NASA Astrophysics Data System (ADS)
Vongehr, Sascha; Tang, Shaochun
2016-06-01
Research on hollow nanoshells has, for years, claimed to involve free, pre-existing nanobubbles as soft templates. It is a challenge to demonstrate this due to the difficulty of in situ observation during solution-based reactions. We show that no available free-bubble theory can describe the mysterious behavior of the bubble number density n. A new mechanism of collision coalescence of bubble-particle systems is suggested to form hollow nanoshells. By approximating relative velocity as ˜R -z (R is bubble radius), numerical simulations can reproduce the counterintuitive observations in the regime 1 < z < 2. We discuss the mechanism based on successful synthesis of grain-monolayer thin, fractal-like incomplete, multi-metallic nanoshells with superior catalytic activity. The behaviors of n, R, and shell thickness h are closely reproduced by z = 1.6.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Xianren; Cao, Dapeng
2018-05-01
Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.
Time-evolving bubbles in two-dimensional stokes flow
NASA Technical Reports Server (NTRS)
Tanveer, Saleh; Vasconcelos, Giovani L.
1994-01-01
A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.
NASA Technical Reports Server (NTRS)
Tanveer, Saleh
1989-01-01
An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. In the first part, the bubble velocity U relative to the fluid velocity at infinity is determined for small surface tension T by determining transcendentally small correction to the asymptotic series solution. It is found that for any relative bubble velocity U in the interval (U(c),2), solutions exist at a countably infinite set of values of T (which has zero as its limit point) corresponding to the different branches of bubble solutions. U(c) decreases monotonically from 2 to 1 as the bubble area increases from 0 to infinity. However, for a bubble of arbitrarily given size, as T approaches 0, solution exists on any given branch with relative bubble velocity U satisfying the relation 2-U = cT to the 2/3 power, where c depends on the branch but is independent of the bubble area. The analytical evidence further suggests that there are no solutions for U greater than 2. These results are in agreement with earlier analytical results for a finger. In Part 2, an analytic theory is presented for the determination of the linear stability of the bubble in the limit of zero surface tension. Only the solution branch corresponding to the largest possible U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.
The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex
NASA Technical Reports Server (NTRS)
Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2002-01-01
Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.
Multiple bubbles in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasconcelos, G.L.
A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with a constant velocity [ital U] in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence of these solutions might explain some of the complex behavior observed in recent experiments on rising bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this case, it is shown that solutions with an arbitrary bubble velocity [ital U][gt][ital V], where [ital V] is the fluid velocity at infinity, can inmore » general be obtained from a simple transformation of the solutions for [ital U]=2[ital V].« less
The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell
2017-01-01
New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry. PMID:28588410
New solutions for steady bubbles in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanveer, S.
1987-03-01
Exact solutions are presented for steadily moving bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area, both the speed of the bubble and the distance of its centroid from the channel centerline remain arbitrary when surface tension is ignored. However, numerical evidence suggests that this twofold arbitrariness is removed by the effect of surface tension, i.e., for given bubble area and surface tension, solutions exist only when the bubble velocity and the centroid distance from the channel centerline attain one or more isolated values. From a limitedmore » numerical search, no nonsymmetric solutions could be found; however, a branch of symmetric bubble solutions that was not found in earlier work was found. This branch corresponds to one of the Romero-Vanden-Broeck branch of finger solutions when the bubble size is large. A new procedure for numerical calculations of bubble solutions in the presence of surface tension is presented and is found to work very well for reasonably large bubbles, unlike the previous method of Tanveer (Phys. Fluids 29, 3537 (1986)). The precise power law dependence of bubble velocity on surface tension for small surface tension is explored for bubbles of different area. Agreement is noted with recent analytical results for a finger.« less
Effect of carbon and alloying solute atoms on helium behaviors in α-Fe
NASA Astrophysics Data System (ADS)
Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2017-02-01
Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny, E-mail: danny-perez@lanl.gov; Sandoval, Luis; Voter, Arthur F.
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. But, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We also show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. Finally, we uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; ...
2016-05-26
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. But, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We also show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. Finally, we uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
NASA Astrophysics Data System (ADS)
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; Voter, Arthur F.
2016-05-01
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.
Clinical Evaluation of Different Pre-impression Preparation Procedures of Dental Arch
Arora, Nitin; Arora, Monika; Gupta, Naveen; Agarwal, Manisha; Verma, Rohit; Rathod, Pankaj
2015-01-01
Background: Bubbles and voids on the occlusal surface impede the actual intercuspation and pre-impression preparation aims to reduce the incidence of air bubbles and voids as well as influences the quality of occlusal reproduction and actual clinical intercuspation in the articulator. The study was undertaken to determine the influence of different pre-impression preparation procedures of antagonistic dental arch on the quality of the occlusal reproduction of the teeth in irreversible hydrocolloid impressions and to determine most reliable pre-impression preparation method to reduce the incidence of air bubbles. Materials and Methods: A total of 20 subjects were selected having full complement of mandibular teeth from second molar to second molar with well demarcated cusp height. 200 impressions were made with irreversible hydrocolloid material. The impressions were divided into five groups of 40 impressions each and each group had one specific type of pre-impression preparation. All the impressions were poured in die stone. A stereomicroscope with graduated eyepiece was used to count the number of bubbles on the occlusal surface of premolars and molars. The mean and standard deviations were calculated for each group. Mann–Whitney U-test was applied to find the significant difference between different groups. Results: Least bubbles were found in the group in which oral cavity was dried by saliva ejector and fluid hydrocolloid was finger painted onto the occlusal surfaces immediately before the placement of impression tray in the mouth. Conclusion: It was found that finger painting the tooth surfaces with fluid hydrocolloid immediately before the placement of loaded impression tray in the mouth was the most reliable method. The oral cavity can be cleared more easily of excess saliva by vacuum suction rather than by use of an astringent solution. PMID:26229376
Clinical Evaluation of Different Pre-impression Preparation Procedures of Dental Arch.
Arora, Nitin; Arora, Monika; Gupta, Naveen; Agarwal, Manisha; Verma, Rohit; Rathod, Pankaj
2015-07-01
Bubbles and voids on the occlusal surface impede the actual intercuspation and pre-impression preparation aims to reduce the incidence of air bubbles and voids as well as influences the quality of occlusal reproduction and actual clinical intercuspation in the articulator. The study was undertaken to determine the influence of different pre-impression preparation procedures of antagonistic dental arch on the quality of the occlusal reproduction of the teeth in irreversible hydrocolloid impressions and to determine most reliable pre-impression preparation method to reduce the incidence of air bubbles. A total of 20 subjects were selected having full complement of mandibular teeth from second molar to second molar with well demarcated cusp height. 200 impressions were made with irreversible hydrocolloid material. The impressions were divided into five groups of 40 impressions each and each group had one specific type of pre-impression preparation. All the impressions were poured in die stone. A stereomicroscope with graduated eyepiece was used to count the number of bubbles on the occlusal surface of premolars and molars. The mean and standard deviations were calculated for each group. Mann-Whitney U-test was applied to find the significant difference between different groups. Least bubbles were found in the group in which oral cavity was dried by saliva ejector and fluid hydrocolloid was finger painted onto the occlusal surfaces immediately before the placement of impression tray in the mouth. It was found that finger painting the tooth surfaces with fluid hydrocolloid immediately before the placement of loaded impression tray in the mouth was the most reliable method. The oral cavity can be cleared more easily of excess saliva by vacuum suction rather than by use of an astringent solution.
Préve, Deison; Saa, Alberto
2015-10-01
Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance.
NASA Astrophysics Data System (ADS)
Préve, Deison; Saa, Alberto
2015-10-01
Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.
Influence of electrical double-layer interaction on coal flotation.
Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M
2002-06-15
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.
1D gasdynamics of wind-blown bubbles: effects of thermal conduction
NASA Astrophysics Data System (ADS)
Zhekov, S. A.; Myasnikov, A. V.
1998-03-01
Gasdynamic properties of the wind-blown bubbles are considered in the framework of the 1D spherically symmetric flow. The model self-consistently takes into account the optically-thin-plasma cooling and the electron thermal conduction. The numerical method used in calculations is described in details. A comparison with the existing self-similar solution is provided. It is shown that the self-similar solution gives a relatively well representation of the hot-bubble interior and could be used for estimations of some of its spectral characteristics. However, it is also shown that the thermal conduction in combination with the cooling may cause additional multiple shocks to appear in the interaction region and the analysis of the nature of these shocks is provided.
Dissolution of multicomponent bubbles. [gases in glass melts
NASA Technical Reports Server (NTRS)
Weinberg, M. C.; Subramanian, R. S.
1980-01-01
The behavior of an isolated, stationary, multicomponent gas bubble in a glassmelt containing several dissolved gases is considered. The relevant mass-transport equations are formulated and calculations are performed for the case of two diffusing gases using a quasi-stationary model and a numerical solution of the exact mass-transfer equations. The results obtained from these two approaches are compared. The factors which govern the dissolution or growth of a bubble are thermodynamic and kinetic in origin. The tendency of a bubble to grow or shrink at long times is controlled by departure from overall equilibrium, whereas the short-time bubble dynamics may be dominated by kinetic effects. As a result of the existence of these dual influences, maxima and/or minima occur in the functional dependence of the bubble radius on time.
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel
2009-02-03
Traditionally, surfactant bulk solutions in which dynamic surface tension (DST) measurements are conducted using the pendant-bubble apparatus are assumed to be quiescent. Consequently, the transport of surfactant molecules in the bulk solution is often modeled as being purely diffusive when analyzing the experimental pendant-bubble DST data. In this Article, we analyze the experimental pendant-bubble DST data of the alkyl poly (ethylene oxide) nonionic surfactants, C12E4 and C12E6, and demonstrate that both surfactants exhibit "superdiffusive" adsorption kinetics behavior with characteristics that challenge the traditional assumption of a quiescent surfactant bulk solution. In other words, the observed superdiffusive adsorption behavior points to the possible existence of convection currents in the surfactant bulk solution. The analysis presented here involves the following steps: (1) constructing an adsorption kinetics model that corresponds to the fastest rate at which surfactant molecules adsorb onto the actual pendant-bubble surface from a quiescent solution, (2) predicting the DST behaviors of C12E4 and C12E6 at several surfactant bulk solution concentrations using the model constructed in step 1, and (3) comparing the predicted DST profiles with the experimental DST profiles. This comparison reveals systematic deviations for both C12E4 and C12E6 with the following characteristics: (a) the experimental DST profiles exhibit adsorption kinetics behavior, which is faster than the predicted fastest rate of surfactant adsorption from a quiescent surfactant bulk solution at time scales greater than 100 s, and (b) the experimental DST profiles and the predicted DST behaviors approach the same equilibrium surface tension values. Characteristic (b) indicates that the cause of the observed systematic deviations may be associated with the adsorption kinetics mechanism adopted in the model used rather than with the equilibrium behavior. Characteristic (a) indicates that the actual surfactant bulk solution in which the DST measurement was conducted, most likely, cannot be considered to be quiescent at time scales greater than 100 s. Accordingly, the observed superdiffusive adsorption behavior is interpreted as resulting from convection currents present in a nonquiescent surfactant bulk solution. Convection currents accelerate the surfactant adsorption process by increasing the rate of surfactant transport in the bulk solution. The systematic nature of the deviations observed between the predicted DST profiles and the experimental DST behavior for C12E4 and C12E6 suggests that the nonquiescent nature of the surfactant bulk solution may be intrinsic to the experimental pendant-bubble DST measurement approach. To validate this possibility, we identified generic features in the experimental DST data when DST measurements are conducted in a nonquiescent surfactant bulk solution, and the DST measurements are analyzed assuming that the surfactant bulk solution is quiescent. An examination of the DST literature reveals that these identified generic features are quite general and are observed in the experimental DST data of several other surfactants (decanol, nonanol, C10E8, C14E8, C12E8, and C10E4) measured using the pendant-bubble apparatus.
Nanobubbles in confined solution: Generation, contact angle, and stability.
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-14
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Nanobubbles in confined solution: Generation, contact angle, and stability
NASA Astrophysics Data System (ADS)
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-01
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Enhancements of Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, W. J.
2000-01-01
This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.
DNA denaturation bubbles: free-energy landscape and nucleation/closure rates.
Sicard, François; Destainville, Nicolas; Manghi, Manoel
2015-01-21
The issue of the nucleation and slow closure mechanisms of non-superhelical stress-induced denaturation bubbles in DNA is tackled using coarse-grained MetaDynamics and Brownian simulations. A minimal mesoscopic model is used where the double helix is made of two interacting bead-spring rotating strands with a prescribed torsional modulus in the duplex state. We demonstrate that timescales for the nucleation (respectively, closure) of an approximately 10 base-pair bubble, in agreement with experiments, are associated with the crossing of a free-energy barrier of 22 kBT (respectively, 13 kBT) at room temperature T. MetaDynamics allows us to reconstruct accurately the free-energy landscape, to show that the free-energy barriers come from the difference in torsional energy between the bubble and duplex states, and thus to highlight the limiting step, a collective twisting, that controls the nucleation/closure mechanism, and to access opening time scales on the millisecond range. Contrary to small breathing bubbles, those more than 4 base-pair bubbles are of biological relevance, for example, when a pre-existing state of denaturation is required by specific DNA-binding proteins.
Isotopic fractionation of volatile species during bubble growth in magmas
NASA Astrophysics Data System (ADS)
Watson, E. B.
2016-12-01
Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.
Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G
2016-07-01
Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
Amoruso, Irene; Bertoncello, Chiara; Caravello, Gianumberto; Giaccone, Valerio; Baldovin, Tatjana
2015-11-01
In 2012 some children developed sepsis after playing together with a soap bubble toy. Microbiological testing revealed heavy contamination of the soap solution, which reasonably represented the vehicle of infection. We investigated the issue with a multidisciplinary approach: review of toy safety legislation; microbiological testing of additional samples; query of the RAPEX database for non-compliant soap bubbles; identification of major manufacturing districts. Microbiological contamination of industrial soap bubbles was widespread. Sixty-three notifications of batches contaminated by environmental microorganisms and opportunistic pathogens had been reported. The Chinese had a virtual monopoly of the soap bubble market. We identified two main manufacturing districts in Guangdong Province, both notable for degradation of their water resources. The use of untreated water for the industrial production of soap bubbles may explain the bacterial contamination. Existing legislation provides an unsatisfactory approach for managing microbiological hazards in sensitive toy categories and for identifying responsible parties in import and export of the products.
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
Infinite stream of Hele--Shaw bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, D.; Tanveer, S.
1991-03-01
Exact solutions are presented for a steady stream of bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area and distance between bubbles, the speed of the bubble remains arbitrary when surface tension is neglected. However, numerical and analytical evidence indicates that this arbitrariness is removed by the effect of surface tension. The branch of solutions that corresponds to the McLean--Saffman finger solution were primarily studied. A dramatic increase was observed in bubble speeds when the distance between bubbles is on the order of a bubble diameter, whichmore » may have relevance to experiments done by Maxworthy (J. Fluid Mech. {bold 173}, 95 (1986)).« less
NASA Astrophysics Data System (ADS)
Thompson, M.; Drummond, D.; Sullivan, J.; Elliman, R.; Kluth, P.; Kirby, N.; Riley, D.; Corr, C. S.
2018-06-01
To determine the effect of pre-existing defects on helium-vacancy cluster nucleation and growth, tungsten samples were self-implanted with 1 MeV tungsten ions at varying fluences to induce radiation damage, then subsequently exposed to helium plasma in the MAGPIE linear plasma device. Positron annihilation lifetime spectroscopy was performed both immediately after self-implantation, and again after plasma exposure. After self-implantation vacancies clusters were not observed near the sample surface (<30 nm). At greater depths (30–150 nm) vacancy clusters formed, and were found to increase in size with increasing W-ion fluence. After helium plasma exposure in the MAGPIE linear plasma device at ~300 K with a fluence of 1023 He-m‑2, deep (30–150 nm) vacancy clusters showed similar positron lifetimes, while shallow (<30 nm) clusters were not observed. The intensity of positron lifetime signals fell for most samples after plasma exposure, indicating that defects were filling with helium. The absence of shallow clusters indicates that helium requires pre-existing defects in order to drive vacancy cluster growth at 300 K. Further samples that had not been pre-damaged with W-ions were also exposed to helium plasma in MAGPIE across fluences from 1 × 1022 to 1.2 × 1024 He-m‑2. Samples exposed to fluences up to 1 × 1023 He-m‑2 showed no signs of damage. Fluences of 5 × 1023 He-m‑2 and higher showed significant helium-cluster formation within the first 30 nm, with positron lifetimes in the vicinity 0.5–0.6 ns. The sample temperature was significantly higher for these higher fluence exposures (~400 K) due to plasma heating. This higher temperature likely enhanced bubble formation by significantly increasing the rate interstitial helium clusters generate vacancies, which is we suspect is the rate-limiting step for helium-vacancy cluster/bubble nucleation in the absence of pre-existing defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Zheng, Songyan; Puri, Aastha; Li, Jinjiang; Jaiswal, Archana; Adams, Monica
2017-01-01
Micro-flow imaging (MFI) has been used for formulation development for analyzing sub-visible particles. Archimedes, a novel technique for analyzing sub-micron particles, has been considered as an orthogonal method to currently existing techniques. This study utilized these two techniques to investigate the effectiveness of polysorbate (PS-80) in mitigating the particle formation of a therapeutic protein formulation stored in silicone oil-coated pre-filled syringes. The results indicated that PS-80 prevented the formation of both protein and silicone oil particles. In the case of protein particles, PS-80 might involve in the interactions with the hydrophobic patches of protein, air bubbles, and the stressed surfaces of silicone oil-coated pre-filled syringes. Such interactions played a role in mitigating the formation of protein particles. Subsequently, quartz crystal microbalance with dissipation (QCM-D) was utilized to characterize the interactions associated with silicone oil, protein, and PS-80 in the solutions. Based on QCM-D results, we proposed that PS-80 likely formed a layer on the interior surfaces of syringes. As a result, the adsorbed PS-80 might block the leakage of silicone oil from the surfaces to solution so that the silicone oil particles were mitigated at the presence of PS-80. Overall, this study demonstrated the necessary of utilizing these three techniques cooperatively in order to better understand the interfacial role of PS-80 in mitigating the formation of protein and silicone oil particles.
Visualization of the wake behind a sliding bubble
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.
2017-10-01
In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.
Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R
2018-01-09
The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.
NASA Astrophysics Data System (ADS)
Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.
2018-01-01
The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.
NASA Astrophysics Data System (ADS)
Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza
2018-04-01
In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.
How do bubbles grow in a weakly supersaturated solution?
NASA Astrophysics Data System (ADS)
Enriquez, Oscar; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj
2013-11-01
Beer, champagne and soft-drinks are water-based solutions which owe their ``bubbliness'' to a moderate degree of carbon dioxide supersaturation. Bubbles grow sequentially from nucleation sites due to solute concentration gradients and detach due to buoyancy. The leading mass transfer mechanism is diffusion, but the advection caused by the moving surface also plays an important role. Now, what happens at the limit of very weak supersaturation? We take an experimental look at CO2 bubbles growing in water under such a condition. Nucleation sites are provided by hydrophobic micro-cavities on a silicon chip, therefore controlling the number and position of bubbles. Although advection is negligible, measured growth rates for an isolated bubble differ noticeably from a purely diffusive theoretical solution. We can explain the differences as effects of the concentration boundary layer around the bubble. Initially, its interaction with the surface on which the bubble grows slows the process down. Later on, the growth rate is enhanced by buoyancy effects caused by the depletion of the solute in the surroundings of the bubble. When neighboring bubbles are brought into play they interact through their boundary layers, further slowing down their growth rates.
Zhou, Yufeng; Gao, Xiaobin Wilson
2016-09-21
High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.
NASA Astrophysics Data System (ADS)
Zhou, Yufeng; Gao, Xiaobin Wilson
2016-09-01
High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.
Bubble formation in water with addition of a hydrophobic solute.
Okamoto, Ryuichi; Onuki, Akira
2015-07-01
We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.
An assembly of steadily translating bubbles in a Hele-Shaw channel
NASA Astrophysics Data System (ADS)
Crowdy, Darren
2009-01-01
This paper presents new solutions for any finite number of bubbles steadily translating along a Hele-Shaw channel. This constitutes a nonlinear free boundary problem. The solutions can be written down explicitly in terms of a special transcendental function called the Schottky-Klein prime function. This work generalizes the exact solutions for a single bubble in a channel found by Tanveer (1987 Phys. Fluids 30 651-8) as well as the solutions for streams of bubbles aligned along the channel centreline due to Vasconcelos (1994 Phys. Rev. E 50 R3306-9).
Analysis of cavitation bubble dynamics in a liquid
NASA Technical Reports Server (NTRS)
Fontenot, L. L.; Lee, Y. C.
1971-01-01
General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.
NASA Astrophysics Data System (ADS)
Oliveira, Amir Antonio Martins
The existence of large gradients within particles and fast temporal variations in the temperature and species concentration prevents the use of asymptotic approximations for the closure of the volume-averaged, specimen-level formulations. In this case a solution of the particle-level transport problem is needed to complement the specimen-level volume-averaged equations. Here, the use of combined specimen-level and particle-level models for transport in reactive porous media is demonstrated with two examples. For the gasless compacted-powder combustion synthesis, a three-scale model is developed. The specimen-level model is based on the volume-averaged equations for species and temperature. Local thermal equilibrium is assumed and the macroscopic mass diffusion and convection fluxes are neglected. The particle-level model accounts for the interparticle diffusion (i.e., the liquid migration from liquid-rich to liquid-lean regions) and the intraparticle diffusion (i.e., the species mass diffusion within the product layer formed at the surface of the high melting temperature component). It is found that the interparticle diffusion controls the extent of conversion to the final product, the maximum temperature, and to a smaller degree the propagation velocity. The intraparticle diffusion controls the propagation velocity and to a smaller degree the maximum temperature. The initial stages of thermal degradation of EVA from molded specimens is modeled using volume-averaged equations for the species and empirical models for the kinetics of the thermal degradation, the vapor-liquid equilibrium, and the diffusion coefficient of acetic acid in the molten polymer. It is assumed that a bubble forms when the partial pressure of acetic acid exceeds the external ambient pressure. It is found that the removal of acetic acid is characterized by two regimes, a pre-charge dominated regime and a generation dominated regime. For the development of an optimum debinding schedule, the heating rate is modulated to avoid bubbling, while the concentration and temperature follow the bubble-point line for the mixture. The results show a strong dependence on the presence of a pre-charge. It is shown that isolation of the pre-charge effect by using temporary lower heating rates results in an optimum schedule for which the process time is reduced by over 70% when compared to a constant heating rate schedule.
Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.
Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura
2002-10-01
Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.
Meyer, Brian K; Vargas, Diego
2006-01-01
The following study was conducted to determine the effect of different preservatives commonly used in the biopharmaceutical industry on the product-specific bubble point of sterilizing-grade filters when used to filter product processed with different types of tubing. The preservatives tested were 0.25% phenol, m-cresol, and benzyl alcohol. The tubing tested was Sani-Pure (platinum-cured silicone tubing), Versilic (peroxide-cured silicone tubing), C-Flex, Pharmed, and Cole-Parmer (BioPharm silicone tubing). The product-specific bubble point values of sterilizing grade filters were measured after the recirculation of product through the filter and tubing of different types of materials for a total contact time of 15 h. When silicone tubing was used, the post-recirculation product-specific bubble point was suppressed on average 13 psig when compared to the pre- recirculation product-specific bubble point. Suppression was also observed with C-Flex, but to a much lesser extent than with silicone tubing. Suppression was not observed with Pharmed or BioPharm tubing. Alcohol extractions performed on the filters that experienced suppressed bubble points followed by Fourier transform infrared spectroscopy analysis indicated the filters contained poly(dimethylsiloxane). Direct addition of poly(dimethlysiloxane) to solutions filtered through sterilizing-grade filters suppressed the filter bubble points when tested for integrity. Silicone oils most likely reduced the surface tension of the pores in the membrane, resulting in the ability of air (or nitrogen) to pass more freely through the membrane, causing suppressed bubble point test values. The results of these studies indicate that product-specific bubble point of a filter determined with only product may not reflect the true bubble point for preservative-containing products that are recirculated or contacted with certain tubing for 15 h or greater. In addition, tubing material placed in contact with products containing preservatives should be evaluated for impact to the product-specific bubble point when being utilized with sterilizing-grade filters.
NASA Astrophysics Data System (ADS)
Wallace, P.; McCallum, K.; Barnard, C. L. R.; Clement, C.; Marshall, J.; Carroll, J.
2007-03-01
A single bubble was generated and levitated in a high-intensity sound field within a spherical flask excited in its fundamental mode. Under optimum experimental conditions the bubble was observed to emit light in the form of short flashes. This phenomenon is known as single bubble sonoluminescence (SBSL). Using this process, the emitted light from the bubble was monitored when solutions containing fluorescein, quinine and sodium, potassium and copper salts were placed in the cell. The results obtained indicated that reproducible signals related directly to the concentration of the species present in solution could be achieved using single bubble sonoluminescence. The results for the molecular species were compared with those obtained by fluorescence spectroscopy and, in the case of quinine, parallel determinations of concentration in a test solution were performed with consistent results. SBSL signals were also observed to exhibit a linear correlation with the concentration of several trace metal salts introduced to the solution in the measurement cell. However, it was not possible to demonstrate that the SBSL signals were derived from stimulated atomic emission or fluorescence, and it was concluded that the effect may result from an indirect effect involving the bubble excitation mechanism.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
2008-05-06
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
1999-01-01
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.
