapes are constituted of Neoproterozoic and early Paleozoic rocks, presenting steep escarpments with low-elevation coastal plains and higher elevation interior plateaus. To identify whether river basins and river profiles are in equilibrium or disequilibrium in Serra do Mar and Serra da Mantiqueira Mountains, we used the proxy (χ), evaluating the effect of drainage area change and erosion rates. We selected basins that drain both sides of these two main escarpments (oceanic and continental sides) and have denudation rates derived from pre-existing cosmogenic isotopes data (Rio de Janeiro, Paraná and Minas Gerais). Despite being an ancient and tectonically stable landscape, part of the coastal plain of Serra do Mar Mountain in Rio de Janeiro and Paraná is in geometric disequilibrium, with water divides moving in the direction of higher χ values. To achieve equilibrium, some basins located in the continental side are retracting and disappearing, losing area to the coastal basins. On the contrary, there are some adjacent sub-basins that are close to equilibrium, without strong contrasts in χ values. The same pattern was observed in Serra da Mantiqueira (Minas Gerais state), with stream captures and river network reorganization in its main rivers. The initial results suggest a strong contrast between erosion rates in the continental and the oceanic portions of the escarpments.
The Effects of Potato Puree and Bread Crumbs on Some Quality Characteristics of Low Fat Meatballs
Ergezer, Haluk; Akcan, Tolga; Serdaroğlu, Meltem
2014-01-01
The purpose of this study was to determine the effects of using different amounts of potato puree (PP) (10 or 20%) and 10% bread crumbs (BC) as an extender and also control samples (C) with no added extender on chemical composition, energy values, cooking analyses, colour measurements, water holding capacity (WHC), penetration values, thiobarbituric acid value (TBA) and sensory analyses of meatballs. Meatball samples were cooked in a pre-heated 180℃ electric oven. Uncooked meatballs formulated with 20% PP had the highest moisture content. No significant differences were recorded for protein contents of uncooked samples. The highest cooking yield was found in samples extended with 10% BC. Increasing PP from 10% to 20% increased cooking yield of meatballs. 20% PP increased moisture and fat retention values and water holding capacity of meatballs. Meatballs with 10% BC had the lowest (the hardness in the texture) and meatballs with the 20% PP had the highest (the softness in the texture) penetration values. Formulating meatballs at a level of 20% resulted lower L* values. TBA values of control samples were higher than in PP added samples at the end of the storage period. Flavour scores for meatballs formulated with PP were higher than control and meatballs formulated with BC. Meatballs formulated with 10% PP had similar overall acceptability with meatballs added with 10% BC. PMID:26761488
The Effects of Potato Puree and Bread Crumbs on Some Quality Characteristics of Low Fat Meatballs.
Ergezer, Haluk; Akcan, Tolga; Serdaroğlu, Meltem
2014-01-01
The purpose of this study was to determine the effects of using different amounts of potato puree (PP) (10 or 20%) and 10% bread crumbs (BC) as an extender and also control samples (C) with no added extender on chemical composition, energy values, cooking analyses, colour measurements, water holding capacity (WHC), penetration values, thiobarbituric acid value (TBA) and sensory analyses of meatballs. Meatball samples were cooked in a pre-heated 180℃ electric oven. Uncooked meatballs formulated with 20% PP had the highest moisture content. No significant differences were recorded for protein contents of uncooked samples. The highest cooking yield was found in samples extended with 10% BC. Increasing PP from 10% to 20% increased cooking yield of meatballs. 20% PP increased moisture and fat retention values and water holding capacity of meatballs. Meatballs with 10% BC had the lowest (the hardness in the texture) and meatballs with the 20% PP had the highest (the softness in the texture) penetration values. Formulating meatballs at a level of 20% resulted lower L* values. TBA values of control samples were higher than in PP added samples at the end of the storage period. Flavour scores for meatballs formulated with PP were higher than control and meatballs formulated with BC. Meatballs formulated with 10% PP had similar overall acceptability with meatballs added with 10% BC.
Michael L. Hoppus; Rachel I. Riemann; Andrew J. Lister; Mark V. Finco
2002-01-01
The panchromatic bands of Landsat 7, SPOT, and IRS satellite imagery provide an opportunity to evaluate the effectiveness of texture analysis of satellite imagery for mapping of land use/cover, especially forest cover. A variety of texture algorithms, including standard deviation, Ryherd-Woodcock minimum variance adaptive window, low pass etc., were applied to moving...
Interior car noise created by textured pavement surfaces : final report.
DOT National Transportation Integrated Search
1975-01-01
Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...
Rapidity distribution of photons from an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Bhattacharya, Lusaka; Roy, Pradip
2010-05-01
We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, phard(τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed pT, where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y~1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.
Breiteneicher, Adam H; Norby, Bo; Schulz, Kurt S; Kerwin, Sharon C; Hulse, Don A; Fox, Derek B; Saunders, W Brian
2016-11-01
To determine the effect of sliding humeral osteotomy (SHO) on frontal plane thoracic limb alignment in standing and recumbent limb positions. Canine cadaveric study. Canine thoracic limbs (n=15 limb pairs). Limbs acquired from healthy Labrador Retrievers euthanatized for reasons unrelated to this study were mounted in a limb press and aligned in a standing position followed by axial loading at 30% body weight. Frontal plane radiography was performed in standing and recumbent positions pre- and post-SHO. In the standing position, lateralization of the foot was measured pre- and post-SHO using a textured grid secured to the limb press base plate. Twelve thoracic limb alignment values (mean ± SD and 95% CI) were determined using the center of rotation of angulation (CORA) method were compared using linear mixed models to determine if significant differences existed between limb alignment values pre- or post-SHO, controlling for dog, limb, and limb position. Six of 12 standing or recumbent alignment values were significantly different pre- and post-SHO. SHO resulted in decreased mechanical lateral distal humeral angle and movement of the mechanical humeral radio-ulnar angle, radio-ulnar metacarpal angle, thoracic humeral angle, and elbow mechanical axis deviation toward coaxial limb alignment. In the standing position, the foot underwent significant lateralization post-SHO. SHO resulted in significant alteration in frontal plane thoracic limb alignment. Additional studies are necessary to determine if the changes reported using our ex vivo model occur following SHO in vivo. © Copyright 2016 by The American College of Veterinary Surgeons.
Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.
Grason, Gregory M
2012-03-01
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
NASA Astrophysics Data System (ADS)
Sampath Kumar, Bharath
The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative interviews pre and post revealed students' mental model or thought process towards chemical equilibrium. Simulations used in the study were developed using the SCRATCH software platform. In order to test the effect of visualization tool on students' conceptual understanding of chemical equilibrium, an ANCOVA analysis was conducted. Results from a one-factor ANCOVA showed posttest scores were significantly higher for the experimental group (Mpostadj. = 7.27 SDpost = 1.387) relative to the control group (Mpostadj. = 2.67, SDpost = 1.371) after adjusting for pretest scores, F (1,24) = 71.82, MSE = 1.497, p = 0.03, eta 2p = 0.75, d = 3.33. Cohen's d was converted to an attenuated effect size d* using the procedure outlined in Thompson (2006). The adjusted (for pretest scores) group mean difference estimate without measure error correction for the posttest scores and the pretest scores was 4.2 with a Cohen's d = 3.04. An alternate approach reported in Cho and Preacher (2015) was used to determine effect size. The adjusted (for pretest scores) group mean difference estimate with measurement error correction only for the posttest scores (but not with measurement error correction for the pretest scores) was 4.99 with a Cohen's d = 3.61. Finally, the adjusted (for pretest scores) group mean difference estimate with measurement error correction for both pretest and posttest scores was 4.23 with a Cohen's d = 3.07. From a quantitative perspective, these effect size indicate a strong relationship between the experimental intervention provided and students' conceptual understanding of chemical equilibrium concepts. That is, those students who received the experimental intervention had exceptionally higher. KEYWORDS: Chemical Equilibrium, Visualization, Alternate Conceptions, Ontological Shift. Simulations.
Normobaric Hypoxia Effects on Balance Measured by Computerized Dynamic Posturography.
Wagner, Dale R; Saunders, Skyler; Robertson, Brady; Davis, John E
2016-09-01
Wagner, Dale R., Skyler Saunders, Brady Robertson, and John E. Davis. Normobaric hypoxia effects on balance measured by computerized dynamic posturography. High Alt Med Biol. 17:222-227, 2016.-Background/Aim: Equilibrium was measured by computerized dynamic posturography at varying levels of normobaric hypoxia before and after exercise. Following a familiarization trial, 12 males (27.3 ± 7.1 years) completed three sessions in random order on a NeuroCom SMART Balance Master: a sham trial at the ambient altitude of 1500 m and simulated altitudes of 3000 and 5000 m created by a hypoxic generator. The NeuroCom provided composite scores for a sensory organization test of equilibrium and a motor control test to assess the appropriate motor response. Additional information on somatosensory, visual, and vestibular responses was obtained. Each session consisted of 20 minutes of rest followed by the NeuroCom test, then 10 minutes of exercise, and 10 minutes of recovery followed by a second NeuroCom test, all while connected to the hypoxic generator. Mean differences were identified with a two-way (pre/postexercise and altitude condition), repeated-measures analysis of variance. The composite sensory score was significantly lower (p < 0.001) during the 5000 m trial (73.4 ± 12.0) compared to the 1500 m (80.8 ± 7.0) and 3000 m (84.1 ± 5.0) altitudes. The inability to ignore inaccurate visual cues in a situation of visual conflict was the most common sensory error. Motor control was not affected by altitude or exercise. These results suggest that moderate hypoxia does not affect balance, but severe hypoxia significantly reduces equilibrium. Furthermore, it appears that the alterations in equilibrium are primarily from impairments in visual function.
NASA Astrophysics Data System (ADS)
Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.; Ryou, Jae-Hyun
2015-09-01
Unintentional incorporation of gallium (Ga) in InAlN layers grown with different molar flow rates of Group-III precursors by metalorganic chemical vapor deposition has been experimentally investigated. The Ga mole fraction in the InAl(Ga)N layer was increased significantly with the trimethylindium (TMIn) flow rate, while the trimethylaluminum flow rate controls the Al mole fraction. The evaporation of metallic Ga from the liquid phase eutectic system between the pyrolized In from injected TMIn and pre-deposited metallic Ga was responsible for the Ga auto-incorporation into the InAl(Ga)N layer. The theoretical calculation on the equilibrium vapor pressure of liquid phase Ga and the effective partial pressure of Group-III precursors based on growth parameters used in this study confirms the influence of Group-III precursors on Ga auto-incorporation. More Ga atoms can be evaporated from the liquid phase Ga on the surrounding surfaces in the growth chamber and then significant Ga auto-incorporation can occur due to the high equilibrium vapor pressure of Ga comparable to effective partial pressure of input Group-III precursors during the growth of InAl(Ga)N layer.
Effect of Irregularity in Shape and Boundary of a Macro-Texture Region in Titanium (Postprint)
2015-10-15
AFRL-RX-WP-JA-2016-0328 EFFECT OF IRREGULARITY IN SHAPE AND BOUNDARY OF A MACRO-TEXTURE REGION IN TITANIUM (POSTPRINT) James L...2 October 2014 – 15 September 2015 4. TITLE AND SUBTITLE EFFECT OF IRREGULARITY IN SHAPE AND BOUNDARY OF A MACRO-TEXTURE REGION IN TITANIUM ...aerospace grade titanium alloy material are measured to be about the same level as corner trapped shear wave signals. In addition to the abnormally high
NASA Astrophysics Data System (ADS)
Szramek, L. A.; Gardner, J. E.; Larsen, J. F.
2004-12-01
Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, Alexandra; Armato, Samuel G.; Castillo, Richard
2015-04-01
Purpose: To assess the relationship between radiation dose and change in a set of mathematical intensity- and texture-based features and to determine the ability of texture analysis to identify patients who develop radiation pneumonitis (RP). Methods and Materials: A total of 106 patients who received radiation therapy (RT) for esophageal cancer were retrospectively identified under institutional review board approval. For each patient, diagnostic computed tomography (CT) scans were acquired before (0-168 days) and after (5-120 days) RT, and a treatment planning CT scan with an associated dose map was obtained. 32- × 32-pixel regions of interest (ROIs) were randomly identifiedmore » in the lungs of each pre-RT scan. ROIs were subsequently mapped to the post-RT scan and the planning scan dose map by using deformable image registration. The changes in 20 feature values (ΔFV) between pre- and post-RT scan ROIs were calculated. Regression modeling and analysis of variance were used to test the relationships between ΔFV, mean ROI dose, and development of grade ≥2 RP. Area under the receiver operating characteristic curve (AUC) was calculated to determine each feature's ability to distinguish between patients with and those without RP. A classifier was constructed to determine whether 2- or 3-feature combinations could improve RP distinction. Results: For all 20 features, a significant ΔFV was observed with increasing radiation dose. Twelve features changed significantly for patients with RP. Individual texture features could discriminate between patients with and those without RP with moderate performance (AUCs from 0.49 to 0.78). Using multiple features in a classifier, AUC increased significantly (0.59-0.84). Conclusions: A relationship between dose and change in a set of image-based features was observed. For 12 features, ΔFV was significantly related to RP development. This study demonstrated the ability of radiomics to provide a quantitative, individualized measurement of patient lung tissue reaction to RT and assess RP development.« less
Banno, Hayaki; Koga, Hiroki; Yamamoto, Hiroki; Saiki, Jun
2017-07-01
This study was a case investigation of grapheme-texture synestheste TH, a female who subjectively reported experiencing a visual association between grapheme and colour/texture. First, we validated the existence of a synesthetic association in an objective manner. Involuntarily elicited experience is a major hallmark that is common to different types of synesthetes. Our results indicated interference between physical and synesthetic texture, suggesting the involuntary occurrence of synesthetic textural experience. We analysed the behavioural measures using the EZ diffusion model. The result suggested that TH's synesthetic experience was dissociable from that of briefly trained associative processing of non-synesthetes. Second, we investigated how the synesthetic experience of colour and texture dimensions was bound in the visual representation. We found that the interference effects of colour and texture were not independent. This suggested that in the elicited experience, the colour and texture features construct an integrated representation.
