Sample records for pre-mirna processing enzyme

  1. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis

    PubMed Central

    Fukunaga, Ryuya; Zamore, Phillip D

    2014-01-01

    The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225

  2. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  3. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    PubMed

    Chai, Juan; Feng, Renjun; Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  4. Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    PubMed Central

    Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions. PMID:25856313

  5. microRNA biogenesis and turnover in plants.

    PubMed

    Rogers, K; Chen, X

    2012-01-01

    microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.

  6. Sjögren Syndrome Antigen B (SSB)/La Promotes Global MicroRNA Expression by Binding MicroRNA Precursors through Stem-Loop Recognition*

    PubMed Central

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E.; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I.; Liu, Qinghua

    2013-01-01

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ∼70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ∼21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3′ UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules. PMID:23129761

  7. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition.

    PubMed

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I; Liu, Qinghua

    2013-01-04

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.

  8. A novel microRNA assay with optical detection and enzyme-free DNA circuits

    NASA Astrophysics Data System (ADS)

    Liao, Yuhui; Zhou, Xiaoming

    2014-09-01

    MicroRNAs (miRNAs) participate in the significant processes of life course, can be used as quantificational biomarkers for cellular level researches and related diseases. Conventional methods of miRNAs' quantitative detection are obsessed with low sensitivity, time and labour consuming. Otherwise, the emerging miRNAs detection approaches are mostly exposed to the expensive equipment demands and the professional operation, remains at the stage of laboratory and concept demonstration phase. Herein, we designed a novel miRNAs detection platform that based on enzyme-free DNA circuits and electrochemical luminescence (ECL). MicroRNA21 was chosen as the ideal analyte of this platform. The whole process consists of enzyme-free DNA circuits and ECL signal giving-out steps, achieves advantages of operating in constant temperature condition, without the participation of the enzyme, preferable sensitivity and specificity. Through this approach, the sensitivity achieved at 10pM. It is indicated that this miRNAs detection platform possesses potentials to be an innovation of miRNA detection technologies in routine tests. Benefits of the high penetration of ECL in well-equipped medical establishment, this approach could greatly lessen the obstacles in process of popularization and possess excellent prospects of practical application.

  9. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct biological roles in WAT and BAT during hibernation and may involve the regulation of signaling cascades. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. miRNA*: a passenger stranded in RNA-induced silencing complex?

    PubMed

    Mah, S M; Buske, C; Humphries, R K; Kuchenbauer, F

    2010-01-01

    Processing of the pre-microRNA (pre-miRNA) through Dicer1 generates a miRNA duplex, consisting of a miRNA and miRNA* strand (also termed guide strand and passenger strand, respectively). Despite the general consensus that miRNA*s have no regulatory activity, recent publications have provided evidence that the abundance, possible function, and physiological relevance of miRNA*s have been underestimated. This review provides an account of our current understanding of miRNA* origination and activity, mounting evidence for their unique functions and regulatory mechanisms, and examples of specific miRNA*s from the literature.

  11. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    PubMed

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  12. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  13. The 3-to-5 Exoribonuclease Knabber Shapes the 32 Ends of MicroRNAs Bound to Drosophila Argonaute1

    PubMed Central

    Han, Bo W.; Hung, Jui-Hung; Weng, Zhiping; Zamore, Phillip D.; Ameres, Stefan L.

    2011-01-01

    Summary Background MicroRNAs (miRNAs) are ~22 nt small RNAs that control development, physiology and pathology in animals and plants. Production of miRNAs involves the sequential processing of primary hairpin -containing RNA polymerase II transcripts by the RNase III enzymes Drosha in the nucleus and Dicer in the cytoplasm. miRNA duplexes then assemble into Argonaute proteins to form the RNA-induced silencing complex (RISC). In mature RISC, a single-stranded miRNA directs the Argonaute protein to bind partially complementary sequences, typically in the 32 untranslated regions of messenger RNAs, repressing their expression. Results Here, we show that after loading into Ago1 more than a quarter of all Drosophila miRNAs undergo 32 end trimming by the 32-to-5′ exoribonuclease Knabber (CG9247). Depletion of Knabber by RNAi reveals that miRNAs are frequently produced by Dicer-1 as intermediates that are longer than ~22 nucleotides. Trimming of miRNA 32 ends occurs after removal of the miRNA* strand from pre-RISC and may be the final step in RISC assembly, ultim ately enhancing target mRNA repression. In vivo, depletion of Knabber by RNAi causes developmental defects. Conclusions We provide a molecular explanation for the previously reported heterogeneity of miRNA 32 ends and propose a model in which Knabber converts miRNAs into isoforms that are compatible with the preferred length of Ago1-bound small RNAs. PMID:22055293

  14. An enzyme free electrochemical biosensor for sensitive detection of miRNA with a high discrimination factor by coupling the strand displacement reaction and catalytic hairpin assembly recycling.

    PubMed

    Yao, Juan; Zhang, Zhang; Deng, Zhenghua; Wang, Youqiang; Guo, Yongcan

    2017-10-23

    An isothermal, enzyme free, ultra-specific and ultra-sensitive protocol for electrochemical detection of miRNAs is proposed based on the toehold-mediated strand displacement reaction (SDR) and non-enzymatic catalytic hairpin reaction (CHA) recycling. The SDR was first triggered only in the presence of target miRNA and this process also affects other miRNA interferences having similar target sequences, thus guaranteeing a high discrimination factor and could be used in rare content miRNA detection with various amounts of interferences having similar target sequences. The output protector strand then triggered enzyme free CHA amplification and generates plenty of hairpin self-assembly products. This process in turn influences SDR equilibrium to move to the right and generates large amounts of protector output to ensure analysis sensitivity. Compared with traditional CHA, our proposed method greatly improved the signal to noise ratio and shows excellent performance in rare miRNA detection with miRNA analogue interference. Under the optimal experimental conditions and using square wave voltammetry, the established biosensor could detect target miRNA-21 down to 30 fM (S/N = 3) with a dynamic range from 100 fM to 2 nM, and discriminate rare target miRNA-21 from mismatched miRNA with high selectivity. This method holds great promise in miRNA detection from human cancer cell lines and would be a versatile and powerful tool for clinical molecular diagnostics.

  15. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.

    PubMed

    Liu, Haiyun; Tian, Tian; Ji, Dandan; Ren, Na; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-11-15

    In situ imaging of miRNA in living cells could help us to monitor the miRNA expression in real time and obtain accurate information for studying miRNA related bioprocesses and disease. Given the low-level expression of miRNA, amplification strategies for intracellular miRNA are imperative. Here, we propose an amplification strategy with a non-destructive enzyme-free manner in living cells using catalyzed hairpin assembly (CHA) based on graphene oxide (GO) for cellular miRNA imaging. The enzyme-free CHA exhibits stringent recognition and excellent signal amplification of miRNA in the living cells. GO is a good candidate as a fluorescence quencher and cellular carrier. Taking the advantages of the CHA and GO, we can monitor the miRNA at low level in living cells with a simple, sensitive and real-time manner. Finally, imaging of miRNAs in the different expression cells is realized. The novel method could supply an effective tool to visualize intracellular low-level miRNAs and help us to further understand the role of miRNAs in cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Precursor microRNA Programmed Silencing Complex Assembly Pathways in Mammals

    PubMed Central

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T.; Mourelatos, Zissimos

    2012-01-01

    Summary Assembly of microRNA Ribonucleoproteins (miRNPs) or RNA-Induced Silencing Complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in-vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in-vivo studies in Dicer Knock-Out cells reconstituted with wild type or catalytically inactive Dicer, we find that the miRNA Loading Complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA Precursor Deposit Complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5′-uridine, 3′-mid base pairing and 5′-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. PMID:22503104

  17. Identifying MicroRNAs and Transcript Targets in Jatropha Seeds

    PubMed Central

    Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério

    2014-01-01

    MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031

  18. Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites.