1999-07-13
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.
A variational approach to the strongly nonlinear regime of the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Yoshikawa, Toshio
The Rayleigh-Taylor instability is the instability of the interface between two fluids of different densities. When a heavy fluid is superposed over a light fluid. small disturbances on the interface develop into a complex form with heavy fluid ``fingers'' and light fluid ``bubbles.'' We propose a variational method for the description of the evolution of the fingers and bubbles in the late stage of the instability. In this method, the fluid region is represented as the image of a time-dependent conformal mapping; the dynamics of the mapping is determined by the least action principle for the Lagrangian. i.e., the kinetic energy minus the potential energy. The evolution of a single finger and bubble is investigated by this method. We first consider a symmetric finger and bubble in a zero gravitational field. We derive an integrable Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. We present a general solution of the system. The solution predicts the linear growth of the finger and the saturation of the bubble growth. It is shown that this solution is asymptotically exact. We consider a symmetric finger and bubble with perturbations. We show that the dynamics of the finger and bubble and that of the perturbations are decoupled. We next consider an inclined finger and bubble in a zero gravitational field. We derive a Hamiltonian system with four degrees of freedom that governs the dynamics of the inclined finger and bubble. The system has four integrals of motion, one of them depends on time explicitly. When there is no lateral motion, the system reduces to an integrable Hamiltonian system with three degrees of freedom. A general solution of the system is presented. The solution predicts the linear growth of the finger toward a direction and the saturation of the bubble growth. Finally, we consider a symmetric finger and bubble in a uniform gravitational field. We derive a Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. Since the system includes a potential energy term, it is not integrable in general. However, we present a general solution in the case of the total energy being zero. This case corresponds to an interesting case where the evolution starts from a flat surface. The solution predicts that the finger grows as the square of time, and the bubble as the square root of time.
Shock-induced collapse of a gas bubble in shockwave lithotripsy.
Johnsen, Eric; Colonius, Tim
2008-10-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy.
Shock-induced collapse of a gas bubble in shockwave lithotripsy
Johnsen, Eric; Colonius, Tim
2008-01-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841
Approaching behavior of a pair of spherical bubbles in quiescent liquids
NASA Astrophysics Data System (ADS)
Sanada, Toshiyuki; Kusuno, Hiroaki
2015-11-01
Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.
Blanken, Jan; De Moor, Roeland Jozef Gentil; Meire, Maarten; Verdaasdonk, Rudolf
2009-09-01
Limited information exists regarding the induction of explosive vapor and cavitation bubbles in an endodontic rinsing solution. It is also not clear whether a fiber has to be moved in the irrigation solution or can be kept stationary. No information is available on safe power settings for the use of cavitation in the root canal. This study investigates the fluid movements and the mechanism of action caused by an Er,Cr:YSGG laser in a transparent root model. Glass models with an artificial root canal (15 mm long, with a 0.06 taper and apical diameter of 400 microm) were used for visualization and registration with a high-speed imaging technique (resolution in the microsecond range) of the creation of explosive vapor bubbles with an Er,Cr:YSGG laser at pulse energies of 75, 125, and 250 mJ at 20 Hz using a 200 microm fiber (Z2 Endolase). Fluid movement was investigated by means of dyes and visualization of the explosive vapor bubbles, and as a function of pulse energy and distance of the fiber tip to the apex. The recordings in the glass model show the creation of expanding and imploding vapor bubbles with secondary cavitation effects. Dye is flushed out of the canal and replaced by surrounding fluid. It seems not necessary to move the fiber close to the apex. Imaging suggests that the working mechanism of an Er,Cr:YSGG laser in root canal treatment in an irrigation solution can be attributed to cavitation effects inducing high-speed fluid motion into and out the canal.
Livny, Eitan; Bahar, Irit; Hammel, Naama; Nahum, Yoav
2018-04-01
In this study, we examined a novel variant of 'big-bubble' deep anterior lamellar keratoplasty using trypan-blue-stained viscoelastic device for the creation of a pre-descemetic bubble. Ten corneoscleral rims were mounted on an artificial anterior chamber (AC). The AC was filled with air through a limbal paracentesis. A Melles' triangulated spatula was inserted through the paracentesis, with its tip penetrating the AC, was then slightly retracted and pushed into the deep stroma above the roof of the paracentesis. A mixture of trypan blue and viscoelastic device (Healon, Abbott Medical Optics, Abbott Park, Illinois) was injected into this intra-stromal pocket using a 27-G cannula to create a pre-descemetic separation bubble. Bubble type and visualization of dyed viscoelastic device were noted. The method was later employed in three cases. In all 10 corneoscleral rims, the technique successfully created a visible pre-descemetic (type 1) bubble that could be expanded up to the predicted diameter of trephination. Subsequent trephination and the removal of corneal stroma were uneventful. In two out of four clinical cases, a type 1 bubble was created, while in two others, visco-dissection failed and dyed viscoelastic was seen in the AC. The presented technique holds promise of being a relatively easy to perform, predictable and well-controlled alternative for achieving a type 1 bubble during deep anterior lamellar keratoplasty surgery. The trypan-blue-stained viscoelastic device facilitates proper visualization and control of the separation bubble and assists in identifying the penetrance to the separation bubble prior to removal of the stromal cap. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
V&V Of CFD Modeling Of The Argonne Bubble Experiment: FY15 Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, Nathaniel C.; Wardle, Kent E.; Bailey, James L.
2015-09-30
In support of the development of accelerator-driven production of the fission product Mo 99, computational fluid dynamics (CFD) simulations of an electron-beam irradiated, experimental-scale bubble chamber have been conducted in order to aid in interpretation of existing experimental results, provide additional insights into the physical phenomena, and develop predictive thermal hydraulic capabilities that can be applied to full-scale target solution vessels. Toward that end, a custom hybrid Eulerian-Eulerian-Lagrangian multiphase solver was developed, and simulations have been performed on high-resolution meshes. Good agreement between experiments and simulations has been achieved, especially with respect to the prediction of the maximum temperature ofmore » the uranyl sulfate solution in the experimental vessel. These positive results suggest that the simulation methodology that has been developed will prove to be suitable to assist in the development of full-scale production hardware.« less
Magnetite Scavenging and the Buoyancy of Bubbles in Magmas
NASA Astrophysics Data System (ADS)
Gualda, G. A.; Ghiorso, M. S.
2005-12-01
It is generally assumed that when eruptions are triggered, magmas are bubble-free, and all the vesicularity observed in pumice is due to nucleation and growth during ascent. However, decompression experiments show that bubbles tend to nucleate on magnetite crystals at relatively low supersaturation, and there is convincing evidence that an exsolved gas phase was present during much of the evolution of the Bishop magma. The fate of pre-eruptive bubbles depends directly on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble-melt interface. That crystals tend to attach to bubbles is indicated by experiments and observations, and can be explained theoretically. Whether, however, crystals and bubbles can be held together by interface forces is yet uncertain, and we use the available knowledge on surface energies to explore this problem. We call adhesion energy the surface energy change due to attachment of a crystal to a bubble. We show that sticking a bubble to a mineral substrate is always energetically favored over keeping bubble and mineral separate. Because the adhesion energy is a strong function of the wetting angle, different minerals will be more strongly attached to bubbles than others. In particular, oxide minerals will attach to a given bubble much more strongly than any silicates. One interesting consequence of the attachment of grains to a bubble is that this can cause these bubble-crystal pairs to be neutrally buoyant, preventing bubble rise and crystal sinking. The criterion for buoyancy of a bubble-crystal pair can be calculated as the condition when the apparent weight of the crystal and the bubble are opposite and equal. If a bubble-mineral pair is to remain joined, the binding force has to be provided by the adhesion force, which is also a strong function of the wetting angle. Since the adhesion force is linear on R, and the buoyancy force is proportional to R cubed, there is a critical bubble radius below which the adhesion force will be strong enough to keep the pair together. Using the available experimental data, we show that crystals as large as 1 mm in diameter could be attached to bubbles and form neutrally buoyant pairs. The presence of multiple crystals in a single bubble would allow bubbles larger than the critical size to become neutrally buoyant. Under the limiting assumption that all magnetite crystals form neutrally buoyant pairs with bubbles, it is possible to compute the maximum gas volume fraction that can be stored as neutrally buoyant bubble-magnetite aggregates. The total abundance of magnetite is only ca. 0.1 vol. %, which yields maximum gas volume fractions on the order of 0.1-0.2 vol. %. About 2-3 vol % of gas can be accounted for if all minerals form neutrally-buoyant aggregates. These values are orders of magnitude lower than the abundance of exsolved gas inferred from melt inclusions in the Bishop magma. Nonetheless, our recent observation of one such aggregate in the early-erupted Bishop Tuff suggests that this is indeed a viable mechanism for storing exsolved gas in magmas. The inevitable conclusion is that a range of pre-eruptive bubbles existed, from magnetite-free, but only a very small fraction of them could have magnetite crystals attached to them. Our treatment shows that there should be an intrinsic association between magnetite crystals and bubbles. However, study our tomography datasets shows that most magnetite crystals are free of bubbles. Not only is this surprising; the puzzling conclusion is that nucleation away from crystals (homogeneous nucleation?) is favored over heterogeneous nucleation on crystal substrates.
NASA Technical Reports Server (NTRS)
Onorato, P. I. K.; Weinberg, M. C.; Uhlmann, D. R.
1981-01-01
Finite difference solutions of the mass transport equations governing the dissolution (growth) of a rising gas bubble, containing a single gas, in a glassmelt were obtained. These solutions were compared with those obtained from an approximate procedure for a range of the controlling parameters. Applications were made to describe various aspects of O2 and CO2 gas-bubble behavior in a soda-lime-silicate melt.
Bubble baths: just splashing around?
NASA Astrophysics Data System (ADS)
Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd
2016-11-01
Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.
Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.
Gor, G Yu; Kuchma, A E
2009-07-21
This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.
Studies of Fundamental Particle Dynamics in Microgravity
NASA Technical Reports Server (NTRS)
Rangel, Roger; Trolinger, James D.; Coimbra, Carlos F. M.; Witherow, William; Rogers, Jan; Rose, M. Franklin (Technical Monitor)
2001-01-01
This work summarizes theoretical and experimental concepts used to design the flight experiment mission for SHIVA - Spaceflight Holography Investigation in a Virtual Apparatus. SHIVA is a NASA project that exploits a unique, holography-based, diagnostics tool to understand the behavior of small particles subjected to transient accelerations. The flight experiments are designed for testing model equations, measuring g, g-jitter, and other microgravity phenomena. Data collection will also include experiments lying outside of the realm of existing theory. The regime under scrutiny is the low Reynolds number, Stokes regime or creeping flow, which covers particles and bubbles moving at very low velocity. The equations describing this important regime have been under development and investigation for over 100 years and yet a complete analytical solution of the general equation had remained elusive yielding only approximations and numerical solutions. In the course of the ongoing NASA NRA, the first analytical solution of the general equation was produced by members of the investigator team using the mathematics of fractional derivatives. This opened the way to an even more insightful and important investigation of the phenomena in microgravity. Recent results include interacting particles, particle-wall interactions, bubbles, and Reynolds numbers larger than unity. The Space Station provides an ideal environment for SHIVA. Limited ground experiments have already confirmed some aspects of the theory. In general the space environment is required for the overall experiment, especially for cases containing very heavy particles, very light particles, bubbles, collections of particles and for characterization of the space environment and its effect on particle experiments. Lightweight particles and bubbles typically rise too fast in a gravitational field and heavy particles sink too fast. In a microgravity environment, heavy and light particles can be studied side-by-side for long periods of time.
Bubble Formation Modeling in IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.F.
2000-09-27
The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.
Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants
NASA Astrophysics Data System (ADS)
Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.
2013-03-01
Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL
Bubbling at high flow rates in inviscid and viscous liquids (slags)
NASA Astrophysics Data System (ADS)
Engh, T. Abel; Nilmani, M.
1988-02-01
The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of the bubble.
FAST TRACK COMMUNICATION: Regularized Kerr-Newman solution as a gravitating soliton
NASA Astrophysics Data System (ADS)
Burinskii, Alexander
2010-10-01
The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman (KN) field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external KN solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models; (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.
Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.
Li, D G; Wang, J D; Chen, D R; Liang, P
2015-09-01
The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.
Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.
Ballesteros Martín, M M; Sánchez Pérez, J A; García Sánchez, J L; Montes de Oca, L; Casas López, J L; Oller, I; Malato Rodríguez, S
2008-06-30
Biodegradability of aqueous solutions of the herbicide alachlor and the fungicide pyrimethanil, partly treated by photo-Fenton, and the effect of photoreaction intermediates on growth and DOC removal kinetics of the bacteria Pseudomonas putida CECT 324 are demonstrated. Toxicity of 30-120 mg L(-1) alachlor and pyrimethanil has been assayed in P. putida. The biodegradability of photocatalytic intermediates found at different photo-treatment times was evaluated for each pesticide. At a selected time during batch-mode phototreatment, larger-scale biodegradation kinetics were analysed in a 12 L bubble column bioreactor. Both alachlor and pyrimethanil are non-toxic for P. putida CECT 324 at the test concentrations, but they are not biodegradable. A approximately 100 min photo-Fenton pre-treatment was enough to enhance biodegradability, the biological oxidation response being dependent on the pesticide tested. The different alachlor and pyrimethanil respiration and carbon uptake rates in pre-treated solutions are related to change in the growth kinetics of P. putida. Reproducible results have shown that P. putida could be a suitable microorganism for determining photo-Fenton pre-treatment time.
Arieli, Ran
2017-01-01
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed "active hydrophobic spots" (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic-a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens.
Arieli, Ran
2017-01-01
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens. PMID:28861003
The effect of air bubbles on rabbit blood brain barrier.
Hjelde, A; Bolstad, G; Brubakk, A O
2002-01-01
Several investigators have claimed that the blood brain barrier (BBB) may be broken by circulating bubbles, resulting in brain tissue edema. The aim of this study was to examine the effect of air bubbles on the permeability of BBB. Three groups of 6 rabbits were infused an isoosmotic solution of NaCl w/macrodex and 1% Tween. The solution was saturated with air bubbles and infused at rates of 50-100 ml hr(-1), a total of 1.6, 3.3, or 6.6 ml in each group, respectively. Two groups, each consisting of 6 rabbits, served as controls; one was infused by a degassed isoosmotic NaCl solution and one was sham-operated. All animals were left for 30 min before they were sacrificed. Specific gravity of brain tissue samples was determined using a brombenzene/kerosene gradient column, where a decrease in specific gravity indicates local brain edema. Specific gravity was significantly lower for left (P = 0.037) and right (P = 0.012) hemisphere white matter and left (P = 0.0015) and right (P = 0.002) hemisphere gray matter for the bubble-infused animals compared to the sham-operated ones. Infusion of degassed NaCl solution alone affected white left (P= 0.011) and right (P= 0.013), but not gray matter of both hemispheres. We speculate that insufficient degassing of the fluid may cause the effect of NaCl solution on the BBB of the white matter, indicating that the vessels of the white matter are more sensitive to gas bubbles than gray matter. Increasing the number of infused bubbles had no further impact on the development of cerebral edema, indicating that a threshold value was reached already at the lowest concentration of bubbles.
Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K
2006-04-15
Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.
Shock wave emission from laser-induced cavitation bubbles in polymer solutions.
Brujan, Emil-Alexandru
2008-09-01
The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.
Analytical and numerical investigations of bubble behavior in electric fields
NASA Astrophysics Data System (ADS)
Vorreiter, Janelle Orae
The behavior of gas bubbles in liquids is important in a wide range of applications. This study is motivated by a desire to understand the motion of bubbles in the absence of gravity, as in many aerospace applications. Phase-change devices, cryogenic tanks and life-support systems are some of the applications where bubbles exist in space environments. One of the main difficulties in employing devices with bubbles in zero gravity environments is the absence of a buoyancy force. The use of an electric field is found to be an effective means of replacing the buoyancy force, improving the control of bubbles in space environments. In this study, analytical and numerical investigations of bubble behavior under the influence of electric fields are performed. The problem is a difficult one in that the physics of the liquid and the electric field need to be considered simultaneously to model the dynamics of the bubble. Simplifications are required to reduce the problem to a tractable form. In this work, for the liquid and the electric field, assumptions are made which reduce the problem to one requiring only the solution of potentials in the domain of interest. Analytical models are developed using a perturbation analysis applicable for small deviations from a spherical shape. Numerical investigations are performed using a boundary integral code. A number of configurations are found to be successful in promoting bubble motion by varying properties of the electric fields. In one configuration, the natural frequencies of a bubble are excited using time-varying electric and pressure fields. The applied electric field is spatially uniform with frequencies corresponding to shape modes of the bubble. The resulting bubble velocity is related to the strength of the electric field as well as the characteristics of the applied fields. In another configuration, static non-uniform fields are used to encourage bubble motion. The resulting motion is related to the degree of non-uniformity of the applied field. Several geometries are investigated to study the relationship between electrode geometry and bubble behavior.
Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.
Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa
2016-09-01
A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture
NASA Astrophysics Data System (ADS)
Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.
2015-12-01
Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).
The effectiveness of simethicone in improving visibility during colonoscopy.
Park, Jae Jun; Lee, Sang Kil; Jang, Jae Young; Kim, Hyo Jong; Kim, Nam Hoon
2009-01-01
In colonoscopy examination, luminal visibility is frequently limited due to intraluminal bubbles. In present study was evaluated factors affecting bubble formation and the effects of simethicone in preventing bubble formation during colonoscopy. Consecutive patients (n=164) who received polyethylene glycol or sodium phosphate for bowel preparation were prospectively enrolled. Before colonoscopy, 57 patients took 80 mg simethicone after ingestion of bowel preparation solution and 107 did not to determine whether simethicone decreased bubble formation. Intraluminal gas bubbles were assessed and graded as follows: 0, minimal or none; 1, covering less than half the lumen; 2, covering at least half the lumen or the entire circumference. Grade 2 bubbles were regarded as significant, limiting visibility. Sodium phosphate preparation tended to have more bubbles than the polyethylene glycol. Significant bubbles were more likely to occur in males than females (p = 0.020). Significant bubbles were noted in 34.6% of patients without simethicone and 7% of patients with simethicone. Simethicone significantly lowered the incidence of bubbles during colonoscopy when given after a preparation solution (p < 0.05), The present study findings indicate that taking simethicone after an oral polyethylene glycol or sodium phosphate preparation can improve colonic visibility by diminishing colonic bubbles.
Transport of Gas and Solutes in Permeable Estuarine Sediments
2009-01-01
seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water. 3) To determine the volume change and...from sand containing natural bubbles produced by photosynthesis and control sediment without bubbles. Set up of the pressure tank experiments. The...above the tank will permit bubble growth in the incubated sediment by photosynthesis . RESULTS Fieldwork and bubble production. At CML, ample bubbles
Mixing high-viscosity fluids via acoustically driven bubbles
NASA Astrophysics Data System (ADS)
Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun
2017-01-01
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho
Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects ofmore » convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.« less
NASA Technical Reports Server (NTRS)
Tanveer, S.
1989-01-01
An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. First the bubble velocity relative to the fluid velocity at infinity is determined for small surface tension by means of a transcendentally small correction to the asymptotic series solution. In addition, a linear stability analysis shows that only the solution branch corresponding to the largest possible bubble velocity for given surface tension is stable, while all the others are unstable.
Sasaki, Satoshi; Iida, Yoshinori
2009-06-01
The effect of kinematic viscosity and surface tension of the solution was investigated by adding catalase, glucose oxidase, or glucose on the bubble movement in a catalase-hydrogen peroxide system. The kinematic viscosity was measured using a Cannon-Fenske kinematic viscometer. The surface tension of the solution was measured by the Wilhelmy method using a self-made apparatus. The effects of the hole diameter/cell wall thickness, catalase concentration, glucose concentration, and glucose oxidase concentration on the kinematic viscosity, surface tension, and bubble take-off period were investigated. With our system, the effects of the changes in the solution materiality on the bubble take-off period were proven to be very small in comparison to the change in the oxygen-producing rate.
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang
Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.
Long-time cavitation threshold of silica water mixture under acoustic drive
NASA Astrophysics Data System (ADS)
Bussonniére, Adrien; Liu, Qingxia; Tsai, Peichun Amy
2017-11-01
The low cavitation threshold of water observed experimentally has been attributed to the presence of pre-existing tiny bubbles stabilized by impurities. However, the origin and stability of these cavitation nuclei remain unresolved. We therefore investigate the long-time cavitation evolution of water seeded with micron-sized silica particles under the influences of several parameters. Experimentally, cavitation is induced by a High Intensity Focused Ultrasound and subsequently detected by monitoring the backscattered sound. Degassed or aerated solutions of different concentrations are subjected to acoustic pulses (with the amplitude ranging from 0.1 to 1.7 MPa and a fixed repetition frequency between 0.1 and 6.5 Hz). The cavitation threshold was measured by fitting the cavitation probability curve, averaged over 1000 pulses. Surprisingly, our results shown that the cavitation threshold stabilizes at a reproducible value after a few thousand pulses. Moreover, this long-time threshold was found to decrease with increasing particle concentration, pulse period, and initial oxygen level. In contrast to the depletion of nuclei expected under long acoustic cavitation, the results suggest stabilized nuclei population depending on concentration, oxygen level, and driving period.
Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa
2016-07-01
A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bournival, G; Ata, S; Karakashev, S I; Jameson, G J
2014-01-15
Most processes involving bubbling in a liquid require small bubbles to maximise mass/energy transfer. A common method to prevent bubbles from coalescing is by the addition of surfactants. In order to get an insight into the coalescence process, capillary bubbles were observed using a high speed cinematography. Experiments were performed in solutions of 1-pentanol, 4-methyl-2-pentanol, tri(propylene glycol) methyl ether, and poly(propylene glycol) for which information such as the coalescence time and the deformation of the resultant bubble upon coalescence was extracted. It is shown in this study that the coalescence time increases with surfactant concentration until the appearance of a plateau. The increase in coalescence time with surfactant concentration could not be attributed only to surface elasticity. The oscillation of the resultant bubble was characterised by the damping of the oscillation. The results suggested that a minimum elasticity is required to achieve an increased damping and considerable diffusion has a detrimental effect on the dynamic response of the bubble, thereby reducing the damping. Copyright © 2013 Elsevier Inc. All rights reserved.
Sonoluminescence and acoustic cavitation
NASA Astrophysics Data System (ADS)
Choi, Pak-Kon
2017-07-01
Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.
Possible high sonic velocity due to the inclusion of gas bubbles in water
NASA Astrophysics Data System (ADS)
Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.
2010-12-01
If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.
Endothelial protection: avoiding air bubble formation at the phacoemulsification tip.
Kim, Eung Kweon; Cristol, Stephen M; Kang, Shin J; Edelhauser, Henry F; Yeon, Dong-Soo; Lee, Jae Bum
2002-03-01
To investigate the conditions under which bubbles form during phacoemulsification. Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. In the first part of the study, the partial pressure of oxygen (pO(2)) was used as a surrogate measure for the partial pressure of air. Irrigation solutions packaged in glass and plastic containers were studied. A directly vented glass bottle was also tested. The pO(2) of the various irrigation solutions was measured as the containers were emptied. In the second part, phacoemulsification procedures were performed in rabbit eyes with different power settings and different irrigation solutions. Intracameral bubble formation during the procedure was recorded. Following the phacoemulsification procedures, the corneas were stained for F-actin and examined for endothelial injury. The initial pO(2) in irrigation solutions packaged in glass bottles was about half that at atmospheric levels; in solutions packaged in plastic, it was at atmospheric levels. As irrigation solutions were drained from the container, the pO(2) of the solution tended to rise toward atmospheric levels. The rate of pO(2) increase was markedly reduced by using a directly vented glass bottle. In the phacoemulsification procedures, bubble formation was most likely to occur with higher pO(2) and higher power settings. Observation of bubbles by the surgeon was highly correlated with endothelial damage. Keeping the pO(2) low reduced the risk of endothelial damage, especially at higher phacoemulsification powers. The packaging of irrigation solutions was the most important factor in controlling the initial pO(2) of the solution. The pO(2) can be minimized throughout a phacoemulsification procedure by using a directly vented glass bottle.
Bubble Dynamics in Polymer Solutions Undergoing Shear.
1985-04-01
cavitation bubble in water has been established as the fundamental theoretical approach to understanding this phenomenon. LA_ Laser -induced...cavitation inception. 1-2 Polymer effects on cavity appearance. 2-1 Spherical laser -induced bubble dynamics. 2-2 Vapor cavity jet formation. 2-3 Bubble...distilled water. 2-6B Nonspherical bubble dynamics in dilute polymer. 3-1 Closed-loop hydraulic cavitation tunnel. 3-2 Laser system optical components. 3-3
Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, D.S.; Kovscek, A.R.
Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupiedmore » by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.« less
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
Interpretations of phenocryst embayments
NASA Astrophysics Data System (ADS)
Rust, Alison; Cashman, Katharine
2017-04-01
Phenocryst embayments in volcanic samples tend to be filled with glass, regardless of the crystallinity and vesicularly of the groundmass surrounding the phenocryst. Embayments are important in volcanology and magma petrology because: 1) they often provide the only areas of matrix glass sufficient for compositional analysis in microlite-rich samples; 2) volatile gradients in embayments are used to constrain rates of magma ascent; 3) with further crystal growth, embayments may develop into melt inclusions, an essential source of data on melt composition evolution. Robust interpretations of data from embayments requires an understanding of why they form and why vesiculation and crystallisation are locally suppressed in these melt channels during ascent. We review instabilities in crystal growth and resorption, considering latent heat, local accumulation of elements, and interaction of the crystal growth front with pre-existing bubbles and other crystals. A survey of textures in volcanic samples from several volcanoes suggests that embayment formation by growth is more common than by resorption. Crystal nucleation suppression in the embayment of a growing phenocryst can be explained by buildup of excluded elements and continued growth (rather than nucleation) of the phenocryst phase. However, the suppression of bubble formation despite the accumulation of excluded volatiles is more difficult to explain but could be related to latent heat and difficulties in bubble formation in a restricted space. Finally, we flag complications in interpretations of embayment composition data due to element accumulation and bubble nucleation suppression.
Studeny, Pavel; Netukova, Magdalena; Hlozanek, Martin; Bednar, Jan; Jirsova, Katerina; Krizova, Deli
2018-04-26
To determine the frequency of formation of various types of bubbles and the potential impact of donor and lamella parameters on this frequency, and to identify possible risk factors of unsuccessful "big-bubble" creation in preparation of pre-Descemet endothelial keratoplasty and Descemet membrane endothelial keratoplasty with peripheral stromal support. Donor age and sex, death to preservation time (DPT), storage time, presence of corneal scars (mainly a condition after cataract surgery), and endothelial cell density of 256 donor corneas were assessed before Descemet membrane endothelial keratoplasty with peripheral stromal support or pre-Descemet endothelial keratoplasty lamella preparation using the big-bubble technique. Mean donor age was 62.3 ± 8.5 years (28.3% women and 71.7% men). Mean endothelial cell density of the donor graft was 2866 ± 255 cells/mm. Mean DPT was 10.12 ± 4.88 hours, and mean storage time of the transplant before surgery was 6.5 ± 4.8 days. Corneal scars were present in 17 donor grafts (6.6%) after cataract surgery. Eleven corneas were devalued because of Descemet membrane rupture during preparation (4.3%). In 182 corneas, standard bubble type I was created (71.7%); in 27 corneas, bubble type II was created; eventually, both types of bubbles formed simultaneously (10.5%); in 47 corneas, no bubble was created (18.4%). We identified higher endothelial cell density, shorter DPT, and the presence of corneal scars after cataract surgery as risk factors threatening successful bubble formation. The only risk factor for creating type II bubbles was higher donor age in our study.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
Evolution of spherical cavitation bubbles: Parametric and closed-form solutions
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Rosu, Haret C.
2016-02-01
We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.
Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.
2016-10-01
Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less
Moore, Harold L; Twardowski, Zbylut J
2003-10-01
Soft, cuffed indwelling catheters are used for hemodialysis access and intravenous infusions. The majority of these catheters are removed as a result of infection caused by contamination of the catheter hub during the connection/disconnection procedures. To prevent clot formation in the lumen, these catheters are routinely "locked" with heparin or some other anticoagulant. None of the anticoagulants commonly used as locking solutions demonstrates any significant bactericidal properties. The primary goal of this study was the development of a catheter locking method that retains anticoagulant properties at the catheter tip and bactericidal properties at the catheter hub. The second goal was to find a solution that possesses excellent bactericidal properties but is not detrimental in the event of injection into the patient's blood stream. The bactericidal properties of acidified, concentrated saline (ACS) were compared to concentrated trisodium citrate and to commonly used bactericidal agents such as povidone iodine, sodium hypochlorite, and chlorhexidine. In preliminary studies, the rate of diffusion of solutes was measured in glass tubes. In another set of experiments, the mixing of two solutions (anticoagulant and bactericide) separated by an air bubble ("air-bubble method") was observed in stationary and moving systems. The final series of studies compared the bactericidal properties of ACS to other bactericidal solutions mentioned above. The solutions diffused swiftly in the glass tubes, and by the third day, both solutions were mixed. The air-bubble method prevented mixing in both stationary and moving systems. The bactericidal properties of ACS were superior to all other tested solutions. The proposed method of catheter locking with anticoagulant at the catheter tip and ACS at the catheter hub separated by an air bubble is a promising technique and clinical studies are warranted.
Sujith, K S; Ramachandran, C N
2016-02-07
The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.
ERIC Educational Resources Information Center
Fan, Chao; Pashley, Richard M.
2016-01-01
The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…
MOBI: Microgravity Observations of Bubble Interactions
NASA Technical Reports Server (NTRS)
Koch, Donald L.; Sangani, Ashok
2004-01-01
One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.
Sonochemical degradation of PAH in aqueous solution. Part I: monocomponent PAH solution.
David, Bernard
2009-02-01
The sonolysis of selected monocomponent PAH aqueous solution is studied at 20 and 506 kHz in the microg l(-1) range. The highest activity observed at 506 kHz, compared to 20 kHz, is tentatively explained by examination of the physical characteristics of bubbles (size and life-time) as well as by the calculation of the number of bubble at both frequency (5 x 10(3)bubbles l(-1) at 20 kHz and 4.5 x 10(9)bubbles l(-1) at 506 kHz). It is demonstrated that the main mechanism of sonodegradation is the pyrolysis of PAHs in the heart of the cavitation bubbles, and that a possible PAH oxidation by means of HO degrees appears as a minor way, since gaseous byproducts such as CO, CO2, C2H2 and CH4 have been detected. Correlations have been found by examination of kinetic variations in terms of the physical-chemical properties of PAHs. The rate constants of PAH degradation increase when the water solubility, the vapour pressure and the Henry's law constant increase.
Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David
2014-01-14
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
Improved virus inactivation using a hot bubble column evaporator (HBCE).
Sanchis, Adrian Garrido; Shahid, Muhammad; Pashley, R M
2018-05-01
An improved hot bubble column evaporator (HBCE) was used to study virus inactivation rates using hot bubble-virus interactions in two different conditions: (1) using the bubble coalescence inhibition phenomenon of monovalent electrolytes and (2) with reducing the electrostatic repulsive forces between virus and bubble, by the addition of divalent electrolytes. It is shown that the continuous flow of (dry) air, even at 150-250 °C, only heats the aqueous solution in the bubble column to about 45°-55 °C and it was also established that viruses are not significantly affected by even long term exposure to this solution temperature, as confirmed separately from water bath experiments. Hence, the effects observed appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. It was also established that the use of high air inlet temperatures, for short periods of time, can reduce the thermal energy requirement to only about 25% (about 114 kJ/L) of that required for boiling (about 450 kJ/L). Copyright © 2018 Elsevier B.V. All rights reserved.
Stationary bubbles and their tunneling channels toward trivial geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Yeom, Dong-han; Domènech, Guillem
2016-04-01
In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. This may provide a resolution to the information loss dilemma.« less
Stationary bubbles and their tunneling channels toward trivial geometry
Chen, Pisin; Domènech, Guillem; Sasaki, Misao; ...
2016-04-07
In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less
Argonne Bubble Experiment Thermal Model Development II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less
New Type of the Interface Evolution in the Richtmyer-Meshkov Instability
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.; Herrmann, M.
2003-01-01
We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.
Inflation and bubbles in general relativity
NASA Astrophysics Data System (ADS)
Laguna-Castillo, Pablo; Matzner, Richard A.
1986-11-01
Following Israel's study of singular hypersurfaces and thin shells in general relativity, the complete set of Einstein's field equations in the presence of a bubble boundary SIGMA is reviewed for all spherically symmetric embedding four-geometries M+/-. The mapping that identifies points between the boundaries Σ+ and Σ- is obtained explicitly when the regions M+ and M- are described by a de Sitter and a Minkowski metric, respectively. In addition, the evolution of a bubble with vanishing surface energy density is studied in a spatially flat Robertson-Walker space-time, for region M- radiation dominated with a vanishing cosmological constant, and an energy equation in M+ determined by the matching. It is found that this type of bubble leads to a ``worm-hole'' matching; that is, an infinite extent exterior of a sphere is joined across the wall to another infinite extent exterior of a sphere. Interior-interior matches are also possible. Under this model, solutions for a bubble following a Hubble law are analyzed. Numerical solutions for bubbles with constant tension are also obtained.
Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R
2015-07-01
Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yui, Hiroharu; Banno, Motohiro
2018-01-01
In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.
Bubble colloidal AFM probes formed from ultrasonically generated bubbles.
Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2008-02-05
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
Sonic wave separation of invertase from a dilute solution to generated droplets.
Tanner, R D; Ko, S; Loha, V; Prokop, A
2000-01-01
It has previously been shown that a droplet fractionation process, simulated by shaking a separatory funnel containing a dilute protein solution, can generate droplets richer in protein than present in the original dilute solution. In this article, we describe an alternative method that can increase the amount of protein transferred to the droplets. The new method uses ultrasonic waves, enhanced by a bubble gas stream to create the droplets. The amount of protein in these droplets increases by about 50%. In this method, the top layer of the dilute protein solution (of the solution-air interface) becomes enriched in protein when air is bubbled into the solution. This concentrating procedure is called bubble fractionation. Once the protein has passed through the initial buildup, this enriched protein layer is transferred into droplets with the aid of a vacuum above the solution at the same time that ultrasonic waves are introduced. The droplets are then carried over to a condenser and coalesced. We found that this new method provides an easier way to remove the protein-enriched top layer of the dilute solution and generates more droplets within a shorter period than the separatory funnel droplet generation method. The added air creates the bubbles and carries the droplets, and the vacuum helps remove the effluent airstream from the condenser. The maximum partition coefficient, the ratio of the protein concentration in the droplets to that in the residual solution (approx 8.5), occurred at pH 5.0.
3D bubble reconstruction using multiple cameras and space carving method
NASA Astrophysics Data System (ADS)
Fu, Yucheng; Liu, Yang
2018-07-01
An accurate measurement of bubble shape and size has a significant value in understanding the behavior of bubbles that exist in many engineering applications. Past studies usually use one or two cameras to estimate bubble volume, surface area, among other parameters. The 3D bubble shape and rotation angle are generally not available in these studies. To overcome this challenge and obtain more detailed information of individual bubbles, a 3D imaging system consisting of four high-speed cameras is developed in this paper, and the space carving method is used to reconstruct the 3D bubble shape based on the recorded high-speed images from different view angles. The proposed method can reconstruct the bubble surface with minimal assumptions. A benchmarking test is performed in a 3 cm × 1 cm rectangular channel with stagnant water. The results show that the newly proposed method can measure the bubble volume with an error of less than 2% compared with the syringe reading. The conventional two-camera system has an error around 10%. The one-camera system has an error greater than 25%. The visualization of a 3D bubble rising demonstrates the wall influence on bubble rotation angle and aspect ratio. This also explains the large error that exists in the single camera measurement.
General Solution of the Rayleigh Equation for the Description of Bubble Oscillations Near a Wall
NASA Astrophysics Data System (ADS)
Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay
2018-02-01
We consider a generalization of the Rayleigh equation for the description of the dynamics of a spherical gas bubble oscillating near an elastic or rigid wall. We show that in the non-dissipative case, i.e. neglecting the liquid viscosity and compressibility, it is possible to construct the general analytical solution of this equation. The corresponding general solution is expressed via the Weierstrass elliptic function. We analyze the dependence of this solution properties on the physical parameters.
ERIC Educational Resources Information Center
Korenic, Eileen
1988-01-01
Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…
Towards the concept of hydrodynamic cavitation control
NASA Astrophysics Data System (ADS)
Chatterjee, Dhiman; Arakeri, Vijay H.
1997-02-01
A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.
Two-photon optical microscopy imaging of endothelial keratoplasty grafts.
Lombardo, Marco; Parekh, Mohit; Serrao, Sebastiano; Ruzza, Alessandro; Ferrari, Stefano; Lombardo, Giuseppe
2017-03-01
To investigate the microstructure of endothelial keratoplasty grafts using two-photon optical microscopy. Six endothelial keratoplasty grafts obtained from human donor corneoscleral tissues and prepared by submerged hydrodissection technique were imaged by two-photon optical microscopy. In each graft, two liquid bubbles were created in order to investigate the presence of a conserved cleavage plane regardless of the volume of posterior stroma that remained attached to Descemet's membrane (DM); the first bubble (bubble A) was generated under DM and the second bubble (bubble B) injection was done in order to obtain a layer of deep stroma that kept the two bubbles separated. Six human donor corneoscleral tissues were used as controls. Second harmonic generation and two-photon emitted fluorescence signals were collected from each specimen. Dissection of stroma occurred along the posterior collagen lamellae at variable distance from DM, which ranged between 3 and 16 μm in bubble A and between 23 and 41 μm in bubble B. The residual stroma included, anteriorly, bands of collagen lamellae, and thin bundles of stromal collagen fibrils, posteriorly, which were tightly intertwining with the underlying DM. There was no anatomically distinct plane of separation between these pre-Descemetic stromal collagen bundles and the overlying collagen lamellae with this hydrodissection technique. Two-photon optical microscopy provided label-free high-resolution imaging of endothelial keratoplasty grafts, showing that the most posterior stroma changes organization at approximately 10 μm above the DM. The pre-Descemetic stromal collagen fibrils form an intertwined complex with DM, which cannot be separated using hydrodissection.
Radiation Re-solution Calculation in Uranium-Silicide Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin
The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less
Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.
Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J
2013-06-01
We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.
Bubble nucleation in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; McKechnie, J. S.; Devereux, M. G.
2011-05-01
Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Richard S.; Pflugrath, Brett D.; Colotelo, Alison HA
2012-06-01
On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing by the turbine blade may experience rapid decompression, the severity of which can be highly variable and may result in a number of barotraumas. The mechanisms of these injuries can be due to expansion of existing bubbles or gases coming out of solution; governed by Boyle’s Law and Henry’s Law, respectively. This paper combines re-analysis of published data with new experiments to gain a better understanding of the mechanisms of injury and mortality for fish experiencing rapid decompression associated with hydroturbine passage. From these data it appears thatmore » the majority of decompression related injuries are due to the expansion of existing bubbles in the fish, particularly the expansion and rupture of the swim bladder. This information is particularly useful for fisheries managers and turbine manufacturers, demonstrating that reducing the rate of swim bladder ruptures by reducing the frequency of occurrence and severity of rapid decompression during hydroturbine passage could reduce the rates of injury and mortality for hydroturbine passed juvenile salmonids.« less
High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning.
Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi
2017-12-01
Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.
Modelling chemical reactions in dc plasma inside oxygen bubbles in water
NASA Astrophysics Data System (ADS)
Takeuchi, N.; Ishii, Y.; Yasuoka, K.
2012-02-01
Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.
High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning
NASA Astrophysics Data System (ADS)
Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi
2017-07-01
Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.
Dynamics of investor spanning trees around dot-com bubble.
Ranganathan, Sindhuja; Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles.
Dynamics of investor spanning trees around dot-com bubble
Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles. PMID:29897973
Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation
NASA Astrophysics Data System (ADS)
Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.
2017-12-01
We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.
2018-04-01
Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.
Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Doinikov, Alexander A.; Marmottant, Philippe
2018-04-01
The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.
Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua
NASA Astrophysics Data System (ADS)
Buonanno, A.; Damour, T.; Veneziano, G.
1998-06-01
We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.
Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe
2013-03-19
A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.
Contact bubble bilayers with flush drainage.
Iwamoto, Masayuki; Oiki, Shigetoshi
2015-03-16
Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.
Contact Bubble Bilayers with Flush Drainage
Iwamoto, Masayuki; Oiki, Shigetoshi
2015-01-01
Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels. PMID:25772819
Real-Time Visualization of Joint Cavitation
Rowe, Lindsay
2015-01-01
Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374
Study on effect of microparticle's size on cavitation erosion in solid-liquid system
NASA Astrophysics Data System (ADS)
Chen, Haosheng; Liu, Shihan; Wang, Jiadao; Chen, Darong
2007-05-01
Five different solutions containing microparticles in different sizes were tested in a vibration cavitation erosion experiment. After the experiment, the number of erosion pits on sample surfaces, free radicals HO• in solutions, and mass loss all show that the cavitation erosion strength is strongly related to the particle size, and 500nm particles cause more severe cavitation erosion than other smaller or larger particles do. A model is presented to explain such result considering both nucleation and bubble-particle collision effects. Particle of a proper size will increase the number of heterogeneous nucleation and at the same time reduce the number of bubble-particle combinations, which results in more free bubbles in the solution to generate stronger cavitation erosion.
Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo
2017-03-07
The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants and fundamental understanding of bubble-solid interactions in mineral flotation. The methodologies used in this work can be readily extended to studying similar interfacial interactions in many other engineering applications such as froth flotation deinking and bitumen extraction in oil sands industry.
Positional stability as the light emission limit in sonoluminescence with sulfuric acid.
Urteaga, Raúl; Dellavale, Damián H; Puente, Gabriela F; Bonetto, Fabián J
2007-11-01
We studied a single bubble sonoluminescence system consisting of an argon bubble in a sulfuric acid aq. solution. We experimentally determined the relevant variables of the system. We also measured the bubble position, extent of the bubble orbits, and light intensity as a function of acoustic pressure for different argon concentrations. We find that the Bjerknes force is responsible for the bubble mean position and this imposes a limitation in the maximum acoustic pressure that can be applied to the bubble. The Rayleigh-Taylor instability does not play a role in this system and, at a given gas concentration, the SL intensity depends more on the bubble time of collapse than any other investigated parameter.
Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas
2017-11-01
The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.
2012-01-01
From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.
Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment
NASA Astrophysics Data System (ADS)
Li
2011-12-01
Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology. Electronic supplementary information (ESI) available: I. Video of the catalytic motion of a typical microjet moving in a linear way. II. Detailed numerical analyses: Reynolds number calculation, displacement of the microjet and the bubble after separation, and example of experimental velocity calculation. See DOI: 10.1039/c1nr10840a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Barman, S. R.
Ne 1s core-level photoelectron spectra from Ne nanobubbles implanted in aluminum exhibit two peaks whose binding energies and relative intensities change with implantation energy, isochronal annealing, and sputtering. These changes in the core-level spectra are manifestations of the nanometer size of the bubbles since the screening of the photohole by the Al conduction electrons depends on the bubble size. Existence of a bimodal depth and size distribution of Ne nanobubbles is demonstrated in this work: smaller bubbles of about 4 A in radius are formed close to the Al(111) surface while the larger sized bubbles of 20 A in radiusmore » exist deeper below in the beneath subsurface region. A general relation between the radius of the rare-gas bubbles and their core-level binding energies is established.« less
Transport of Gas and Solutes in Permeable Estuarine Sediments
2010-09-30
inhabited by microphytobenthos and seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water...characteristics of bubble ebullition in a shallow coastal environment with strong benthic photosynthesis (May 26-28). The goal was to determine the spatial and...each 50 μL air injection. Detection of small bubbles produced by benthic photosynthesis The goal was to assess whether the small bubbles
Bubbles: Films, Foams & Fizz. Ideas in Science. Notes for Teachers.
ERIC Educational Resources Information Center
Murphy, Pat, Ed.
Five activities dealing with bubbles are presented. Information provided with the activities includes introductory and/or background information; notes on pre-activity preparations; lists of science themes and skills fostered; time frame; list of materials needed; student procedures; and instructional strategies. A teaching guide with detailed…
Bubbles in an acoustic field: an overview.
Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz
2007-04-01
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.
Bubbles, Gating, and Anesthetics in Ion Channels
Roth, Roland; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.
2008-01-01
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water. PMID:18234836
Tribology of thin wetting films between bubble and moving solid surface.
Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen; Phan, Chi M; Heinrich, Gert
2014-08-01
This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example: 1. A regime of mixed friction between dry and lubricated friction exists in the range of 6-170 μm/s, beyond which the rubbing between the bubble and solid becomes completely lubricated and passes through the maximum; 2. The friction coefficient of rubbing has high values at very small speeds of solid's motion and reduces substantially with the increase of the speed of the solid motion until reaching small values, which change insignificantly with the further increase of the speed of the solid. Despite the numerous studies on the motion of bubble/droplet in close proximity to solid wall in the literature, the present investigation appears to be a step ahead in this area as far as we were able to derive 3D maps of the bubble close to the solid surface, which makes the investigation more profound. © 2013.
The Effects of Observations and Maneuvers on Orbit Solutions
2012-12-01
15 Figure 6 Example Covariance Bubble ( Rugby Ball...and smaller for the crosstrack and radial position, so the bubble ends up shaped like a rugby ball around the satellite, shown in Figure 6. The...measurements during a pass are needed, in order to efficiently use the sensor. 21 Figure 6 Example Covariance Bubble ( Rugby Ball) For
Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles
NASA Astrophysics Data System (ADS)
Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.
2017-10-01
This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.
Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan.
Ma, Fengming; Li, Pu; Zhang, Baiqing; Zhao, Xin; Fu, Qun; Wang, Zhenyu; Gu, Cailian
2017-05-01
In the present work, solution plasma process (SPP) with bubbling gas was used to prepare oligochitosan. The effect of SPP irradiation with bubbling gas on the degradation of chitosan was evaluated by the intrinsic viscosity reduction rate and the degradation kinetic. The formation of OH radical was studied. Changes of the physicochemical properties of chitosan were measured by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, as well as ultraviolet-visible, Fourier-transform infrared, and 13 C nuclear magnetic resonance spectroscopy. The results indicated an obvious decrease in the intrinsic viscosity reduction rate after SPP irradiation with bubbling gas, and that the rate with bubbling was higher than that without. The main chemical structure of chitosan remained intact after irradiation, but changes in the morphology, crystallinity, and thermal stability of oligochitosan were observed. In particular, the crystallinity and thermal stability tended to decrease. The present study indicated that SPP can be effectively used for the degradation of chitosan. Copyright © 2017. Published by Elsevier B.V.
He behavior in Ni and Ni-based equiatomic solid solution alloy
NASA Astrophysics Data System (ADS)
Yan, Zhanfeng; Liu, Shaoshuai; Xia, Songqin; Zhang, Yong; Wang, Yugang; Yang, Tengfei
2018-07-01
In the current work, pure nickel (99.99 wt.%) and Ni-containing single phase equiatomic solid solution alloy Fe-Co-Cr-Ni were irradiated with 190 keV He ions at room temperature with different fluences and He behavior in both materials are compared. At 1 × 1017 cm-2, TEM observation reveals that only isolated and small He bubbles (1-2 nm) are formed in Fe-Co-Cr-Ni alloy while many small suspected "string"-like He bubbles are observed in nickel at the concentration peak region (5.5 at.%). When the fluence is increased to 5 × 1017 cm-2, average bubble size in nickel increases to ∼8 nm which is almost equal to that in Fe-Co-Cr-Ni, but a higher bubble density is observed in nickel. At the highest dose of 1 × 1018 cm-2, numerous surface blisters and exfoliations occur in nickel which are consistent with TEM observation, while the Fe-Co-Cr-Ni alloy only shows a slight surface blister. Bubble coarsening upon annealing at 500 °C (2 h) is observed at 5 × 1017 cm-2 in both alloys, but a significant larger bubble growth is observed in nickel, suggesting a relatively better resistance to He bubble growth for Fe-Co-Cr-Ni alloy.
Pre-breakdown phenomena and discharges in a gas-liquid system
NASA Astrophysics Data System (ADS)
Tereshonok, D. V.; Babaeva, N. Yu; Naidis, G. V.; Panov, V. A.; Smirnov, B. M.; Son, E. E.
2018-04-01
In this paper, we investigate pre-breakdown and breakdown phenomena in gas-liquid systems. Cavitation void formation and breakdown in bubbles immersed in liquids are studied numerically, while complete breakdown of bubbled water is studied in experiments. It is shown that taking into account the dependence of water dielectric constant on electric field strength plays the same important role for cavitation void appearance under the action of electrostriction forces as the voltage rise time. It is also shown that the initial stage of breakdown in deformed bubbles immersed in liquid strongly depends on spatial orientation of the bubbles relative to the external electric field. The effect of immersed microbubbles, distributed in bulk water, on breakdown time and voltage is studied experimentally. At the breakdown voltage, the slow ‘thermal’ mechanism is changed by the fast ‘streamer-leader’ showing a decrease in breakdown time by two orders of magnitude by introducing microbubbles (0.1% of volumetric gas content) into the water. In addition, the plasma channel is found to pass between nearby microbubbles, exhibiting some ‘guidance’ effect.
Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water
Bartusik, Dorota; Aebisher, David; Ghafari, BiBi
2012-01-01
Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325
Four-center bubbled BPS solutions with a Gibbons-Hawking base
NASA Astrophysics Data System (ADS)
Heidmann, Pierre
2017-10-01
We construct four-center bubbled BPS solutions with a Gibbons-Hawking base space. We give a systematic procedure to build scaling solutions: starting from three-supertube configurations and using generalized spectral flows and gauge transformations to extend to solutions with four Gibbons-Hawking centers. This allows us to construct very large families of smooth horizonless solutions that have the same charges and angular momentum as supersymmetric black holes with a macroscopically large horizon area. Our construction reveals that all scaling solutions with four Gibbons Hawking centers have an angular momentum at around 99% of the cosmic censorship bound. We give both an analytical and a numerical explanation for this unexpected feature.
Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers
NASA Astrophysics Data System (ADS)
Jennissen, Herbert P.
2005-10-01
Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.
Vergniolle, S.; Caplan-Auerbach, J.
2004-01-01
The 1999 eruption of Shishaldin volcano (Alaska, USA) displayed both Strombolian and Subplinian basaltic activity. The Subplinian phase was preceded by a signal of low amplitude and constant frequency (??? 2 Hz) lasting 13 h. This "humming signal" is interpreted as the coalescence of the very shallow part of a foam building up in the conduit, which produces large gas bubbles before bursting. The acoustic waveform of the hum event is modelled by a Helmholtz resonator: gas is trapped into a rigid cavity and can only escape through a tiny upper hole producing sound waves. At Shishaldin, the radius of the hole (??? 5 m) is close to that of the conduit (??? 6 m), the cavity has a length of ??? 60 m, and gas presents only a small overpressure between (??? 1.2 ?? 10-3 and 4.5 ?? 10-3 MPa). Such an overpressure is obtained by the partial coalescence of a foam formed by bubbles with a diameter from ??? 2.3 mm at the beginning of the episode towards ??? 0.64 mm very close to the end of the phase. The intermittency between hum events is explained by the ripening of the foam induced by the H2O diffusion through the liquid films. The two extreme values, from 600 to 10 s, correspond to a bubble diameter from 2.2 to 0.3 mm at the beginning and end of the pre-Subplinian phase, respectively. The extremely good agreement between two independent estimates of bubble diameters in the shallow foam reinforces the validity of such an interpretation. The total gas volume lost at the surface during the humming events is at most 5.9 ?? 106 m3. At the very end of the pre-Subplinian phase, there is a single large bubble with an overpressure of ???0.42 MPa. The large overpressure suggests that it comes from significant depth, unlike other bubbles in the pre-Subplinian phase. This deep bubble may be responsible for the entire foam collapse, resulting in the Subplinian phase. ?? 2004 Elsevier B.V. All rights reserved.
Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data
NASA Astrophysics Data System (ADS)
Xing, L.
2016-12-01
Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
Investigation of the properties of laser-induced cavitation bubble collapse and sound waves
NASA Astrophysics Data System (ADS)
Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Cao, Jing
2017-02-01
The theoretical model of single bubble movement in an ideal solution, to carry on the numerical simulation of the process of cavitation in the liquid, the liquid in different laser energy, laser induced cavitation rules and acoustic characteristics were studied by high-speed camera, high frequency measurements of the hydrophone. The results show that with the increase of laser energy, the period of bubble pulsation and the maximum bubble radius increase gradually, and the amplitude of the laser acoustic signal becomes larger.
"Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid
NASA Astrophysics Data System (ADS)
Zudin, Yu. B.; Zenin, V. V.
2016-09-01
The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.
Air and blood fluid dynamics: at the interface between engineering and medicine
NASA Astrophysics Data System (ADS)
Pollard, A.; Secretain, F.; Milne, B.
2014-08-01
The flows in the human upper airway and human heart during open heart surgery are considered. Beginning with idealized models of the human upper airway, current methods to extract realistic airway geometries using a novel implementation of optical coherent tomography modality are introduced. Complementary direct numerical simulations are considered that will assist in pre-surgery planning for obstructive sleep apnea. Cardiac air bubbles often arise during open heart surgery. These bubbles are potential emboli that can cause neurological impairment and even death. An experimental programme is outlined that uses acoustic sound to instil bubble surface oscillations that result in bubble breakup. A novel algorithm is introduced that enables a surgical team to obtain real-time in-vivo bubble data to aid cardiac de-airation procedures.
NASA Astrophysics Data System (ADS)
Creon, L.; Levresse, G.; Carrasco Nuñez, G.
2016-12-01
Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.
Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie
2018-02-02
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
NASA Technical Reports Server (NTRS)
Tanveer, Saleh
1989-01-01
The analysis is extended to determine the linear stability of a bubble in a Hele-Shaw cell analytically. Only the solution branch corresponding to largest possible bubble velocity U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.
Demonstration of the Catalytic Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Conklin, Alfred R., Jr.; Kessinger, Angela
1996-09-01
Catalytic decomposition is demonstrated by placing hydrogen peroxide solutions in a one liter graduated cylinder and adding soap, food coloring, and potassium iodide. Released oxygen is trapped by the soap producing bubbles. The volume of bubbles is proportional to the concentration of hydrogen peroxide. Chloride and bromide do not cause decomposition. Increased reactant temperature increases the volume of bubbles formed.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids.
Shklyaev, Sergey; Straube, Arthur V
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey; Straube, Arthur V.
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Sudduth, R H; DeAngelis, S; Sherman, K E; McNally, P R
1995-11-01
Oral sodium phosphate solution is better tolerated than polyethylene glycol when used for colonoscopy preparation, but visibility of the lumen can be impaired because of the presence of bubbles. We studied 86 patients receiving either simethicone (n = 42) or placebo (n = 44) in addition to oral sodium phosphate to determine if simethicone improved visibility during colonoscopy. Colonoscopy was performed by a single blinded investigator. Five areas of the colon (rectosigmoid, descending, transverse, ascending, and cecum) were assessed for the presence of bubbles on withdrawal of the endoscope. Bubbles were scored as follows: 0, minimal or none; 1, covering half the lumen; 2, covering the entire circumference; 3 filling the entire lumen. Thirteen patients in the placebo group and only one in the simethicone had significant bubbles ( > or = 1). Additionally, the mean bubble scores were greater in the placebo group in each region of the colon (p < or = 0.05 in rectosigmoid and ascending colon). This study indicates that taking simethicone with an oral sodium phosphate preparation can improve colonic visibility by diminishing the presence of bubbles. Better visualization could improve detection of mucosal pathologic lesions.
Shim, Suin; Wan, Jiandi; Hilgenfeldt, Sascha; Panchal, Prathamesh D; Stone, Howard A
2014-07-21
We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.
Puente, Gabriela F; García-Martínez, Pablo; Bonetto, Fabián J
2007-01-01
We present theoretical calculations of an argon bubble in a liquid solution of 85%wt sulfuric acid and 15%wt water in single-bubble sonoluminescence. We used a model without free parameters to be adjusted. We predict from first principles the region in parameter space for stable bubble evolution, the temporal evolution of the bubble radius, the maximum temperature, pressures, and the light spectra due to thermal emissions. We also used a partial differential equation based model (hydrocode) to compute the temperature and pressure evolutions at the center of the bubble during maximum compression. We found the behavior of this liquid mixture to be very different from water in several aspects. Most of the models in sonoluminescence were compared with water experimental results.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-09-17
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206
Numerical simulation of bubble plumes and an analysis of their seismic attributes
NASA Astrophysics Data System (ADS)
Li, Canping; Gou, Limin; You, Jiachun
2017-04-01
To study the bubble plume's seismic response characteristics, the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume. The finite difference method is used for forward modelling, and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume. A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume. The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up, and changes in bubble radius will not cause seismic attributes to change, which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity, while the bubble radius has a weak impact on the acoustic velocity. The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration, as well as on distribution of the methane bubble in seawater.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Brockwell, J. L.
1985-01-01
The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.
The elasticity of soap bubbles containing wormlike micelles.
Sabadini, Edvaldo; Ungarato, Rafael F S; Miranda, Paulo B
2014-01-28
Slow-motion imaging of the rupture of soap bubbles generally shows the edges of liquid films retracting at a constant speed (known as the Taylor-Culick velocity). Here we investigate soap bubbles formed from simple solutions of a cationic surfactant (cetyltrimethylammonium bromide - CTAB) and sodium salicylate. The interaction of salicylate ions with CTAB leads to the formation of wormlike micelles (WLM), which yield a viscoelastic behavior to the liquid film of the bubble. We demonstrate that these elastic bubbles collapse at a velocity up to 30 times higher than the Taylor-Culick limit, which has never been surpassed. This is because during the bubble inflation, the entangled WLM chains stretch, storing elastic energy. This extra energy is then released during the rupture of the bubble, yielding an additional driving force for film retraction (besides surface tension). This new mechanism for the bursting of elastic bubbles may have important implications to the breakup of viscoelastic sprays in industrial applications.
Zhang, Yuning; Du, Xiaoze
2015-09-01
Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.
What selects the velocity of fingers and bubbles in a Hele-Shaw cell?
NASA Astrophysics Data System (ADS)
Vasconcelos, Giovani; Mineev-Weinstein, Mark; Brum, Arthur
2017-11-01
It has been widely accepted that surface tension is responsible for the selection of a single pattern out of a continuum of steady solutions for the interface dynamics. Recently, however, it was demonstrated by using time-dependent solutions that surface tension is not required for velocity selection in a Hele-Shaw cell: the velocity is selected entirely within the zero surface tension dynamics, as the selected pattern is the only attractor of the dynamics. These works changed the paradigm regarding the necessity of surface tension for selection, but were limited to a single interface. Here we show that the same selection mechanism holds for any number of interfaces. We present a new class of exact solutions for multiple time-evolving bubbles in a Hele-Shaw cell. The solution is given by a conformal mapping from a multiply connected domain and is written in closed form in terms of certain special functions (the secondary Schottky-Klein prime functions). We demonstrate that the bubbles reach an asymptotic steady velocity, U, which is twice greater than the velocity, V, of the uniform background flow, i.e., U = 2 V . The result does not depend on the number of bubbles. This confirms the prediction that contrary to common belief velocity selection does not require surface tension
Experimental study on wake structure of single rising clean bubble
NASA Astrophysics Data System (ADS)
Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao
2007-11-01
Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.
Simulations of Bubble Motion in an Oscillating Liquid
NASA Astrophysics Data System (ADS)
Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.
2010-11-01
Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D
2016-01-01
Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290
The Milky Way Project: A Census of Small Bubbles
NASA Astrophysics Data System (ADS)
Arvidsson, Kim; Wolf-Chase, G. A.; Way Project, Milky
2013-01-01
The first data release (DR1) from the Milky Way Project (MWP) contains 1362 visually identified small bubbles drawn by users. These small infrared bubbles typically have diameters <0.5' and can be found throughout the Galactic plane. This project seeks to determine what classes of objects make up the small bubble catalog by comparing their positions to a wide variety of existing data sets. The most successful match was with the MSX6C point source catalog; >90% of all small bubbles are MSX point sources.
Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.
Kawase, Y
1993-01-01
The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
How are soap bubbles blown? Fluid dynamics of soap bubble blowing
NASA Astrophysics Data System (ADS)
Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin
2013-11-01
Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.
Bubble propagation in Hele-Shaw channels with centred constrictions
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
2018-04-01
We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.
Matro, Rebecca; Tupchong, Keegan; Daskalakis, Constantine; Gordon, Victoria; Katz, Leo; Kastenberg, David
2012-11-29
Colonic bubbles associated with polyethylene glycol-electrolyte solution (PEG-ELS) are common and obscure mucosal visualization. This study aimed to determine whether adding simethicone decreases the incidence of bubbles. Prospective, single-blind, randomized comparison of split dose PEG-ELS vs. PEG-ELS+simethicone (PEG-S) for outpatient colonoscopy. Bubble severity for colonic segments was assessed on withdrawal as A=no/minimal bubbles, B=moderate bubbles/interfere with detecting 5 mm polyp, C=severe bubbles/interfere with detecting 10 mm polyp. Primary end point was Grade B or C bubbles in any colon segment. Secondary end points were cleansing quality, incidence and severity of side effects, and polyp detection. One hundred and thirty nine patients enrolled; 13 withdrew before colonoscopy. Of 123 patients evaluated, 62 took PEG-S and 61 PEG-ELS. The incidence of grade B or C bubbles was much lower with PEG-S compared with PEG-ELS (2% vs. 38%; P=0.001). Overall cleansing (excellent or good) quality was not significantly different for either the whole colon (89% PEG-ELS, 94% of PEG-S, P=0.529) or right colon (88% PEG-ELS, 94% PEG-S, P=0.365). More PEG-S patients had excellent rather than good preps (whole colon 53% vs. 28%, P=0.004; right colon 53% vs. 35%, P=0.044). Need for any flushing was less with PEG-S (38% vs. 70%, P=0.001). The groups were not significantly different with respect to total procedure and withdrawal times, incidence or severity of side effects, or number of polyps/patient or adenomas/patient. Adding simethicone to PEG-ELS effectively eliminates bubbles, substantially reduces the need for flushing, and results in more excellent preparations.
Matro, Rebecca; Tupchong, Keegan; Daskalakis, Constantine; Gordon, Victoria; Katz, Leo; Kastenberg, David
2012-01-01
OBJECTIVES: Colonic bubbles associated with polyethylene glycol-electrolyte solution (PEG-ELS) are common and obscure mucosal visualization. This study aimed to determine whether adding simethicone decreases the incidence of bubbles. METHODS: Prospective, single-blind, randomized comparison of split dose PEG-ELS vs. PEG-ELS+simethicone (PEG-S) for outpatient colonoscopy. Bubble severity for colonic segments was assessed on withdrawal as A=no/minimal bubbles, B=moderate bubbles/interfere with detecting 5 mm polyp, C=severe bubbles/interfere with detecting 10 mm polyp. Primary end point was Grade B or C bubbles in any colon segment. Secondary end points were cleansing quality, incidence and severity of side effects, and polyp detection. RESULTS: One hundred and thirty nine patients enrolled; 13 withdrew before colonoscopy. Of 123 patients evaluated, 62 took PEG-S and 61 PEG-ELS. The incidence of grade B or C bubbles was much lower with PEG-S compared with PEG-ELS (2% vs. 38% P=0.001). Overall cleansing (excellent or good) quality was not significantly different for either the whole colon (89% PEG-ELS, 94% of PEG-S, P=0.529) or right colon (88% PEG-ELS, 94% PEG-S, P=0.365). More PEG-S patients had excellent rather than good preps (whole colon 53% vs. 28%, P=0.004; right colon 53% vs. 35%, P=0.044). Need for any flushing was less with PEG-S (38% vs. 70%, P=0.001). The groups were not significantly different with respect to total procedure and withdrawal times, incidence or severity of side effects, or number of polyps/patient or adenomas/patient. CONCLUSIONS: Adding simethicone to PEG-ELS effectively eliminates bubbles, substantially reduces the need for flushing, and results in more excellent preparations. PMID:23238113
Far-Field Noise Induced by Bubble near Free Surface
NASA Astrophysics Data System (ADS)
Ye, Xi; Li, Jiang-tao; Liu, Jian-hua; Chen, Hai-long
2018-03-01
The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.
Time-dependent bubble motion through a liquid filled compliant channel
NASA Astrophysics Data System (ADS)
Halpern, David; Gaver, Donald; Jensen, Oliver
2000-11-01
Pulmonary airway closure occurs when the liquid lining layer occludes the airway and obstructs airflow. Meniscus formation is the result of a surface-tension driven instability within the liquid layer. Airway 'compliant collapse' may result, which leads to tube buckling with airway walls held in apposition. Airway closure is common in premature neonates who do not produce sufficient surfactant and those suffering from emphysema. To model the reopening of a collapsed airway flooded with fluid, we consider the time-dependent motion of an air-bubble driven by a positive bubble pressure Pb through a liquid filled compliant channel. The governing Stokes equations are solved using the boundary element method near the bubble tip, and lubrication theory sufficiently far ahead of the buble where the channel walls have a gentle taper. Results show that for Pb > P_crit, the bubble moves forward and converges to a steady velocity as the airway walls 'peel' open. For Pb < P_crit, no steady solutions are found because fluid continuously accummulates ahead of the bubble tip. This result validates the stability analysis of the previously steady wall peeling solution branch. The impact of the flow field on transport of surfactant and the applied shear and normal stresses on the wall as they relate to pulmonary reopening are also discussed.
Micro-Bubble Experiments at the Van de Graaff Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.
In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less
40 CFR 442.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior acid washes, and exterior... effective pre-treatment of segregated wastewaters (including heels, prerinse/pre-steam wastes, spent...
40 CFR 442.25 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior acid washes, and exterior... effective pre-treatment of segregated wastewaters (including heels, prerinse/pre-steam wastes, spent...
40 CFR 442.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior acid washes, and exterior... effective pre-treatment of segregated wastewaters (including heels, prerinse/pre-steam wastes, spent...
40 CFR 442.25 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior acid washes, and exterior... effective pre-treatment of segregated wastewaters (including heels, prerinse/pre-steam wastes, spent...
NASA Astrophysics Data System (ADS)
Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.
2018-01-01
A slow steady flow of a viscous fluid over a superhydrophobic surface with a periodic striped system of 2D rectangular microcavities is considered. The microcavities contain small gas bubbles on the curved surface of which the shear stress vanishes. The general case is analyzed when the bubble occupies only a part of the cavity, and the flow velocity far from the surface is directed at an arbitrary angle to the cavity edge. Due to the linearity of the Stokes flow problem, the solution is split into two parts, corresponding to the flows perpendicular and along the cavities. Two variants of a boundary element method are developed and used to construct numerical solutions on the scale of a single cavity with periodic boundary conditions. By averaging these solutions, the average slip velocity and the slip length tensor components are calculated over a wide range of variation of governing parameters for the cases of a shear-driven flow and a pressure-driven channel flow. For a sufficiently high pressure drop in a microchannel of finite length, the variation of the bubble surface shift into the cavities induced by the streamwise pressure variation is estimated from numerical calculations.
Determination of surface tension from the measurement of internal pressure of mini soap bubbles
NASA Astrophysics Data System (ADS)
Behroozi, F.; Behroozi, P. S.
2011-11-01
We review the elementary theory that gives the internal pressure of a soap bubble in terms of its radius and surface tension. The theory is generalized to relate the pressure difference across any element of a soap film to its local curvature. This result is used to introduce the concept of the mean curvature of a surface element and is applied to a double soap bubble to obtain the relation between the three radii that characterize its geometry. We also describe a simple setup, suitable for the undergraduate laboratory, to produce mini bubbles and to obtain the surface tension of the soap solution by measuring the radius and internal pressure of the bubbles.
Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device
NASA Astrophysics Data System (ADS)
Wang, Yi-Lin; Ward, Thomas; Grant, Christine
2012-02-01
We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.
Simulation studies of vapor bubble generation by short-pulse lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.; London, R.A.; Strauss, M.
1997-10-26
Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generationmore » and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.« less
NASA Technical Reports Server (NTRS)
Azuma, H.
1993-01-01
The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.
Thinking inside the bubble: evidence for a new contextual unit in urban mental health
Whitley, R.; Prince, M.; Cargo, M.
2005-01-01
Objective: Previous quantitative research has suggested that there is a link between housing, the urban environment, and mental health. However, methodological and design issues make it difficult to disentangle the relative influence of dwelling specific and wider urban environmental influences on individual mental health. The aim of this study was to explore the link between the dwelling, the immediate urban environment, and mental health to generate a new conceptual framework by which understanding of dwelling and urban environmental influences on mental health can be advanced. Design and participants: Qualitative interviews and focus groups were conducted with 32 inner city residents. Participants, stratified by sex and mental health status, were randomly recruited from a wider quantitative survey. An almost equal number of men and women as well as people with or without mental health problems participated, allowing for comparison of experience. Data were analysed inductively to generate an appropriate theoretical framework regarding dwelling and urban environmental influences on mental health. Setting: An inner city neighbourhood of about 6200 people in north west London. Most of that population live in public housing. Main results: The principal study finding is that between the dwelling unit and the neighbourhood unit, evidence was found for another meaningful contextual unit of analysis, the "residential bubble" through which effects on mental health can be mediated. The residential bubble describes a limited area of three dimensional space that surrounds a dwelling, encompassing immediate neighbours (above, below, and adjacent) and shared public space bordering the dwelling. Positive events and processes within the bubble had a beneficial influence on mental health whereas negative ones tended to have a damaging influence. These seemed to disproportionately have an impact on people with pre-existing mental health problems. Conclusion: The concept of the "residential bubble" may be a meaningful new contextual unit of analysis in urban mental health. This may have important implications with regards to interventions and measurement development. PMID:16166366
NASA Astrophysics Data System (ADS)
Borhan, Nurharyanti; Halim, Nurfadhlina Abdul; Amir, W. Ahmad Wan Muhammad
2017-09-01
A rational speculative bubble is a surge in asset prices that exceed its intrinsic value. Rational speculative bubbles are among the ascription which may lead to the collapse of an economic system. Rational speculative bubble cannot be created but it comes into existence when assets started to be traded. Financial rational speculative bubble and burst have negative effect on the economy and markets. Financial rational speculative bubbles are difficult to detect. This study aims to shows the size of rational speculative bubble in four markets, which are gold, Hang Seng, S&P500 and Nikkei 225 during year 2008 to 2016. In this study, generalized Johansen-Ledoit-Sornette model are used to find the size of the rational speculative bubble. Bubble detection is important for both sides of macro-economic decision makers and to the trader. Especially for a trading system that requires detailed knowledge about the time and the stage of the bubble burst.
Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Motil, Brian J.; Skor, Mark
2003-01-01
Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.
NASA Astrophysics Data System (ADS)
Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong
2018-04-01
The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.
A public study of the lifetime distribution of soap films
NASA Astrophysics Data System (ADS)
Tobin, S. T.; Meagher, A. J.; Bulfin, B.; Möbius, M.; Hutzler, S.
2011-08-01
We present data for the lifetime distribution of soap films made from commercial dish-washing solution and contained in sealed cylinders. Data for over 2500 films were gathered during a 2-month exhibition on the science and art of bubbles and foams in Dublin's Science Gallery. Visitors to the gallery were invited to create 10-20 parallel soap films in acrylic tubes which were sealed with cork stoppers. Individual film bursts occurred at random and were uncorrelated. The total number of remaining films in the tubes was recorded every day. Visitors could monitor the status of their soap film tube and the daily updated histogram of the lifetime of all films. The histogram of the bubble lifetimes is well described by a Weibull distribution, which indicates that the failure rate is not constant and increases over time. Unsealed cylinders show drastically reduced film lifetimes. This experiment illustrates the difference between the unpredictability of the lifetime of individual films and the existence of a well-defined lifetime distribution for the ensemble.
Lifetime of Bubble Rafts: Cooperativity and Avalanches
NASA Astrophysics Data System (ADS)
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-01
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
Lifetime of bubble rafts: cooperativity and avalanches.
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-15
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
On The Origin Of Two-Shell Supernova Remnants
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.
NASA Astrophysics Data System (ADS)
Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2017-05-01
Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.
Sostaric, Joe Z; Miyoshi, Norio; Cheng, Jason Y; Riesz, Peter
2008-10-09
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.
Orbital motions of bubbles in an acoustic field
NASA Astrophysics Data System (ADS)
Shirota, Minori; Yamashita, Ko; Inamura, Takao
2012-09-01
This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.
Hirschfeld, T.B.
1988-04-12
An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.
Models of cylindrical bubble pulsation
Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863
Yang, Limei; Sostaric, Joe Z; Rathman, James F; Kuppusamy, Periannan; Weavers, Linda K
2007-02-15
Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.
Aerobic exercise before diving reduces venous gas bubble formation in humans
Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O
2004-01-01
We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001
Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms
NASA Technical Reports Server (NTRS)
Thomas, Charles R.; Holt, R. Glynn; Roy, Ronald A.
2002-01-01
Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM, and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in 1g: the light emission mechanism itself, the existence of anisotropies in the emitted light, the disappearance of the bubble at some critical acoustic pressure, and the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the predictions of existing theories.
Formation and ascent of nonisothermal ionospheric and chromospheric bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genkin, L.G.; Erukhimov, L.M.; Myasnikov, E.N.
1987-11-01
The influences of nonisothermicity on the dynamics of ionospheric and chromospheric bubbles is discussed. The possibility of the existence in the ionosphere of a recombination-thermal instability, arising from the temperature dependence of the coefficient of charge exchange between molecules and atomic ions, is shown, and its influence on the formation and evolution of equatorial bubbles is analyzed. It is shown that the formation and dynamics of bubbles may depend on recombination processes and gravity, while plasma heating (predominantly by vertical electric fields) leads to the deepening and preservation of bubbles as they move to greater altitudes. The hypothesis is advancedmore » that the formation of bubbles may be connected with the ascent of clumps of molecules in ionospheric tornados.« less
Filtering microfluidic bubble trains at a symmetric junction.
Parthiban, Pravien; Khan, Saif A
2012-02-07
We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.
The rate of bubble growth in a superheated liquid in pool boiling
NASA Astrophysics Data System (ADS)
Abdollahi, Mohammad Reza; Jafarian, Mehdi; Jamialahmadi, Mohammad
2017-12-01
A semi-empirical model for the estimation of the rate of bubble growth in nucleate pool boiling is presented, considering a new equation to estimate the temperature history of the bubble in the bulk of liquid. The conservation equations of energy, mass and momentum have been firstly derived and solved analytically. The present analytical model of the bubble growth predicts that the radius of the bubble grows as a function of √{t}.{\\operatorname{erf}}( N√{t}) , while so far the bubble growth rate has been mainly correlated to √{t} in the previous studies. In the next step, the analytical solutions were used to develop a new semi-empirical equation. To achieve this, firstly the analytical solution were non-dimensionalised and then the experimental data, available in the literature, were applied to tune the dimensionless coefficients appeared in the dimensionless equation. Finally, the reliability of the proposed semi-empirical model was assessed through comparison of the model predictions with the available experimental data in the literature, which were not applied in the tuning of the dimensionless parameters of the model. The comparison of the model predictions with other proposed models in the literature was also performed. These comparisons show that this model enables more accurate predictions than previously proposed models with a deviation of less than 10% in a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Tufaile, Alberto; Sartorelli, José Carlos
2003-08-01
An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.