NASA Astrophysics Data System (ADS)
Mohácsi-Farkas, Cs.; Nyirő-Fekete, B.; Daood, H.; Dalmadi, I.; Kiskó, G.
2014-06-01
Pre-cut tomato and carrot were irradiated with doses of 1.0, 1.5 and 2 kGy. Unirradiated control and irradiated samples were compared organoleptically by a sensory panel. Microbiological analyses were performed directly after irradiation and during post-irradiation storage for 8 days at 5 °C. Ascorbic acid contents, composition of carotenoids and tocopherols were determined. Statistically significant differences of sensory scores between unirradiated and irradiated samples were observed only in the texture of sliced carrots. Total aerobic viable cell counts have been reduced by about two log cycles with 1.5 kGy dose. Total coliforms and moulds were below the detection limit of 15 CFU/g in the irradiated samples during the refrigerated storage. Yeasts were relatively resistant part of the microbiota of pre-cut tomatoes, but 2 kGy dose reduced them below the detection limit. In pre-cut tomatoes, alpha-tocopherol and some carotenoids seemed to be the most radio-sensitive losing approximately one-third of their original concentrations at the dose of 2 kGy. At this dose tocopherols and the level of ascorbic acid decreased also one-third of the initial level in sliced carrots. Additional experiments were conducted to study the effect of irradiation and storage on the population of Listeria monocytogenes and Listeria innocua artificially inoculated on cut tomato and carrot. Cell numbers of both test organisms decreased by at least two log-cycles as an effect of 1 kGy dose. Our studies confirmed earlier findings on a temporary antilisterial effect of freshly cut carrot tissue. No re-growth of Listeria was observed during the studied storage period. The results of these studies suggest that irradiation with 1 kGy gamma rays could improve sufficiently the microbiological safety of the investigated pre-cut produce to satisfy the requirement of low microbial raw diets with acceptable nutritional quality and without diminishing significantly the organoleptic parameters of the commodities.
Visual texture perception via graph-based semi-supervised learning
NASA Astrophysics Data System (ADS)
Zhang, Qin; Dong, Junyu; Zhong, Guoqiang
2018-04-01
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.
NASA Astrophysics Data System (ADS)
Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.
2017-01-01
Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational results are compared with complementary experiments, where good agreement is obtained.
NASA Astrophysics Data System (ADS)
Arzilli, Fabio; Mancini, Lucia; Giuli, Gabriele; Cicconi, Maria Rita; Voltolini, Marco; Carroll, Michael R.
2013-04-01
This study shows the first textural data on synthetic alkali-feldspar spherulites grown in trachytic melts during cooling and decompression experiments with water-saturated conditions. Previous textural studies have shown the shape evolution and the growth process of spherulites as a function of undercooling (T) and water content, although just in basaltic and rhyolitic melts [1-3]. Spherulites are spherical clusters of polycrystalline aggregates that occur commonly in rhyolitic melts under highly non-equilibrium conditions [3-4]. Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspars and the implications for magma dynamics during the ascent towards the surface. Experiments have been conducted using cold seal pressure vessel apparatus at pressure range of 30 - 200 MPa, temperature of 750 - 850 °C and time of 2 - 16 hours, thereby reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes. This study presents quantitative data on spherulite morphologies obtained both by scanning electron microscopy (SEM) and synchrotron X-ray microtomography. Size, aspect ratio, number and crystallographic misorientation of alkali feldspar crystals will be measured. Furthermore, experiments performed at different durations could allow us to follow the growth and the evolution of spherulites. The shape of spherulites changes as a function of ΔT and experimental durations. Two kind of spherulites occured during experiments: open spherulites and close spherulites. The open spherulites are characterized by an structure with large (generally rectangular prismatic), widely spaced fibers with main axis converging towards a central nucleus, in agreement with previous observations [5-6]. Instead, the close spherulites consist of acicular and tiny fibers radially aggregated around a nucleus and single crystals are hardly distinguishable. First preliminary results show: a) spherulites grow between 70-200 MPa, thus the nucleation process was favored at higher water contents; b) open spherulites seem to be favored at low ΔT, whereas close spherulites were favored in experiments at higher ΔT and long durations; c) estimated growth rates of spherulites were of 10-7 cm/s. References: [1] Lofgren G. (1971); Journal of Geophysical Research, 76, 5635-5648. [2] Gimeno D. (2003); Journal of Non-Crystaline Solids, 323, 84-90. [3] Watkins J., Manga M., Huber C. and Martin M. (2008); Contributions to Mineralogy and Petrology, [4] Grànàsy L., Pusztai T., Tegze G., Warren J. A. and Douglas J. F. (2005); Physical Review, 72, 011605. [5] Keith, H. D. and Padden F. J. (1963); Journal of Applied Physics, 8, 2409-2421. [6] Lofgren G. (1980); Princeton University Press, pp. 487-551.
Degassing during magma ascent in the Mule Creek vent (USA)
NASA Astrophysics Data System (ADS)
Stasiuk, Mark V.; Barclay, Jenni; Carroll, Michael R.; Jaupart, Claude; Ratté, James C.; Sparks, R. Stephen J.; Tait, Stephen R.
1996-09-01
The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5 3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20 40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
Degassing during magma ascent in the Mule Creek vent (USA)
Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.
1996-01-01
The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
NASA Astrophysics Data System (ADS)
Mavhunga, Elizabeth; Rollnick, Marissa
2016-12-01
In science education, learner-centred classroom practices are widely accepted as desirable and are associated with responsive and reformed kinds of teacher beliefs. They are further associated with high-quality Pedagogical Content Knowledge (PCK). Topic-Specific Pedagogical Content Knowledge (TSPCK), a version of PCK defined at topic level, is known to enable the transformation of topic content into a form accessible to learners. However, little is known about teacher science beliefs in relation to TSPCK and therefore the nature of likely associated classroom practices. In this study, we investigated the relationship between TSPCK and underlying science teacher beliefs following an intervention targeting the improvement of TSPCK in the topic chemical equilibrium. Sixteen final year pre-service chemistry teachers were exposed to an intervention that explicitly focussed on knowledge for transforming the content of chemical equilibrium using the five knowledge components of TSPCK. A specially designed TSPCK instrument in chemical equilibrium and the Teacher Belief Instrument (TBI) were used to capture written responses in pre- and post-tests. Additional qualitative data was collected from audio-recorded discussions and written responses from an open-ended question asked before and after the intervention. Two key findings emerged from the study. Firstly, the development of TSPCK was linked to shifts in underlying science teacher beliefs in the direction of learner-centred teaching for the majority of pre-service teachers. Secondly, this shift was not evident for all, as for some there was development of TSPCK without a shift from teacher-centred beliefs about science teaching.
Long-Range Pre-Thermal Time Crystals
NASA Astrophysics Data System (ADS)
Machado, Francisco; Else, Dominic V.; Nayak, Chetan; Yao, Norman
Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter that spontaneously breaks time translation symmetry. One strategy to prevent the drive-induced, runaway heating of the time crystal phase is the presence of strong disorder leading to many-body localization. A simpler disorder-less approach is to work in the pre-thermal regime where time crystalline order can persist to long times, before ultimately being destroyed by thermalization. In this talk, we will consider the interplay between long-range interactions, dimensionality, and pre-thermal time-translation symmetry breaking. As an example, we will consider the phase diagram of a 1D long-range pre-thermal time crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.; ...
2017-07-20
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.
Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc
2006-12-22
Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).
Proton bombarded reactions of Calcium target nuclei
NASA Astrophysics Data System (ADS)
Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Depedelen, Mesut
2017-09-01
In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1-50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α), (p,n), (p,p) have been calculated using the semi-empirical formula Tel et al. [5].
Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain)
NASA Astrophysics Data System (ADS)
Bowman, D.; Guillén, J.; López, L.; Pellegrino, V.
2009-07-01
Coastal planform studies are a relevant initial stage before launching detailed dynamic field experiments. The aim of this study is to define the planform characteristics of 72 Catalan pocket beaches, natural and man-made, and to determine their sheltering effect, embaymentization and their status of equilibrium. Planform measurements were performed on SIGPAC, 1:5000 orthophoto sets and wave climate was provided by Puertos del Estado (Wana model). Planform parameters were applied and coastal planview indexes were determined. The study shows that the Catalan pocket beaches display a wide range of indentation, suggesting that no single structural, tectonic or morphological control dominates their planform. The man-made pocket beaches typically display indentations which are smaller than those shown by natural pocket beaches. Headland spacing and beach area are positively correlated. The more indented bays are, the shorter their beaches become. Low-indented pocket beaches are the widest and the longest ones. Deep indentation contributes towards beach protection and energy dissipation which counteracts rip efficiency and inhibits the formation of mega-rips. Pocket beaches often show gradual and moderate alongshore changes in texture and beach morphology. One third of the Catalan pocket beaches are "sediment starved", i.e., 60% and more of their embayed shorelines are deprived of beach sediments. Examination of the status of equilibrium demonstrates that most of the Catalan pocket beaches are in an unstable mode, with indentation ratios that are unrelated to the wave obliquity.
[Study on objectively evaluating skin aging according to areas of skin texture].
Shan, Gaixin; Gan, Ping; He, Ling; Sun, Lu; Li, Qiannan; Jiang, Zheng; He, Xiangqian
2015-02-01
Skin aging principles play important roles in skin disease diagnosis, the evaluation of skin cosmetic effect, forensic identification and age identification in sports competition, etc. This paper proposes a new method to evaluate the skin aging objectively and quantitatively by skin texture area. Firstly, the enlarged skin image was acquired. Then, the skin texture image was segmented by using the iterative threshold method, and the skin ridge image was extracted according to the watershed algorithm. Finally, the skin ridge areas of the skin texture were extracted. The experiment data showed that the average areas of skin ridges, of both men and women, had a good correlation with age (the correlation coefficient r of male was 0.938, and the correlation coefficient r of female was 0.922), and skin texture area and age regression curve showed that the skin texture area increased with age. Therefore, it is effective to evaluate skin aging objectively by the new method presented in this paper.
Combining multiple features for color texture classification
NASA Astrophysics Data System (ADS)
Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo
2016-11-01
The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.
Alexander, Michael B; Hodges, Theresa K; Wescott, Daniel J; Aitkenhead-Peterson, Jacqueline A
2016-05-01
Despite technological advances, human remains detection (HRD) dogs still remain one of the best tools for locating clandestine graves. However, soil texture may affect the escape of decomposition gases and therefore the effectiveness of HDR dogs. Six nationally credentialed HRD dogs (three HRD only and three cross-trained) were evaluated on novel buried human remains in contrasting soils, a clayey and a sandy soil. Search time and accuracy were compared for the clayey soil and sandy soil to assess odor location difficulty. Sandy soil (p < 0.001) yielded significantly faster trained response times, but no significant differences were found in performance accuracy between soil textures or training method. Results indicate soil texture may be significant factor in odor detection difficulty. Prior knowledge of soil texture and moisture may be useful for search management and planning. Appropriate adjustments to search segment sizes, sweep widths and search time allotment depending on soil texture may optimize successful detection. © 2016 American Academy of Forensic Sciences.
Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua
2014-01-01
Objective To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. Materials and Methods A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Results Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Conclusion Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer. PMID:25250576
NASA Astrophysics Data System (ADS)
McCarthy, A. J.; Müntener, O.
2016-12-01
Orbicules and comb layers are enigmatic features found sparsely distributed along plutonic contacts in a wide range of igneous environments. We provide new insights into the mechanisms responsible for the formation of these features by studying the spatial distribution, mineralogy and geochemistry of comb layers and orbicules from the Northern Sierra Nevada, Fisher Lake (USA). Over a range of studied comb textured layering, we show that the large majority of comb layers are cumulates formed by the initiation of plagioclase growth as a comb textured mineral. Plagioclase fractionation is followed by pyroxenes + oxides fractionation. Continuous crystal fractionation and conductive cooling from the host rock leads to amphibole saturation and the formation of late stage comb textured amphibole, leading to the formation of plagioclase- and plagioclase-amphibole comb textures. The lack of amphibole comb textures on orbicule rims as opposed to their widespread occurrence in comb layers, suggests that the presence of a thermal gradient plays an important role in diversifying comb textures. We propose that comb layers and orbicules are unique features which are controlled by the volatile content of ascending melts and ascent mechanisms. Thermodynamic calculations indicate that near-adiabatic decompression of water-undersaturated melts (ca. 4wt% H2O) through the crust will lead to superheating and dissolution of pre-existing minerals. Upon saturation of volatiles at shallow depth, degassing-induced undercooling of the decompressing melt will trigger heterogeneous nucleation of plagioclase on host rocks and remobilized xenoliths. The rarity of orbicules and comb layers in volcanic and plutonic rocks worldwide suggests that adiabatic decompression of moderately hydrous melts leading to superheating is a rare phenomena, with most arc melts ascending and cooling in small reservoirs throughout the crust, prior to emplacement at shallow depth as crystal-bearing magmas.
Clustering in light nuclei and their effects on fusion and pre - equilibrium processes.