    PubMed

    Sheng, Peike; Fields, Christopher; Aadland, Kelsey; Wei, Tianqi; Kolaczkowski, Oralia; Gu, Tongjun; Kolaczkowski, Bryan; Xie, Mingyi

    2018-05-09

    MicroRNAs (miRNAs) are approximately 22 nucleotide (nt) long and play important roles in post-transcriptional regulation in both plants and animals. In animals, precursor (pre-) miRNAs are ∼70 nt hairpins produced by Drosha cleavage of long primary (pri-) miRNAs in the nucleus. Exportin-5 (XPO5) transports pre-miRNAs into the cytoplasm for Dicer processing. Alternatively, pre-miRNAs containing a 5' 7-methylguanine (m7G-) cap can be generated independently of Drosha and XPO5. Here we identify a class of m7G-capped pre-miRNAs with 5' extensions up to 39 nt long. The 5'-extended pre-miRNAs are transported by Exportin-1 (XPO1). Unexpectedly, a long 5' extension does not block Dicer processing. Rather, Dicer directly cleaves 5'-extended pre-miRNAs by recognizing its 3' end to produce mature 3p miRNA and extended 5p miRNA both in vivo and in vitro. The recognition of 5'-extended pre-miRNAs by the Dicer Platform-PAZ-Connector (PPC) domain can be traced back to ancestral animal Dicers, suggesting that this previously unrecognized Dicer reaction mode is evolutionarily conserved. Our work reveals additional genetic sources for small regulatory RNAs and substantiates Dicer's essential role in RNAi-based gene regulation.

  19. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    PubMed

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  1. Precursor microRNA-programmed silencing complex assembly pathways in mammals.

    PubMed

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T; Mourelatos, Zissimos

    2012-05-25

    Assembly of microRNA ribonucleoproteins (miRNPs) or RNA-induced silencing complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in vivo studies in Dicer Knockout cells reconstituted with wild-type or catalytically inactive Dicer, we find that the miRNA loading complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA precursor deposit complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5'-uridine, 3'-mid base pairing, and 5'-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals, and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Protein interactions and complexes in human microRNA biogenesis and function

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Encoded in the genome of most eukaryotes, microRNAs (miRNAs) have been proposed to regulate specifically up to 90% of human genes through a process known as miRNA-guided RNA silencing. The aim of this review is to present this process as the integration of a succession of specialized molecular machines exerting well defined functions. The nuclear microprocessor complex initially recognizes and processes its primary miRNA substrate into a miRNA precursor (pre-miRNA). This structure is then exported to the cytoplasm by the Exportin-5 complex where it is presented to the pre-miRNA processing complex. Following pre-miRNA conversion into a miRNA:miRNA* duplex, this complex is assembled into a miRNA-containing ribonucleoprotein (miRNP) complex, after which the miRNA strand is selected. The degree of complementarity of the miRNA for its messenger RNA (mRNA) target guides the recruitment of the miRNP complex. Initially repressing its translation, the miRNP-silenced mRNA is directed to the P-bodies, where the mRNA is either released from its inhibition upon a cellular signal and/or actively degraded. The potency and specificity of miRNA biogenesis and function rely on the distinct protein·protein, protein·RNA and RNA:RNA interactions found in different complexes, each of which fulfill a specific function in a well orchestrated process. PMID:17981733

  3. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.

    PubMed

    Meng, Jun; Liu, Dong; Sun, Chao; Luan, Yushi

    2014-12-30

    MicroRNAs (miRNAs) are a family of non-coding RNAs approximately 21 nucleotides in length that play pivotal roles at the post-transcriptional level in animals, plants and viruses. These molecules silence their target genes by degrading transcription or suppressing translation. Studies have shown that miRNAs are involved in biological responses to a variety of biotic and abiotic stresses. Identification of these molecules and their targets can aid the understanding of regulatory processes. Recently, prediction methods based on machine learning have been widely used for miRNA prediction. However, most of these methods were designed for mammalian miRNA prediction, and few are available for predicting miRNAs in the pre-miRNAs of specific plant species. Although the complete Solanum lycopersicum genome has been published, only 77 Solanum lycopersicum miRNAs have been identified, far less than the estimated number. Therefore, it is essential to develop a prediction method based on machine learning to identify new plant miRNAs. A novel classification model based on a support vector machine (SVM) was trained to identify real and pseudo plant pre-miRNAs together with their miRNAs. An initial set of 152 novel features related to sequential structures was used to train the model. By applying feature selection, we obtained the best subset of 47 features for use with the Back Support Vector Machine-Recursive Feature Elimination (B-SVM-RFE) method for the classification of plant pre-miRNAs. Using this method, 63 features were obtained for plant miRNA classification. We then developed an integrated classification model, miPlantPreMat, which comprises MiPlantPre and MiPlantMat, to identify plant pre-miRNAs and their miRNAs. This model achieved approximately 90% accuracy using plant datasets from nine plant species, including Arabidopsis thaliana, Glycine max, Oryza sativa, Physcomitrella patens, Medicago truncatula, Sorghum bicolor, Arabidopsis lyrata, Zea mays and Solanum lycopersicum. Using miPlantPreMat, 522 Solanum lycopersicum miRNAs were identified in the Solanum lycopersicum genome sequence. We developed an integrated classification model, miPlantPreMat, based on structure-sequence features and SVM. MiPlantPreMat was used to identify both plant pre-miRNAs and the corresponding mature miRNAs. An improved feature selection method was proposed, resulting in high classification accuracy, sensitivity and specificity.

  4. Pre-microRNA and Mature microRNA in Human Mitochondria

    PubMed Central

    Barrey, Eric; Saint-Auret, Gaelle; Bonnamy, Blandine; Damas, Dominique; Boyer, Orane; Gidrol, Xavier

    2011-01-01

    Background Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. Methodology/Principal Findings To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value<0.1) were found in the reference mitochondrial sequence and some of the best candidates were chosen for a co-localization test. In situ hybridization of pre-mir-302a, pre-let-7b and mir-365, using specific labelled locked nucleic acids and confocal microscopy, demonstrated that these miRNA were localized in mitochondria of human myoblasts. Total RNA was extracted from enriched mitochondria isolated by an immunomagnetic method from a culture of human myotubes. The detection of 742 human miRNA (miRBase) were monitored by RT-qPCR at three increasing mtRNA inputs. Forty six miRNA were significantly expressed (2nd derivative method Cp>35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). Conclusions/Significance The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria. PMID:21637849

  5. Drosha Promotes Splicing of a Pre-microRNA-like Alternative Exon

    PubMed Central

    Havens, Mallory A.; Reich, Ashley A.; Hastings, Michelle L.

    2014-01-01

    The ribonuclease III enzyme Drosha has a central role in the biogenesis of microRNA (miRNA) by binding and cleaving hairpin structures in primary RNA transcripts into precursor miRNAs (pre-miRNAs). Many miRNA genes are located within protein-coding host genes and cleaved by Drosha in a manner that is coincident with splicing of introns by the spliceosome. The close proximity of splicing and pre-miRNA biogenesis suggests a potential for co-regulation of miRNA and host gene expression, though this relationship is not completely understood. Here, we describe a cleavage-independent role for Drosha in the splicing of an exon that has a predicted hairpin structure resembling a Drosha substrate. We find that Drosha can cleave the alternatively spliced exon 5 of the eIF4H gene into a pre-miRNA both in vitro and in cells. However, the primary role of Drosha in eIF4H gene expression is to promote the splicing of exon 5. Drosha binds to the exon and enhances splicing in a manner that depends on RNA structure but not on cleavage by Drosha. We conclude that Drosha can function like a splicing enhancer and promote exon inclusion. Our results reveal a new mechanism of alternative splicing regulation involving a cleavage-independent role for Drosha in splicing. PMID:24786770

  6. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    PubMed

    Xiong, Xiao-Peng; Vogler, Georg; Kurthkoti, Krishna; Samsonova, Anastasia; Zhou, Rui

    2015-08-01

    microRNAs (miRNAs) are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs) that contain Argonaute (AGO) family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP) implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be evolutionarily widespread.

  7. The microprocessor component, DGCR8, is essential for early B-cell development in mice.

    PubMed

    Brandl, Andreas; Daum, Patrick; Brenner, Sven; Schulz, Sebastian R; Yap, Desmond Yat-Hin; Bösl, Michael R; Wittmann, Jürgen; Schuh, Wolfgang; Jäck, Hans-Martin

    2016-12-01

    microRNAs (miRNAs) are important posttranscriptional regulators during hematopoietic lineage commitment and lymphocyte development. Mature miRNAs are processed from primary miRNA transcripts in two steps by the microprocessor complex, consisting of Drosha and its partner DiGeorge Critical Region 8 (DGCR8), and the RNAse III enzyme, Dicer. Conditional ablations of Drosha and Dicer have established the importance of both RNAses in B- and T-cell development. Here, we show that a cre-mediated B-cell specific deletion of DGCR8 in mice results in a nearly complete maturation block at the transition from the pro-B to the pre-B cell stage, and a failure to upregulate Ig μ heavy chain expression in pro-B cells. Furthermore, we found that the death of freshly isolated DGCR8-deficient pro-B cells could be partially prevented by enforced Bcl2 expression. We conclude from these findings that the microprocessor component DGCR8 is essential for survival and differentiation of early B-cell progenitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Computational Identification of MicroRNAs and Their Targets from Finger Millet (Eleusine coracana).