New applications of laser-induced breakdown and stand-off Raman spectroscopy
NASA Astrophysics Data System (ADS)
Snyder, Marion Lawrence
Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE detection. A small, transportable, telescope-based standoff Raman system is demonstrated for detection of HE materials, including RDX, TNT, and PETN, and simulants at distances up to 50 meters in ambient light conditions. Possible detection limits on the hundreds of parts-per-million level and detection ranges of hundreds of meters are suggested. Merits of pulsed laser excitation sources and intensified charge-coupled devices (ICCD) for detection are discussed.
Repeated bubble breakup and coalescence in perturbed Hele-Shaw channels
NASA Astrophysics Data System (ADS)
Thompson, Alice; Franco-Gomez, Andres; Hazel, Andrew; Juel, Anne
2017-11-01
The introduction of an axially-uniform, centred constriction in a Hele-Shaw channel leads to multiple propagation modes for both air fingers and bubbles, including symmetric and asymmetric steadily propagating modes along with oscillations. These multiple modes correspond to a non-trivial bifurcation structure, and relate to the plethora of steadily propagating bubbles and fingers which exist in the Saffman-Taylor system. In both experiments and depth-averaged computations, a very small centred occlusion can be enough to trigger bubble breakup, with a single large centred bubble splitting into two smaller bubbles which propagate along each side of the channel. We present numerical simulations for the depth-averaged model, implementing geometric criteria for pinchoff and coalescence in order to track the bubble before and beyond breakup. We find that the two-bubble state is itself unstable, with finger competition causing one bubble to move ahead; the trailing bubble then moves across the channel to merge with the leading bubble. However, the story is not always so simple, enabling complicated cascades of splitting and merging bubbles. We compare the general dynamical behaviour, basins of attraction, and the details of merging and splitting, to experimental observations.
de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio
2012-01-01
Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306
NASA Astrophysics Data System (ADS)
Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina
2018-02-01
Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.
Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi
2011-11-01
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.
Inhibition of bubble coalescence: effects of salt concentration and speed of approach.
Del Castillo, Lorena A; Ohnishi, Satomi; Horn, Roger G
2011-04-01
Bubble coalescence experiments have been performed using a sliding bubble apparatus, in which mm-sized bubbles in an aqueous electrolyte solution without added surfactant rose toward an air meniscus at different speeds obtained by varying the inclination of a closed glass cylinder containing the liquid. The coalescence times of single bubbles contacting the meniscus were monitored using a high speed camera. Results clearly show that stability against coalescence of colliding air bubbles is influenced by both the salt concentration and the approach speed of the bubbles. Contrary to the widespread belief that bubbles in pure water are unstable, we demonstrate that bubbles formed in highly purified water and colliding with the meniscus at very slow approach speeds can survive for minutes or even hours. At higher speeds, bubbles in water only survive for a few seconds, and at still higher speeds they coalesce instantly. Addition of a simple electrolyte (KCl) removes the low-speed stability and shifts the transition between transient stability and instant coalescence to higher approach speeds. At high electrolyte concentration no bubbles were observed to coalesce instantly. These observations are consistent with recent results of Yaminsky et al. (Langmuir 26 (2010) 8061) and the transitions between different regions of behavior are in semi-quantitative agreement with Yaminsky's model. Copyright © 2010 Elsevier Inc. All rights reserved.
40 CFR 442.25 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
40 CFR 442.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
40 CFR 442.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
40 CFR 442.25 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
40 CFR 442.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
40 CFR 442.25 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... contribute to a discharge that would be incompatible with treatment at the POTW; (iv) All spent cleaning solutions, including interior caustic washes, interior presolve washes, interior detergent washes, interior..., prerinse/pre-steam wastes, spent cleaning solutions); (ix) Information on the volumes, content, and...
NASA Technical Reports Server (NTRS)
Holt, R. G.; Gaitan, D. F.
1996-01-01
Teh region of parameter space (acoustic pressure P(sub a), bubble radius R(sub 0)) in which stable single bubble sonoluminescence (SBSL) occurs in an air-water system is a small fraction of that which is accesible. This is due ot the existence of an island of dissolution at high P(sub a) and small R(sub 0).
Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan
2014-07-21
This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.
KIreeva, Maria; Trang, Cyndi; Matevosyan, Gayane; Turek-Herman, Joshua; Chasov, Vitaly; Lubkowska, Lucyna; Kashlev, Mikhail
2018-06-20
Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA-DNA base pair at the upstream edge of the transcription bubble. DNA-DNA base pairing immediately upstream from the RNA-DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA-DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.
Bubble propagation on a rail: a concept for sorting bubbles by size
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore.
Levine, Edlyn V; Burns, Michael M; Golovchenko, Jene A
2016-01-01
We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics.
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-08-22
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.
Noise reduction by the application of an air-bubble curtain in offshore pile driving
NASA Astrophysics Data System (ADS)
Tsouvalas, A.; Metrikine, A. V.
2016-06-01
Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer becomes critical.
Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D
2016-11-01
To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Sherman, H; Nguyen, A V; Bruckard, W
2016-11-22
Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.
Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water
NASA Astrophysics Data System (ADS)
Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier
2014-11-01
Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.
Exploring the WTI crude oil price bubble process using the Markov regime switching model
NASA Astrophysics Data System (ADS)
Zhang, Yue-Jun; Wang, Jing
2015-03-01
The sharp volatility of West Texas Intermediate (WTI) crude oil price in the past decade triggers us to investigate the price bubbles and their evolving process. Empirical results indicate that the fundamental price of WTI crude oil appears relatively more stable than that of the market-trading price, which verifies the existence of oil price bubbles during the sample period. Besides, by allowing the WTI crude oil price bubble process to switch between two states (regimes) according to a first-order Markov chain, we are able to statistically discriminate upheaval from stable states in the crude oil price bubble process; and in most of time, the stable state dominates the WTI crude oil price bubbles while the upheaval state usually proves short-lived and accompanies unexpected market events.
A computationally efficient modelling of laminar separation bubbles
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.
1988-01-01
The goal of this research is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. To this end, a model of the bubble is under development and will be incorporated in the analysis section of the Eppler and Somers program. As a first step in this direction, an existing bubble model was inserted into the program. It was decided to address the problem of the short bubble before attempting the prediction of the long bubble. In the second place, an integral boundary-layer method is believed more desirable than a finite difference approach. While these two methods achieve similar prediction accuracy, finite-difference methods tend to involve significantly longer computer run times than the integral methods. Finally, as the boundary-layer analysis in the Eppler and Somers program employs the momentum and kinetic energy integral equations, a short-bubble model compatible with these equations is most preferable.
The Collapse of Vapor Bubbles in a Spatially Non-Uniform Flow
NASA Technical Reports Server (NTRS)
Hao, Y.; Prosperetti, A.
2000-01-01
Pressure gradients act differently on liquid particles and suspended bubbles and are, therefore, capable of inducing a relative motion between the phases even when no relative velocity initially exists. As a consequence of the enhanced heat transfer in the presence of convection, this fact may have a major impact on the evolution of a vapor bubble. The effect is particularly strong in the case of a collapsing bubble for which, due to the conservation of the system's impulse, the induced relative velocity tends to be magnified when the bubble volume shrinks. A practical application could be, for instance, the enhancement of the condensation rate of bubbles downstream of a heated region, thereby reducing the quality of a flowing liquid-vapor mixture. A simple model of the process, in which the bubble is assumed to be spherical and the flow potential, is developed in the paper.
Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.
Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe
2016-08-01
We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.
Pre-Big-Bang bubbles from the gravitational instability of generic string vacua
NASA Astrophysics Data System (ADS)
Buonanno, A.; Damour, T.; Veneziano, G.
1999-03-01
We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.
Movement of fine particles on an air bubble surface studied using high-speed video microscopy.
Nguyen, Anh V; Evans, Geoffrey M
2004-05-01
A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.
Generation of Microbubbles with Applications to Industry and Medicine
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Javier; Sevilla, Alejandro; Martínez-Bazán, Carlos; Gordillo, José Manuel
2015-01-01
We provide a comprehensive and systematic description of the diverse microbubble generation methods recently developed to satisfy emerging technological, pharmaceutical, and medical demands. We first introduce a theoretical framework unifying the physics of bubble formation in the wide variety of existing types of generators. These devices are then classified according to the way the bubbling process is controlled: outer liquid flows (e.g., coflows, cross flows, and flow-focusing flows), acoustic forcing, and electric fields. We also address modern techniques developed to produce bubbles coated with surfactants and liquid shells. The stringent requirements to precisely control the bubbling frequency, the bubble size, and the properties of the coating make microfluidics the natural choice to implement such techniques.
A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.
Guédra, Matthieu; Cornu, Corentin; Inserra, Claude
2017-09-01
The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamics of Two Interactive Bubbles in An Acoustic Field - Part II: Experiments
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Liu, Ching-Shi
1996-11-01
The motion of two air bubbles levitated in water, in the presence of a high-frequency acoustic field is experimentally studied. The interaction force between them is named "secondary Bjerknes force" and may be significant in microgravity environments; in our experiments the buoyancy effect is compensated through the action of the "primary Bjerknes forces" - interaction between each bubble oscillation and external sound field. The stationary sound field is produced by a piezoceramic tranducer, in the range of 22-24 kHz. The experiments succesfully demonstrate the existence of three patterns of interaction between bubbles of various sizes: attraction, repulsion and oscillation. Bubbles attraction is quantitatively studied using a high speed video, for "large" bubbles (in the range 0.5-2 mm radius); bubbles repulsion and oscillations are only observed with a regular video, for "small" bubbles (around the resonance size at these frequencies, 0.12 mm). Velocities and accelerations of each bubble are computed from the time history of the motion. The theoretical equations of motion are completed with a drag force formula for single bubbles and solved numerically. Experimental results, for the case of two attracting bubbles, are in good agreement with the numerical model, especially for values of the mutual distance greater than 3 large bubble radii.
Orbital revolution of a pair of bubbles in an acoustic field
NASA Astrophysics Data System (ADS)
Shirota, Minori; Yamashita, Kou; Inamura, Takao
2011-11-01
This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingguang; Xia, Shuang, E-mail: xs@shu.edu.cn; Li, Hui
Grain boundary engineering was carried out on an aging-treated nickel based Alloy 690, which has precipitated carbides at grain boundaries. Electron backscatter diffraction technique was used to investigate the grain boundary networks. Results show that, compared with the solution-annealed samples, the aging-treated samples with pre-existing carbides at grain boundaries need longer duration or higher temperature during annealing after low-strain tensile deformation for forming high proportion of low-Σ coincidence site lattice grain boundaries (more than 75%). The reason is that the primary recrystallization is inhibited or retarded owing to that the pre-existing carbides are barriers to grain boundaries migration. - Highlights:more » • Study of GBE as function of pre-existing GB carbides, tensile strain and annealing • Recrystallization of GBE is inhibited or retarded by the pre-existing carbides. • Retained carbides after annealing show the original GB positions. • More than 80% of special GBs were formed after the modification of GBE processing. • Multiple twinning during recrystallization is the key process of GBE.« less
Tan, Sin-Ying; Ata, Seher; Wanless, Erica J
2013-07-18
The interactions between two individual particle-stabilized bubbles were investigated, in the absence of surfactant, using a combination of coalescence rig and high-speed video camera. This combination allows the visualization of bubble coalescence dynamics which provide information on bubble stability. Experimental data suggested that bubble stability is enhanced by both the adsorption of particles at the interface as indicated by the long induction time and the increase in damping coefficient at high surface coverage. The interaction between an armored bubble and a bare bubble (asymmetric interaction) can be destabilized through the addition of a small amount of salt, which suggested that electrostatic interactions play a significant role in bubble stability. Interestingly, the DLVO theory cannot be used to describe the bubble stability in the case of a symmetric interaction as coalescence was inhibited at 0.1 M KCl in both the absence and presence of particles at the interfaces. Furthermore, bubbles can also be destabilized by increasing the particle hydrophobicity. This behavior is due to thinner liquid films between bubbles and an increase in film drainage rate. The fraction of particles detached from the bubble surface after film rupture was found to be very similar within the range of solution ionic strength, surface coverage, and particle hydrophobicity studied. This lack of dependence implies that the kinetic energy generated by the coalescing bubbles is larger than the attachment energy of the particles and dominates the detachment process. This study illuminates the stability behavior of individual particle-stabilized bubbles and has potential impact on processes which involve their interaction.
A detonation wave in the system liquid-gas bubbles
NASA Astrophysics Data System (ADS)
Sychev, A. I.
1985-06-01
The shock-wave ignition of a system consisting of a liquid (H2O) and bubbles of an explosive gas mixture (C2H2+2.5O2) is investigated experimentally and analytically. The possibility of the existence of a detonation wave, a supersonic self-sustaining process, in a gas-liquid system is demonstrated. The conditions for the existence of a detonation wave are determined, and the initiation mechanism is analyzed.
Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents
NASA Astrophysics Data System (ADS)
Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.
2017-04-01
Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.
Big Bubbles in Boiling Liquids: Students' Views
ERIC Educational Resources Information Center
Costu, Bayram
2008-01-01
The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…
Paramagnetism Paradoxes: Projectable Demonstrations
ERIC Educational Resources Information Center
Sauls, Frederick C.; Vitz, Ed
2008-01-01
Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2015-03-01
Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). We performed transthoracic echocardiography (TTE) on a group of 56 healthy scuba divers (39 male, 17 female) as follows: first echo--during the outgoing flight, no recent dives; second echo--before boarding the return flight, after a multiday diving week in the tropics and a 24-hour PFSI; third echo--during the return flight at 30, 60 and 90 minutes after take-off. TTE was also done after every dive during the week's diving. Divers were divided into three groups according to their 'bubble-proneness': non-bubblers, occasional bubblers and consistent bubblers. During the diving, 23 subjects never developed bubbles, 17 only occasionally and 16 subjects produced bubbles every day and after every dive. Bubbles on the return flight were observed in eight of the 56 divers (all from the 'bubblers' group). Two subjects who had the highest bubble scores during the diving were advised not to make the last dive (increasing their PFSI to approximately 36 hours), and did not demonstrate bubbles on the return flight. Even though a 24-hour PFSI is recommended on the basis of clinical trials showing a low risk of decompression sickness (DCS), the presence of venous gas bubbles in-flight in eight of 56 divers leads us to suspect that in real-life situations DCS risk after such a PFSI is not zero.
Coal beneficiation by gas agglomeration
Wheelock, Thomas D.; Meiyu, Shen
2003-10-14
Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
NASA Astrophysics Data System (ADS)
Thomas, A. G. R.
2011-03-01
In the preceding Comment, Corde, Stordeur, and Malka claim that the trapping threshold derived in my recent paper is incorrect. Their principal argument is that the elliptical orbits I used are not exact solutions of the equation of motion in the fields of the bubble. The original paper never claimed this—rather I claimed that the use of elliptical orbits was a reasonable approximation, which I based on observations from particle-in-cell simulations. Integration of the equation of motion for analytical expressions for idealized bubble fields (either analytically [I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, Phys. Rev. Lett. 103, 175003 (2009)] or numerically [S. Corde, A. Stordeur, and V. Malka, "Comment on `Scalings for radiation from plasma bubbles,' " Phys. Plasmas 18, 034701 (2011)]) produces a trapping threshold wholly inconsistent with experiments and full particle-in-cell (PIC) simulations (e.g., requiring an estimated laser intensity of a0˜30 for ne˜1019 cm-3). The inconsistency in the particle trajectories between PIC and the numeric model used by the comment authors arises due to the fact that the analytical fields are only approximately true for "real" plasma bubbles, and lack certain key features of the field structure. Two possible methods of resolution to this inconsistency are either to find ever more complicated but accurate models for the bubble fields or to find approximate solutions to the equations of motion that capture the essential features of the self-consistent electron trajectories. The latter, heuristic approach used in my recent paper produced a threshold that is better matched to experimental observations. In this reply, I will also revisit the problem and examine the relationship between bubble radius and electron momentum at the point of trapping without reference to a particular trajectory.
Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.
Chen, Qianjin; Luo, Long; White, Henry S
2015-04-21
We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.
Wall function treatment for bubbly boundary layers at low void fractions.
Soares, Daniel V; Bitencourt, Marcelo C; Loureiro, Juliana B R; Silva Freire, Atila P
2018-01-01
The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of bubbly flows. Two different wall function formulations are tested against experimental data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic techniques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified k-e model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbulence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work shows, in particular, how four corrections must the implemented in the standard single-phase k-e model to account for the effects of bubbles. The numerical implementation of the near wall functions is made through a finite elements code.
Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.
Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos
2014-10-01
We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
Release of Dissolved CO2 from Water in Laboratory Porous Media Following Rapid Depressurization
NASA Astrophysics Data System (ADS)
Crews, J. B.; Cooper, C. A.
2011-12-01
A bench-top laboratory study is undertaken to investigate the effects of seismic shocks on brine aquifers into which carbon dioxide has been injected for permanent storage. Long-term storage in deep saline aquifers has been proposed and studied as one of the most viable near-term options for sequestering fossil fuel-derived carbon dioxide from the atmosphere to curb anthropogenic climate change. Upon injection into the subsurface, it is expected that CO2, as either a gas or supercritical fluid, will mix convectively with the formation water. The possibility exists, however, that dissolved CO2 will come out of solution as a result of an earthquake. The effect is similar to that of slamming an unsealed container of carbonated beverage on a table; previously dissolved CO2 precipitates, forms bubbles, and rises due to buoyancy. In this study, we measure the change in gas-phase CO2 concentration as a function of the magnitude of the shock and the initial concentration of CO2. In addition, we investigate and seek to characterize the nucleation and transport of CO2 bubbles in a porous medium after a seismic shock. Experiments are conducted using a Hele-Shaw cell and a CCD camera to quantify the fraction of dissolved CO2 that comes out of solution as a result of a sharp mechanical impulse. The data are used to identify and constrain the conditions under which CO2 comes out of solution and, further, to understand the end-behavior of the precipitated gas-phase CO2 as it moves through or is immobilized in a porous medium.
Corrosion casts of big bubbles formed during deep anterior lamellar keratoplasty.
Feizi, Sepehr; Kanavi, Mozhgan Rezaei; Kharaghani, Davood; Balagholi, Sahar; Meskinfam, Masoumeh; Javadi, Mohammad Ali
2016-11-01
To characterize the walls of big bubbles formed during deep anterior lamellar keratoplasty (DALK) using the corrosion casting technique. Fresh corneoscleral buttons with normal transparency and without any known eye diseases (n = 11) were obtained from 11 human donors. A 20-gauge needle was used to inject a solution of 20 % polyvinyl alcohol (PVA) immediately beneath the corneal endothelium to form big bubbles in eight corneoscleral buttons. In the second experiment on three corneoscleral buttons, a big bubble was first formed by air injection beneath the endothelium. Thereafter, 20 % PVA was injected into the bubble space. Scanning electron microscopy was used to characterize the surfaces of the casts, which replicated the walls of the big bubbles. A type-1 bubble was formed in all corneas. In one cornea, one type-1 bubble was initially formed centrally, and while it was enlarged, an eccentric type-2 bubble appeared. Scanning electron microscopy showed that the casts of type-1 bubbles had two distinct surfaces. The anterior surface demonstrated several holes or pits, depending on the material used for the bubble formation, whereas the posterior surface exhibited an uneven surface. The anterior and posterior surfaces of the type-2 cast were more or less similar. A communication measuring 531.9 µm in length and 171.4 µm in diameter was found between the two bubbles. The corrosion casting technique provides a permanent three-dimensional record of the potential spaces and barriers in the posterior corneal stroma, which explains several features associated with big-bubble DALK.
Lv, Pengyu; Le The, Hai; Eijkel, Jan; Van den Berg, Albert; Zhang, Xuehua; Lohse, Detlef
2017-09-28
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions , though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R ( t ) as a function of time by confocal microscopy and find R ( t ) ∝ t 1/2 . This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble's contact line.
Alheshibri, Muidh; Qian, Jing; Jehannin, Marie; Craig, Vincent S J
2016-11-01
We follow the history of nanobubbles from the earliest experiments pointing to their existence to recent years. We cover the effect of Laplace pressure on the thermodynamic stability of nanobubbles and why this implies that nanobubbles are thermodynamically never stable. Therefore, understanding bubble stability becomes a consideration of the rate of bubble dissolution, so the dominant approach to understanding this is discussed. Bulk nanobubbles (or fine bubbles) are treated separately from surface nanobubbles as this reflects their separate histories. For each class of nanobubbles, we look at the early evidence for their existence, methods for the production and characterization of nanobubbles, evidence that they are indeed gaseous, or otherwise, and theories for their stability. We also look at applications of both surface and bulk nanobubbles.
NASA Astrophysics Data System (ADS)
Rest, J.; Hofman, G. L.; Kim, Yeon Soo
2009-04-01
An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.
Marangoni bubble motion in zero gravity. [Lewis zero gravity drop tower
NASA Technical Reports Server (NTRS)
Thompson, R. L.; Dewitt, K. J.
1979-01-01
It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.
Feasibility of an in situ measurement device for bubble size and distribution.
Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael
2007-09-01
The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles.
Transformer overload and bubble evolution: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, G.; Lindgren, S.
1988-06-01
The EPRI workshop on Transformer Overload Characteristics and Bubble Evolution was held to review the findings of investigations over the past 7-8 years to determine whether enough information is now available for utilities to establish safe loading practices. Sixteen papers were presented, including a utility review, physical and dielectric effects of gas and bubble formation from cellulose insulated transformers, transformer life characteristics, gas bubble studies and impulse test on distribution transformers, mathematical modeling of bubble evolution, transformer overload characteristics, variation of PD-strength for oil-paper insulation, survey on maximum safe operating hot spot temperature, and overload management. The meeting concluded withmore » a general discussion covering the existing state of knowledge and the need for additional research. Sixteen papers have been cataloged separately.« less
Number of Transition Frequencies of a System Containing an Arbitrary Number of Gas Bubbles
NASA Astrophysics Data System (ADS)
Ida, Masato
2002-05-01
“Transition frequencies” of a system containing an arbitrary number of bubbles levitated in a liquid are discussed. Using a linear coupled-oscillator model, it is shown theoretically that when the system contains N bubbles of different sizes, each bubble has 2N - 1 (or less) transition frequencies which make the phase difference between an external sound and a bubble’s pulsation π / 2. Furthermore, we discuss a discrepancy appearing between the present result regarding the transition frequencies and existing ones for the resonance frequencies in a two-bubble case, and show that the transition frequency, defined as above, and the resonance frequency have a different physical meaning when N ≥ 2, while they are consistent for N = 1.
Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics
NASA Astrophysics Data System (ADS)
Watkinson, C. A.; Pritchard, J. R.
2014-10-01
We explore the impact of reionization topology on 21-cm statistics. Four reionization models are presented which emulate large ionized bubbles around overdense regions (21CMFAST/global-inside-out), small ionized bubbles in overdense regions (local-inside-out), large ionized bubbles around underdense regions (global-outside-in) and small ionized bubbles around underdense regions (local-outside-in). We show that first generation instruments might struggle to distinguish global models using the shape of the power spectrum alone. All instruments considered are capable of breaking this degeneracy with the variance, which is higher in outside-in models. Global models can also be distinguished at small scales from a boost in the power spectrum from a positive correlation between the density and neutral-fraction fields in outside-in models. Negative skewness is found to be unique to inside-out models and we find that pre-Square Kilometre Array (SKA) instruments could detect this feature in maps smoothed to reduce noise errors. The early, mid- and late phases of reionization imprint signatures in the brightness-temperature moments, we examine their model dependence and find pre-SKA instruments capable of exploiting these timing constraints in smoothed maps. The dimensional skewness is introduced and is shown to have stronger signatures of the early and mid-phase timing if the inside-out scenario is correct.
A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools
NASA Astrophysics Data System (ADS)
Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.
2018-04-01
The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.
Distinguishing between microscale gaseous bubbles and liquid drops
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter
2015-11-01
In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.
1966-12-01
26] /2 where equals b 2g Ap/y. Note that subscripts on W indicate dif- ferentiation. If one were to solve Eq [26] by finite differences , the re- sults...of f only requires about 0.5-minute machine time. Finite difference solutions are generated using dependent variables V and Q where: V - W Q = [29...of heat transfer rate and the migration of bubbles in the bulk liq- uid in low gravity. Assuming that the bubble might depart from the heating
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
NASA Technical Reports Server (NTRS)
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall.
Del Castillo, Lorena A; Ohnishi, Satomi; White, Lee R; Carnie, Steven L; Horn, Roger G
2011-12-15
The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, R. L.