NASA Astrophysics Data System (ADS)
Gramegna, Fabiana; Cicerchia, Magda; Fabris, Daniela; Marchi, Tommaso; Cinausero, Marco; Degerlier, Meltem; Mabiala, Justin; Mantovani, Giorgia; Morelli, Luca; D'Agostino, Michela; Bruno, Mauro; Barlini, Sandro; Bini, Maurizio; Pasquali, Gabriele; Piantelli, Silvia; Casini, Giovanni; Pastore, Giuseppe; Gruyer, Diego; Ottanelli, Pietro; Valdré, Simone; Gelli, Nicla; Olmi, Alessandro; Poggi, Giacomo; Vardaci, Emanuele; Lombardo, Ivano; Dell'Aquila, Daniele; Leoni, Silvia; Cieplicka-Orynczak, Natalya; Fornal, Bogdan; Mengoni, Daniele; Collazuol, Gianmaria; Caciolli, Antonio; Colonna, Maria; Ono, Akira; Baiocco, Giorgio
2017-11-01
The study of nuclear cluster states bound by valence neutrons is a field of recent large interest. In particular, it is important to study the pre-formation of α-clusters in α-conjugate nuclei and the dynamical condensation of clusters during nuclear reactions [1-5]. The NUCL-EX collaboration has recently initiated an experimental campaign of exclusive measurements of fusion-evaporation reactions with light nuclei as interacting partners. In collisions involving light systems, the low expected multiplicity of fragments increases the probability of achieving a quasi-complete reconstruction of the event. In particular the formation and decay modes of an excited 24Mg system have been studied through two different reactions, 12C (95 MeV)+ 12C and 14N (80.7 MeV)+ 10B, which have been used to produce fused systems with nearly the same mass and excitation energy ( 60 MeV). In particular, even the de-excitation of the Hoyle state in 12C have been studied, both in peripheral (projectiles de-excitation) and in central collisions (six α-particles channel). Moreover, a research campaign studying pre-equilibrium emission of light charged particles and cluster properties of light and medium-mass nuclei has been carried out. For this purpose, a comparative study of the three nuclear systems 18O+28Si, 16O+30Si and 19F+27Al has been recently studied using the GARFIELD+RCo 4π setup [6]. The experimental data are compared with the predictions of simulated events generated with the statistical models (GEMINI++ and HFl) and through dynamical models like Stochastic Mean Field (SMF) and Antisymmetrized Molecular Dynamics (AMD) and filtered with a software replica of our apparatus in order to take into account the experimental conditions.
NASA Astrophysics Data System (ADS)
Bhaumik, Anagh; Narayan, Jagdish
2018-04-01
We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.
Squirming motion of baby skyrmions in nematic fluids.
Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I
2017-09-22
Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.
NASA Astrophysics Data System (ADS)
Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu
2018-07-01
The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.
NASA Astrophysics Data System (ADS)
Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.
2010-01-01
Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.
Ecological model of glittering texture
NASA Astrophysics Data System (ADS)
Vallet, Matthieu; Paille, Damien; Monot, Annie; Kemeny, Andras
2003-06-01
The perceptual effects of changes of texture luminance either between the eyes or over time have been studied in several experiments and have led to a better comprehension of phenomenons such as sieve effect, binocular and monocular lustre and rivaldepth. In this paper, we propose an ecological model of glittering texture and analyze glitter perception in terms of variations of texture luminance and animation frequency, in dynamic illumination conditions. Our approach is based on randomly oriented mirrors that are computed according to the specular term of Phong's image rendering formula. The sparkling effect is thus correlated to the relative movements of the resulting textured object, the light array and the observer's point of view. The perceptual effect obtained with this model depends on several parameters: mirrors' density, the Phong specular exponent and the statistical properties of the mirrors' normal vectors. The ability to independently set these properties offers a way to explore a characterization space of glitter. A rating procedure provided a first approximation of the numerical values that lead to the best feeling of typical sparkling surfaces such as metallic paint, granite or sea shore.
NASA Astrophysics Data System (ADS)
Altenberger, U.; Prosser, G.; Grande, A.; Günter, C.; Langone, A.
2013-10-01
Pseudotachylyte veins frequently associated with mylonites and ultramylonites occur within migmatitic paragneisses, metamonzodiorites, as well as felsic and mafic granulites at the base of the section of the Hercynian lower crust exposed in Calabria (Southern Italy). The crustal section is tectonically superposed on lower grade units. Ultramylonites and pseudotachylytes are particularly well developed in migmatitic paragneisses, whereas sparse fault-related pseudotachylytes and thin mylonite/ultramylonite bands occur in granulite-facies rocks. The presence of sillimanite and clinopyroxene in ultramylonites and mylonites indicates that relatively high-temperature conditions preceded the formation of pseudotachylytes. We have analysed pseudotachylytes from different rock types to ascertain their deep crustal origin and to better understand the relationships between brittle and ductile processes during deformation of the deeper crust. Different protoliths were selected to test how lithology controls pseudotachylyte composition and textures. In migmatites and felsic granulites, euhedral or cauliflower-shaped garnets directly crystallized from pseudotachylyte melts of near andesitic composition. This indicates that pseudotachylytes originated at deep crustal conditions (>0.75 GPa). In mafic protoliths, quenched needle-to-feather-shaped high-alumina orthopyroxene occurs in contact with newly crystallized plagioclase. The pyroxene crystallizes in garnet-free and garnet-bearing veins. The simultaneous growth of orthopyroxene and plagioclase as well as almandine, suggests lower crustal origin, with pressures in excess of 0.85 GPa. The existence of melts of different composition in the same vein indicates the stepwise, non-equilibrium conditions of frictional melting. Melt formed and intruded into pre-existing anisotropies. In mafic granulites, brittle faulting is localized in a previously formed thin high-temperature mylonite bands. migmatitic gneisses are deformed into ultramylonite domains characterized by s-c fabric. Small grain size and fluids lowered the effective stress on the c planes favouring a seismic event and the consequent melt generation. Microstructures and ductile deformation of pseudotachylytes suggest continuous ductile flow punctuated by episodes of high-strain rate, leading to seismic events and melting.
NASA Astrophysics Data System (ADS)
Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo
2018-01-01
Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.
2016-04-01
Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.
Sensor data fusion for textured reconstruction and virtual representation of alpine scenes
NASA Astrophysics Data System (ADS)
Häufel, Gisela; Bulatov, Dimitri; Solbrig, Peter
2017-10-01
The concept of remote sensing is to provide information about a wide-range area without making physical contact with this area. If, additionally to satellite imagery, images and videos taken by drones provide a more up-to-date data at a higher resolution, or accurate vector data is downloadable from the Internet, one speaks of sensor data fusion. The concept of sensor data fusion is relevant for many applications, such as virtual tourism, automatic navigation, hazard assessment, etc. In this work, we describe sensor data fusion aiming to create a semantic 3D model of an extremely interesting yet challenging dataset: An alpine region in Southern Germany. A particular challenge of this work is that rock faces including overhangs are present in the input airborne laser point cloud. The proposed procedure for identification and reconstruction of overhangs from point clouds comprises four steps: Point cloud preparation, filtering out vegetation, mesh generation and texturing. Further object types are extracted in several interesting subsections of the dataset: Building models with textures from UAV (Unmanned Aerial Vehicle) videos, hills reconstructed as generic surfaces and textured by the orthophoto, individual trees detected by the watershed algorithm, as well as the vector data for roads retrieved from openly available shapefiles and GPS-device tracks. We pursue geo-specific reconstruction by assigning texture and width to roads of several pre-determined types and modeling isolated trees and rocks using commercial software. For visualization and simulation of the area, we have chosen the simulation system Virtual Battlespace 3 (VBS3). It becomes clear that the proposed concept of sensor data fusion allows a coarse reconstruction of a large scene and, at the same time, an accurate and up-to-date representation of its relevant subsections, in which simulation can take place.
Lakhman, Yulia; Veeraraghavan, Harini; Chaim, Joshua; Feier, Diana; Goldman, Debra A; Moskowitz, Chaya S; Nougaret, Stephanie; Sosa, Ramon E; Vargas, Hebert Alberto; Soslow, Robert A; Abu-Rustum, Nadeem R; Hricak, Hedvig; Sala, Evis
2017-07-01
To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA). This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM. Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79). Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible. • Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.
NASA Astrophysics Data System (ADS)
Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo
1997-04-01
There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.
The effects of phase on the perception of 3D shape from texture: psychophysics and modeling.
Thaler, Lore; Todd, James T; Dijkstra, Tjeerd M H
2007-02-01
Two experiments are reported in which observers judged the apparent shapes of elliptical cylinders with eight different textures that were presented with scrambled and unscrambled phase spectra. The results revealed that the apparent depths of these surfaces varied linearly with the ground truth in all conditions, and that the overall magnitude of surface relief was systematically underestimated. In general, the apparent depth of a surface is significantly attenuated when the phase spectrum of its texture is randomly scrambled, though the magnitude of this effect varies for different types of texture. A new computational model of 3D shape from texture is proposed in which apparent depth is estimated from the relative density of edges in different local regions of an image, and the predictions of this model are highly correlated with the observers' judgments.
NASA Astrophysics Data System (ADS)
Ma, Qiang; Yue, Ming; Xu, Xiaochang; Zhang, Hongguo; Zhang, Dongtao; Zhang, Xuefeng; Zhang, Jiuxing
2018-05-01
In the present study, bulk anisotropic nanocrystalline SmCo5 magnets were prepared by hot press and subsequent hot deformation method. Effect of phase composition on texture and magnetic properties are presented, based on which the mechanism of plastic deformation and texture formation during the hot deformation process is discussed. The SmCo5 magnets were prepared by hot deformation, excessive Sm of 2.5 wt% and 10 wt% was added to compensate the weight loss due to Sm evaporation. Our analyses reveal that the phase composition is one of the most important parameters that determine the texture of SmCo5 magnets. It is therefore suggested that the existence of 2:17 phase and its phase transformation undermined the crystal texture formation as well as the magnetic properties of nanocrystalline SmCo5 magnets.
X-ray diffraction analysis of residual stresses in textured ZnO thin films
NASA Astrophysics Data System (ADS)
Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.
2017-02-01
Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.
NASA Astrophysics Data System (ADS)
Giuntoli, Francesco; Lanari, Pierre; Engi, Martin
2018-02-01
Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport of elements due to the fluid phase are evident along brittle fractures and in their immediate proximity. Thermodynamic modelling shows that all of these Alpine rims formed under eclogite facies conditions. Structurally controlled samples allow these fluid-garnet interaction phenomena to be traced across a portion of the Sesia Zone, with a general decrease in fluid-garnet interaction observed towards the external, structurally lower parts of the terrane. Replacement of the Permian HT assemblages by hydrate-rich Alpine assemblages can reach nearly 100 % of the rock volume. Since we found no clear relationship between discrete deformation structures (e.g. shear zones) observed in the field and the fluid pulses that triggered the transformation to eclogite facies assemblages, we conclude that disperse fluid flow was responsible for the hydration.
Computation of thermodynamic equilibrium in systems under stress
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; Podladchikov, Yuri Y.
2016-04-01
Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic pressure. To compute a case of high and low pressure around a stressed inclusion we first did a Finite Element Method calculation of a rigid inclusion in a viscous matrix under simple shear. From the computed stress distribution we took the local pressure (mean stress) in each grid point of the FEM calculation. This was used as input thermodynamic pressure in the Gibbs minimization and the result showed it is possible to have an equilibrium situation in which chlorite-amphibole is stable in the low pressure domain and kyanite in the high pressure domain of the stress field around the inclusion. Interestingly, the calculation predicts the redistribution of fluid from an average content of fluid in the system. The fluid in equilibrium tends to accumulate in the low pressure areas whereas it leaves the high pressure areas dry. Transport of fluid components occurs not necessarily by fluid flow, but may happen for example by diffusion. We conclude that an apparent disequilibrium texture may be explained by equilibrium under pressure variations, and apparent fluid addition by redistribution of fluid controlled by the local stress distribution. [1] Mukai et al. (2014), Journal of Petrology, 55 (8), p. 1457-1477. [2] Holland and Powell (1998), Journal of Metamorphic Geology, 16, p. 309-343 [3] Johnson et al. (1992), Computers & Geosciences, 18 (7), p. 899-947 [4] Connolly (2005), Earth and Planetary Science Letters, 236, p. 524-541
Cube-textured nickel substrates for high-temperature superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, E.D.; Goyal, A.; Lee, D.F.
1998-02-01
The biaxial textures created in metals by rolling and annealing make them useful substrates for the growth of long lengths of biaxially textured material. The growth of overlayers such as high-temperature superconductors (HTS) require flat substrates with a single, sharp texture. A sharp cube texture is produced in high-purity Ni by rolling and annealing. The authors report the effect of rolling reduction and annealing conditions on the sharpness of the cube texture, the incidence of other orientations, the grain size, and the surface topography. A combination of high reduction, and high temperature annealing in a reducing atmosphere leads to >more » 99% cube texture, with mosaic of 9.0{degree} about the rolling direction (RD), 6.5{degree} about the transverse direction (TD), and 5.0{degree} about the normal direction (ND).« less
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.
2015-12-01
Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2014-10-01
For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).
NASA Astrophysics Data System (ADS)
Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.
2017-03-01
A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Padrón-Navarta, J. A.; López-Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M. T.; Marchesi, C.; Tommasi, A.
2012-04-01
Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. Studies metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Granoblastic texture are interspersed in decameter-sized domains with spinifex-like chl-harzburgite and were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C). We ascribe these textures to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture). Evidences of brittle failure are found along grain-size reduction zones (GSRZ), a few mm to meters wide, which form roughly planar conjugate structures and crosscut the metamorphic texture. GSRZ are characterized by (1) sharp, irregular shapes and abrupt terminations contacts with undeformed metaperidotite, (2) an important reduction of the olivine grain size (60-250 µm), and (3) decrease in the opx modal amount. Analysis of olivine crystal-preferred orientations in GSRZ shows similar patterns, but a higher dispersion than in neighboring metaperidotite. These structures are interpreted as due to hydrofracturing allowing for the formation of high permeability channelways for overpressured fluids. This textural bimodality (granofels and Spinifex-like) and the record of brittle failure hence witnesses a unique example of the feedbacks between the cyclic dynamic of metamorphic fluid expulsion, the reaction rate and crystallisation of the Atg-dehydrating system.
Energy spectrum of 208Pb(n,x) reactions
NASA Astrophysics Data System (ADS)
Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.