    PubMed

    Usha, S; Jyothi, M N; Suchithra, B; Dixit, Rekha; Rai, D V; Nagesh Babu, R

    2017-03-01

    MicroRNAs are endogenous small RNAs regulating intrinsic normal growth and development of plant. Discovering miRNAs, their targets and further inferring their functions had become routine process to comprehend the normal biological processes of miRNAs and their roles in plant development. In this study, we used homology-based analysis with available expressed sequence tag of finger millet (Eleusine coracana) to predict conserved miRNAs. Three potent miRNAs targeting 88 genes were identified. The newly identified miRNAs were found to be homologous with miR166 and miR1310. The targets recognized were transcription factors and enzymes, and GO analysis showed these miRNAs played varied roles in gene regulation. The identification of miRNAs and their targets is anticipated to hasten the pace of key epigenetic regulators in plant development.

  9. Design and implementation of a synthetic pre-miR switch for controlling miRNA biogenesis in mammals

    PubMed Central

    Atanasov, Janina; Groher, Florian

    2017-01-01

    Abstract Synthetic RNA-based systems have increasingly been used for the regulation of eukaryotic gene expression. Due to their structural properties, riboregulators provide a convenient basis for the development of ligand-dependent controllable systems. Here, we demonstrate reversible conditional control of miRNA biogenesis with an aptamer domain as a sensing unit connected to a natural miRNA precursor for the first time. For the design of the pre-miR switch, we replaced the natural terminal loop with the TetR aptamer. Thus, the TetR aptamer was positioned close to the Dicer cleavage sites, which allowed sterical control over pre-miR processing by Dicer. Our design proved to be highly versatile, allowing us to regulate the biogenesis of three structurally different miRNAs: miR-126, -34a and -199a. Dicer cleavage was inhibited up to 143-fold via co-expression of the TetR protein, yet could be completely restored upon addition of doxycycline. Moreover, we showed the functionality of the pre-miR switches for gene regulation through the interaction of the respective miRNA with its specific target sequence. Our designed device is capable of robust and reversible control of miRNA abundance. Thus, we offer a novel investigational tool for functional miRNA analysis. PMID:29036355

  10. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  11. Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival

    PubMed Central

    Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448

  12. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit.

    PubMed

    Wang, Yunxiang; Gao, Lipu; Zhu, Benzhong; Zhu, Hongliang; Luo, Yunbo; Wang, Qing; Zuo, Jinhua

    2018-08-15

    Long-non-coding RNA (LncRNA) is a kind of non-coding endogenous RNA that plays essential roles in diverse biological processes and various stress responses. To identify and elucidate the intricate regulatory roles of lncRNAs in chilling injury in tomato fruit, deep sequencing and bioinformatics methods were performed here. After strict screening, a total of 1411 lncRNAs were identified. Among these lncRNAs, 239 of them were significantly differentially expressed. A large amount of target genes were identified and many of them were found to code chilling stress related proteins, including redox reaction related enzyme, important enzymes about cell wall degradation, membrane lipid peroxidation related enzymes, heat and cold shock protein, energy metabolism related enzymes, salicylic acid and abscisic acid metabolism related genes. Interestingly, 41 lncRNAs were found to be the precursor of 33 miRNAs, and 186 lncRNAs were targets of 45 miRNAs. These lncRNAs targeted by miRNAs might be potential ceRNAs. Particularly, a sophisticated regulatory model including miRNAs, lncRNAs and their targets was set up. This model revealed that some miRNAs and lncRNAs may be involved in chilling injury, which provided a new perspective of lncRNAs role. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. MicroRNA biogenesis and function in plants.

    PubMed

    Chen, Xuemei

    2005-10-31

    A microRNA (miRNA) is a 21-24 nucleotide RNA product of a non-protein-coding gene. Plants, like animals, have a large number of miRNA-encoding genes in their genomes. The biogenesis of miRNAs in Arabidopsis is similar to that in animals in that miRNAs are processed from primary precursors by at least two steps mediated by RNAse III-like enzymes and that the miRNAs are incorporated into a protein complex named RISC. However, the biogenesis of plant miRNAs consists of an additional step, i.e., the miRNAs are methylated on the ribose of the last nucleotide by the miRNA methyltransferase HEN1. The high degree of sequence complementarity between plant miRNAs and their target mRNAs has facilitated the bioinformatic prediction of miRNA targets, many of which have been subsequently validated. Plant miRNAs have been predicted or confirmed to regulate a variety of processes, such as development, metabolism, and stress responses. A large category of miRNA targets consists of genes encoding transcription factors that play important roles in patterning the plant form.

  14. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    PubMed

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  15. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs.

    PubMed

    Khan, Jenna; Lieberman, Joshua A; Lockwood, Christina M

    2017-05-01

    microRNAs (miRNAs) hold promise as biomarkers for a variety of disease processes and for determining cell differentiation. These short RNA species are robust, survive harsh treatment and storage conditions and may be extracted from blood and tissue. Pre-analytical variables are critical confounders in the analysis of miRNAs: we elucidate these and identify best practices for minimizing sample variation in blood and tissue specimens. Pre-analytical variables addressed include patient-intrinsic variation, time and temperature from sample collection to storage or processing, processing methods, contamination by cells and blood components, RNA extraction method, normalization, and storage time/conditions. For circulating miRNAs, hemolysis and blood cell contamination significantly affect profiles; samples should be processed within 2 h of collection; ethylene diamine tetraacetic acid (EDTA) is preferred while heparin should be avoided; samples should be "double spun" or filtered; room temperature or 4 °C storage for up to 24 h is preferred; miRNAs are stable for at least 1 year at -20 °C or -80 °C. For tissue-based analysis, warm ischemic time should be <1 h; cold ischemic time (4 °C) <24 h; common fixative used for all specimens; formalin fix up to 72 h prior to processing; enrich for cells of interest; validate candidate biomarkers with in situ visualization. Most importantly, all specimen types should have standard and common workflows with careful documentation of relevant pre-analytical variables.

  16. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts.

    PubMed

    Donker, Rogier B; Mouillet, Jean-François; Nelson, D Michael; Sadovsky, Yoel

    2007-04-01

    Endogenous microRNAs (miRNAs) post-transcriptionally regulate mRNA and protein expression during tissue development and function. Whereas adaptation to environmental insults are tightly regulated in human tissues, the role of miRNAs and miRNA biogenesis proteins in this context is inadequately explored. We sought to analyse the expression of the key RNAi enzyme Argonaute2 (Ago2) and other miRNA biogenesis proteins in human trophoblasts during differentiation and in hypoxic environment. Using an in vitro analysis of primary term human trophoblasts, we identified the expression of the core miRNA biogenesis proteins in human villous trophoblasts, with expression levels unaffected by cellular differentiation. We found that the miRNA biosynthetic pathway was functional and produced miRNAs, with miR-93 up-regulated and miR-424 down-regulated in hypoxic environment. In contrast, hypoxia did not alter the expression of key miRNA machinery proteins. The pivotal miRNA processing enzyme Ago2, along with its interacting protein DP103, were expressed in normal placentas as well as in placentas from pregnancies complicated by placental hypoperfusion that resulted in fetal growth restriction. Ago2 and DP103 co-immunoprecipitated, and did not limit trophoblast response to hypoxic stress. We concluded that the core miRNA machinery proteins are expressed and functional in human trophoblasts. The influence of hypoxia on the expression of a subset of placental miRNA species is unlikely to reflect altered expression of key miRNA biogenesis proteins.

  17. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains

    PubMed Central

    Benoit, Matthieu P. M. H.; Imbert, Lionel; Palencia, Andrés; Pérard, Julien; Ebel, Christine; Boisbouvier, Jérôme; Plevin, Michael J.