1986-01-01
A program called ALESEP is presented for the analysis of the inviscid-viscous interaction which occurs due to the presence of a closed laminar-transitional separation bubble on an airfoil or infinite swept wing. The ALESEP code provides an iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis; hence, part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function, a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation, and an empirical natural transition model.
NASA Astrophysics Data System (ADS)
Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.
1990-07-01
On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.
Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows
NASA Astrophysics Data System (ADS)
Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro
2015-11-01
Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.
Effect of small bowel preparation with simethicone on capsule endoscopy.
Fang, You-hong; Chen, Chun-xiao; Zhang, Bing-ling
2009-01-01
Capsule endoscopy is a novel non-invasive method for visualization of the entire small bowel. The diagnostic yield of capsule endoscopy depends on the quality of visualization of the small bowel mucosa and its complete passage through the small bowel. To date, there is no standardized protocol for bowel preparation before capsule endoscopy. The addition of simethicone in the bowel preparation for the purpose of reducing air bubbles in the intestinal lumen had only been studied by a few investigators. Sixty-four participants were randomly divided into two groups to receive a bowel preparation of polyethylene glycol (PEG) solution (Group 1) and both PEG solution and simethicone (Group 2). The PEG solution and simethicone were taken the night before and 20 min prior to capsule endoscopy, respectively. Frames taken in the small intestine were examined and scored for luminal bubbles by two professional capsule endoscopists. Gastric emptying time and small bowel transit time were also recorded. Simethicone significantly reduced luminal bubbles both in the proximal and distal small intestines. The mean time proportions with slight bubbles in the proximal and distal intestines in Group 2 were 97.1% and 99.0%, respectively, compared with 67.2% (P<0.001) and 68.8% (P<0.001) in Group 1. Simethicone had no effect on mean gastric emptying time, 32.08 min in Group 2 compared with 30.88 min in Group 1 (P=0.868), but it did increase mean small intestinal transit time from 227.28 to 281.84 min (P=0.003). Bowel preparation with both PEG and simethicone significantly reduced bubbles in the intestinal lumen and improved the visualization of the small bowel by capsule endoscopy without any side effects observed.
Effect of small bowel preparation with simethicone on capsule endoscopy*
Fang, You-hong; Chen, Chun-xiao; Zhang, Bing-ling
2009-01-01
Background: Capsule endoscopy is a novel non-invasive method for visualization of the entire small bowel. The diagnostic yield of capsule endoscopy depends on the quality of visualization of the small bowel mucosa and its complete passage through the small bowel. To date, there is no standardized protocol for bowel preparation before capsule endoscopy. The addition of simethicone in the bowel preparation for the purpose of reducing air bubbles in the intestinal lumen had only been studied by a few investigators. Methods: Sixty-four participants were randomly divided into two groups to receive a bowel preparation of polyethylene glycol (PEG) solution (Group 1) and both PEG solution and simethicone (Group 2). The PEG solution and simethicone were taken the night before and 20 min prior to capsule endoscopy, respectively. Frames taken in the small intestine were examined and scored for luminal bubbles by two professional capsule endoscopists. Gastric emptying time and small bowel transit time were also recorded. Results: Simethicone significantly reduced luminal bubbles both in the proximal and distal small intestines. The mean time proportions with slight bubbles in the proximal and distal intestines in Group 2 were 97.1% and 99.0%, respectively, compared with 67.2% (P<0.001) and 68.8% (P<0.001) in Group 1. Simethicone had no effect on mean gastric emptying time, 32.08 min in Group 2 compared with 30.88 min in Group 1 (P=0.868), but it did increase mean small intestinal transit time from 227.28 to 281.84 min (P=0.003). Conclusion: Bowel preparation with both PEG and simethicone significantly reduced bubbles in the intestinal lumen and improved the visualization of the small bowel by capsule endoscopy without any side effects observed. PMID:19198022
NASA Astrophysics Data System (ADS)
Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.
2017-07-01
The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.
Developing a bubble number-density paleoclimatic indicator for glacier ice
Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.
2006-01-01
Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.
Systems and methods for generation of hydrogen peroxide vapor
Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G
2014-12-02
A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.
Density functional theory of gas-liquid phase separation in dilute binary mixtures
NASA Astrophysics Data System (ADS)
Okamoto, Ryuichi; Onuki, Akira
2016-06-01
We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeishi, T.; Kotoh, K.; Kawabata, Y.
The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less
Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence
NASA Astrophysics Data System (ADS)
Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen
2018-04-01
The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
Black String and Velocity Frame Dragging
NASA Astrophysics Data System (ADS)
Lee, Jungjai; Kim, Hyeong-Chan
We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted z-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z-coordinate if it is not compact. However, in spacetime with the compact z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity depends on r and the momentum parameter along the z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.
Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide
2017-01-01
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) ∝ t1/2. This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble’s contact line. PMID:28983387
Nanoscale Dynamics of Joule heating and Bubble Nucleation in a Solid-State Nanopore
Levine, Edlyn V.; Burns, Michael M.; Golovchenko, Jene A.
2016-01-01
We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics. PACS numbers 47.55.dp, 47.55.db, 85.35.-p, 05.70Fh PMID:26871171
An experimental investigation of hydrodynamic cavitation in micro-Venturis
NASA Astrophysics Data System (ADS)
Mishra, Chandan; Peles, Yoav
2006-10-01
The existence of hydrodynamic cavitation in the flow of de-ionized water through micro-Venturis has been witnessed in the form of traveling bubble cavitation and fully developed streamer bubble/supercavitation, and their mechanisms have been discussed. High-speed photography and flow visualization disclose inchoate cavitation bubbles emerging downstream from the micro-Venturi throat and the presence of a single streamer bubble/supercavity, which is equidistant from the micro device walls. The supercavity initiates inside the diffuser section and extends until the microchannel exit and proceeds to bifurcate the incoming flow. This article strives to provide numerical data and experimental details of hydrodynamic cavitation taking place within micro-Venturis.
NASA Astrophysics Data System (ADS)
Souto Mantecon, Francisco Javier
One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite-reflected cylindrical geometry.
Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
Choi, Munseok; Na, Yang; Kim, Sung-Jin
2015-12-01
In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Weinberg, M. C.
1982-01-01
A preliminary investigation is carried out of the effects of a reversible chemical reaction on the dissolution of an isolated, stationary gas bubble in a glass melt. The exact governing equations for the model system are formulated and analyzed. The approximate quasi-steady-state version of these equations is solved analytically, and a calculation is made of bubble dissolution rates. The results are then compared with numerical solutions obtained from the finite difference form of the exact governing equations. It is pointed out that in the microgravity condition of space, the buoyant rise of a gas bubble in a glass melt will be negligible on the time scale of most experiments. For this reason, a determination of the behavior of a stationary gas bubble in a melt is relevant for an understanding of glass refining in space.
On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm
NASA Astrophysics Data System (ADS)
Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.
2017-04-01
Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.
Study on Formation of Plasma Nanobubbles in Water
NASA Astrophysics Data System (ADS)
Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi
2015-12-01
Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.
Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging
NASA Astrophysics Data System (ADS)
Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit
2018-02-01
Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.
Expansion of a compressible gas bubble in Stokes flow
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2001-09-01
The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which stationary shapes can be found.
Perturbation of a radially oscillating single-bubble by a micron-sized object.
Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F
2017-03-01
A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.
Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.
Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L
2014-10-01
Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.
NASA Astrophysics Data System (ADS)
Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae
2017-09-01
This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.
Transport of Gas and Solutes in Permeable Estuarine Sediments
2013-09-30
513. 2. Hermand, J. P., and Ieee. 2004. Photosynthesis of seagrasses observed in situ from acoustic measurements. Oceans Mts/Ieee Techno-Ocean...functionality is demonstrated by measuring the spatial and temporal distribution of small bubbles produced by photosynthesis in sublittoral sands. − We...Evaluation of ebullition caused by sedimentary photosynthesis and methanogenesis For these experiments photosynthetic gas bubbles released from the
Existence problem of proton semi-bubble structure in the 21 + state of 34Si
NASA Astrophysics Data System (ADS)
Wu, Feng; Bai, C. L.; Yao, J. M.; Zhang, H. Q.; Zhang, X. Z.
2017-09-01
The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 21+ state of 34Si. The experimental excitation energy and the transition strength of the 21+ state in 34Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 21+ state and a small effect on the B( E2) value. Besides, its effect on the density distributions in the ground and 21+ state of 34Si is negligible. Our present results with T36 and T44 show that the 21+ state of 34Si is mainly caused by proton transition from π 1d_{5/2} orbit to π 2s_{1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely.
Propagation of a finite bubble in a Hele-Shaw channel of variable depth
NASA Astrophysics Data System (ADS)
Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew
2017-11-01
We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.
Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall
Del Castillo, Lorena A.; Ohnishi, Satomi; White, Lee R.; Carnie, Steven L.; Horn, Roger G.
2011-01-01
The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a theory developed by two of us [2] which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1–5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. PMID:21924429
Aquifer storage and recovery: recent hydrogeological advances and system performance.
Maliva, Robert G; Guo, Weixing; Missimer, Thomas M
2006-12-01
Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.
Reheating-volume measure in the string theory landscape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winitzki, Sergei
2008-12-15
I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measuremore » is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.« less
Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng
2007-03-01
The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.
An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.
Jamshidi, Rashid; Brenner, Gunther
2014-01-01
Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.
Magma deformation and emplacement in rhyolitic dykes
NASA Astrophysics Data System (ADS)
McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter
2016-04-01
Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.
Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers
NASA Astrophysics Data System (ADS)
Leighton, Timothy G.
2004-11-01
Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.
Sensitivities of Soap Solutions in Leak Detection
NASA Technical Reports Server (NTRS)
Stuck, D.; Lam, D. Q.; Daniels, C.
1985-01-01
Document describes method for determining minimum leak rate to which soap-solution leak detectors sensitive. Bubbles formed at smaller leak rates than previously assumed. In addition to presenting test results, document discusses effects of joint-flange configurations, properties of soap solutions, and correlation of test results with earlier data.
Nanoparticle coated optical fibers for single microbubble generation
NASA Astrophysics Data System (ADS)
Pimentel-Domínguez, Reinher; Hernández-Cordero, Juan
2011-09-01
The study of bubbles and bubbly flows is important in various fields such as physics, chemistry, medicine, geophysics, and even the food industry. A wide variety of mechanical and acoustic techniques have been reported for bubble generation. Although a single bubble may be generated with these techniques, controlling the size and the mean lifetime of the bubble remains a difficult task. Most of the optical methods for generation of microbubbles involve high-power pulsed laser sources focused in absorbing media such as liquids or particle solutions. With these techniques, single micron-sized bubbles can be generated with typical mean lifetimes ranging from nano to microseconds. The main problem with these bubbles is their abrupt implosion: this produces a shock wave that can potentially produce damages on the surroundings. These effects have to be carefully controlled in biological applications and in laser surgery, but thus far, not many options are available to effectively control micron-size bubble growth. In this paper, we present a new technique to generate microbubbles in non-absorbing liquids. In contrast to previous reports, the proposed technique uses low-power and a CW radiation from a laser diode. The laser light is guided through an optical fiber whose output end has been coated with nanostructures. Upon immersing the tip of the fiber in ethanol or water, micron-size bubbles can be readily generated. With this technique, bubble growth can be controlled through adjustments on the laser power. We have obtained micron-sized bubbles with mean lifetimes in the range of seconds. Furthermore, the generated bubbles do not implode, as verified with a high-speed camera and flow visualization techniques.
Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor
NASA Astrophysics Data System (ADS)
Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.
2018-01-01
Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.
Characterization of Methane Hydrate Growth from Aqueous Solution by Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Chou, I.; Lu, W.; Yuan, S.; Li, J.; Burruss, R. C.
2009-12-01
We observed the growth of methane hydrate from aqueous solution in fused silica capillaries near room temperature (RT) in two different experiments. In the first, we sealed methane together with ~2 wt% Na2SO4 solution in a fused silica capillary (0.3x0.3 mm cross-section with 0.05x0.05 mm cavity, and ~6 cm long), using the method of Chou et al. (2008, Geochim. Cosmochim. Acta, 72, 2517). The hydrate, liquid, and vapor coexist at ~23 °C and ~36.5 MPa. The behavior of two methane bubbles, one of which was enclosed by a hydrate crystal and the other near a small hydrate crystal, was monitored. These two bubbles are the only methane sources near the hydrate crystals. The system was slowly cooled to RT (~21 °C), and images were recorded continuously for a period of ~1.5 hours, together with temperature and time information. The images show the exposed bubble decreased in size, while both of the hydrate crystals increased in size, which was caused by the transfer of methane in solution. According to our previous report (Fig. 8 of Lu et al., 2008, Geochim. Cosmochim. Acta, 72, 412), the concentrations of methane in the solution near the exposed bubble are higher than those near the hydrate crystals. Most of the dissolved methane, transferred down the concentration gradient, was consumed and encaged in the nearby crystal, with only a small fraction of methane being consumed by the more distant crystal. Eventually, the exposed vapor bubble was totally consumed, but the bubble shielded by the hydrate crystal remained. This shows hydrate can grow from dissolved methane in the solution far away from free gas. In the 2nd experiment, we sealed methane, together with pure H2O and glass beads (0.04 to 0.07 mm in dia.), in a fused silica capillary (0.3 mm OD, 0.1 mm ID, and ~6 cm long) using the method cited above. We separated the vapor phase from the solution and glass beads by centrifuging the sealed capsule, then imposed a T gradient to the sample by cooling the solution end of the capsule to ~0 °C. It is difficult to recognize the nucleation and growth of hydrate crystals under a microscope, but Raman spectroscopy was used to identify and map the distribution of hydrate crystals along the capsule. Near the original vapor-aqueous phase boundary (V-A B), Raman signals show 100% methane hydrate. However, the lack of dissolved methane in the solution further away from the V-A B limited the growth of hydrate, as indicated by the increase in water/hydrate ratio when the Raman spectrum, which combines signals from both water and hydrate, was collected further away from the V-A B. We are investigating other possible ways to map the distribution of hydrate crystals around the glass beads, including x-ray computed tomography, to understand the nature of methane hydrate crystals that grow around grains in marine sediments from pore water. These observations will improve our ability to interpret the geophysical responses (e.g., electric and acoustic signals) obtained from hydrate-bearing sediments in the field.
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
Miniewicz, A; Quintard, C; Orlikowska, H; Bartkiewicz, S
2017-07-19
Gas bubbles can be trapped and then manipulated with laser light. In this report, we propose the detailed optical trapping mechanism of gas bubbles confined inside a thin light-absorbing liquid layer between two glass plates. The necessary condition of bubble trapping in this case is the direct absorption of light by the solution containing a dye. Due to heat release, fluid whirls propelled by the surface Marangoni effect at the liquid/gas interface emerge and extend to large distances. We report the experimental microscopic observation of the origin of whirls at an initially flat liquid/air interface as well as at the curved interface of a liquid/gas bubble and support this finding with advanced numerical simulations using the finite element method within the COMSOL Multiphysics platform. The simulation results were in good agreement with the observations, which allowed us to propose a simple physical model for this particular trapping mechanism, to establish the origin of forces attracting bubbles toward a laser beam and to predict other phenomena related to this effect.
Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots
NASA Astrophysics Data System (ADS)
Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.
2018-04-01
The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.
Acoustic waveform of continuous bubbling in a non-Newtonian fluid.
Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei
2009-12-01
We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Ruzza, Alessandro; Parekh, Mohit; Salvalaio, Gianni; Ferrari, Stefano; Camposampiero, Davide; Amoureux, Marie-Claude; Busin, Massimo; Ponzin, Diego
2015-03-01
To compare the big-bubble method using air and liquid as medium of separation for Descemet membrane endothelial keratoplasty (DMEK) lenticule preparation in an eye bank. Donor corneas (n=20) were immersed in liquid [tissue culture medium (TCM)]. Air and liquid was injected using a 25-gauge needle in the posterior stroma or as near to the stroma-Descemet membrane (DM) phase as possible to create a complete bubble of larger diameter. The endothelial cell density and mortality were checked pre- and postbubble after deflating the tissue. Four pairs of tissues were used to analyse the intracellular tight junctions and three pairs for histological examination and DNA integrity studies, respectively. The yield obtained using air was 80%, whereas that with liquid was 100%. Single injection was required in six cases; twice in two cases; three and four times in one case each with air bubble, whereas seven cases required single injection; twice in two cases; and thrice in just one case with liquid bubble. The average diameter of the final lenticule was 9.12 (±1.71) mm for air bubble and 9.78 (±1.75) mm for liquid bubble with p=0.4362 (no statistical significance). Endothelial cell mortality postbubble preparation was 8.9 (±12.38)% for air and 6.25 (±9.57)% for liquid (p=0.6268). DM and endothelium could be separated exclusively using air or liquid bubble. However, liquid bubble seems to have certain advantages over air such as the generation of yield, larger diameter and higher maintenance of endothelial cell density and integrity. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Fearless versus fearful speculative financial bubbles
NASA Astrophysics Data System (ADS)
Andersen, J. V.; Sornette, D.
2004-06-01
Using a recently introduced rational expectation model of bubbles, based on the interplay between stochasticity and positive feedbacks of prices on returns and volatility, we develop a new methodology to test how this model classifies nine time series that have been previously considered as bubbles ending in crashes. The model predicts the existence of two anomalous behaviors occurring simultaneously: (i) super-exponential price growth and (ii) volatility growth, that we refer to as the “fearful singular bubble” regime. Out of the nine time series, we find that five pass our tests and can be characterized as “fearful singular bubbles”. The four other cases are the information technology Nasdaq bubble and three bubbles of the Hang Seng index ending in crashes in 1987, 1994 and 1997. According to our analysis, these four bubbles have developed with essentially no significant increase of their volatility. This paper thus proposes that speculative bubbles ending in crashes form two groups hitherto unrecognized, namely those accompanied by increasing volatility (reflecting increasing risk perception) and those without change of volatility (reflecting an absence of risk perception).
CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.
Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng
2016-07-01
Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusive counter dispersion of mass in bubbly media.
Goldobin, Denis S; Brilliantov, Nikolai V
2011-11-01
We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects, which are shown not to be neglected for geological systems-marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Wang, Y.; Shu, C.
2017-12-01
This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi
2014-11-21
We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.
Collective dissolution of microbubbles
NASA Astrophysics Data System (ADS)
Michelin, Sébastien; Guérin, Etienne; Lauga, Eric
2018-04-01
A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case of large and dense lattices, as well as nonintuitive oscillatory effects.
Effect of phytoplackton-derived organic matter on the behavior of marine aerosols
NASA Astrophysics Data System (ADS)
Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.
2009-04-01
The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures were performed. This contribution provides an overview of the experimental study conducted and the most relevant results found in this research work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.
We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to themore » mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.« less
Bubble coalescence in a Newtonian fluid
NASA Astrophysics Data System (ADS)
Garg, Vishrut; Basaran, Osman
2017-11-01
Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.
NASA Astrophysics Data System (ADS)
Taboada, B.; Vega-Alvarado, L.; Córdova-Aguilar, M. S.; Galindo, E.; Corkidi, G.
2006-09-01
Characterization of multiphase systems occurring in fermentation processes is a time-consuming and tedious process when manual methods are used. This work describes a new semi-automatic methodology for the on-line assessment of diameters of oil drops and air bubbles occurring in a complex simulated fermentation broth. High-quality digital images were obtained from the interior of a mechanically stirred tank. These images were pre-processed to find segments of edges belonging to the objects of interest. The contours of air bubbles and oil drops were then reconstructed using an improved Hough transform algorithm which was tested in two, three and four-phase simulated fermentation model systems. The results were compared against those obtained manually by a trained observer, showing no significant statistical differences. The method was able to reduce the total processing time for the measurements of bubbles and drops in different systems by 21-50% and the manual intervention time for the segmentation procedure by 80-100%.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
NASA Astrophysics Data System (ADS)
Fareo, A. G.; Mason, D. P.
2016-06-01
Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-03-01
In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.
Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C
2011-01-01
This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of the 1 mL filled volume or higher for filled volume of <1 mL, leaked out from the needle. This paper identified the root causes of this problem and offered solutions from the perspectives of the syringe fill process and the end user procedure. The readers will benefit from this paper by understanding how each process step prior to and during syringe filling may affect delivery performance of the pre-filled syringe device.
Ogawa, Koki; Fuchigami, Yuki; Hagimori, Masayori; Fumoto, Shintaro; Miura, Yusuke; Kawakami, Shigeru
2018-01-01
We previously developed anionic ternary bubble lipopolyplexes, an ultrasound-responsive carrier, expecting safe and efficient gene transfection. However, bubble lipopolyplexes have a low capacity for echo gas (C 3 F 8 ) encapsulation (EGE) in nonionic solution such as 5% glucose. On the other hand, we were able to prepare bubble lipopolyplexes by inserting phosphate-buffered saline before C 3 F 8 encapsulation. Surface charge regulation (SCR) by electrolytes stabilizes liposome/plasmid DNA (pDNA) complexes by accelerated membrane fusion. Considering these facts, we hypothesized that SCR by electrolytes such as NaCl would promote C 3 F 8 encapsulation in bubble lipopolyplexes mediated by accelerated membrane fusion. We defined this hypothesis as SCR-based EGE (SCR-EGE). Bubble lipopolyplexes prepared by the SCR-EGE method (SCR-EGE bubble lipopolyplexes) are expected to facilitate the gene transfection because of the high amount of C 3 F 8 . Therefore, we applied these methods for gene delivery to the brain and evaluated the characteristics of transgene expression in the brain. First, we measured the encapsulation efficiency of C 3 F 8 in SCR-EGE bubble lipopolyplexes. Next, we applied these bubble lipopolyplexes to the mouse brain; then, we evaluated the transfection efficiency. Furthermore, three-dimensional transgene distribution was observed using multicolor deep imaging. SCR-EGE bubble lipopolyplexes had a higher C 3 F 8 content than conventional bubble lipopolyplexes. In terms of safety, SCR-EGE bubble lipopolyplexes possessed an anionic potential and showed no aggregation with erythrocytes. After applying SCR-EGE bubble lipopolyplexes to the brain, high transgene expression was observed by combining with ultrasound irradiation. As a result, transgene expression mediated by SCR-EGE bubble lipopolyplexes was observed mainly on blood vessels and partially outside of blood vessels. The SCR-EGE method may promote C 3 F 8 encapsulation in bubble lipopolyplexes, and SCR-EGE bubble lipopolyplexes may be potent carriers for efficient and safe gene transfection in the brain, especially to the blood vessels.
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-06
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
NASA Astrophysics Data System (ADS)
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-01
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g‑1, demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g‑1. These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-01-01
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination. PMID:26694406
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-12-16
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination.
Bubble formation during pulsed laser ablation: mechanism and implications
NASA Astrophysics Data System (ADS)
van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius
1993-07-01
Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Gantzer, P.; Little, J. C.
2007-02-01
An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.
Liu, Fengyun; Liu, Deqiang; Malekian, Reza; Li, Zhixiong; Wang, Deqing
2017-01-01
Employing the fundamental value of real estate determined by the economic fundamentals, a measurement model for real estate bubble size is established based on the panel data analysis. Using this model, real estate bubble sizes in various regions in Japan in the late 1980s and in recent China are examined. Two panel models for Japan provide results, which are consistent with the reality in the 1980s where a commercial land price bubble appeared in most area and was much larger than that of residential land. This provides evidence of the reliability of our model, overcoming the limit of existing literature with this method. The same models for housing prices in China at both the provincial and city levels show that contrary to the concern of serious housing price bubble in China, over-valuing in recent China is much smaller than that in 1980s Japan. PMID:28273141
Liu, Fengyun; Liu, Deqiang; Malekian, Reza; Li, Zhixiong; Wang, Deqing
2017-01-01
Employing the fundamental value of real estate determined by the economic fundamentals, a measurement model for real estate bubble size is established based on the panel data analysis. Using this model, real estate bubble sizes in various regions in Japan in the late 1980s and in recent China are examined. Two panel models for Japan provide results, which are consistent with the reality in the 1980s where a commercial land price bubble appeared in most area and was much larger than that of residential land. This provides evidence of the reliability of our model, overcoming the limit of existing literature with this method. The same models for housing prices in China at both the provincial and city levels show that contrary to the concern of serious housing price bubble in China, over-valuing in recent China is much smaller than that in 1980s Japan.
Size of the top jet drop produced by bubble bursting
NASA Astrophysics Data System (ADS)
Berny, Alexis; Deike, Luc; Popinet, Stéphane; Seon, Thomas
2017-11-01
When a bubble is located on a liquid-air interface, it eventually bursts. First, the bubble cap shatters and produces film drops. Then, the cavity collapses, a tiny liquid jet rises and, depending on bubble radius and liquid parameters, it can eventually break-up and release the so-called jet drops. We perform numerical simulations, using the free software basilisk, to determine and discuss the regime of existence and the size of the first liquid jet droplets. We first validate the numerical scheme by comparing our results with recent experimental data. We then extend our numerical study to a wider range of control parameters in order to enrich our knowledge of the jet drops production. Finally, we show and interpret our results using a scaling law approach and basic physical arguments. This allows us to untangle the intricate roles of viscosity, gravity, and surface tension in the end pinching of the bubble bursting jet.