2018-02-01
Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Image-based non-contact monitoring of skin texture changed by piloerection for emotion estimation
NASA Astrophysics Data System (ADS)
Uchida, Mihiro; Akaho, Rina; Ogawa, Keiko; Tsumura, Norimichi
2018-02-01
In this paper, we find the effective feature values of skin textures captured by non-contact camera to monitor piloerection on the skin for emotion estimation. Recently, emotion estimation is required for service robots to interact with human more naturally. There are a lot of researches of estimating emotion and additional methods are required to improve emotion estimation because using only a few methods may not give enough information for emotion estimation. In the previous study, it is necessary to fix a device on the subject's arm for detecting piloerection, but the contact monitoring can be stress itself and distract the subject from concentrating in the stimuli and evoking strong emotion. So, we focused on the piloerection as the object obtained with non-contact methods. The piloerection is observed as goose bumps on the skin when the subject is emotionally moved, scared and so on. This phenomenon is caused by contraction of arrector pili muscles with the activation of sympathetic nervous system. This piloerection changes skin texture. Skin texture is important in the cosmetic industry to evaluate skin condition. Therefore, we thought that it will be effective to evaluate the condition of skin texture for emotion estimation. The evaluations were performed by extracting the effective feature values from skin textures captured with a high resolution camera. The effective feature values should have high correlation with the degree of piloerection. In this paper, we found that standard deviation of short-line inclination angles in the texture is well correlated with the degree of piloerection.
Zhao, Wenlin; Xie, Wei; Du, Shenglan; Yan, Shoulei; Li, Jie; Wang, Qingzhang
2016-11-15
Pretreatments such as low temperature blanching and/or calcium soaking affect the cooked texture of vegetal food. In the work, lotus rhizomes (Nelumbo nucifera Gaertn.) were pretreated using the following 4 treatments, blanching at 40°C, blanching at 90°C, soaking in 0.5% CaCl2, and blanching at 40°C followed by immersion in 0.5% CaCl2. Subsequently, the cell wall material of pretreated samples was isolated and fractioned to identify changes in the degree of esterification (DE) and monosaccharide content of each section, and the texture of the lotus rhizomes in different pre-treatments was determined after thermal processing with different time. The results showed that the greatest hardness was obtained after blanching at 40°C in CaCl2, possibly attributing to the formation of a pectate calcium network, which maintains the integrity of cell walls. Furthermore, the content of galactose, rhamnose and arabinose decreased due to the breakage of sugar backbones and subsequent damage to cell walls. Our results may provide a reference for lotus rhizome processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
A neural network detection model of spilled oil based on the texture analysis of SAR image
NASA Astrophysics Data System (ADS)
An, Jubai; Zhu, Lisong
2006-01-01
A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.
NASA Astrophysics Data System (ADS)
Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara
2009-01-01
The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its center of mass (middle point), while carrying equal-weight objects on either side of it. The study utilized a two-group design, and was conducted in three phases (pre-test, treatment and post-test). The results of the study provide evidence that there was such an effect, since the children (who participated in the sensorimotor activities) could select out of a number of objects those two with the same weight regardless of their shape, size or colour, in order to balance the stick. This effect also can be seen when a comparison is made with a second group of children, which had previously participated in a hands-on activity regarding the equilibrium of a similar balance beam, and which (children), therefore, had a definite advantage over the other children who had participated in the sensorimotor activity. A Chi Square Test showed no significant differences between the two groups on both an immediate and a delayed post-test, while the McNemar Test for the Significance of Change showed a statistically significant difference (that is, a negative change in performance between the first and the second post-test) only within the hands-on group. This difference represents evidence that the children from the sensorimotor group remembered better the rule they were applying (i.e., selecting equal-weight objects) in order to balance the beam.
Meeker, G.P.
1995-01-01
Many coarse-grained calcium- aluminum-rich inclusions (CAIs) contain features that are inconsistent with equilibrium liquid crystallization models of origin. Spinel-free islands (SFIs) in spinel-rich cores of Type B CAIs are examples of such features. One model previously proposed for the origin of Allende 5241, a Type B1 CAI containing SFIs, involves the capture and assimilation of xenoliths by a liquid droplet in the solar nebula (El Goresy et al, 1985; MacPherson et al 1989). This study reports new textural and chemical zoning data from 5241 and identifies previously unrecognized chemical zoning patterns in the melilite mantle and in a SFI. -from Author
The classification and complex thermal history of the enstatite chondrites
NASA Technical Reports Server (NTRS)
Zhang, Yanhong; Benoit, Paul H.; Sears, Derek W. G.
1995-01-01
We have carried out instrumental neutron activation analysis of 11 enstatite chondrites and electron microprobe analyses of 17 enstatite chondrites, most of which were previously little described. We report here the third known EH5 chondrite (LEW 88180) and an unusual EL6 chondrite (LEW 87119), new data on four EL3 chondrites (ALH 85119, EET 90299, PCA 91020, and MAC 88136, which is paired with MAC 88180 and MAC 88184), the second EL5 chondrite (TIL 91714), and an unusual metal-rich and sulfide-poor EL3 chondrite (LEW 87223). The often discussed differences in mineral composition displayed by the EH and EL chondrites are not as marked after the inclusion of the new samples in the database, and the two classes apparently experienced a similar range of equilibrium temperatures. However, texturally the EL chondrites appear to have experienced much higher levels of metamorphic alteration than EH chondrites of similar equilibration temperatures. Most of the petrologic type criteria are not applicable to enstatite chondrites and, unlike the ordinary chondrites, texture and mineralogy reflect different aspects of the meteorite history. We therefore propose that the existing petrologic type scheme not be used for enstatite chondrites. We suggest that while 'textural type' reflects peak metamorphic temperatures, the 'mineralogical type' reflects equilibration during postmetamorphic (probably regolith) processes. Unlike the ordinary chondrites and EH chondrites, EL chondrites experienced an extensive low-temperature metamorphic episode. There are now a large number of enstatite meteorite breccias and impact melts, and apparently surface processes were important in determining the present nature of the enstatite chondrites.
Unsupervised classification of cirrhotic livers using MRI data
NASA Astrophysics Data System (ADS)
Lee, Gobert; Kanematsu, Masayuki; Kato, Hiroki; Kondo, Hiroshi; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Hoshi, Hiroaki
2008-03-01
Cirrhosis of the liver is a chronic disease. It is characterized by the presence of widespread nodules and fibrosis in the liver which results in characteristic texture patterns. Computerized analysis of hepatic texture patterns is usually based on regions-of-interest (ROIs). However, not all ROIs are typical representatives of the disease stage of the liver from which the ROIs originated. This leads to uncertainties in the ROI labels (diseased or non-diseased). On the other hand, supervised classifiers are commonly used in determining the assignment rule. This presents a problem as the training of a supervised classifier requires the correct labels of the ROIs. The main purpose of this paper is to investigate the use of an unsupervised classifier, the k-means clustering, in classifying ROI based data. In addition, a procedure for generating a receiver operating characteristic (ROC) curve depicting the classification performance of k-means clustering is also reported. Hepatic MRI images of 44 patients (16 cirrhotic; 28 non-cirrhotic) are used in this study. The MRI data are derived from gadolinium-enhanced equilibrium phase images. For each patient, 10 ROIs selected by an experienced radiologist and 7 texture features measured on each ROI are included in the MRI data. Results of the k-means classifier are depicted using an ROC curve. The area under the curve (AUC) has a value of 0.704. This is slightly lower than but comparable to that of LDA and ANN classifiers which have values 0.781 and 0.801, respectively. Methods in constructing ROC curve in relation to k-means clustering have not been previously reported in the literature.
Chemometric approach to texture profile analysis of kombucha fermented milk products.
Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja
2015-09-01
In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.
Microscale models of partially molten rocks and their macroscale physical properties
NASA Astrophysics Data System (ADS)
Rudge, J. F.
2017-12-01
Any geodynamical model of melt transport in the Earth's mantle requires constitutive laws for the rheology of partially molten rock. These constitutive laws are poorly known, and one way to make progress in our understanding is through the upscaling of microscale models which describe physics at the scale of individual mineral grains. Crucially, many upscaled physical properties (such as permeability) depend not only on how much melt is present, but on how that melt is arranged at the microscale; i.e. on the geometry of the melt network. Here I will present some new calculations of equilibrium melt network geometries around idealised tetrakaidecahedral grains. In contrast to several previous calculations of textural equilibrium, these calculations allow for a both a liquid-phase and a solid-phase topology that can tile 3D space. The calculations are based on a simple minimisation of surface energy using the finite element method. In these simple models just two parameters control the topology of the melt network: the porosity (volume fraction of melt), and the dihedral angle. The consquences of these melt geometries for upscaled properties such as permeability; electrical conductivity; and importantly, effective viscosity will be explored. Recent theoretical work [1,2] has suggested that in diffusion creep a small amount of melt may dramatically reduce the effective shear viscosity of a partially molten rock, with profound consequences for the nature of the asthenosphere. This contribution will show that this reduction in viscosity may have been significantly overestimated, so that the drop in the effective viscosity at onset of melting is more modest. [1] Takei, Y., and B. K. Holtzman (2009), Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model, J. Geophys. Res., 114, B06205.[2] Holtzmann B. K. (2016) Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere, Geophys. Geochem. Geosyst. 17, 470-484.
Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay
NASA Astrophysics Data System (ADS)
Novi W, Cascarilla; Lestari, Dwi
2016-02-01
This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.
The Impact of Credit on Village Economies
Kaboski, Joseph P.; Townsend, Robert M.
2011-01-01
This paper evaluates the short-term impact of Thailand’s ‘Million Baht Village Fund’program, among the largest scale government microfinance iniative in the world, using pre- and post-program panel data and quasi-experimental cross-village variation in credit-per-household. We find that the village funds have increased total short-term credit, consumption, agricultural investment, income growth (from business and labor), but decreased overall asset growth. We also find a positive impact on wages, an important general equilibrium effect. The findings are broadly consistent qualitatively with models of credit-constrained household behavior and models of intermediation and growth. PMID:22844546
Cupello, A; Hydén, H
1985-12-09
The pre- and postsynaptic electrophysiological consequences of a carrier-mediated, Na+ ion transport-coupled removal of gamma-aminobutyric acid (GABA) from the relevant synaptic clefts are discussed. Assuming for the GABA internalization process a stoichiometry like GABAo + 3NA+o + K+i in equilibrium GABAi + 3Na+i + K+o and a synaptic cleft GABA maximal concentration of 100 microM we calculated the presynaptic depolarization associated with GABA removal between 11.5 and 38.2 mV. At the postsynaptic level the effect appears to be less marked.
Dynamics of climate-based malaria transmission model with age-structured human population
NASA Astrophysics Data System (ADS)
Addawe, Joel; Pajimola, Aprimelle Kris
2016-10-01
In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.
Tomaschunas, Maja; Köhn, Ehrhard; Bennwitz, Petra; Hinrichs, Jörg; Busch-Stockfisch, Mechthild
2013-06-01
The effects of variation in fat content (0.1% to 15.8%) and type of fat, using different types of milk, dairy cream, or vegetable fat cream, on sensory characteristics and consumer acceptance of starch-based vanilla model custards were studied. Descriptive analysis with trained panelists and consumer testing with untrained assessors were applied. Descriptive data were related to hedonic data using principal component analysis to determine drivers of liking and disliking. Results demonstrated an increasing effect of fat concerning visual and oral thickness, creamy flavor, and fat-related texture properties, as well as a decreasing effect concerning yellow color and surface shine. A lack of fat caused moderate intensities in pudding-like flavor attributes and an intensive jelly texture. Adding a vegetable fat cream led to lower intensities in attributes yellow color, cooked flavor, thick, and jelly texture, whereas intensities in vegetable fat flavor and fat-related texture properties increased. All consumers favored custards with medium fat contents, being high in pudding-like and vegetable fat flavor as well as in fat-related texture attributes. Nonfat custards were rejected due to jelly texture and moderate intensities in pudding-flavor attributes. High-fat samples were liked by some consumers, but their high intensities in thickness, white color, and creamy flavor also drove disliking for others. © 2013 Institute of Food Technologists®
Martínez-Álvaroi, M; Penalba, V; Blasco, A; Hernández, P
2016-12-01
Intramuscular fat (IMF) is one of the main parameters affecting meat quality. This work analyzes the effect of selection for IMF on sensory attributes and instrumental texture parameters in rabbit meat. A total of 115 rabbits after 6 generations of divergent selection for IMF were slaughtered at 9 or 13 wk (57 and 58 animals, respectively). For each animal, the left longissimus dorsi muscle (LD) was analyzed by near-infrared spectroscopy to measure IMF whereas the right LD was used for the sensory or instrumental texture analysis. Sensory attributes measured were rabbit odor, liver odor, rabbit flavor, liver flavor, aniseed flavor, hardness, juiciness, and fibrousness. The instrumental texture parameters maximum shear force, shear firmness, and total work to cut the sample were measured by a Warner-Bratzler shear test. The line selected for high IMF showed 58% greater IMF than the line selected for low IMF. This divergence affected firmness that was 9.9% greater in the low-IMF line, although no effect was found for the other instrumental texture traits. No effect of selection was observed in any odor or flavor, except for aniseed flavor, which was greater in the high-IMF line than in the low-IMF line. Age had an effect on IMF, instrumental texture parameters, and sensory attributes. Rabbits at 13 wk showed greater IMF and instrumental and sensory hardness and more intense odor and flavor and lower juiciness than rabbits at 9 wk.
NASA Astrophysics Data System (ADS)
Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf
2017-01-01
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.
Structural, textural and sensory impact of sodium reduction on long fermented pizza.
Bernklau, Isabelle; Neußer, Christian; Moroni, Alice V; Gysler, Christof; Spagnolello, Alessandro; Chung, Wookyung; Jekle, Mario; Becker, Thomas
2017-11-01
The aim of this study was to elucidate the microstructural, textural, and sensory impact of sodium reduction and its partial replacement by potassium chloride in pizza dough and crusts prepared by a traditional long fermentation process. For the first time, macrostructural changes in texture were elucidated and quantified by a novel protein network analysis. The fermentation process exerted a strengthening effect in the doughs, allowing to reduce sodium up to 25% without any negative impact on texture. Sodium reduction by 15% did not cause any significant textural changes in pizza crusts and partial replacement by KCl resulted in a strengthened dough and firmer pizza crust. The use of toppings masked the effect of lowering the sodium content, allowing to increase the reduction level from 15% to 35%. A reduction of NaCl by 25% with an addition of KCl achieved high acceptance in the sensory evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.