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer. PMID:23435228

  18. Let-7 miRNA Precursors Co-express with LIN28B in Cervical Cells.

    PubMed

    Zamora-Contreras, Aida Margarita; Alvarez-Salas, Luis Marat

    2018-01-01

    The let-7 microRNAs (miRNAs) are frequently dysregulated in carcinogenic processes, including cervical cancer. LIN28 proteins regulate let-7 biogenesis by binding to conserved sequences within the pre-miRNA structure. Nevertheless, recent research has shown that some let-7 miRNAs may escape LIN28 regulation. Correlate pre-let-7 miRNAs and LIN28B levels in cervical cell lines with different malignancy and HPV content. Pre-let-7 levels were determined by RTqPCR. LIN28B and other let-7 targets were analyzed by immunoblot. In silico tools were used to correlate let-7 and LIN28B expression and to analyze prelet- 7 sequences and structures. Lin28B protein was detected in all tested cell lines although it was more expressed in tumor cell lines. High levels of pre-let-7c/f-1 and pre-miR-98 were present in almost all cell lines regardless malignancy and LIN28B expression. Pre-let-7g/i were mainly expressed in tumor cell lines, pre-let-7e and pre-let-7-a3 were absent in all cell lines and pre-let-7a-2 showed indistinct expression. LIN28B showed positive correlation with pre-let-7i/g/f-1 and pre-miR-98 in tumor cell lines, suggesting escape from regulation. Sequence alignment and analysis of pre-let-7 miRNAs showed distinctive structural features within the preE region that may influence the ideal pre-let-7 structuring for LIN28B interaction. Short preE-stems were present in pre-let-7 that may escape LIN28B regulation, but long preEstems were mostly associated with high-level pre-let-7 miRNAs. The observed differences of pre-let-7 levels in cervical cell lines may be the result of alternative preE structuring affecting interaction with LIN28B thus resulting in differential let-7 regulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators

    PubMed Central

    Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.

    2013-01-01

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157

  20. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    PubMed

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  1. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2006-01-01

    Prediction of microRNA (miRNA) candidates using computer programming has identified hundreds and hundreds of genomic hairpin sequences, of which, the functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene-silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem, and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, this intronic miRNA biogenesis system has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA-expressing system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafish, chicken embryos, and adult mice. Based on the strand complementarity between the designed miRNA and its target gene sequence, we have also developed a miRNA isolation protocol to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proof- of-principle method, we now have the knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing system.

  2. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2013-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA generation system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafishes, chicken embryos, and adult mice. We have also developed an miRNA isolation protocol, based on the complementarity between the designed miRNA and its target gene sequence, to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proven-of-principle method, we now have full knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing systems.

  3. MicroRNAs and drinking: association between the pre-miR-27a rs895819 polymorphism and alcohol consumption in a Mediterranean population

    USDA-ARS?s Scientific Manuscript database

    Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consu...

  4. Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting.

    PubMed

    Tran, Thi Phuong Anh; Vo, Duc Duy; Di Giorgio, Audrey; Duca, Maria

    2015-09-01

    MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level. It is now well established that the overexpression of some miRNAs (oncogenic miRNAs) is responsible for initiation and progression of human cancers and the discovery of new molecules able to interfere with their production and/or function represents one of the most important challenges of current medicinal chemistry of RNA ligands. In this work, we studied the ability of 18 different antibiotics, known as prokaryotic ribosomal RNA, to bind to oncogenic miRNA precursors (stem-loop structured pre-miRNAs) in order to inhibit miRNAs production. In vitro inhibition, binding constants, thermodynamic parameters and binding sites were investigated and highlighted that aminoglycosides and tetracyclines represent interesting pre-miRNA ligands with the ability to inhibit Dicer processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Axonal localization and mitochondrial association of precursor microRNA 338

    PubMed Central

    Vargas, Jose Norberto S.; Kar, Amar N.; Kowalak, Jeffrey A.; Gale, Jenna R.; Aschrafi, Armaz; Chen, Cai-Yun; Gioio, Anthony E.; Kaplan, Barry B.

    2016-01-01

    microRNAs (miRNAs) selectively localize to subcompartments of the neuron, such as dendrites, axons and presynaptic terminals, where they regulate the local protein synthesis of their putative target genes. In addition to mature miRNAs, precursor miRNAs (pre-miRNAs) have also been shown to localize to somatodendritic and axonal compartments. miRNA-338 (miR-338) regulates the local expression of several nuclear-encoded mitochondrial mRNAs within axons of sympathetic neurons. Previous work has shown that precursor miR-338 (pre-miR-338) introduced into the axon can be locally processed into mature miR-338, where it can regulate local ATP synthesis. However, the mechanisms underlying the localization of pre-miRNAs to the axonal compartment remain unknown. In this study, we investigated the axonal localization of pre-miR-338. Using proteomic and biochemical approaches, we provide evidence for the localization of pre-miR-338 to distal neuronal compartments and identify several constituents of the pre-miR-338 ribonucleoprotein complex. Furthermore, we found that pre-miR-338 is associated with the mitochondria in axons of superior cervical ganglion (SCG) neurons. The maintenance of mitochondrial function within axons requires the precise spatio-temporal synthesis of nuclear-encoded mRNAs, some of which are regulated by miR-338. Therefore, the association of pre-miR-338 with axonal mitochondria could serve as a reservoir of mature, biologically active miRNAs, which could coordinate the intra-axonal expression of multiple nuclear-encoded mitochondrial mRNAs. PMID:27229124

  6. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.

    PubMed

    Bu, Huajie; Baraldo, Giorgia; Lepperdinger, Günter; Jansen-Dürr, Pidder

    2016-03-01

    MicroRNAs (miRNAs) are a group of small non-coding executor RNAs. Their function as key modulators of cellular senescence has been widely recognized recently. By cross-comparing several human aging models we previously identified dozens of miRNAs being differentially regulated during aging. Here the functions of two miRNAs, mir-24 and mir-424, were investigated in an oxidative stress-induced fibroblast premature senescence model. Using pre-miRNA precursors, miRNAs were overexpressed in cells undergoing premature senescence induced by oxidative stress. More senescent cells were observed in mir-24 transfected cells. p53 was upregulated in mir-24 overexpressing cells, but downregulated in mir-424 overexpressing cells. DNA topoisomerase I (TOP1), an enzyme controlling DNA topology, was identified as a target of mir-24, whose expression was induced by oxidative stress. Knocking down TOP1 induced cellular senescence. These results suggest that mir-24 activity propagates stress-induced senescence by down regulating TOP1. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults.

    PubMed

    Fluitt, Maurice B; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K

    2016-12-01

    The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=-0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=-0.89, p=0.01). To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults.

  8. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults

    PubMed Central

    Fluitt, Maurice B.; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K.

    2017-01-01

    Aims The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Main Methods Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. Key Findings miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=−0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=−0.89, p=0.01). Significance To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults. PMID:29399662

  9. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.

    PubMed

    Chendrimada, Thimmaiah P; Gregory, Richard I; Kumaraswamy, Easwari; Norman, Jessica; Cooch, Neil; Nishikura, Kazuko; Shiekhattar, Ramin

    2005-08-04

    MicroRNAs (miRNAs) are generated by a two-step processing pathway to yield RNA molecules of approximately 22 nucleotides that negatively regulate target gene expression at the post-transcriptional level. Primary miRNAs are processed to precursor miRNAs (pre-miRNAs) by the Microprocessor complex. These pre-miRNAs are cleaved by the RNase III Dicer to generate mature miRNAs that direct the RNA-induced silencing complex (RISC) to messenger RNAs with complementary sequence. Here we show that TRBP (the human immunodeficiency virus transactivating response RNA-binding protein), which contains three double-stranded, RNA-binding domains, is an integral component of a Dicer-containing complex. Biochemical analysis of TRBP-containing complexes revealed the association of Dicer-TRBP with Argonaute 2 (Ago2), the catalytic engine of RISC. The physical association of Dicer-TRBP and Ago2 was confirmed after the isolation of the ternary complex using Flag-tagged Ago2 cell lines. In vitro reconstitution assays demonstrated that TRBP is required for the recruitment of Ago2 to the small interfering RNA (siRNA) bound by Dicer. Knockdown of TRBP results in destabilization of Dicer and a consequent loss of miRNA biogenesis. Finally, depletion of the Dicer-TRBP complex via exogenously introduced siRNAs diminished RISC-mediated reporter gene silencing. These results support a role of the Dicer-TRBP complex not only in miRNA processing but also as a platform for RISC assembly.