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
Lee, Kevin M; Wilson, Preston S; Wochner, Mark S
2017-12-01
The ultimate goal of this work is to accurately predict the attenuation through a collection of large (on the order of 10-cm-radius) tethered encapsulated bubbles used in underwater noise abatement systems. Measurements of underwater sound attenuation were performed during a set of lake experiments, where a low-frequency compact electromechanical sound source was surrounded by different arrays of encapsulated bubbles with various individual bubbles sizes and void fractions. The measurements were compared with an existing predictive model [Church, J. Acoust. Soc. Am. 97, 1510-1521 (1995)] of the dispersion relation for linear propagation in liquid containing encapsulated bubbles. Although the model was originally intended to describe ultrasound contrast agents, it is evaluated here for large bubbles, and hence low frequencies, as a design tool for future underwater noise abatement systems, and there is good quantitative agreement between the observations and the model.
NASA Astrophysics Data System (ADS)
Cano-Lozano, José Carlos; Martínez-Bazán, Carlos; Magnaudet, Jacques; Tchoufag, Joël
2016-09-01
We report on a series of results provided by three-dimensional numerical simulations of nearly spheroidal bubbles freely rising and deforming in a still liquid in the regime close to the transition to path instability. These results improve upon those of recent computational studies [Cano-Lozano et al., Int. J. Multiphase Flow 51, 11 (2013), 10.1016/j.ijmultiphaseflow.2012.11.005; Phys. Fluids 28, 014102 (2016), 10.1063/1.4939703] in which the neutral curve associated with this transition was obtained by considering realistic but frozen bubble shapes. Depending on the dimensionless parameters that characterize the system, various paths geometries are observed by letting an initially spherical bubble starting from rest rise under the effect of buoyancy and adjust its shape to the surrounding flow. These include the well-documented rectilinear axisymmetric, planar zigzagging, and spiraling (or helical) regimes. A flattened spiraling regime that most often eventually turns into either a planar zigzagging or a helical regime is also frequently observed. Finally, a chaotic regime in which the bubble experiences small horizontal displacements (typically one order of magnitude smaller than in the other regimes) is found to take place in a region of the parameter space where no standing eddy exists at the back of the bubble. The discovery of this regime provides evidence that path instability does not always result from a wake instability as previously believed. In each regime, we examine the characteristics of the path, bubble shape, and vortical structure in the wake, as well as their couplings. In particular, we observe that, depending on the fluctuations of the rise velocity, two different vortex shedding modes exist in the zigzagging regime, confirming earlier findings with falling spheres. The simulations also reveal that significant bubble deformations may take place along zigzagging or spiraling paths and that, under certain circumstances, they dramatically alter the wake structure. The instability thresholds that can be inferred from the computations compare favorably with experimental data provided by various sets of recent experiments guaranteeing that the bubble surface is free of surfactants.
Transport of dissolved gases through unsaturated porous media
NASA Astrophysics Data System (ADS)
Maryshev, B. S.
2017-06-01
The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.
Lamb-type waves generated by a cylindrical bubble oscillating between two planar elastic walls
Mekki-Berrada, F.; Thibault, P.; Marmottant, P.
2016-01-01
The volume oscillation of a cylindrical bubble in a microfluidic channel with planar elastic walls is studied. Analytical solutions are found for the bulk scattered wave propagating in the fluid gap and the surface waves of Lamb-type propagating at the fluid–solid interfaces. This type of surface wave has not yet been described theoretically. A dispersion equation for the Lamb-type waves is derived, which allows one to evaluate the wave speed for different values of the channel height h. It is shown that for h<λt, where λt is the wavelength of the transverse wave in the walls, the speed of the Lamb-type waves decreases with decreasing h, while for h on the order of or greater than λt, their speed tends to the Scholte wave speed. The solutions for the wave fields in the elastic walls and in the fluid are derived using the Hankel transforms. Numerical simulations are carried out to study the effect of the surface waves on the dynamics of a bubble confined between two elastic walls. It is shown that its resonance frequency can be up to 50% higher than the resonance frequency of a similar bubble confined between two rigid walls. PMID:27274695
A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie
2017-07-03
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao
Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.
Analysis of airfoil transitional separation bubbles
NASA Technical Reports Server (NTRS)
Davis, R. L.; Carter, J. E.
1984-01-01
A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.
Permeability of a bubble assembly: From the very dry to the wet limit
NASA Astrophysics Data System (ADS)
Rouyer, Florence; Pitois, Olivier; Lorenceau, Elise; Louvet, Nicolas
2010-04-01
Bubble assemblies offer the remarkable property of adjusting their packing fraction over three orders of magnitude, thus providing an interesting system for the study of liquid flows through granular matter. Although significant work has been done in several fields of research, e.g., foams, porous media, and suspensions, a complete set of data over such a wide range of porosity ɛ is still lacking. In this paper, we measure the permeability of a bubbly system in the range 0.1<ɛ<0.8 and we connect these new data with a recently published set obtained for foams corresponding to ɛ <0.2 [E. Lorenceau et al., Eur. Phys. J. E 28, 293 (2009)]. Moreover, measurements performed with two different surfactants, the so-called "mobile" and "nonmobile" interfaces, allow us to determine the influence of the bubbles' surface mobility, which is proved to be a significant parameter up to ɛ ≈0.6, thus well above the bubbles packing fraction. Above ɛ ≈0.6, surface elasticity is fully mobilized over the bubbles' surface and the behavior of rigid spheres is observed for both solutions. We show that all the permeability values obtained for the bubble assembly with "nonmobile" interfaces are properly described with the Carman-Kozeny model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D.B.
This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less
μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.
Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P
2009-08-01
Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.
Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.
Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen
2005-06-21
The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.
NASA Astrophysics Data System (ADS)
Igra, Dan; Igra, Ozer
2018-05-01
The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.
FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl
2013-11-20
Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be themore » result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.« less
Topics in viscous potential flow of two-phase systems
NASA Astrophysics Data System (ADS)
Padrino Inciarte, Juan Carlos
Two-phase flows are ubiquitous, from natural and domestic environments to industrial settings. However, due to their complexity, modeling these fluid systems remains a challenge from both the perspective of fundamental questions on the dynamics of an individual, smooth interface, and the perspective of integral analyses, which involve averaging of the conservation laws over large domains, thereby missing local details of the flow. In this work, we consider a set of five problems concerning the linear and non-linear dynamics of an interface or free surface and the study of cavitation inception. Analyses are carried out by assuming the fluid motion to be irrotational, that is, with zero vorticity, and the fluids to be viscous, although results from rotational analyses are presented for the purpose of comparison. The problems considered here are the following: First, we analyze the non-linear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid. The method of viscous potential flow, in which the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface, is used in the analysis. The governing equations are solved numerically to track the motion of the interface by coupling a boundary element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier.Stokes equations, which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers 3 ≤ We ≤ 6, predictions from viscous potential flow shows good agreement with the results from the Navier.Stokes equations for the bubble break-up time, whereas for larger We, the former underpredicts the results given by the latter. Including viscosity increases the break-up time with respect to the inviscid case. For the drop, as expected, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. In the second problem, we compute the force acting on a spherical bubble of variable radius moving within a liquid with an outer spherical boundary. Viscous potential flow and the dissipation method, which is another purely irrotational approach stemming from the mechanical energy equation, are both systematically implemented. This exposes the role of the choice of the outer boundary condition for the stress on the drag, an issue not explained in the literature known to us. By means of the well-known "cell-model" analysis, the results for the drag are then applied to the case of a swarm of rising bubbles having a certain void fraction. Computations from the dissipation method for the drag coefficient and rise velocity for a bubble swarm agree with numerical solutions; evaluation against experimental data for high Reynolds and low Weber numbers shows that all the models considered, including those given in the literature, overpredict the bubble swarm rise velocity. In the next two problems, we apply the analysis of viscous potential flow and the dissipation method to study the linear dynamics of waves of "small" amplitude acting either on a plane or on a spherical interface separating a liquid from a dynamically inactive fluid. It is shown that the viscous irrational theories exhibit the features of the wave dynamics by comparing with the exact solution. The range of parameters for which good agreement with the exact solution exists is presented. The general trend shows that for long waves the dissipation method results in the best approximation, whereas for short waves, even for very viscous liquids, viscous potential flow demonstrates better agreement. Finally, the problem of cavitation inception for the flow of a viscous liquid past a stationary sphere is studied by means of the theory of stress-induced cavitation. The flow field for a single phase needed in the analysis is found from three different methods, namely, the numerical solution of the Navier--Stokes equations, the irrotational motion of a viscous fluid, and, in the limit of no inertia, the Stokes flow formulation. The new predictions are then compared with those obtained from the classical pressure criterion. The main finding is that at a fixed cavitation number more viscous liquids are at greater risk to cavitation.
Corner-transport-upwind lattice Boltzmann model for bubble cavitation
NASA Astrophysics Data System (ADS)
Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.
2018-02-01
Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .
Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.
Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo
2015-07-07
Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.
Bubble-based acoustic swimmers: a dual micro/macro-fluidics study
NASA Astrophysics Data System (ADS)
Bertin, Nicolas; Spelman, Tamsin; StéPhan, Olivier; Lauga, Eric; Marmottant, Philippe
Without protection, a micron-sized free air bubble at room temperature in water has a life duration shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ''armors'' for these bubbles: micro-capsules with an opening. These armors contain the bubble and extend its lifespan to several hours in biological buffer solutions. When excited by an external ultrasonic wave, the bubble performs large amplitude oscillations at the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). We show how to obtain blood-vessel-sized acoustic swimmers for drug-delivery applications. They contain multiple capsules of different aperture sizes: this makes them resonant at different frequencies. By adjusting the frequency, we can adjust the swimming direction. A micro/macro parallel study is also performed. On one hand, we study microswimmers on the 20-50 µm scale: propulsion forces are measured and predicted. On the other hand, we study macroscopic ''milliswimmers'' containing bubbles that are 2 to 10 mm in diameter, allowing us to understand in detail the modes of vibration, to quantitatively predict the swimming motions and inspire new designs for microswimmers.
Border-Crossing Model for the Diffusive Coarsening of Wet Foams
NASA Astrophysics Data System (ADS)
Durian, Douglas; Schimming, Cody
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called ``border-blocking'' models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet/unjamming limit where the bubbles become close-packed spheres. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We argue that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling and the numerical prefactor by numerical solution of the diffusion equation. Then we show how the dA / dt =K0 (n - 6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scale. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble, which is not constant.
Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry
NASA Astrophysics Data System (ADS)
Zhang, J.; Wang, L. F.; Ye, W. H.; Wu, J. F.; Guo, H. Y.; Zhang, W. Y.; He, X. T.
2017-06-01
In this research, a weakly nonlinear (WN) model for the incompressible Rayleigh-Taylor instability in cylindrical geometry [Wang et al., Phys. Plasmas 20, 042708 (2013)] is generalized to spherical geometry. The evolution of the interface with an initial small-amplitude single-mode perturbation in the form of Legendre mode (Pn) is analysed with the third-order WN solutions. The transition of the small-amplitude perturbed spherical interface to the bubble-and-spike structure can be observed by our model. For single-mode perturbation Pn, besides the generation of P 2 n and P 3 n , which are similar to the second and third harmonics in planar and cylindrical geometries, many other modes in the range of P0- P 3 n are generated by mode-coupling effects up to the third order. With the same initial amplitude, the bubbles at the pole grow faster than those at the equator in the WN regime. Furthermore, it is found that the behavior of the bubbles at the pole is similar to that of three-dimensional axisymmetric bubbles, while the behavior of the bubbles at the equator is similar to that of two-dimensional bubbles.
Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation
Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.
2014-01-01
The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272
Free radical generation by ultrasound in aqueous and nonaqueous solutions.
Riesz, P; Berdahl, D; Christman, C L
1985-01-01
The physical principles underlying the oscillatory behavior of minute gas bubbles in liquids exposed to ultrasound are reviewed. Results from mathematical analyses suggest that these oscillations sometimes become unstable leading to transient cavitation in which a bubble violently collapses during a single acoustic half-cycle producing high temperatures and pressures. The role that micronuclei, resonant bubble size, and rectified diffusion play in the initiation of transient cavitation is explained. Evidence to support these theoretical predictions is presented with particular emphasis on sonoluminescence which provides some non-chemical evidence for the formation of free radicals. Acoustic methods for conducting sonochemical investigations are discussed. In aqueous solutions transient cavitation initially generates hydrogen atoms and hydroxyl radicals which may recombine to form hydrogen and hydrogen peroxide or may react with solutes in the gas phase, at the gas-liquid boundary or in the bulk of the solution. The analogies and differences between sonochemistry and ionizing radiation chemistry are explored. The use of spin trapping and electron spin resonance to identify hydrogen atoms and hydroxyl radicals conclusively and to detect transient cavitation produced by continuous wave and by pulsed ultrasound is described in detail. The study of the chemical effects of cavitation in organic liquids is a relatively unexplored area which has recently become the subject of renewed interest. Examples of the decomposition of solvent and solute, of ultrasonically initiated free-radical polymerization and polymer degradation are presented. Spin trapping has been used to identify radicals in organic liquids, in polymer degradation and in the decomposition of organometallic compounds. PMID:3007091
Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isfahani, RN; Fazeli, A; Bigham, S
2014-01-01
The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their ventingmore » through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.« less
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
NASA Astrophysics Data System (ADS)
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
Wang, Kevin G
2017-10-01
A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max = 35.0MPa, p min =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.
Constraining pre-eruptive volatile contents and degassing histories in submarine lavas
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.
2017-12-01
Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.
NASA Astrophysics Data System (ADS)
Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.
2015-12-01
Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.
The Effective Dynamics of the Volume Preserving Mean Curvature Flow
NASA Astrophysics Data System (ADS)
Chenn, Ilias; Fournodavlos, G.; Sigal, I. M.
2018-04-01
We consider the dynamics of small closed submanifolds (`bubbles') under the volume preserving mean curvature flow. We construct a map from (n+1 )-dimensional Euclidean space into a given (n+1 )-dimensional Riemannian manifold which characterizes the existence, stability and dynamics of constant mean curvature submanifolds. This is done in terms of a reduced area function on the Euclidean space, which is given constructively and can be computed perturbatively. This allows us to derive adiabatic and effective dynamics of the bubbles. The results can be mapped by rescaling to the dynamics of fixed size bubbles in almost Euclidean Riemannian manifolds.
Long-lived oscillons from asymmetric bubbles: Existence and stability
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Gleiser, Marcelo; Almeida, Carlos A.
2002-10-01
The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in (2+1)-dimensional φ4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are (a) circularly symmetric and (b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly growing instabilities not seen through the usual ``spectral'' method.
NASA Astrophysics Data System (ADS)
Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi
2018-02-01
We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.
Surface tension and quasi-emulsion of cavitation bubble cloud.
Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun
2017-03-01
A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.
Topological defects from the multiverse
NASA Astrophysics Data System (ADS)
Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.
Interaction between phases in the liquid–gas system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.
This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less
Investigating the explosivity of shallow sub-aqueous basaltic eruptions
NASA Astrophysics Data System (ADS)
Murtagh, R.; White, J. D. L.
2009-04-01
Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The diverse nature of the vesicularity is reflected also in SEM images. Dense clasts display textures with isolated, tiny, serrate-edged bubbles, while mean- and high-vesicularity clasts display more numerous, medium-sized, rounded bubbles. Based on these observations, fragmentation at various stages of a complex vesiculation history is suggested. The second site, Black Point, is situated in eastern California, U.S. Another emergent volcano, it was erupted into Lake Russell ~13,000 years ago. Similar to Pahvant Butte, its unconsolidated mound consists of glassy ash and lapilli and is topped by indurated, palagonitized tuff ring/cone deposits. A well exposed quarry section on the southeast slopes of the edifice is considered here. Sub-horizontal beds display pinch and swell structures and some cross-stratification. Vesicularity indices extend from 58.7% - 66.6% while vesicularity ranges are broad, 27.8% - 79.7% for example. The higher overall vesicularity implies higher rates of ascent and eruption discharge, a conclusion supported by textural features of bubbles in this section such as a population of uniformly sized small vesicles. Bubble nucleation and growth in an ascending parcel of magma is controlled both by decompression and diffusion of oversaturated volatiles as the magma rises. Bubble growth plays a major role in controlling eruption behaviour and we can obtain useful quantitative records of vesicle size data through thin section imaging and analysis. Vesicle size data can be expressed as number per area (NA), number per volume (NV), cumulative number density (N(>L)), volume fraction, cumulative volume fraction and vesicle size distribution (VSD). Not only can the trends and patterns of bubble size reveal insights into eruptive styles, intensity; bubble nucleation, growth, coalescence and deformation, they can also be analysed with other information to infer volatile content and degassing record. High vesicle number densities have been interpreted as being the result of rapid bubble nucleation at high supersaturations. Homogenous bubble nucleation is symptomatic of large supersaturations and high decompression values, whereas heterogeneous bubble nucleation on pre-existing microlites may occur at much lower saturation and decompression values. The spatial density of bubble nuclei controls the rate of diffusion-limited bubble growth and growth of volatile depletion shells around bubbles. Results thus far are restricted to the Pahvant Butte sample suite and indicate low bubble number densities, which could be reflecting a high connectivity of bubbles; polymodal volume fraction distributions, indicating bubble coalescence and multiple stages of bubble nucleation; VSD plots display curved trends further supporting the theory that bubble coalescence and other ripening processes have occurred. These vesicle-population characteristics are most similar to those reported from Stromboli. Despite this similarity, eruption style, energetics and dispersal are unique to subaqueous eruptions, and are inferred to be equivalent to those that formed the subaqueous base of Surtsey volcano.
Drug delivery with microsecond laser pulses into gelatin
NASA Astrophysics Data System (ADS)
Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.
1996-07-01
Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.
Three-dimensionally ordered array of air bubbles in a polymer film
NASA Technical Reports Server (NTRS)
Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)
2001-01-01
We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
Socket stars: UBVRJIK radial profiles
NASA Astrophysics Data System (ADS)
Schaefer, Bradley E.
1995-05-01
Visual inspectin of stars embedded in H II nebulae has shown a significant fraction to be surrounded by nearly symmetric extended regions within which the nebular brightness is apparently significantly fainter than is typical for the surrounding area. These 'socket stars' might be caused by a bubble in the nebula blown out by a stellar wind or they might be caused by a circumstellar envelope of dust hiding the emission behind the star. As such, the sockets could be the first manifestation of a previously unknown component of pre-main-sequence stars. Unfortunately, no quantitative proof of the existence of sockets has been presented. To fill this need, I have imaged 10 socket stars and six background stars with CCD cameras and infrared array cameras. From these images, I have constructed radial plots which should reveal dips in brightness immediately outside the seeing disk. The radial plots do not show any evidence for the existence of sockets. A detailed examination of the photographs orginally used to identify the sockets show that the causes of these reports are (1) artifacts resulting from the photographic process of dodging and (2) random coincidence of stars with local minima in nebular brightness. Thus, I conclude that 'socket stars' do not exist.
NASA Astrophysics Data System (ADS)
Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon
2018-03-01
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
1991-12-01
the cartesian coordinate system, ( hkl ) is the general mathematical representation for a crystal plane. The planar densities of a crystal and the...furnace’s temperature was pre-equilibrated to the pre- set oxidation temperature of 1075 °C. Oxygen was bubbled through DIW at 95 °C to promote the growth...to the pre-set oxidation temperature of 1075 °C. An oxygen flow was initiated at 1 liter per minute to realize a high quality, dry SiO 2 thin-film on
Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
Shanei, Ahmad; Shanei, Mohammad Mahdi
2017-01-01
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35nm gold nanoparticles sizes by using 1MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered. The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
Reducing carbon dioxide to products
Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A
2014-09-30
A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.
Heat pipe systems using new working fluids
NASA Technical Reports Server (NTRS)
Chao, David F. (Inventor); Zhang, Nengli (Inventor)
2004-01-01
The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.
Porous metal oxide particles and their methods of synthesis
Chen, Fanglin; Liu, Qiang
2013-03-12
Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.
Katsir, Yael; Marmur, Abraham
2014-01-01
Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528
The energy balance within a bubble column evaporator
NASA Astrophysics Data System (ADS)
Fan, Chao; Shahid, Muhammad; Pashley, Richard M.
2018-05-01
Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air temperatures, and indicated the better energy efficiency, of 7.55 kW·h per m3 of pure water, compared to traditional thermal desalination techniques.
Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
Wang, Jen-Chieh; Zhou, Yufeng
2015-01-01
Extracorporeal shock wave lithotripsy (ESWL) has been used as an effective modality to fragment kidney calculi. Because of the bubble shielding effect in the pre-focal region, the acoustic energy delivered to the focus is reduced. Low pulse repetition frequency (PRF) will be applied to dissolve these bubbles for better stone comminution efficiency. In this study, low intensity pulsed ultrasound (LIPUS) beam was aligned perpendicular to the axis of a shock wave (SW) lithotripter at its focus. The light transmission was used to evaluate the compressive wave and cavitation induced by SWs without or with a combination of LIPUS for continuous sonication. It is found that bubble shielding effect becomes dominated with the SW exposure and has a greater significant effect on cavitation than compressive wave. Using the combined wave scheme, the improvement began at the 5th pulse and gradually increased. Suppression effect on bubble shielding is independent on the trigger delay, but increases with the acoustic intensity and pulse duration of LIPUS. The peak negative and integral area of light transmission signal, which present the compressive wave and cavitation respectively, using our strategy at PRF of 1 Hz are comparable to those using SW alone at PRF of 0.1 Hz. In addition, high-speed photography confirmed the bubble activities in both free field and close to a stone surface. Bubble motion in response to the acoustic radiation force by LIPUS was found to be the major mechanism of suppressing bubble shielding effect. There is a 2.6-fold increase in stone fragmentation efficiency after 1000 SWs at PRF of 1 Hz in combination with LIPUS. In summary, combination of SWs and LIPUS is an effective way of suppressing bubble shielding effect and, subsequently, improving cavitation at the focus for a better outcome. Copyright © 2014 Elsevier B.V. All rights reserved.
Planetary rings as relics of plasma pre-rings
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2007-02-01
A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun
2008-02-11
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
Stability Analysis of an Encapsulated Microbubble against Gas Diffusion
Katiyar, Amit; Sarkar, Kausik
2009-01-01
Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522
Dynamics of Electronically Excited Species in Gaseous and Condensed Phase
1989-12-01
heatbath models of condensed phase helium, (3) development of models of condensed phase hydrogen and (4) development of simulation procedures for solution... Modelling and Computer Experiments 93 Introduction 93 Monte Carlo Simulations of Helium Bubble States 94 Heatbath Models f6r Helium Bubble States 114...ILLUSTRATIONS 1 He-He* potential energy curves and couplings for two-state model . 40 2 Cross section for He(1P) quenching to He( 3S) 42 3 Opacity
Zhang, Qun; Zhang, Qunzhi; Sornette, Didier
2016-01-01
We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.
Liger-Belair, Gérard; Voisin, Cédric; Jeandet, Philippe
2005-08-04
In this paper, the kinetics of CO(2) bubble nucleation from tiny gas pockets trapped inside cellulose fibers immersed in a glass of champagne were investigated, in situ, from high-speed video recordings. Taking into account the diffusion of CO(2)-dissolved molecules from the liquid bulk to the gas pocket, a model was derived which enabled us to connect the kinetics of bubble nucleation with both fiber and liquid parameters. Convection was found to play a major role in this process. The boundary layer around the gas pocket where a gradient of CO(2)-dissolved molecules exists was also indirectly approached and found to be in the order of 10-20 mum. Because most of the particles adsorbed on the wall of a container or vessel free from any particular treatment are also believed to be cellulose fibers coming from the surrounding air, the results of this paper could be indeed extended to the more general field of nonclassical heterogeneous bubble nucleation from supersaturated liquids.
Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu
2014-10-14
The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.
Oscillating plasma bubble and its associated nonlinear studies in presence of low magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megalingam, Mariammal; Sarma, Bornali; Mitra, Vramori
Oscillating plasma bubbles have been created around a cylindrical mesh grid of 75% optical transparency in a DC plasma system with a low magnetic field. Plasma bubbles are created by developing ion density gradient around a cylindrical grid of 20 cm in diameter and 25 cm in height, inserted into the plasma. Relaxation and contraction of the plasma bubbles in the presence of external conditions, such as magnetic field and pressure, have been studied. A Langmuir probe has been used to detect the plasma floating potential fluctuations at different imposed experimental conditions. Nonlinear behavior of the system has been characterized by adoptingmore » nonlinear techniques such as Fast Fourier Transform, Phase Space Plot, and Recurrence Plot. It shows that the system creates highly nonlinear phenomena associated with the plasma bubble under the imposed experimental conditions. A theoretical and numerical model has also been developed to satisfy the observed experimental analysis. Moreover, observations are extended further to study the growth of instability associated with the plasma bubbles. The intention of the present work is to correlate the findings about plasma bubbles and their related instability with the one existing in the equatorial F-region of the ionosphere.« less
NASA Astrophysics Data System (ADS)
Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan
2018-06-01
Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.
Tunneling decay of false vortices
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han
2013-10-01
We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.
Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.
2012-06-06
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less
Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications
NASA Technical Reports Server (NTRS)
Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John
2006-01-01
NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.
Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C
2012-01-01
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
Rheological flow laws for multiphase magmas: An empirical approach
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and ;apparent shear-thinning; for the behaviours observed at low and high crystallinity, respectively. At low crystallinity, increasing deformation rate favours the transfer of gas bubbles in regions of high strain localisation, which, in turn, leads to outgassing and the observed increase of viscosity with increasing strain-rate. At high crystallinity gas bubbles remain trapped within crystals and no outgassing occurs, leading to strain localisation in melt-rich shear bands and to a decrease of viscosity with increasing strain-rate, behaviour observed also in crystal-bearing suspensions. Increasing the volume fraction of weak phases induces limited variation of the stress exponent and pre-exponential factor in both apparent shear-thickening and apparent shear-thinning regimes; conversely, the activation energy is strongly dependent on gas bubble and melt volume fractions. A transient rheology from apparent shear-thickening to apparent shear-thinning behaviour is observed for a crystallinity of 44 vol.%. The proposed equations can be implemented in numerical models dealing with the flow of crystal- and bubble-bearing magmas. We present results of analytical simulations showing the effect of the rheology of three-phase magmas on conduit flow dynamics, and show that limited bubble volumes (< 10 vol.%) lead to strain localisation at the conduit margins during the ascent of crystal-rich lava domes and crystal-poor obsidian flows.
The dynamic behavior and compliance of a stream of cavitating bubbles.
NASA Technical Reports Server (NTRS)
Brennen, C.
1973-01-01
Study of the dynamic response of streams of cavitating bubbles to imposed pressure fluctuations to determine the role played by turbopump cavitation in the POGO instability of liquid rockets. Both quasi-static and more general linearized dynamic analyses are made of the perturbations to a cavitating flow through a region of reduced pressure in which the bubbles first grow and then collapse. The results, when coupled with typical bubble number density distribution functions, yield compliances which compare favorably with the existing measurements. Since the fluids involved are frequently cryogenic, a careful examination was made of the thermal effects both on the mean flow and on the perturbations. As a result, the discrepancy between theory and experiment for particular engines could be qualitatively ascribed to reductions in the compliance caused either by these thermal effects or by relatively high reduced frequencies.
Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Subramanian, R. S.
1996-01-01
The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.
A monolithic mass tracking formulation for bubbles in incompressible flow
NASA Astrophysics Data System (ADS)
Aanjaneya, Mridul; Patkar, Saket; Fedkiw, Ronald
2013-08-01
We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid-fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.
Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, M. W.; Ruggles, A. E.
2009-03-10
The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wavemore » interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.« less
Customizing Curriculum with Digital Resources
ERIC Educational Resources Information Center
Miller, Jeffrey
2011-01-01
To effectively use digital resources in the classroom, teachers must customize the information, merge it with pre-existing curriculum, differentiate it for diverse student populations, and still meet standards-based learning goals. This article describes a solution to these challenges: the Curriculum Customization Service, which provides access to…
Sonar gas seepage characterization using high resolution systems at short ranges
NASA Astrophysics Data System (ADS)
Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.
2017-12-01
Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.
Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin
2018-03-01
Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.
The Effect of the Density Ratio on the Nonlinear Dynamics of the Unstable Fluid Interface
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.
2003-01-01
Here we report multiple harmonic theoretical solutions for a complete system of conservation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids with a finite density ratio in the general three-dimensional case. The analysis yields new properties of the bubble front dynamics. In either RTI or RMI, the obtained dependencies of the bubble velocity and curvature on the density ratio differ qualitatively and quantitatively from those suggested by the models of Sharp (1984), Oron et al. (2001), and Goncharov (2002). We show explicitly that these models violate the conservation laws. For the first time, our theory reveals an important qualitative distinction between the dynamics of the RT and RM bubbles.
NASA Astrophysics Data System (ADS)
Vagle, Svein; McNeil, Craig; Steiner, Nadja
2010-12-01
Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50°N, 145°W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas fluxes were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated air-sea gas exchange. The direct bubble flux calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, air-sea transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced air injection flux, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed seas which occur during winter storms are more effective in exchanging gases between the atmosphere and ocean than younger less developed seas which occur during the rapid passage of a hurricane.
Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process
NASA Technical Reports Server (NTRS)
Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.
2012-01-01
Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.
Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder
Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M.; Ayyaswamy, Portonovo S.
2009-01-01
The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* = H/d0, R* = R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02 < ReT < 70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H* = 8 and R* ≥ 3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature. PMID:17930342
Numerical relativity and the early Universe
NASA Astrophysics Data System (ADS)
Mironov, Sergey
2016-10-01
We consider numerical simulations in general relativity in ADM formalism with cosmological ansatz for the metric. This ansatz is convenient for investigations of the Universe creation in laboratory with Galileons. Here we consider toy model for the software: spherically symmetric scalar field minimally coupled to the gravity with asymmetric double well potential. We studied the dependence of radius of critical bubble on the parameters of the theory. It demonstrates the wide applicability of thin-wall approximation. We did not find any kind of stable bubble solution.
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Blanco-Pillado, Jose J.; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao
2015-05-28
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.
Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees
2017-05-05
We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively
Burnham, Daniel R.; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur
2017-01-01
Abstract We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis–Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. PMID:28334870
Beer tapping: dynamics of bubbles after impact
NASA Astrophysics Data System (ADS)
Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.
2015-12-01
Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.
Measurement of the Shear Lift Force on a Bubble in a Channel Flow
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Motil, Brian; Skor, Mark
2005-01-01
Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.
Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
Sujith, K S; Ramachandran, C N
2017-01-12
Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of bubble is explained based on the interaction between the bubble and the dissolved CO 2 molecules.
Rate of disappearance of gas bubble trauma signs in juvenile salmonids
Hans, K.M.; Mesa, M.G.; Maule, A.G.
1999-01-01
To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.
Givelet, Cecile C; Dron, Paul I; Wen, Jin; Magnera, Thomas F; Zamadar, Matibur; Čépe, Klára; Fujiwara, Hiroki; Shi, Yue; Tuchband, Michael R; Clark, Noel; Zbořil, Radek; Michl, Josef
2016-05-25
Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.
Pre-Hawking radiation cannot prevent the formation of apparent horizon
NASA Astrophysics Data System (ADS)
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; Yeom, Dong-Han
2018-03-01
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount of energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. We conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.
Pre-Hawking radiation cannot prevent the formation of apparent horizon
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; ...
2018-03-30
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less
Pre-Hawking radiation cannot prevent the formation of apparent horizon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less
Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene
2018-03-01
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.
Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan
2014-12-02
Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.
A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants
NASA Astrophysics Data System (ADS)
George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.
2017-07-01
Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.
Bubble pump: scalable strategy for in-plane liquid routing.
Oskooei, Ali; Günther, Axel
2015-07-07
We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.
Evaporation of a sessile water drop and a drop of aqueous salt solution.
Misyura, S Y
2017-11-07
The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.
NASA Astrophysics Data System (ADS)
Ávila, Jesús; Ramírez, Pedro F.; Ruipérez, Alejandro
2018-01-01
We propose a novel strategy that permits the construction of completely general five-dimensional microstate geometries on a Gibbons-Hawking space. Our scheme is based on two steps. First, we rewrite the bubble equations as a system of linear equations that can be easily solved. Second, we conjecture that the presence or absence of closed timelike curves in the solution can be detected through the evaluation of an algebraic relation. The construction we propose is systematic and covers the whole space of parameters, so it can be applied to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking base. As a first result of this approach, we find that the spectrum of scaling solutions becomes much larger when non-Abelian fields are present. We use our method to describe several smooth horizonless multicenter solutions with the asymptotic charges of three-charge (Abelian and non-Abelian) black holes. In particular, we describe solutions with the centers lying on lines and circles that can be specified with exact precision. We show the power of our method by explicitly constructing a 50-center solution. Moreover, we use it to find the first smooth five-dimensional microstate geometries with arbitrarily small angular momentum.
Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo
2002-01-01
The enhanced gaseous nitrogen (EGN) dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the dewar, each crystallization experiment is contained as a solution within a plastic capillary tube. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecular solution, e.g., protein, directly in liquid nitrogen; this method, however, often resulted in uncontrolled formation of air voids, These air pockets, or bubbles, can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August 2001. The gain or loss of mass from solutions within the plastic capillaries revealed that mass transport occurred among separated tubes, and that this mass transport was dependent upon the hygroscopic character of the solution contained in any given tube. The surface area of the plastic capillary tube also related to the observed mass transport. Furthermore, the decreased mass of solutions of-protein correlated to observed formation of protein crystals.
Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning
NASA Astrophysics Data System (ADS)
Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan
2017-11-01
Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.
Karaoğul, Eyyüp; Parlar, Perihan; Parlar, Harun; Alma, M Hakkı
2016-01-01
The main aim of this study was to enrich glycyrrhizic acid ammonium salt known as one of the main compounds of licorice roots (Glycyrrhiza glabra L.) by isoelectric focused adsorptive bubble separation technique with different foaming agents. In the experiments, four bubble separation parameters were used with β-lactoglobulin, albumin bovine, and starch (soluble) preferred as foaming agents and without additives. The enrichment of glycyrrhizic acid ammonium salt into the foam was influenced by different additive substances. The results showed that highest enrichment values were obtained from β-lactoglobulin as much as 368.3 times. The lowest enrichment values (5.9 times) were determined for the application without additive. After enrichment, each experiment of glycyrrhizic acid ammonium salt confirmed that these substances could be quantitatively enriched into the collection vessel with isoelectric focused adsorptive bubble separation technique. The transfer of glycyrrhizic acid ammonium salt into the foam from standard solution in the presence of additive was more efficient than aqueous licorice extract.
NASA Astrophysics Data System (ADS)
Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard
2013-08-01
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
Karaoğul, Eyyüp; Parlar, Perihan; Parlar, Harun; Alma, M. Hakkı
2016-01-01
The main aim of this study was to enrich glycyrrhizic acid ammonium salt known as one of the main compounds of licorice roots (Glycyrrhiza glabra L.) by isoelectric focused adsorptive bubble separation technique with different foaming agents. In the experiments, four bubble separation parameters were used with β-lactoglobulin, albumin bovine, and starch (soluble) preferred as foaming agents and without additives. The enrichment of glycyrrhizic acid ammonium salt into the foam was influenced by different additive substances. The results showed that highest enrichment values were obtained from β-lactoglobulin as much as 368.3 times. The lowest enrichment values (5.9 times) were determined for the application without additive. After enrichment, each experiment of glycyrrhizic acid ammonium salt confirmed that these substances could be quantitatively enriched into the collection vessel with isoelectric focused adsorptive bubble separation technique. The transfer of glycyrrhizic acid ammonium salt into the foam from standard solution in the presence of additive was more efficient than aqueous licorice extract. PMID:26949562
Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
NASA Astrophysics Data System (ADS)
Teng, Xu-Dong; Guo, Xia-Sheng; Tu, Juan; Zhang, Dong
2016-12-01
Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. Projects supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 11374155, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the National High-Technology Research and Development Program, China (Grant No. 2012AA022702), and Qing Lan Project of Jiangsu Province, China.
NASA Astrophysics Data System (ADS)
Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo
2017-09-01
The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.
The effects of a decompression on seismic parameter profiles in a gas-charged magma
NASA Astrophysics Data System (ADS)
Sturton, Susan; Neuberg, Jürgen
2003-11-01
Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.
Vitreous web after pars plana vitrectomy and bevacizumab with fluid-air exchange.
Chiang, Allen; Reddy, Shantan; Tsui, Irena; Hubschman, Jean-Pierre
2011-01-01
Intravitreal bevacizumab may result in intraocular inflammation of infectious and non-infectious etiology. Appropriate recognition of a sterile process can circumvent unnecessary treatment for endophthalmitis. Observational case report. A marked web-like inflammatory response within the vitreous following intraoperative intravitreal bevacizumab is described in a patient with pre-proliferative diabetic retinopathy, macular edema, and epiretinal membrane who underwent pars plana vitrectomy, membrane peel, endolaser, and fluid-air exchange. Wide-field fundus photography captured the full extent of this reaction. On post-operative day one, the patient presented with vitreous opacities in the form of a web of multiple white strands inferior to an air bubble, with minimal anterior or vitreous cell. At one week, the inflammatory reaction had completely resolved. Existing reports of intraocular inflammation following intravitreal bevacizumab range from uveitis to infectious endophthalmitis. With wide-field fundus imaging, we report an acute, marked web-like inflammatory response following intraoperative intravitreal bevacizumab that resolved spontaneously.
The heat-pipe resembling action of boiling bubbles in endovenous laser ablation
van den Bos, Renate R.; van Ruijven, Peter W. M.; Nijsten, Tamar; Neumann, H. A. Martino; van Gemert, Martin J. C.
2010-01-01
Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100°C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100°C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100°C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall. PMID:20644976
Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C
2015-03-01
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated. Copyright © 2014. Published by Elsevier B.V.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Rossi, Michael R.; Tanaka, Daigo; Shimada, Kenji; Rabin, Yoed
2009-01-01
The current study focuses on experimentally validating a planning scheme based on the so-called bubble-packing method. This study is a part of an ongoing effort to develop computerized planning tools for cryosurgery, where bubble packing has been previously developed as a means to find an initial, uniform distribution of cryoprobes within a given domain; the so-called force-field analogy was then used to move cryoprobes to their optimum layout. However, due to the high quality of the cryoprobes’ distribution, suggested by bubble packing and its low computational cost, it has been argued that a planning scheme based solely on bubble packing may be more clinically relevant. To test this argument, an experimental validation is performed on a simulated cross-section of the prostate, using gelatin solution as a phantom material, proprietary liquid-nitrogen based cryoprobes, and a cryoheater to simulate urethral warming. Experimental results are compared with numerically simulated temperature histories resulting from planning. Results indicate an average disagreement of 0.8 mm in identifying the freezing front location, which is an acceptable level of uncertainty in the context of prostate cryosurgery imaging. PMID:19885373
Using micro-3D printing to build acoustically driven microswimmers.
NASA Astrophysics Data System (ADS)
Bertin, Nicolas; Stephan, Olivier; Marmottant, Philippe; Spelman, Tamsin; Lauga, Eric; Dyfcom Team; Complex; Biological Fluids Team
2015-11-01
With no protection, a micron-sized free air bubble at room temperature in water has a life span shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ``armors'' for these bubbles: micro-capsules with an opening to contain the bubble and extend its life to several hours in biological buffer solutions. When excited by an ultrasound transducer, a 20 μm bubble performs large amplitude oscillations in the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). A collaboration with the Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, is helping us predict the true resonance of these capsules and the full surrounding streaming flow. The present Bubbleboost project aims at creating red blood cell sized capsules (~ 10-20 μm) that can move on their own with a non-contact acoustic excitation for drug delivery applications. Another application of this research is in microfluidics: we are able to fabricate fields of capsules able to generate mixing effects in microchannels, or use the bubble-generated flow to guide passing objects at a junction. ERC Grant Agreement Bubbleboost no. 614655.
Investigation of Gas Holdup in a Vibrating Bubble Column
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2015-11-01
Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.
Vacuum casting of thick polymeric films
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1979-01-01
Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.
Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.
Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego
2017-12-04
We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.
Fission products behaviour during a power transient: Their inventory in an intragranular bubble
NASA Astrophysics Data System (ADS)
Desgranges, L.; Blay, Th.; Lamontagne, J.; Roure, I.; Bienvenu, Ph.
2017-09-01
The behaviour of fission products is a key issue during Anticipated Operational Occurrences (AOOs) or Condition II transients or accidental sequence for nuclear fuel. Here we characterized how fission products behaved inside chromium doped UO2 pellet during a power ramp. At the pellet centre fission products have left the UO2 lattice and can be found in bubbles. The composition of the bubbles was determined using an original experimental methodology. The existence of separated precipitates made of metallic fission products for the one, and volatile fission products for the other, was evidenced. This result is discussed with regards to the behaviour of fission products during a power ramp.
2006-07-01
precision of the determination of Rmax, we established a refined method based on the model of bubble formation described above in section 3.6.1 and the...development can be modeled by hydrodynamic codes based on tabulated equation-of-state data . This has previously demonstrated on ps optical breakdown...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Spherically symmetric conformal gravity and ''gravitational bubbles''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezin@inr.ac.ru, E-mail: dokuchaev@inr.ac.ru, E-mail: eroshenko@inr.ac.ru
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ''gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-timesmore » (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ''nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.« less
NASA Astrophysics Data System (ADS)
Burinskii, Alexander
2016-01-01
It is known that gravitational and electromagnetic fields of an electron are described by the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass ratio. This solution is singular and has a topological defect, the Kerr singular ring, which may be regularized by introducing the solitonic source based on the Higgs mechanism of symmetry breaking. The source represents a domain wall bubble interpolating between the flat region inside the bubble and external KN solution. It was shown recently that the source represents a supersymmetric bag model, and its structure is unambiguously determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag consistently with twistor structure of the Kerr geometry, and acquires the mass from the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for parameters of an electron, it takes the form of very thin disk with a circular string placed along sharp boundary of the disk. Excitation of this string by a traveling wave creates a circulating singular pole, indicating that the bag-like source of KN solution unifies the dressed and point-like electron in a single bag-string-quark system.
Buoyancy Driven Shear Flows of Bubble Suspensions
NASA Technical Reports Server (NTRS)
Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.
1999-01-01
In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.
Zhang, Qun; Zhang, Qunzhi; Sornette, Didier
2016-01-01
We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the “S&P 500 1987” bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs. PMID:27806093
Deformation behaviors of peat with influence of organic matter.
Yang, Min; Liu, Kan
2016-01-01
Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.
-> Air entrainment and bubble statistics in three-dimensional breaking waves
NASA Astrophysics Data System (ADS)
Deike, L.; Popinet, S.; Melville, W. K.
2016-02-01
Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.
He bubble growth and interaction in W nano-tendrils
NASA Astrophysics Data System (ADS)
Smirnov, R. D.; Krasheninnikov, S. I.
2015-11-01
Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.
Cleaning with Bulk Nanobubbles.
Zhu, Jie; An, Hongjie; Alheshibri, Muidh; Liu, Lvdan; Terpstra, Paul M J; Liu, Guangming; Craig, Vincent S J
2016-11-01
The electrolysis of aqueous solutions produces solutions that are supersaturated in oxygen and hydrogen gas. This results in the formation of gas bubbles, including nanobubbles ∼100 nm in size that are stable for ∼24 h. These aqueous solutions containing bubbles have been evaluated for cleaning efficacy in the removal of model contaminants bovine serum albumin and lysozyme from surfaces and in the prevention of the fouling of surfaces by these same proteins. Hydrophilic and hydrophobic surfaces were investigated. It is shown that nanobubbles can prevent the fouling of surfaces and that they can also clean already fouled surfaces. It is also argued that in practical applications where cleaning is carried out rapidly using a high degree of mechanical agitation the role of cleaning agents is not primarily in assisting the removal of soil but in suspending the soil that is removed by mechanical action and preventing it from redepositing onto surfaces. This may also be the primary mode of action of nanobubbles during cleaning.
Convective mass transfer around a dissolving bubble
NASA Astrophysics Data System (ADS)
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Forecastable and Guidable Bubble-Propelled Microplate Motors for Cell Transport.
Hu, Narisu; Zhang, Bin; Gai, Meiyu; Zheng, Ce; Frueh, Johannes; He, Qiang
2017-06-01
Cell transport is important to renew body functions and organs with stem cells, or to attack cancer cells with immune cells. The main hindrances of this method are the lack of understanding of cell motion as well as proper transport systems. In this publication, bubble-propelled polyelectrolyte microplates are used for controlled transport and guidance of HeLa cells. Cells survive attachment on the microplates and up to 22 min in 5% hydrogen peroxide solution. They can be guided by a magnetic field whereby increased friction of cells attached to microplates decreases the speed by 90% compared to pristine microplates. The motion direction of the cell-motor system is easier to predict due to the cell being opposite to the bubbles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sound propagation and absorption in foam - A distributed parameter model.
NASA Technical Reports Server (NTRS)
Manson, L.; Lieberman, S.
1971-01-01
Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.
Jang, Nulee; Yasin, Muhammad; Kang, Hyunsoo; Lee, Yeubin; Park, Gwon Woo; Park, Shinyoung; Chang, In Seop
2018-05-04
This study investigated the effects of electrolytes (CaCl 2 , K 2 HPO 4 , MgSO 4 , NaCl, and NH 4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (k L a) increased up to 414% compared to the control. Saturated CO (C ∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (R max ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO 4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO 4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO 4 medium predicted a higher ethanol production compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Size-based sorting of micro-particles using microbubble streaming
NASA Astrophysics Data System (ADS)
Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha
2009-11-01
Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).
Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.
Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M
2015-03-01
High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.
Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Roy, Ronald A.
1999-01-01
Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.
Singular effective slip length for longitudinal flow over a dense bubble mattress
NASA Astrophysics Data System (ADS)
Schnitzer, Ory
2016-09-01
We consider the effective hydrophobicity of a periodically grooved surface immersed in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a π /2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit ɛ ≪1 where the bubbles are closely spaced, finding the effective slip length (normalized by the bubble radius) for longitudinal flow along the ridges as π /√{2 ɛ }-(12 /π ) ln2 +(13 π /24 ) √{2 ɛ }+o (√{ɛ }) , the small parameter ɛ being the planform solid fraction. The square-root divergence highlights the strong hydrophobic character of this configuration; this leading singular term (along with the third term) follows from a local lubrication-like analysis of the gap regions between the bubbles, together with general matching considerations and a global conservation relation. The O (1 ) constant term is found by matching with a leading-order solution in the outer region, where the bubbles appear to be touching. We find excellent agreement between our slip-length formula and a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J. Appl. Math. 80, 1902 (2015), 10.1093/imamat/hxv019]. The comparison demonstrates that our asymptotic formula, together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7 (2016), 10.1017/jfm.2016.88], provides an elementary analytical description for essentially arbitrary no-slip fractions.
NASA Astrophysics Data System (ADS)
Schimming, C. D.; Durian, D. J.
2017-09-01
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.
Evading pre-existing anti-hinge antibody binding by hinge engineering
Kim, Hok Seon; Kim, Ingrid; Zheng, Linda; Vernes, Jean-Michel; Meng, Y. Gloria; Spiess, Christoph
2016-01-01
ABSTRACT Antigen-binding fragments (Fab) and F(ab′)2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab′)2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab′)2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab′)2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA. PMID:27606571
NASA Astrophysics Data System (ADS)
Kazemiroodsari, Hadi
Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.
Rapid solution casting under vacuum of very thick sheets of a segmented polyurethane elastomer
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1981-01-01
A technique has been developed for rapidly casting from solution under vacuum smooth, bubble-free, clear-white and uniformly thick (about 0.20 cm) sheets of a segmented polyurethane elastomer. The casting is carried out from dimethylformamide solutions inside temperature-controlled air-circulated ovens in order to minimize the establishment of thermal gradients throughout the casting solution. The technique produces quality sheets in 9 days, compared with 40-45 days for an inferior film produced in open pans.
Kannan, M Bobby
2013-05-01
In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.
Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung
2016-01-01
RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in osmotic power generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Annie Xi; Liu, Yijing; Oh, Hyuntaek; Gargava, Ankit; Kendall, Eric; Nie, Zhihong; DeVoe, Don L; Raghavan, Srinivasa R
2016-06-22
We describe the creation of polymeric microcapsules that can exhibit autonomous motion along defined trajectories. The capsules are made by cross-linking aqueous microdroplets of the biopolymer chitosan using glutaraldehyde. A coflow microfluidic tubing device is used to generate chitosan droplets containing nanoparticles (NPs) with an iron (Fe) core and a platinum (Pt) shell. The droplets are then incubated in a Petri dish with the cross-linking solution, and an external magnet is placed below the Petri dish to pull the NPs together as a collective "patch" on one end of each droplet. This results in cross-linked capsules (∼150 μm in diameter) with an anisotropic (patchy) structure. When these capsules are placed in a solution of H2O2, the Pt shell of the NPs catalyzes the decomposition of H2O2 into O2 gas, which is ejected from the patchy end in the form of bubbles. As a result, the capsules (which are termed micromotors) move in a direction opposite to the bubbles. Furthermore, the micromotors can be steered along specific paths by an external magnet (the magnetic response arises due to the Fe in the core of the NPs). A given micromotor can thus be directed to meet with and adhere to an inert capsule, i.e., a model cargo. Adhesion occurs due to the soft nature of the two structures. Once the cargo is picked up, the micromotor-cargo pair can be moved along a specific path to a destination, whereupon the cargo can be released from the micromotor. We believe these soft micromotors offer significant benefits over their existing hard counterparts because of their biocompatibility, biodegradability, and ability to encapsulate a variety of payloads.
Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles
NASA Astrophysics Data System (ADS)
Zhang, Yuning
2016-11-01
Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).
Bubble Stripping as a Tool to Reduce High Dissolved CO2 in Coastal Marine Ecosystems
NASA Astrophysics Data System (ADS)
Koweek, D.; Mucciarone, D. A.; Dunbar, R. B.
2016-02-01
High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism and long residence times. Many of the socially, commercially, and recreationally important species may have adapted to this natural variability over time. However, eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use an empirically validated numerical model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a non-bubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change emphasizes the need to both adapt to and mitigate the effects of climate change and ocean acidification. We believe shallow water bubble stripping could be one approach for reducing high CO2 conditions in coastal ecosystems and should be added to the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.
Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.
2015-07-01
We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.