2007-10-01
The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.
Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yun; Zhang, Lehao; Wang, Hongtao
Texture evolution is strongly dependent on the deformation mode during thermo-mechanical treatments. In this paper, we report the texture evolution in a duplex Mg-Li alloy. The results provide an evidence of deformation mode transition in the hexagonal-close-packed (hcp) alpha phase with various thickness reductions. The activation sequence of deformation modes is basal slip first, and then pyramidal slip during hot-rolling to a thickness reduction of 40%. The relative activity of slip decreases with further thickness reduction. After annealing, basal texture is strengthened and pyramidal component disappears due to static recrystallization and grain growth. The microstructure, specifically texture evolution in bothmore » hcp alpha and body-centered cubic (bcc) beta phase and their effects on mechanical properties are quantitatively analyzed and assessed. (C) 2016 Elsevier B.V. All rights reserved.« less
Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit.
Mamat, Hasmadi; Hill, Sandra E
2014-09-01
Fat is an important ingredient in baking products and it plays many roles in providing desirable textural properties of baking products, particularly biscuit. In this study, the effect of fat types on dough rheological properties and quality of semi-sweet biscuit (rich tea type) were investigated using various techniques. Texture profile and extensibility analysis were used to study the dough rheology, while three-point bend test and scanning electron microscopy were used to analyse the textural characteristics of final product. TPA results showed that the type of fat significantly influenced dough textural properties. Biscuit produced with higher solid fat oil showed higher breaking force but this was not significantly different when evaluated by sensory panel. Scanning electron microscopy showed that biscuit produced with palm mid-fraction had an open internal microstructure and heterogeneous air cells as compared to other samples.
Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy
Zou, Yun; Zhang, Lehao; Wang, Hongtao; ...
2016-01-27
Texture evolution is strongly dependent on the deformation mode during thermo-mechanical treatments. In this paper, we report the texture evolution in a duplex Mg-Li alloy. The results provide an evidence of deformation mode transition in the hexagonal-close-packed (hcp) alpha phase with various thickness reductions. The activation sequence of deformation modes is basal slip first, and then pyramidal slip during hot-rolling to a thickness reduction of 40%. The relative activity of slip decreases with further thickness reduction. After annealing, basal texture is strengthened and pyramidal component disappears due to static recrystallization and grain growth. The microstructure, specifically texture evolution in bothmore » hcp alpha and body-centered cubic (bcc) beta phase and their effects on mechanical properties are quantitatively analyzed and assessed. (C) 2016 Elsevier B.V. All rights reserved.« less
Land clearance and river salinisation in the western Murray Basin, Australia
NASA Astrophysics Data System (ADS)
Allison, G. B.; Cook, P. G.; Barnett, S. R.; Walker, G. R.; Jolly, I. D.; Hughes, M. W.
1990-11-01
The clearing of native vegetation in a semi-arid region of southern Australia has led to increases in groundwater recharge of about two orders of magnitude. Although most of the clearing took place early this century, the generally deep water table along with the low rates of recharge means that there is a considerable delay in the response of the aquifer to the increased recharge. The rates of pre- and post-clearing recharge, and the time delay in aquifer response have been estimated using unsaturated zone chloride and matric suction profiles. Predictions of the time lag in aquifer response have been verified using bore hydrographs. The results of these analyses suggest that where the soils are light textured, and the water table is less than 40 m below the soil surface, it is now rising. Where the soils are heavier textured, it is estimated that the water table is rising only where it is less than 10 m below the soil surface. The effect of the increased recharge rates on the salinity of the River Murray, a major water resource, have been predicted using a groundwater model of the region. The predictions suggest that the salinity of the river will increase at about 1 μS cm -1 year -1 over the next 50 years and beyond.
Comparative analysis of classification based algorithms for diabetes diagnosis using iris images.
Samant, Piyush; Agarwal, Ravinder
2018-01-01
Photo-diagnosis is always an intriguing area for the researchers, with the advancement of image processing and computer machine vision techniques it have become more reliable and popular in recent years. The objective of this paper is to study the change in the features of iris, particularly irregularities in the pigmentation of certain areas of the iris with respect to diabetic health of an individual. Apart from the point that iris recognition concentrates on the overall structure of the iris, diagnostic techniques emphasises the local variations in the particular area of iris. Pre-image processing techniques have been applied to extract iris and thereafter, region of interest from the extracted iris have been cropped out. In order to observe the changes in the tissue pigmentation of region of interest, statistical, texture textural and wavelet features have been extracted. At the end, a comparison of accuracies of five different classifiers has been presented to classify two subject groups of diabetic and non-diabetic. Best classification accuracy has been calculated as 89.66% by the random forest classifier. Results have been shown the effectiveness and diagnostic significance of the proposed methodology. Presented piece of work offers a novel systemic perspective of non-invasive and automatic diabetic diagnosis.
Report of 14-day bedrest simulation of Skylab
NASA Technical Reports Server (NTRS)
Johnson, P. C. (Compiler); Mitchell, C. (Compiler)
1976-01-01
Part one of a two-phase bedrest project in which the physiological effects of weightlessness were simulated is presented. The project was designed to approximate the medical testing and dietary control of Skylab. The test period included a three week pre-flight period, a two week bedrest period and a two week post-flight period. The test subjects ate measured amounts of the Skylab diet and drank deionized water to recreate the metabolic balance studies of Skylab. The medical testing program, pre- and postbedrest, was similar to that of Skylab including: lower body negative pressure testing the orthostatic intolerance noted after both spaceflights and bedrest, bicycle ergometry testing the cardiovascular response to graded exercise, postural equilibrium, vestibular studies and electromyograms. Fluid and electrolyte shifts and balance were documented with intake and output records and radionuclide studies. The subjects were observed by a psychiatrist who watched for signs of mental stress in the test environment and changes in mental status.
Marchetti, L; Andrés, S C; Califano, A N
2014-03-01
Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.
2005-04-10
Expedition 11 Flight Engineer John Phillips takes part in a tilt table test, Monday, April 11, 2005, in Baikonur, Kazakhstan as technicians collect pre-launch data on the state of his equilibrium prior to the April 15 launch to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish
Woods, Kristin; Lea, Jeanne M.; Brashear, Suzanne S.; Boue, Stephen M.; Daigle, Kim W.; Bett-Garber, Karen L.
2018-01-01
Catfish is often consumed as a breaded and battered fried product; however, there is increasing interest in breaded and battered baked products as a healthier alternative. Par frying can improve the texture properties of breaded and battered baked products, but there are concerns about the increase in lipid uptake from par frying. The objective of this study was to examine the effect of different batters (rice, corn, and wheat) and the effect of par frying on the composition and texture properties of baked catfish. Catfish fillets were cut strips and then coated with batters, which had similar viscosities. Half of the strips were par fried in 177 °C vegetable oil for 1 min and the other half were not par fried. Samples were baked at 177 °C for 25 min. Analysis included % batter adhesion, cooking loss, protein, lipid, ash, and moisture, plus hardness and fracture quality measured using a texture analyzer. A trained sensory panel evaluated both breading and flesh texture attributes. Results found the lipid content of par fried treatments were significantly higher for both corn and wheat batters than for non-par fried treatments. Sensory analysis indicated that the texture of the coatings in the par fried treatments were significantly greater for hardness attributes. Fillet flakiness was significantly greater in the par fried treatments and corn-based batters had moister fillet strips compared to the wheat flour batters. Texture analyzer hardness values were higher for the par fried treatments. PMID:29570660
The Lingering Effects of an Artificial Blind Spot
Morgan, Michael J.; McEwan, William; Solomon, Joshua
2007-01-01
Background When steady fixation is maintained on the centre of a large patch of texture, holes in the periphery of the texture rapidly fade from awareness, producing artificial scotomata (i.e., invisible areas of reduced vision, like the natural ‘blind spot’). There has been considerable controversy about whether this apparent ‘filling in’ depends on a low-level or high-level visual process. Evidence for an active process is that when the texture around the scotomata is suddenly removed, phantasms of the texture appear within the previous scotomata. Methodology To see if these phantasms were equivalent to real low-level signals, we measured contrast discrimination for real dynamic texture patches presented on top of the phantasms. Principal Findings Phantasm intensity varied with adapting contrast. Contrast discrimination depended on both (real) pedestal contrast and phantasm intensity, in a manner indicative of a common sensory threshold. The phantasms showed inter-ocular transfer, proving that their effects are cortical rather than retinal. Conclusions We show that this effect is consistent with a tonic spreading of the adapting texture into the scotomata, coupled with some overall loss of sensitivity. Our results support the view that ‘filling in’ happens at an early stage of visual processing, quite possibly in primary visual cortex (V1). PMID:17327917
NASA Astrophysics Data System (ADS)
Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina
2018-05-01
The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.
NASA Astrophysics Data System (ADS)
Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron
2010-03-01
Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.
Bohor, B.F.; Betterton, W.J.; Krogh, T.E.
1993-01-01
Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows SEM visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the UPb isotopic system. ?? 1993.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert
2017-04-01
It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.
Biological plywood film formation from para-nematic liquid crystalline organization.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2017-11-15
In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.
Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax
NASA Astrophysics Data System (ADS)
Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria
2012-12-01
Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.
Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelloux, R.M.; Ballinger, R.; Lucas, G.
1979-01-01
An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less
Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion
Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.
2011-01-01
Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879
Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, L.B.; Li, X.; Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651
2014-06-01
The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior.more » The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.« less
Effects of anisotropic surface texture on the performance of ionic polymer-metal composite (IPMC)
NASA Astrophysics Data System (ADS)
He, Qingsong; Yu, Min; Ding, Haitao; Guo, Dongjie; Dai, Zhendong
2010-04-01
Ionic polymer metal composite (IPMC), an electrically activated polymer (EAP), has attracted great attention for the excellent properties such as large deformation, light weight, low noise, flexibility and low driving voltages, which makes the material a possible application as artificial muscle if the output force can be increased. To improve the property, we manufactured the Nafion membrane by casting from liquid solution, modified the surface by sandblasting or polishing, and obtained the isotropic and anisotropic surface texture respectively. The microstructure of the Nafion surface and metal electrode, effects of surface texture on the output force and displacement of IPMC were studied. Results show that the output force of IPMC with the anisotropic surface texture is 2~4 times higher than that with the isotropic surface texture without enormous sacrifice of the displacement. The output force may reach to 6.63gf (Sinusoidal 3.5V and 0.1Hz, length 20mm, width 5mm and thickness 0.66mm), which suggest an effective way to improve the mechanical properties of IPMC.
He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian
2014-07-30
Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.
Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.
2009-01-01
Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Lixia
Recrystallization texture evolution of rolled V-4Cr-4Ti alloy has been investigated by quasi-in-situ EBSD (electron back-scattering diffraction) method. Concurrently, the precipitates were characterized by SEM (Scanning Electron Microscopy). It was found that both the initial rolling textures and the distribution of the precipitates affected the formation of the recrystallization texture. It was revealed that the texture transformations of (558) 〈110〉 + (665) 〈110〉 to (334) 〈483〉 + (665) 〈1 1 2.4〉 were possibly attributed to the selective drag induced by the sparsely dispersed Ti-rich precipitates. While the densely distributed Ti-rich precipitates were responsible for the randomized recrystallization texture. Finally, when themore » precipitates were absent, the orientation changes from (112) 〈110〉 and (558) 〈110〉 to (111) 〈112〉 and (001) <110> to (001) <520> were observed. - Highlights: • Micro recrystallization texture evolution in V-4Cr-4Ti alloys is reported for the first time. • The volume fraction of Ti-rich precipitates has significant effect on the recrystallization texture evolution. • The dissolution of the Ti-rich precipitates above 1100 °C induces the strengthening of (111) <112> texture.« less
NASA Astrophysics Data System (ADS)
Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin
2012-04-01
The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.
Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry
ERIC Educational Resources Information Center
Gonzalez-Gaitano, Gustavo; Tardajos, Gloria
2004-01-01
Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.
Effects of spoil texture on growth of K-31 tall fescue
David H. Van Lear
1971-01-01
Growth of K-31 tall fescue (Festuca arundinacea) was significantly affected by the particle-size distribution, or texture, of four spoils from eastern Kentucky. Growth on spoils having no toxic chemical properties generally was greatest where texture consisted of about equal quantities of soil-size material and a coarser fraction (2 mm. to 6.4 mm.),...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effects of the wooden breast condition on the texture of cooked broiler breast fillets (Pectoralis major) after fresh and frozen storage. Texture characteristics of normal (NORM) and severe wooden breast (WB) fillets were studied by both sensory descr...
USDA-ARS?s Scientific Manuscript database
The woody breast (WB) condition is known to negatively influence the texture characteristics and quality of intact broiler breast fillets, but the impact of WB on comminuted meat products are unknown. The objective of this study was to evaluate the effects of WB on the texture and cooking properties...
Surface texture can bias tactile form perception.
Nakatani, Masashi; Howe, Robert D; Tachi, Susumu
2011-01-01
The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.
Effects of Textured Insoles on Balance in People with Parkinson’s Disease
Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.
2013-01-01
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486
NASA Astrophysics Data System (ADS)
Kenney, M.; Roeske, S.; Mulcahy, S. R.; Cottle, J. M.; Coble, M. A.