  10. Cerebellar neurodegeneration in the absence of microRNAs

    PubMed Central

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  11. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding.

    PubMed

    Kawamata, Tomoko; Seitz, Hervé; Tomari, Yukihide

    2009-09-01

    MicroRNAs (miRNAs) regulate expression of their target mRNAs through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) family protein as a core component. In Drosophila melanogaster, miRNAs are generally sorted into Ago1-containing RISC (Ago1-RISC). We established a native gel system that can biochemically dissect the Ago1-RISC assembly pathway. We found that miRNA-miRNA* duplexes are loaded into Ago1 as double-stranded RNAs in an ATP-dependent fashion. In contrast, unexpectedly, unwinding of miRNA-miRNA* duplexes is a passive process that does not require ATP or slicer activity of Ago1. Central mismatches direct miRNA-miRNA* duplexes into pre-Ago1-RISC, whereas mismatches in the seed or guide strand positions 12-15 promote conversion of pre-Ago1-RISC into mature Ago1-RISC. Our findings show that unwinding of miRNAs is a precise mirror-image process of target recognition, and both processes reflect the unique geometry of RNAs in Ago proteins.

  12. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).

    PubMed

    Yusuf, Noor Hydayaty Md; Ong, Wen Dee; Redwan, Raimi Mohamed; Latip, Mariam Abd; Kumar, S Vijay

    2015-10-15

    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain

    PubMed Central

    Fukunaga, Ryuya; Colpan, Cansu; Han, Bo W; Zamore, Phillip D

    2014-01-01

    In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5′ terminal phosphate and a two-nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme. PMID:24488111

  14. A bioinformatics-based update on microRNAs and their targets in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Yang, Liandong; He, Shunping

    2014-01-01

    MicroRNAs (miRNAs) participate in various vitally biological processes via controlling target genes activity and thousands of miRNAs have been identified in many species to date, including 18,698 known animal miRNA in miRBase. However, there are only limited studies reported in rainbow trout (Oncorhynchus mykiss) especially via the computational-based approaches. In present study, we systematically investigated the miRNAs in rainbow trout using a well-developed comparative genome-based homologue search. A total of 196 potential miRNAs, belonging to 124 miRNA families, were identified, most of which were firstly reported in rainbow trout. The length of miRNAs ranged from 17 to 24 nt with an average of 20 nt while the length of their precursors varied from 47 to 152 nt with an average of 85 nt. The identified miRNAs were not evenly distributed in each miRNA family, with only one member per family for a majority, and multiple members were also identified for several families. Nucleotide U was dominant in the pre-miRNAs with a percentage of 30.04%. The rainbow trout pre-miRNAs had relatively high negative minimal folding free energy (MFE) and adjusted MFE (AMFE). Not only the mature miRNAs but their precursor sequences are conserved among the living organisms. About 2466 O. mykiss genes were predicted as potential targets for 189 miRNAs. Gene Ontology (GO) analysis showed that nearly 2093, 2107, and 2081 target genes are involved in cellular component, molecular function, and biological processes respectively. KEGG pathway enrichment analysis illuminated that these miRNAs targets might regulate 105 metabolic pathways, including those of purine metabolism, nitrogen metabolism, and oxidative phosphorylation. This study has provided an update on rainbow trout miRNAs and their targets, which represents a foundation for future studies. © 2013.

  15. Isolation and Identification of Gene-Specific MicroRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2018-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions yet to be determined. Because transfection of hairpin-like microRNA precursors (pre-miRNAs) into mammalian cells is not always sufficient to trigger RNA-induced gene silencing complex (RISC) assembly, a key step for inducing RNA interference (RNAi)-related gene silencing, we have developed an intronic miRNA expression system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene, and hence successfully increase the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis mechanism has been found to depend on a coupled interaction of nascent messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA so obtained is transcribed by type-II RNA polymerases, coexpressed within a primary gene transcript, and then excised out of the gene transcript by intracellular RNA splicing and processing machineries. After that, ribonuclease III (RNaseIII) endonucleases further process the spliced introns into mature miRNAs. Using this intronic miRNA expression system, we have shown for the first time that the intron-derived miRNAs are able to elicit strong RNAi effects in not only human and mouse cells in vitro but also in zebrafishes, chicken embryos, and adult mice in vivo. We have also developed a miRNA isolation protocol, based on the complementarity between the designed miRNA and its targeted gene sequence, to purify and identify the mature miRNAs generated. As a result, several intronic miRNA identities and structures have been confirmed. According to this proof-of-principle methodology, we now have full knowledge to design various intronic pre-miRNA inserts that are more efficient and effective for inducing specific gene silencing effects in vitro and in vivo.

  16. Identification and Characterization of the miRNA Transcriptome of Ovis aries

    PubMed Central

    Wei, Caihong; Sheng, Xihui; Ren, Hangxing; Xu, Lingyang; Lu, Jian; Liu, Jiasen; Zhang, Li; Du, Lixin

    2013-01-01

    The discovery and identification of Ovis aries (sheep) miRNAs will further promote the study of miRNA functions and gene regulatory mechanisms. To explore the microRNAome (miRNAome) of sheep in depth, samples were collected that included eight developmental stages: the longissimus dorsi muscles of Texel fetuses at 70, 85, 100, 120, and 135 days, and the longissimus dorsi muscles of Ujumqin fetuses at 70, 85, 100, 120, and 135 d, and lambs at 0 (birth), 35, and 70 d. These samples covered all of the representative periods of Ovis aries growth and development throughout gestation (about 150 d) and 70 d after birth. Texel and Ujumqin libraries were separately subjected to Solexa deep sequencing; 35,700,772 raw reads were obtained overall. We used ACGT101-miR v4.2 to analyze the sequence data. Following meticulous comparisons with mammalian mature miRNAs, precursor hairpins (pre-miRNAs), and the latest sheep genome, we substantially extended the Ovis aries miRNAome. The list of pre-miRNAs was extended to 2,319, expressing 2,914 mature miRNAs. Among those, 1,879 were genome mapped to unique miRNAs, representing 2,436 genome locations, and 1,754 pre-miRNAs were mapped to chromosomes. Furthermore, the Ovis aries miRNAome was processed using an elaborate bioinformatic analysis that examined multiple end sequence variation in miRNAs, precursors, chromosomal localizations, species-specific expressions, and conservative properties. Taken together, this study provides the most comprehensive and accurate exploration of the sheep miRNAome, and draws conclusions about numerous characteristics of Ovis aries miRNAs, including miRNAs and isomiRs. PMID:23516575

  17. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans.

    PubMed

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide.

    PubMed

    Chodkowska, Karolina A; Ciecierska, Anna; Majchrzak, Kinga; Ostaszewski, Piotr; Sadkowski, Tomasz

    2018-01-01

    Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H 2 O 2 . We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H 2 O 2 -related injury by changing the expression of miRNAs. Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H 2 O 2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H 2 O 2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. Our results suggest that ESC pre-incubated with HMB and exposed to H 2 O 2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after injury. Enrichment analyses for targeted genes revealed that a large group of genes was associated with the regulation of signaling pathways crucial for muscle tissue development, protein metabolism, muscle injury, and regeneration, as well as with oxidative stress response.

  20. MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis

    PubMed Central

    Jia, Fan; Rock, Christopher D.

    2013-01-01

    MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing (PTGS/TGS) and/or translational inhibition. miRNAs can arise from the “exon” of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846.. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5′-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. A. lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution. PMID:23341152

  1. Autoregulatory mechanisms controlling the Microprocessor.

    PubMed

    Triboulet, Robinson; Gregory, Richard I

    2010-01-01

    The Microprocessor, comprising the ribonuclease Drosha and its essential cofactor, the double-stranded RNA-binding protein, DGCR8, is essential for the first step of the miRNA biogenesis pathway. It specifically cleaves double-stranded RNA within stem-loop structures of primary miRNA transcripts (pri-miRNAs) to generate precursor (pre-miRNA) intermediates. Pre-miRNAs are subsequently processed by Dicer to their mature 22 nt form. Thus, Microprocessor is essential for miRNA maturation, and pri-miRNA cleavage by this complex defines one end of the mature miRNA. Moreover, it is emerging that dysregulation of the Microprocessor is associated with various human diseases. It is therefore important to understand the mechanisms by which the expression of the subunits of the Microprocessor is regulated. Recent findings have uncovered a post-transcriptional mechanism that maintains the integrity of the Microprocessor. These studies revealed that the Microprocessor is involved in the processing of the messenger RNA (mRNA) that encodes DGCR8. This regulatory feedback loop, along with the reported role played by DGCR8 in the stabilization of Drosha protein, is part ofa newly identified regulatory mechanism controlling Microprocessor activity.

  2. Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction.

    PubMed

    Marques, Yuri Bento; de Paiva Oliveira, Alcione; Ribeiro Vasconcelos, Ana Tereza; Cerqueira, Fabio Ribeiro

    2016-12-15

    MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets. By comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools. The extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.

  3. miRNA Signature and Dicer Requirement during Human Endometrial Stromal Decidualization In Vitro

    PubMed Central

    Estella, Carlos; Herrer, Isabel; Moreno-Moya, Juan Manuel; Quiñonero, Alicia; Martínez, Sebastián; Pellicer, Antonio; Simón, Carlos

    2012-01-01

    Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs) decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human endometrial decidualization. PMID:22911744

  4. A biogenesis step upstream of Microprocessor controls miR-17~92 expression

    PubMed Central

    Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I.

    2015-01-01

    SUMMARY The precise control of miR-17~92 microRNA (miRNA) is essential for normal development and overexpression of certain miRNAs from this cluster is oncogenic. Here we find the relative expression of the six miRNAs processed from the primary (pri-miR-17~92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17~92 is processed to a biogenesis intermediate, termed ‘progenitor-miRNA’ (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, -18a, -19a, 20a, and -19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17~92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73), and the Spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is key step controlling miRNA expression and explains the posttranscriptional control of miR-17~92 expression in development. PMID:26255770

  5. Roles of microRNA on cancer cell metabolism

    PubMed Central

    2012-01-01

    Advanced studies of microRNAs (miRNAs) have revealed their manifold biological functions, including control of cell proliferation, cell cycle and cell death. However, it seems that their roles as key regulators of metabolism have drawn more and more attention in the recent years. Cancer cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. MiRNAs regulate cell metabolic processes through complicated mechanisms, including directly targeting key enzymes or transporters of metabolic processes and regulating transcription factors, oncogenes / tumor suppressors as well as multiple oncogenic signaling pathways. MiRNAs like miR-375, miR-143, miR-14 and miR-29b participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators, which will hopefully lead to a new therapeutic strategy for malignant cancer. This review focuses on miRNA regulations of cancer cell metabolism,including glucose uptake, glycolysis, tricarboxylic acid cycle and insulin production, lipid metabolism and amino acid biogenesis, as well as several oncogenic signaling pathways. Furthermore, the challenges of miRNA-based strategies for cancer diagnosis, prognosis and therapeutics have been discussed. PMID:23164426

  6. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure.

    PubMed

    Munoz-Tello, Paola; Gabus, Caroline; Thore, Stéphane

    2014-03-01

    The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the β-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.

  7. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure

    PubMed Central

    Munoz-Tello, Paola; Gabus, Caroline; Thore, Stéphane

    2014-01-01

    The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the β-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo. PMID:24322298

  8. The microRNA-processing enzyme Dicer is essential for thyroid function.

    PubMed

    Frezzetti, Daniela; Reale, Carla; Calì, Gaetano; Nitsch, Lucio; Fagman, Henrik; Nilsson, Ola; Scarfò, Marzia; De Vita, Gabriella; Di Lauro, Roberto

    2011-01-01

    Dicer is a type III ribonuclease required for the biogenesis of microRNAs (miRNAs), a class of small non-coding RNAs regulating gene expression at the post-transcriptional level. To explore the functional role of miRNAs in thyroid gland function, we generated a thyrocyte-specific Dicer conditional knockout mouse. Here we show that development and early differentiation of the thyroid gland are not affected by the absence of Dicer, while severe hypothyroidism gradually develops after birth, leading to reduced body weight and shortened life span. Histological and molecular characterization of knockout mice reveals a dramatic loss of the thyroid gland follicular architecture associated with functional aberrations and down-regulation of several differentiation markers. The data presented in this study show for the first time that an intact miRNAs processing machinery is essential for thyroid physiology, suggesting that deregulation of specific miRNAs could be also involved in human thyroid dysfunctions.

  9. Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively.

    PubMed

    Nowak, Jakub Stanislaw; Hobor, Fruzsina; Downie Ruiz Velasco, Angela; Choudhury, Nila Roy; Heikel, Gregory; Kerr, Alastair; Ramos, Andres; Michlewski, Gracjan

    2017-03-01

    Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3'-5' exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also controls the production of neuro-specific miRNA-9 via a polyuridylation-independent mechanism. Here we reveal that the sequences and structural characteristics of pre-let-7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the constitutive expression of untagged Lin28a during neuronal differentiation in vitro positively and negatively affects numerous other miRNAs. Our findings shed light on the role of Lin28a in differentiating cells and on the ways in which one RNA-binding protein can perform multiple roles in the regulation of RNA processing. © 2017 Nowak et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs

    PubMed Central

    Nepal, Chirag; Coolen, Marion; Hadzhiev, Yavor; Cussigh, Delphine; Mydel, Piotr; Steen, Vidar M.; Carninci, Piero; Andersen, Jesper B.; Bally-Cuif, Laure; Müller, Ferenc; Lenhard, Boris

    2016-01-01

    MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9–5 was validated by 5′ RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3′-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay. PMID:26673698

  11. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  12. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    PubMed Central

    Kropp, Jenna; Salih, Sana M.; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753

  13. Autoregulatory mechanisms controlling the microprocessor.

    PubMed

    Triboulet, Robinson; Gregory, Richard I

    2011-01-01

    The Microprocessor, comprising the ribonuclease Drosha and its essential cofactor, the double-stranded RNA-binding protein, DGCR8, is essential for the first step of the miRNA biogenesis pathway. It specifically cleaves double-stranded RNA within stem-loop structures of primary miRNA transcripts (pri-miRNAs) to generate precursor (pre-miRNA) intermediates. Pre-miRNAs are subsequently processed by Dicer to their mature ∼22 nt form. Thus, Microprocessor is essential for miRNA maturation, and pri-miRNA cleavage by this complex defines one end of the mature miRNA. Moreover, it is emerging that dysregulation of the Microprocessor is associated with various human diseases. It is therefore important to understand the mechanisms by which the expression of the subunits of the Microprocessor is regulated. Recent findings have uncovered a post-transcriptional mechanism that maintains the integrity of the Microprocessor. These studies revealed that the Microprocessor is involved in the processing of the messenger RNA (mRNA) that encodes DGCR8. This regulatory feedback loop, along with the reported role played by DGCR8 in the stabilization of Drosha protein, is part of a newly identified regulatory mechanism controlling Microprocessor activity.

  14. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.

    PubMed

    Qi, Yan; Qiu, Liying; Fan, Wenjiao; Liu, Chenghui; Li, Zhengping

    2017-08-07

    A versatile flow cytometric bead assay (FCBA) coupled with a completely enzyme-free signal amplification mechanism is developed for the sensitive detection of microRNAs (miRNAs). This new strategy integrates click chemistry-mediated ligation chain reaction (CLCR) with hybridization chain reaction (HCR) for enzyme-free signal amplification on magnetic beads (MBs), and a flow cytometer for the robust fluorescence readout of the MBs. Firstly, target miRNA can initiate CLCR on the surface of MBs based on the click chemical ligation between dibenzocyclooctyne (DBCO)- and azide-modified single-stranded DNA (ssDNA) probes, and the amount of ligated ssDNA sequences on the MBs will be proportional to the dosage of target miRNA. Afterward, each of the ligated ssDNA products can trigger a cascade chain reaction of hybridization events between two alternating fluorophore-tagged hairpin probes, resulting in another signal amplification pathway with an amplified accumulation of fluorophores on the MBs. Finally, the fluorophore-anchored MBs are directly and rapidly analyzed by using a flow cytometer without any separation or elution processes. Herein, the click nucleic acid ligation only occurs on the surface of MBs, so the nonspecific ligations are greatly inhibited compared with that of ligation reaction performed in homogeneous solution. Furthermore, the signal amplification by CLCR-HCR is highly efficient but totally enzyme-free, which may overcome the potential drawbacks of conventional enzyme-catalyzed signal amplification protocols and lead to a high sensitivity. The CLCR-HCR-based FCBA has pushed the detection limit of let-7a miRNA down to the femtomolar (fM) level, showing great potential in miRNA-related biological studies and disease diagnosis.