2016-12-01
In polymetamorphic terranes, it is problematic to link ages from geochronometers to metamorphic fabrics and, therefore, to a specific deformation event(s). It is necessary to analyze a mineral which may preserve multiple age domains. Titanite has been shown to retain multiple age and elemental domains in single grains through high-grade metamorphism. In this study, titanite U-Pb geochronology is used to examine whether ages are thermally reset along a sample transect towards a mylonitic shear zone in NW Argentina. This work also seeks to understand the conditions under which titanite resists resetting. A combination of petrographic and electron microprobe analyses reveal the textures and compositional domains in titanite, garnet, and hornblende. Titanite are elongate, wrapped by the mylonitic fabric, and have patchy elemental zoning. Garnet has distinct cores with prograde zoning and thin rims, which appear to be in equilibrium with the fabric defining minerals. Hornblende has inclusion rich cores and thin overgrowth rims in equilibrium with the fabric defining minerals. In-situ U-Pb and trace element data was collected in titanite from four samples, which all preserve lower-intercept ages between 900Ma and 1.0Ga. We observed no correlation between age and elemental domains; these domains correlate with Al and Nb variations. Zr-in-titanite temperatures preserve upper amphibolite facies conditions, 660ºC-710ºC. Given these results, we conclude that titanite U-Pb ages and temperatures reflect original Grenville metamorphism. 40Ar/39Ar hornblende cooling ages, of 515 Ma, suggested titanite may be reset near the shear zone but overprinting P-T of 560ºC and 0.8 GPa, fluid infiltration, and deformation did not cause significant Pb loss. Overprinting conditions and cooling ages suggest that rims of garnet and hornblende correlate to Paleozoic metamorphism, while textural evidence and titanite ages suggest garnet and hornblende cores grew during the Proterozoic.
NASA Astrophysics Data System (ADS)
Escobar-Burciaga, R. D.; DeBari, S. M.
2015-12-01
The petrogenesis of intermediate magmas in arcs is a critical contribution to crustal growth. Andesites are commonly thought of as a hybrid product, the result of two endmember magmas mixing. At the Mount Baker volcanic field (MBVF), northern Cascade arc, andesites are the predominantly erupted lavas since 1 Ma and yet their origin is poorly constrained. Previous studies have suggested that open-system processes play a dominant role. However, the studies rely heavily on bulk rock compositions and overlook complex mineral textures and compositions. To better understand the complex processes at work at MBVF, we focus on establishing mineral and crystal clot populations in three andesitic flow units (55-59% SiO2). Petrographic and geochemical analyses suggest that variable-composition crystal clot and phenocryst populations in a single flow are related. We interpret the crystal clots to represent cumulates entrained in the erupting host magma and that related phenocrysts are disaggregates of crystal clots. The existence of common, multiple phenocryst and crystal clot populations in each flow of different age and SiO2 content provides strong evidence that intermediate magmas of MBVF are more than just the end product of mixing between two magmas. Furthermore, we suggest that most phenocrysts do not represent equilibrium products of their host liquid, evident from wide compositional ranges of ferromagnesian minerals (e.g. augite core Mg# 70-87). In fact, the most primitive phenocryst populations show the least amount of disequilibrium texture but represent assemblages expected to fractionate from basaltic to basaltic-andesitic liquids rather than equilibrium assemblages from their host bulk rock "liquid" composition. As a result, we interpret the variable SiO2 signature of the three andesitic flow units to have been obtained through the incorporation of cumulates/liquids as basaltic to basaltic-andesitic magma ascends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Das, S
Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less
The role of the background: texture segregation and figure-ground segmentation.
Caputo, G
1996-09-01
The effects of a texture surround composed of line elements on a stimulus within which a target line element segregates, were studied. Detection and discrimination of the target when it had the same orientation as the surround were impaired at short presentation time; on the other hand, no effect was present when they were reciprocally orthogonal. These results are interpreted as background completion in texture segregation; a texture made up of similar elements is represented as a continuous surface with contour and contrast of an embedded element inhibited. This interpretation is further confirmed with a simple line protruding from an annulus. Generally, the results are taken as evidence that local features are prevented from segmenting when they are parts of a global entity.
Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.
1992-01-01
Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors
Gerschke, Marco; Seehafer, Peggy
The aim of the study was to investigate differences in the acceptability between thickened and naturally viscous beverages. This was an exploratory, cross-sectional study. One hundred twenty-eight healthy volunteers rated overall liking/disliking of a selection of each of three thickened drinks and three beverages of natural viscosity pre- and postconsumption. Mean ratings were subjected to statistical analysis done with t tests. Although all naturally thick beverages evoked good expectations, there were significant differences in expected acceptance of thickened fluids concerning the kind of beverage. Postconsumption of naturally thick beverages were rated significantly better than thickened. The findings suggest an alternative offer of naturally thick drinks and waiver of thickening water when viscosity adaption is needed. The sufficient and safe oral fluid intake in dysphagia requires compliance to dietetic recommendations. Naturally thick beverages can contribute to increase the appeal of texture-modified diet.
Pronounced pre-martensitic anomaly in the magnetization on Ni2MnGa thin films
NASA Astrophysics Data System (ADS)
Neckel, I. T.; Müller, C.; Nobrega, K. Z.; Dartora, C. A.; Schreiner, W. H.; Mosca, D. H.
2018-05-01
We have prepared [110]-textured Ni2MnGa thin films exhibiting an unusual pre-martensitic transition accompanied by an extremely large magnetization change. The thin films were grown by molecular beam epitaxy directly on epi-ready GaAs(111)B. Crystalline structure was investigated in situ by reflection high-energy electron diffraction (RHEED) and ex situ by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the film exhibits cubic crystalline structure (L2 1) at room temperature with lattice parameter a = 5.88 Å which undergoes martensitic transition. Magnetic characterization shows ferromagnetic behavior at room temperature with Curie temperature higher than room temperature. Martensitic transformation occurs at TM ∼ 185 K. A phenomenological model based on Landau theory of phase transformation was developed to explain the anomalous pre-martensitic transition at ∼285 K.
Pre-terrestrial origin of rust in the Nakhla meteorite
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Gooding, James L.
1990-01-01
The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.
Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng
2018-04-13
Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Zhenyu; Liu, Wei; Cui, Jiali; Wang, Xunheng; Arias, Diana; Wen, Ying; Bansal, Ravi; Hao, Xuejun; Wang, Zhishun; Peterson, Bradley S; Xu, Dongrong
2011-02-01
Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model. Copyright © 2011 Elsevier Inc. All rights reserved.
Impact of tsunami on texture and mineralogy of a major placer deposit in southwest coast of India
NASA Astrophysics Data System (ADS)
Babu, N.; Babu, D. S. Suresh; Das, P. N. Mohan
2007-03-01
The great Indonesian earth quake (26 December 2004) triggered a tsunami wave across the Bay of Bengal and Indian Ocean basins and has brought a major havoc in several countries including India. The coastal segment between Thotapalli and Valiazhikal in Kerala state of southwest India, where considerably rich beach placer deposit with ilmenite percentage of more than 70% is concentrated, has been investigated to understand the impact of tsunami on coastal sediments. The grain size analysis flashes out the significant differences between the pre- and post-tsunami littoral environments. While the mineral grains collected during pre-tsunami period show well-sorted nature, the post-tsunami samples represent moderately to poorly sorted nature. Similarly, unimodal and bimodal distributions of the sediments have been recorded for pre- and post-tsunami sediments, respectively. Further, mineral assemblages corresponding to before and after this major wave activity clearly indicate the large-scale redistribution of sediments. The post-tsunami sediments register increasing trends of garnet, sillimanite and rutile. The total heavy mineral percentage of the post-tsunami sediment also shows an improved concentration, perhaps due to the large-scale transport of lighter fraction. Magnetite percentage of post-tsunami samples reflects higher concentration compared to the pre-tsunami samples, indicating the intensity of reworking process. X-ray diffraction patterns of ilmenite grains have confirmed the increased presence of pseduorutile, and pseudobrookite in post-tsunami samples, which could be due to the mixing of more altered grains. SEM examination of grains also confirms the significant alteration patterns on the ubiquitous mineral of placer body, the ilmenite. The reason for these textural, mineralogical and micromorphological changes in heavy minerals particularly in ilmenite, could be due to the churning action on the deeper sediments of onshore region or on the sediments entrapped in the near shelf region of the area, by the ˜ 6 m high tsunami waves.
Design and Production of the Injection Mould with a Cax Assistance
NASA Astrophysics Data System (ADS)
Likavčan, Lukáš; Frnčík, Martin; Zaujec, Rudolf; Satin, Lukáš; Martinkovič, Maroš
2016-09-01
This paper is focused on the process of designing the desired plastic component and injection mould by using the 3D CAD systems. The subsequent FEM analysis of the injection mould process was carried out in order to define shrinkage and deformation of the plastic material by CAE system. The dimensions of the mould were then modified to compensate the shrinkage effect. Machining process (milling and the laser texturing) of the mould was performed by using CAM systems. Finally, after the production of the plastic components by the injection mould technology, the inspection of the plastic component dimensions was carried out by CAQ in order to define the accuracy of the whole CAx chain. It was also demonstrated that CAx systems are an integral part of pre-production and production process.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-03-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-07-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Effect of texture on dielectric properties and thermal depoling of Bi4Ti3O12 ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Yan, Haixue; Reece, Michael J.; Liu, Jing; Shen, Zhijian; Kan, Yanmei; Wang, Peiling
2006-10-01
Ordinary fired Bi4Ti3O12 ceramics show a gradual reduction in their room temperature d33 after annealing at temperatures from room temperature to 450°C. Textured ceramics show a greater resistance to thermal depoling. At about 450°C there is a rapid drop of d33 for the textured materials, which may be a consequence of a phase transition. Between 500 and 650°C the d33 is stable. The depolarization is assisted by internal mechanical stresses. These stresses are smaller in textured materials, which explains the increasing resistance to thermal depoling with increasing texture.
NASA Technical Reports Server (NTRS)
Bohor, B. F.; Betterton, W. J.; Krogh, T. E.
1993-01-01
Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.
NASA Astrophysics Data System (ADS)
Fornelli, A.; Langone, A.; Micheletti, F.; Pascazio, A.; Piccarreta, G.
2014-03-01
The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U-Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U-Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core-overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327-320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325-320 Ma in the other textural sites and, probably, those dated at 339-336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325-320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture
NASA Astrophysics Data System (ADS)
van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.
2017-11-01
The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
NASA Technical Reports Server (NTRS)
Gibbons, D. F.
1977-01-01
The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.
Effect of Thermomechanical Processing on Texture and Superelasticity in Fe-Ni-Co-Al-Ti-B Alloy
NASA Astrophysics Data System (ADS)
Lee, Doyup; Omori, Toshihiro; Han, Kwangsik; Hayakawa, Yasuyuki; Kainuma, Ryosuke
2018-03-01
The texture and superelasticity were investigated in austenitic Fe-Ni-Co-Al-Ti-B alloy with various reduction ratios of cold rolling and heating ratios in annealing. The rolled sheets show the {110} <112> deformation texture at a reduction ratio higher than 80%, while the texture hardly changes in the primary recrystallization at 1000 °C. The β (B2) precipitates inhibit the grain growth at this temperature, but they dissolve during heating, and secondary recrystallization occurs due to decreased pinning force at temperatures higher than 1100 °C, resulting in texture change to {210} <001> . The recrystallization texture is more strongly developed when the reduction ratio and heating rate are high and slow, respectively. The 90% cold-rolled and slowly heated sheet shows the recrystallization texture and high fraction of low-angle boundaries. As a result, ductility and superelasticity can be drastically improved in the 90% cold-rolled sheet, although superelasticity was previously obtained only in thin sheets with 98.5% reduction.
NASA Astrophysics Data System (ADS)
Siégel, Coralie; Arndt, Nicholas; Barnes, Stephen; Henriot, Anne-Laure; Haenecour, Pierre; Debaille, Vinciane; Mattielli, Nadine
2014-12-01
Two Archaean komatiitic flows, Fred's Flow in Canada and the Murphy Well Flow in Australia, have similar thicknesses (120 and 160 m) but very different compositions and internal structures. Their contrasting differentiation profiles are keys to determine the cooling and crystallization mechanisms that operated during the eruption of Archaean ultramafic lavas. Fred's Flow is the type example of a thick komatiitic basalt flow. It is strongly differentiated and consists of a succession of layers with contrasting textures and compositions. The layering is readily explained by the accumulation of olivine and pyroxene in a lower cumulate layer and by evolution of the liquid composition during downward growth of spinifex-textured rocks within the upper crust. The magmas that erupted to form Fred's Flow had variable compositions, ranging from 12 to 20 wt% MgO, and phenocryst contents from 0 to 20 vol%. The flow was emplaced by two pulses. A first ~20-m-thick pulse was followed by another more voluminous but less magnesian pulse that inflated the flow to its present 120 m thickness. Following the second pulse, the flow crystallized in a closed system and differentiated into cumulates containing 30-38 wt% MgO and a residual gabbroic layer with only 6 wt% MgO. The Murphy Well Flow, in contrast, has a remarkably uniform composition throughout. It comprises a 20-m-thick upper layer of fine-grained dendritic olivine and 2-5 vol% amygdales, a 110-120 m intermediate layer of olivine porphyry and a 20-30 m basal layer of olivine orthocumulate. Throughout the flow, MgO contents vary little, from only 30 to 33 wt%, except for the slightly more magnesian basal layer (38-40 wt%). The uniform composition of the flow and dendritic olivine habits in the upper 20 m point to rapid cooling of a highly magnesian liquid with a composition like that of the bulk of the flow. Under equilibrium conditions, this liquid should have crystallized olivine with the composition Fo94.9, but the most magnesian composition measured by electron microprobe in samples from the flow is Fo92.9. To explain these features, we propose that the parental liquid contained around 32 wt% MgO and 3 wt% H2O. This liquid degassed during the eruption, creating a supercooled liquid that solidified quickly and crystallized olivine with non-equilibrium textures and compositions.
Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser
NASA Astrophysics Data System (ADS)
Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.
2018-03-01
The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.
NASA Astrophysics Data System (ADS)
Bois-Brochu, Alexandre; Blais, Carl; Goma, Franck Armel Tchitembo; Larouche, Daniel; Boselli, Julien; Brochu, Mathieu
The use of aluminum-lithium alloys in aerospace applications requires a thorough knowledge of how processing and product geometry impact their microstructure, texture and mechanical properties. As with other aluminum alloys, anisotropy of mechanical properties has been related to the formation of deformation textures during thermo-mechanical processes.
Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Jia, Junhong
2015-08-01
Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.
NASA Astrophysics Data System (ADS)
Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu
2015-03-01
In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.
NASA Astrophysics Data System (ADS)
Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun
2015-09-01
In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/ D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/ D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/ D ratio of 3.75. The simulation results showed that the reflectance value for the h/ D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.
Short-Term Effects of Pacifier Texture on NNS in Neurotypical Infants
Oder, Austin L.; Stalling, David L.; Barlow, Steven M.
2013-01-01
The dense representation of trigeminal mechanosensitive afferents in the lip vermilion, anterior tongue, intraoral mucosa, and temporomandibular joint allows the infant's orofacial system to encode a wide range of somatosensory experiences during the critical period associated with feed development. Our understanding of how this complex sensorium processes texture is very limited in adults, and the putative role of texture encoding in the infant is unknown. The purpose of this study was to examine the short-term effects of a novel textured pacifier experience in healthy term infants (N = 28). Nonnutritive suck (NNS) compression pressure waveforms were digitized in real time using a variety of custom-molded textured pacifiers varying in spatial array density of touch domes. MANCOVA, adjusted for postmenstrual age at test and sex, revealed that infants exhibited an increase in NNS burst attempts at the expense of a degraded suck burst structure with the textured pacifiers, suggesting that the suck central pattern generator (sCPG) is significantly disrupted and reorganized by this novel orocutaneous experience. The current findings provide new insight into oromotor control as a function of the oral somatosensory environment in neurotypically developing infants. PMID:23737804
Effect of SiC particle impact nano-texturing on tribological performance of 304L stainless steel
NASA Astrophysics Data System (ADS)
Lorenzo-Martin, C.; Ajayi, O. O.
2014-10-01
Topographical features on sliding contact surfaces are known to have a significant impact on friction and wear. Indeed, various forms of surface texturing are being used to improve and/or control the tribological performance of sliding surfaces. In this paper, the effect of random surface texturing produced by a mechanical impact process is studied for friction and wear behavior of 304L stainless steel (SS) under dry and marginal oil lubrication. The surface processing was applied to 304L SS flat specimens and tested under reciprocating ball-on-flat sliding contact, with a 440C stainless steel ball. Under dry contact, the impact textured surface exhibited two order of magnitude lower wear than the isotropically ground surface of the same material. After 1500 s of sliding and wearing through of the processed surface layer following occurring of scuffing, the impact textured surface underwent a transition in wear and friction behavior. Under marginal oil lubrication, however, no such transition occurred, and the wear for the impact textured surface was consistently two orders of magnitude lower than that for the ground material. Mechanisms for the tribological performance enhancement are proposed.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less
1971-12-01
1. General Principles: 'Statistical Aspect of the Correlation Between Objective and Subjective Measurements of Meat Tenderness', by M. C. Gacula, Jr., J. B. Reaume, K. J. Morgan, and R. L. Luckett 1. General Principles: 'Texture of Semi-Solid Foods: Sensory and Physical Correlates', by W. F. Henry, M. H. Katz, F. J. Pilgrim, and A. T. May 2. Instrumentation and Methodology: 'Measurement of Bread Staling', by W. Morandini and L. Wassermann 2. Instrumentation and Methodology: 'Physical Considerations of the Methods of Consistency Measurement of Butter', by E. Knoop 2. Instrumentation and Methodology: 'Electronic Recording Mixers for the Baking Test', by P. W. Voisey, V. M. Bendelow and H. Miller 2. Instrumentation and Methodology: 'Measurement of the Consistency of Reconstituted Instant Potato Flakes', by P. W. Voisey and P. R. Dean 2. Instrumentation and Methodology: 'The Ottawa Electronic Recording Farinograph', by P. W. Voisey, H. Miller and P. L. Byrne 3. Objective Measurements: A. FOODS: 'The Rheological Properties of Corn Horny Endosperm', by J. R. Hamerle*, R. K. White**, and N. N. Mohsenin*** 3. Objective Measurements: 'Evaluation of Mechanical Properties of Comminuted Sausages by Construction and Analysis of Rheological Model', by St. Tyszkiewicz 3. Objective Measurements: 'Studies on Creep Compliance of Butter', by M. Chwiej 3. Objective Measurements: 'Heat-Induced Milk Gels. II. Preparation of Gels and Measurement of Firmness', by M. Kalab, P. W. Voisey and D. B. Emmons 3. Objective Measurements: 'Rheology of Fresh, Aged and Gamma-Irradiated Egg White', by M. A. Tung, J. F. Richards, B. C. Morrison and E. L. Watson 3. Objective Measurements: 'Retardation of Bread Staling - Practical Experiences', by W. Morandini and L. Wassermann 3. Objective Measurements: B. PHARMACEUTICALS: 'Influence of HLB on Certain Physicochemical Parameters of an O/W Emulsion', by M. Schrenzel 3. Objective Measurements: 'The Rheological Evaluation of Semisolids', by L. H. Block and P. P. Lamy 4. Factors Affecting Texture: 'Effects of Physical and Mechanical Treatments on the Tenderness of the Beef Longissimus', by G. C. Smith, T. C. Arango and Z. L. Carpenter 4. Factors Affecting Texture: 'Histological and Physical Changes in Carrots as Affected by Blanching, Cooking, Freezing, Freeze Drying and Compression', by A. R. Rahman, W. L. Henning and D. E. Westcott 4. Factors Affecting Texture: 'Effects of Physiological Maturity of Beef and Marbling of Rib Steaks on Eating Quality', by H. L. Norris, D. L. Harrison, L. L. Anderson, B. Van Welck and H. J. Tuma 4. Factors Affecting Texture: 'Effect of Ultimate pH Upon the Water-Holding Capacity and Tenderness of Mutton', by P. E. Bouton, P. V. Harris and W. R. Shorthose 4. Factors Affecting Texture: 'The Dilution Coefficient of Butter Serum and the Consistency of Butter', by E. Pijanowski, M. Chwiej, H. Hernik and M. Kurtowicz 4. Factors Affecting Texture: 'Moisture and pH Changes as Criteria of Freshness in Abalone and their Relationship to Texture of the Canned Product', by D. G. James and J. Olley 4. Factors Affecting Texture: 'Effect of Sucrose on Crispness of Explosion-Puffed Apple Pieces Exposed to High Humidities', by E. O. Strolle, J. Cording, Jr., P. E. McDowell, and R. K. Eskew 4. Factors Affecting Texture: 'Effect of Heat Treatment on Viscosity of Yolk', by P. K. Chang, W. D. Powrie and O. Fennema 4. Factors Affecting Texture: 'Protein Quality and Quantity: A Rheological Assessment of the Relative Importance in Breadmaking', by T. Webb, P. W. Heaps, and J. B. M. Coppock 4. Factors Affecting Texture: 'Bread Staling. 1. Experimental Study', by E. M. A. Willhoft 4. Factors Affecting Texture: 'Bread Staling. II. Theoretical Study', by E. M. A. Willhoft.
Robol, Valentina; Grassi, Massimo; Casco, Clara
2013-08-09
Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G.
2011-10-01
Throughout its history, Colima Volcano has experienced numerous partial edifice collapses with associated emplacement of debris avalanche deposits of contrasting volume, morphology and texture. A detailed stratigraphic study in the south-eastern sector of the volcano allowed the recognition of two debris avalanche deposits, named San Marcos (> 28,000 cal yr BP, V = ~ 1.3 km 3) and Tonila (15,000-16,000 cal yr BP, V = ~ 1 km 3 ). This work sheds light on the pre-failure conditions of the volcano based primarily on a detailed textural study of debris avalanche deposits and their associated pyroclastic and volcaniclastic successions. Furthermore, we show how the climate at the time of the Tonila collapse influenced the failure mechanisms. The > 28,000 cal yr BP San Marcos collapse was promoted by edifice steep flanks and ongoing tectonic and volcanotectonic deformation, and was followed by a magmatic eruption that emplaced pyroclastic flow deposits. In contrast, the Tonila failure occurred just after the Last Glacial Maximum (22,000-18,000 cal BP) and, in addition to the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) it shows a hybrid facies characterized by debris avalanche blocks embedded in a finer, homogenous and partially cemented matrix, a texture more characteristic of debris flow deposits. The Tonila debris avalanche is directly overlain by a 7-m thick hydromagmatic pyroclastic succession. Massive debris flow deposits, often more than 10 m thick and containing large amounts of tree trunk logs, represent the top unit in the succession. Fluvial deposits also occur throughout all successions; these represent periods of highly localized stream reworking. All these lines of evidence point to the presence of water in the edifice prior to the Tonila failure, suggesting it may have been a weakening factor. The Tonila failure appears to represent an anomalous event related to the particular climatic conditions at the time of the collapse. The presence of extensive water at the onset of deglaciation modified the mobility of the debris avalanche, and led to the formation of a thick sequence of debris flows. The possibility that such a combination of events can occur, and that their probability is likely to increase during the rainy season, should be taken into consideration when evaluating hazards associated with future collapses at Colima volcano.
NASA Astrophysics Data System (ADS)
Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.
2017-07-01
The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.
Changing the texture of footwear can alter gait patterns.
Nurse, Matthew A; Hulliger, Manuel; Wakeling, James M; Nigg, Benno M; Stefanyshyn, Darren J
2005-10-01
The foot provides an important source of afferent feedback for balance and locomotion. Sensory feedback from the feet can be altered by standing or walking on different surfaces. The purpose was to determine the effects of textured footwear on lower extremity muscle activity, limb kinematics, and joint kinetics while walking. Three-dimensional kinematics and kinetics, as well as muscle EMG, were collected as subjects walked with a smooth and textured shoe insert. Muscle activity was analyzed using a wavelet technique. The textured shoe insert caused a significant reduction in both soleus and tibialis anterior intensity during periods when these muscles are most active. Furthermore, the changes in muscle activity were only seen in the low frequency content of the EMG signal. The foot was significantly more plantar flexed at heel strike with the textured inserts. Small changes were also seen in vertical ground reaction forces and joint moments. It was assumed that the changes in gait patterns were due to a change in sensory feedback caused by the textured shoe insert. The possibilities of altered sensory feedback with footwear are discussed. Sensory feedback from the feet may affect specific motor unit pools during different activities. Changing the texture, without changing the geometry, of a shoe insert can alter muscle activity during walking. This may be useful in the prescription of footwear interventions and suggests that footwear may have sensory as well as mechanical effects.
Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron
NASA Astrophysics Data System (ADS)
Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.
2005-01-01
Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.
De Angelis, Sarah; Larsen, Jessica D; Coombs, Michelle L.
2013-01-01
Variations in the geochemistry and texture of amphibole phenocrysts erupted from Augustine Volcano in 2006 provide new insights into pre- and syn-eruptive magma storage and mixing. Amphiboles are rare but present in all magma compositions (low- to high-silica andesites) from the 3 month long eruption. Unzoned magnesiohornblende in the high- and low-silica andesites exhibit limited compositional variability, relatively high SiO2 (up to 49·7 wt %), and relatively low Al2O3 (< 11·1 wt %). Intermediate-silica andesites and quenched mafic enclaves contain amphiboles that vary in composition (e.g. SiO2 40·8–48·9 wt %, Al2O3 6·52–15·2 wt %) and classification (magnesiohornblende–magnesiohastingsite–tschermakite). Compositional variation in amphibole is primarily controlled by temperature-dependent substitutions. Both high- and low-silica andesites represent remnant magmas that were stored in the shallow crust at 4–8 km depth, remaining distinct owing to a complex subsurface plumbing system. Intermediate-silica andesites and quenched mafic inclusions represent pre-eruptive hybrids of resident high- and low-silica andesite magmas and an intruding basalt. Amphiboles in explosive phase high-silica andesites are largely euhedral and unreacted, consistent with the high magma flux rates from depth during this phase (up to 13 800 m3 s–1). Phenocrysts from the other lithologies have reaction rims that range from 1 to >1000 μm in thickness. Reaction rim microlite sizes correlate with reaction rim thicknesses. Reaction rims <50 μm thick contain microlites 1–10 μm in length whereas reaction rims >80 μm thick contain microlites 10–100 μm in length. Differentiating between heating- and decompression-induced amphibole reaction rim formation is problematic because of a lack of experimental constraints. We attempt a new approach to assessing reaction rim formation, based on a kinetic theory of crystal nucleation and growth, in which the differences in reaction rim textures represent different degrees of amphibole disequilibrium. Large crystals and low number densities suggest relatively lower levels of disequilibrium resulting in growth-dominated crystallization. Smaller crystals and larger number densities are indicative of higher nucleation rates and a high driving force.
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.
Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha
2014-06-01
Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.
Effect of mahaleb on cookie quality
USDA-ARS?s Scientific Manuscript database
Mahaleb seed has a public use in many areas including bakery industry, especially to soft wheat products to obtain a special odor and texture. In this study, the effect of mahaleb on the cookie quality was investigated in various concentrations. The cookies were evaluated for physical, textural an...
Developments and trends in fruit bar production and characterization.
Orrego, C E; Salgado, N; Botero, C A
2014-01-01
Fruits serve as a source of energy, vitamins, minerals, and dietary fiber. One of the barriers in increasing fruit and vegetables consumption is time required to prepare them. Overall, fruit bars have a far greater nutritional value than the fresh fruits because all nutrients are concentrated and, therefore, would be a convenience food assortment to benefit from the health benefits of fruits. The consumers prefer fruit bars that are more tasted followed by proper textural features that could be obtained by establishing the equilibrium of ingredients, the proper choosing of manufacturing stages and the control of the product final moisture content. Fruit bar preparations may include a mixture of pulps, fresh or dried fruit, sugar, binders, and a variety of minor ingredients. Additionally to the conventional steps of manufacturing (pulping, homogenizing, heating, concentrating, and drying) there have been proposed the use of gelled fruit matrices, dried gels or sponges, and extruders as new trends for processing fruit bars. Different single-type dehydration or combined methods include, in order of increasing process time, air-infrared, vacuum and vacuum-microwave drying convective-solar drying, convective drying, and freeze drying are also suggested as alternative to solar traditional drying stage. The dehydration methods that use vacuum exhibited not only higher retention of antioxidants but also better color, texture, and rehydration capacity. Antioxidant activity resulting from the presence of phenolic compounds in the bars is well established. Besides this, fruit bars are also important sources of carbohydrates and minerals. Given the wide range of bioactive factors in fresh fruits that are preserved in fruit bars, it is plausible that their uptake consumption have a positive effect in reducing the risk of many diseases.