  15. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice.

    PubMed

    Sundermeier, Thomas R; Sakami, Sanae; Sahu, Bhubanananda; Howell, Scott J; Gao, Songqi; Dong, Zhiqian; Golczak, Marcin; Maeda, Akiko; Palczewski, Krzysztof

    2017-02-24

    Age-related macular degeneration (AMD) is a major cause of irreversible vision loss. The neovascular or "wet" form of AMD can be treated to varying degrees with anti-angiogenic drugs, but geographic atrophy (GA) is an advanced stage of the more prevalent "dry" form of AMD for which there is no effective treatment. Development of GA has been linked to loss of the microRNA (miRNA)-processing enzyme DICER1 in the mature retinal pigmented epithelium (RPE). This loss results in the accumulation of toxic transcripts of Alu transposable elements, which activate the NLRP3 inflammasome and additional downstream pathways that compromise the integrity and function of the RPE. However, it remains unclear whether the loss of miRNA processing and subsequent gene regulation in the RPE due to DICER1 deficiency also contributes to RPE cell death. To clarify the role of miRNAs in RPE cells, we used two different mature RPE cell-specific Cre recombinase drivers to inactivate either Dicer1 or DiGeorge syndrome critical region 8 ( Dgcr8 ), thus removing RPE miRNA regulatory activity in mice by disrupting two independent and essential steps of miRNA biogenesis. In contrast with prior studies, we found that the loss of each factor independently led to strikingly similar defects in the survival and function of the RPE and retina. These results suggest that the loss of miRNAs also contributes to RPE cell death and loss of visual function and could affect the pathology of dry AMD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length.

    PubMed

    Bao, Yu; Hayashida, Morihiro; Akutsu, Tatsuya

    2016-11-25

    Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a loop/bulge structure. In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810 empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the length of loop/bulge structures is useful for prediction of Dicer cleavage sites. We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of loop/bulge structures for such predictions.

  17. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis.

    PubMed

    Dlouha, Dana; Blaha, Milan; Blaha, Vladimir; Fatorova, Ilona; Hubacek, Jaroslav A; Stavek, Petr; Lanska, Vera; Parikova, Alena; Pitha, Jan

    2017-11-01

    LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Protein components of the microRNA pathway and human diseases

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657

  19. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In vitro quantification of specific microRNA using molecular beacons

    PubMed Central

    Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2012-01-01

    MicroRNAs (miRNAs), a class of non-coding RNAs, have become a major focus of molecular biology research because of their diverse genomic origin and ability to regulate an array of cellular processes. Although the biological functions of miRNA are yet to be fully understood, tissue levels of specific miRNAs have been shown to correlate with pathological development of disease. Here, we demonstrate that molecular beacons can readily distinguish mature- and pre-miRNAs, and reliably quantify miRNA expression. We found that molecular beacons with DNA, RNA and combined locked nucleic acid (LNA)–DNA backbones can all detect miRNAs of low (<1 nM) concentrations in vitro, with RNA beacons having the highest detection sensitivity. Furthermore, we found that molecular beacons have the potential to distinguish miRNAs that have slight variations in their nucleotide sequence. These results suggest that the molecular beacon-based approach to assess miRNA expression and distinguish mature and precursor miRNA species is quite robust, and has the promise for assessing miRNA levels in biological samples. PMID:22110035

  1. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease.

    PubMed

    Sharma, Haveesh; Estep, Michael; Birerdinc, Aybike; Afendy, Arian; Moazzez, Amir; Elariny, Hazem; Goodman, Zachary; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-08-01

    Recently, microRNAs (miRNA) have been linked to the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH). First transcribed as pri-miRNA, these molecules are further processed by a complex of endonuclear and cytosolic RNA binding molecules to form mature miRNAs. The aim of this study is to investigate mechanisms of miRNA regulation in the visceral adipose of obese NAFLD patients via measuring expression of miRNA processing enzymes and pri-miRNA. Total RNAs were extracted from visceral adipose tissue (VAT) samples collected from patients undergoing bariatric surgery. All patients had biopsy-proven NAFLD (NASH patients [n = 12] and non-NASH NAFLD [n = 12]). For each patient, we profiled mRNA levels for three miRNA processing elements (Drosha, DGCR8, and Dicer1) and seven pri-miRNAs (pri-miR-125b-2, pri-miR-16-2, pri-miR-26a-1, pri-miR-26a-2, pri-miR-7-1, pri-miR-7-2, and pri-miR-7-3). Expression of Dicer1, Drosha and DGCR8 was significantly increased within the NASH cohort along with expression of pri-miR-7-1. The presence of focal necrosis on the liver biopsy correlated significantly with levels of Dicer1 and DGRC8. Both NASH and ballooning degeneration of hepatocytes correlated negatively with the expression levels of hsa-miR-125b. Histologic NASH correlated positively with the expression levels of pri-miR-16-2 and pri-miR-7-1. The presence of the hepatocyte's ballooning degeneration in the liver biopsy correlated positively with pri-miR-26a-1 and pri-miR-7-1. The expression profile of pri-miR-125b-2 also correlated positively with body mass index. Our findings support the hypothesis that VAT-derived miRNA may contribute to the pathogenesis of NASH in obese patients. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  2. Identification of conserved microRNAs in peripheral blood from giant panda: expression of mammary gland-related microRNAs during late pregnancy and early lactation.

    PubMed

    Wang, C D; Long, K; Jin, L; Huang, S; Li, D H; Ma, X P; Wei, M; Gu, Y; Ma, J D; Zhang, H

    2015-11-13

    The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals, and it has evolved several unusual biological and behavioral traits. During puberty, pregnancy, lactation, and involution, the mammary gland undergoes profound morphological and functional changes. A large number of microRNAs (miRNAs) have been identified to be involved in mammary gland development and lactation. In this study, we identified 202 conserved mature miRNAs, corresponding to 147 pre-miRNAs, in giant panda peripheral blood using a small RNA-sequencing approach. In addition, 27 miRNA families and 29 miRNA clusters were identified. We analyzed the arm selection preference of pre-miRNAs and found that: 1) most giant panda pre-miRNAs generated one-strand miRNAs, and the 5p-arm only miRNAs have a higher expression level than 3p-arm only miRNAs; 2) there were more 5p-arm dominant miRNAs than 3p-arm dominant miRNAs; and 3) 5p-arm dominant miRNAs have a larger fold change within miRNA pairs than 3p-arm dominant miRNAs. Expression of 12 lactation-related miRNAs was detected across late pregnancy and early lactation stages by qPCR, and seven miRNAs were identified as clustered in one significant model. Most of these clustered miRNAs exhibited inhibitory roles in proliferation and differentiation of mammary epithelial cells. Functional analysis highlighted important roles of the seven as signed miRNAs in mammary development and metabolic changes, including blood vessel morphogenesis, macromolecule biosynthesis, cell cycle regulation, and protein transport.

  3. Development of a low-cost detection method for miRNA microarray.

    PubMed

    Li, Wei; Zhao, Botao; Jin, Youxin; Ruan, Kangcheng

    2010-04-01

    MicroRNA (miRNA) microarray is a powerful tool to explore the expression profiling of miRNA. The current detection method used in miRNA microarray is mainly fluorescence based, which usually requires costly detection system such as laser confocal scanner of tens of thousands of dollars. Recently, we developed a low-cost yet sensitive detection method for miRNA microarray based on enzyme-linked assay. In this approach, the biotinylated miRNAs were captured by the corresponding oligonucleotide probes immobilized on microarray slide; and then the biotinylated miRNAs would capture streptavidin-conjugated alkaline phosphatase. A purple-black precipitation on each biotinylated miRNA spot was produced by the enzyme catalytic reaction. It could be easily detected by a charge-coupled device digital camera mounted on a microscope, which lowers the detection cost more than 100 fold compared with that of fluorescence method. Our data showed that signal intensity of the spot correlates well with the biotinylated miRNA concentration and the detection limit for miRNAs is at least 0.4 fmol and the detection dynamic range spans about 2.5 orders of magnitude, which is comparable to that of fluorescence method.