Toward an understanding of disequilibrium dihedral angles in mafic rocks
Holness, Marian B.; Humphreys, Madeleine C.S.; Sides, Rachel; Helz, Rosalind T.; Tegner, Christian
2012-01-01
The median dihedral angle at clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109˚ {plus minus} 2˚). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. Firstly, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three-grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub-solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt-filled, resulting in an initial value of Θcpp of 78˚, rather than 60˚ which would be expected if all melt-filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three-grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt-free rocks by late-stage evolved liquids (the metasomatic process). Modification of Θcpp by sub-solidus textural equilibration (the metamorphic process) is only important for fine-grained mafic rocks such as chilled margins and intra-plutonic chill zones. In coarse-grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centres of oikocrysts, associated with rounding of chadacrysts.
Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou
2016-01-01
Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.
Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou
2016-01-01
Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658
Computer aided diagnosis based on medical image processing and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.
2006-12-01
Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces
Grewal, H. S.; Nam Kim, Hong; Cho, Il-Joo; Yoon, Eui-Sung
2015-01-01
We investigate the role of viscous forces on the wetting of hydrophobic, semi-hydrophobic, and hydrophilic textured surfaces as second-order effects. We show that during the initial contact, the transition from inertia- to viscous-dominant regime occurs regardless of their surface topography and chemistry. Furthermore, we demonstrate the effect of viscosity on the apparent contact angle under quasi-static conditions by modulating the ratio of a water/glycerol mixture and show the effect of viscosity, especially on the semi-hydrophobic and hydrophobic textured substrates. The reason why the viscous force does not affect the apparent contact angle of the hydrophilic surface is explained based on the relationship between the disjoining pressure and surface chemistry. We further propose a wetting model that can predict the apparent contact angle of a liquid drop on a textured substrate by incorporating a viscous force component in the force balance equation. This model can predict apparent contact angles on semi-hydrophobic and hydrophobic textured surfaces exhibiting Wenzel state more accurately than the Wenzel model, indicating the importance of viscous forces in determining the apparent contact angle. The modified model can be applied for estimating the wetting properties of arbitrary engineered surfaces. PMID:26390958
2013-01-01
Interface coupling-induced and interface coupling-enhanced magnetoimpedance (MI) effect in heterogeneous nanobrush has been investigated. The nanobrush is composed of Fe25Ni75 nanofilm and textured hexagonal close-packed cobalt nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The design of this structure is based on the vortex distribution of magnetic moments in thin film, which can be induced by the exchange coupling effect at the interfaces of the nanobrush. The texture of nanowires plays an important role in the MI effect of the nanobrush, which is regulated by controlling the pH values and temperatures of the deposition process. The ‘parallel’ and ‘perpendicular’ coupling models were used to explain the different MI results of the nanobrush with cobalt nanowires, which have (100) and (002) textures, respectively. The optimized MI effect of the nanobrush brought by (100) nanowires can be magnified by 300% with more than 80%/Oe magnetic sensitivity at a low frequency, which has great application potentials in low-frequency MI sensors. PMID:24207011
NASA Astrophysics Data System (ADS)
Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao
2016-11-01
Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.
Molecular Basis of Substrate Recognition and Degradation by Human Presequence Protease
King, John V.; Liang, Wenguang G.; Scherpelz, Kathryn P.; Schilling, Alexander B.; Meredith, Stephen C.; Tang, Wei-Jen
2014-01-01
Summary Human Presequence Protease (hPreP) is an M16 metalloprotease localized in mitochondria. There, hPreP facilitates proteostasis by utilizing a ∼13,300Å3 catalytic chamber to degrade a diverse array of potentially toxic peptides, including mitochondrial presequences and amyloid-β (Aβ), the latter of which contributes to Alzheimer's disease pathogenesis. Here we report crystal structures for hPreP alone and in complex with Aβ, which show that hPreP uses size-exclusion and charge complementation for substrate recognition. These structures also reveal hPreP-specific features that permit a diverse array of peptides, with distinct distributions of charged and hydrophobic residues, to be specifically captured, cleaved, and their amyloidogenic features destroyed. SAXS analysis demonstrates that hPreP in solution exists in dynamic equilibrium between closed and open states, with the former being preferred. Furthermore, Aβ binding induces the closed state and hPreP dimerization. Together, these data reveal the molecular basis for flexible yet specific substrate recognition and degradation by hPreP. PMID:24931469
Kinetics of Acid Reactions: Making Sense of Associated Concepts
ERIC Educational Resources Information Center
Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro
2010-01-01
In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.
2013-05-01
Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Effects of long-term stimulation of textured insoles on postural control in health elderly.
Annino, Giuseppe; Palazzo, Francesco; Alwardat, Mohammad S; Manzi, Vincenzo; Lebone, Pietro; Tancredi, Virginia; Sinibaldi Salimei, Paola; Caronti, Alfio; Panzarino, Michele; Padua, Elvira
2018-04-01
The aim of this study was to confirm the effects of long term (chronic) stimulating surface (textured insole) on body balance of elderly people. Twenty-four healthy elderly individuals were randomly distributed in two groups: control and experimental (67.75±6.04 years, 74.55±12.14 kg, 163.7±8.55 cm, 27.75±3.04 kg/m2). Over one month, control group (CG) used smooth insoles and the experimental group (ExG) used textured insoles every day. Velocity net (Vnet), anteroposterior (VA/P), mediolateral (VM/L) and sway path of CoP were assessed in different eye conditions before and after the experimental procedure. A mixed between-within subject ANOVA was conducted to assess the impact of soft and textured insoles and two visual conditions (vision vs. no vision) across two time periods (α≤0.05). The results showed any statistical difference between groups in each parameter assessed in this study. CoP, Vnet and VM/L in the experimental group showed a statistically significant effect of textured insoles only without vision (CoP: P=0.002; η2=0.35), Vnet P=0.02; η2=0.24, VM/L P=0.04; η2=0.177) whereas VA/P showed no statistically significant effect in the same group and condition. There was no significant effect in Vnet, VA/P, VM/L and COP in control group that used smooth insole for both eye conditions. The results confirm that postural stability improved in healthy elderly individuals, increasing somatosensory information's from feet plantar mechanoreceptors. Long term stimulation with textured insoles decreased CoP, Vnet and VM/L with eyes closed.
Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China
NASA Astrophysics Data System (ADS)
Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang
2009-12-01
The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow intrusion of mixed melts that contained phenocrysts and GAs, both of which formed in a deeper transitional magma chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.
Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...
2017-10-23
Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.
Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images
NASA Astrophysics Data System (ADS)
Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan
2017-08-01
Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.
NASA Astrophysics Data System (ADS)
Khodaverdi zahraee, N.; Rastiveis, H.
2017-09-01
Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme
2000-01-01
Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...
EMPIRE: Nuclear Reaction Model Code System for Data Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.; Capote, R.; Carlson, B.V.
EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approachmore » (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6 formatted files using the accompanying code EMPEND and completed with neutron resonances extracted from the existing evaluations. The package contains the full EXFOR (CSISRS) library of experimental reaction data that are automatically retrieved during the calculations. Publication quality graphs can be obtained using the powerful and flexible plotting package ZVView. The graphic user interface, written in Tcl/Tk, provides for easy operation of the system. This paper describes the capabilities of the code, outlines physical models and indicates parameter libraries used by EMPIRE to predict reaction cross sections and spectra, mainly for nucleon-induced reactions. Selected applications of EMPIRE are discussed, the most important being an extensive use of the code in evaluations of neutron reactions for the new US library ENDF/B-VII.0. Future extensions of the system are outlined, including neutron resonance module as well as capabilities of generating covariances, using both KALMAN and Monte-Carlo methods, that are still being advanced and refined.« less
Nondestructive evaluation of loading and fatigue effects in Haynes(R) 230(R) alloy
NASA Astrophysics Data System (ADS)
Saleh, Tarik Adel
Nondestructive evaluation is a useful method for studying the effects of deformation and fatigue. In this dissertation I employed neutron and X-ray diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared thermography to study the effects of deformation and fatigue on two different nickel based superalloys. The alloys studied were HAYNES 230, a solid solution strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 a similar single phase alloy. Using neutron and X-ray diffraction, the deformation behavior of HAYNES 230 was revealed to be composite-like during compression, but unusual in tension, where the carbides provide strengthening until just after the macroscopic yield strength and then they begin to debond and crack, creating a tension-compression asymmetry that is revealed clearly by in situ diffraction. In fatigue of HAYNES 230, the hkl elastic strains changed very little in tension-tension fatigue. However, in situ tension-compression studies showed large changes over the initial stages of fatigue. The HAYNES 230 samples studies had two distinct starting textures, measured by neutron diffraction. Some samples were texture free initially and deformed in tension and compression to fiber textures. Other samples started with a bimodal texture due to cross-rolling and incomplete annealing. The final texture of these bimodal samples is shown through modeling to be a superposition of the initial texture and typical FCC deformation mechanisms. The texture-free samples deformed significantly more macroscopically and in internal elastic strains than the samples with the cross-rolled texture. In contrast to the relative insensitivity of neutron diffraction to the effects of tension-tension fatigue, NRUS revealed large differences between as-received and progressively fatigued samples. This showed that microcracking and void formation are the primary mechanisms responsible for fatigue damage in tension-tension fatigue. NRUS is shown to be a useful complimentary technique to neutron diffraction to evaluate fatigue damage. Finally, infrared thermography is used to show temperature changes over the course of fatigue in HASTELLOY C-2000. Four stages of temperature are shown over the course of a single fatigue test. Both empirical and theoretical relationships between steady state temperature and fatigue life are developed and presented.
Mechanical properties of ion-beam-textured surgical implant alloys
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1977-01-01
An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
Kinoshita, Manabu; Sakai, Mio; Arita, Hideyuki; Shofuda, Tomoko; Chiba, Yasuyoshi; Kagawa, Naoki; Watanabe, Yoshiyuki; Hashimoto, Naoya; Fujimoto, Yasunori; Yoshimine, Toshiki; Nakanishi, Katsuyuki; Kanemura, Yonehiro
2016-01-01
Reports have suggested that tumor textures presented on T2-weighted images correlate with the genetic status of glioma. Therefore, development of an image analyzing framework that is capable of objective and high throughput image texture analysis for large scale image data collection is needed. The current study aimed to address the development of such a framework by introducing two novel parameters for image textures on T2-weighted images, i.e., Shannon entropy and Prewitt filtering. Twenty-two WHO grade 2 and 28 grade 3 glioma patients were collected whose pre-surgical MRI and IDH1 mutation status were available. Heterogeneous lesions showed statistically higher Shannon entropy than homogenous lesions (p = 0.006) and ROC curve analysis proved that Shannon entropy on T2WI was a reliable indicator for discrimination of homogenous and heterogeneous lesions (p = 0.015, AUC = 0.73). Lesions with well-defined borders exhibited statistically higher Edge mean and Edge median values using Prewitt filtering than those with vague lesion borders (p = 0.0003 and p = 0.0005 respectively). ROC curve analysis also proved that both Edge mean and median values were promising indicators for discrimination of lesions with vague and well defined borders and both Edge mean and median values performed in a comparable manner (p = 0.0002, AUC = 0.81 and p < 0.0001, AUC = 0.83, respectively). Finally, IDH1 wild type gliomas showed statistically lower Shannon entropy on T2WI than IDH1 mutated gliomas (p = 0.007) but no difference was observed between IDH1 wild type and mutated gliomas in Edge median values using Prewitt filtering. The current study introduced two image metrics that reflect lesion texture described on T2WI. These two metrics were validated by readings of a neuro-radiologist who was blinded to the results. This observation will facilitate further use of this technique in future large scale image analysis of glioma.
Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N
2015-09-01
The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.
Textural evolution of partially-molten planetary materials in microgravity
NASA Technical Reports Server (NTRS)
Watson, E. B.
1987-01-01
Recent Earth-based experiments examining the textural evolution of partially-molten rocks have revealed two important ways in which surface energy considerations affect magma. An initial experimental program addressing surface-energy effects on partially-molten materials in microgravity would involve simple, isothermal treatment of natural samples (meteorites, perioditic komatiite) at preselected temperatures in the melting range. Textural evolution would be assessed by time studies in which the only experiment variable would be run duration. Textural characterization of each sample would be done by quenching, recover, and sectioning for generally later, computer-aided interpretation of features.
Unravelling the depositional origins and diagenetic alteration of carbonate breccias
NASA Astrophysics Data System (ADS)
Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin
2017-07-01
Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking and post-brecciation diagenesis. The diagenetic-, and to an extent depositional- and clast-characteristics of the Batu Gading deposits are diagnostic of breccia origins. The predominance of: early and pervasive stabilisation of calcitic components, pervasive compaction resulting in a fitted texture, and paucity of meteoric dissolution or cementation effects are collectively all indicators of slope deposition and lithification. These features are comparable with other regional and global examples of submarine slope breccias, and in particular those also from syntectonic settings (Wannier, 2009). The results of this study, along with regional analogues, suggest the potential for reworked carbonate debris in slope settings to be a viable way of investigating carbonate platform variability and their subsequent alteration in the absence of preserved platform top or margin deposits.
NASA Astrophysics Data System (ADS)
Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.
2015-12-01
Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.
Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.
Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi
2013-01-01
Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.
NASA Astrophysics Data System (ADS)
Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan
2018-03-01
A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly < {101} > for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.