  4. RACK-1 regulates let-7 microRNA expression and terminal cell differentiation in Caenorhabditis elegans

    PubMed Central

    Chu, Yu-De; Wang, Wei-Chieh; Chen, Shi-An A; Hsu, Yen-Ting; Yeh, Meng-Wei; Slack, Frank J; Chan, Shih-Peng

    2014-01-01

    The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C. elegans and has been associated with several human cancers. Previously, the versatile scaffold protein receptor for activated C kinase 1 (RACK1) was proposed to facilitate recruitment of the miRNA-induced silencing complex (miRISC) to the polysome and to be required for miRNA function in C. elegans and humans. Here, we show that depletion of C. elegans RACK-1 by RNAi increases let-7 miRNA levels and suppresses the retarded terminal differentiation of lateral hypodermal seam cells in mutants carrying the hypomorphic let-7(n2853) allele or lacking the let-7 family miRNA genes mir-48 and mir-241. Depletion of RACK-1 also increases the levels of precursor let-7 miRNA. When Dicer is knocked down and pre-miRNA processing is inhibited, depletion of RACK-1 still leads to increased levels of pre-let-7, suggesting that RACK-1 affects a biogenesis mechanism upstream of Dicer. No changes in the activity of the let-7 promoter or the levels of primary let-7 miRNA are associated with depletion of RACK-1, suggesting that RACK-1 affects let-7 miRNA biogenesis at the post-transcriptional level. Interestingly, rack-1 knockdown also increases the levels of a few other precursor miRNAs. Our results reveal that RACK-1 controls the biogenesis of a subset of miRNAs, including let-7, and in this way plays a role in the heterochronic gene pathway during C. elegans development. PMID:24776851

  5. Novel MicroRNA signatures in HPV-mediated cervical carcinogenesis in Indian women.

    PubMed

    Sharma, Shweta; Hussain, Showket; Soni, Kartik; Singhal, Pallavi; Tripathi, Richa; Ramachandran, V G; Sharma, Sonal; Das, Shukla; Pillai, Beena; Bharadwaj, Mausumi

    2016-04-01

    This study aimed to investigate the role of miRNAs in HPV-mediated cervical pre-cancer and cancer cases in Indian population. We analysed the HPV infection and its genotypes in uterine cervical pre-cancer (n = 80), cancer (n = 200) and normal cervical samples (n = 150) by consensus sequence PCR followed by type specific PCRs. Also, microRNA profiling was done in a subset of cervical pre-cancer (n = 20), cancer cases (n = 50) and normal samples (n = 30) by real-time quantitative PCR (qRT-PCR). The prevalence of HPV infection in pre-cancer was found to be 81 % (65/80) and 94 % (188/200) in cancer cases, with most predominant high-risk HPV type-16 (HR-HPV-16) in 83 % of cancer and 91 % of pre- cancer cases, respectively. Whereas in controls, the HPV infection was found to be very low (5 %). The miRNA profiling revealed that in cervical pre-cancer, 100 miRNAs were significantly (p < 0.001) differentially expressed with 70 miRNAs upregulated and 30 miRNAs downregulated. In cervical cancer cases, 383 miRNA were found to be differentially expressed (p < 0.001), of which 350 miRNAs were upregulated and 33 miRNAs were downregulated. We also observed that 182 miRNAs were differentially expressed (p < 0.001) in HPV-16/18-positive (SiHa/HeLa) cell lines compared with HPV-negative (C33A) cell line. In addition, we identified the novel microRNAs such as miR-892b, miR-500, miR-888, miR-505 and miR-711 in cervical precancerous lesions and cervical cancer cases in Indian population. Taken together, the study demonstrates a crucial role of microRNAs in cervical cancer, which may serve as potential early diagnostic markers for cervical carcinogenesis.

  6. miRNA Profiles as a Predictor of Chemoresponsiveness in Wilms’ Tumor Blastema

    PubMed Central

    Watson, Jenny A.; Bryan, Kenneth; Williams, Richard; Popov, Sergey; Vujanic, Gordan; Coulomb, Aurore; Boccon-Gibod, Liliane; Graf, Norbert; Pritchard-Jones, Kathy; O’Sullivan, Maureen

    2013-01-01

    The current SIOP treatment protocol for Wilms’ tumor involves pre-operative chemotherapy followed by nephrectomy. Not all patients benefit equally from such chemotherapy. The aim of this study was to generate a miRNA profile of chemo resistant blastemal cells in high risk Wilms’ tumors which might serve as predictive markers of therapeutic response at the pre-treatment biopsy stage. We have shown here that unsupervised hierarchical clustering of genome-wide miRNA expression profiles can clearly separate intermediate risk tumors from high risk tumors. A total of 29 miRNAs were significantly differentially expressed between post-treatment intermediate risk and high risk groups, including miRNAs that have been previously linked to chemo resistance in other cancer types. Furthermore, 7 of these 29 miRNAs were already at the pre-treatment biopsy stage differentially expressed between cases ultimately deemed intermediate risk compared to high risk. These miRNA alterations include down-regulation in high risk cases of miR-193a.5p, miR-27a and the up-regulation of miR-483.5p, miR-628.5p, miR-590.5p, miR-302a and miR-367. The demonstration of such miRNA markers at the pre-treatment biopsy stage could permit stratification of patients to more tailored treatment regimens. PMID:23308219

  7. In situ monitoring of cytoplasmic precursor and mature microRNA using gold nanoparticle and graphene oxide composite probes.

    PubMed

    Hong, Min; Sun, Hongxiao; Xu, Lidan; Yue, Qiaoli; Shen, Guodong; Li, Meifang; Tang, Bo; Li, Chen-Zhong

    2018-08-27

    This study strategically fabricates a nucleic acid functionalized gold nanoparticle and graphene oxide composite probe (AuNP/GO probe) to achieve both the recognition and in situ monitoring of cytoplasmic target precursor microRNAs (pre-miRNAs) and mature microRNAs (miRNAs) in living cells. The pre-miRNA-21 detection with AuNP probes has a good linear range of 0-300 nM and a limit of detection (LOD) of 4.5 nM, whereas the GO probe has a linear relationship with mature miRNA-21 from 0.1 to 10 nM with a LOD of 1.74 nM. This assay was utilized to directly visualize the relative expression levels of pre- and mature forms of miRNA-21 and let-7a. The results suggested that the expression levels of precursor miRNAs remain constant in cancer cells and normal cells. However, the expression levels of mature miRNAs vary widely, demonstrating the "up-regulation" of miRNA-21 and "down-regulation" of let-7a in cancer cells in contrast to that in normal cells. The practicality of this strategy was verified by in situ monitoring changes in cytoplasmic pre-miRNA-21 and mature miRNA-21 in response to small-molecule inhibitors of miRNA-21. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

    PubMed Central

    Luo, Qibin; Cai, Yimei; Lin, Wen-chang; Chen, Huan; Yang, Yue; Hu, Songnian; Yu, Jun

    2008-01-01

    Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms. PMID:18714353

  9. miR-181a and miR-630 regulate cisplatin-induced cancer cell death.

    PubMed

    Galluzzi, Lorenzo; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Senovilla, Laura; Criollo, Alfredo; Servant, Nicolas; Paccard, Caroline; Hupé, Philippe; Robert, Thomas; Ripoche, Hugues; Lazar, Vladimir; Harel-Bellan, Annick; Dessen, Philippe; Barillot, Emmanuel; Kroemer, Guido

    2010-03-01

    MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.

  10. Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy.

    PubMed

    Enquobahrie, Daniel A; Wander, Pandora L; Tadesse, Mahlet G; Qiu, Chunfang; Holzman, Claudia; Williams, Michelle A

    Maternal pre-pregnancy overweight and obese status has been associated with a number of pregnancy complications and adverse offspring outcomes. Mechanisms for observed associations, however, are largely unknown. We investigated associations of pre-pregnancy body mass index with early-mid pregnancy epigenetic biomarkers, circulating microRNAs. Peripheral blood was collected from participants (16-27 weeks gestation) of two multi-racial pregnancy cohorts, the Omega Study and the Pregnancy Outcomes and Community Health Study. Plasma miRNA expression was characterised using epigenome-wide (319 miRNAs) profiling among 20 pregnant women in each cohort. Cohort-specific linear regression models that included the predictor (pre-pregnancy body mass index), the outcome (microRNA expression), and adjustment factors (maternal age, gestational age at blood collection, and race) were fit. Expression of 27 miRNAs was positively associated with pre-pregnancy body mass index in both cohorts (p-values <0.05). A number of these differentially expressed miRNAs have previously been associated with adipogenesis (e.g. let-7d*, miR-103-2*, -130b, -146b-5-p, -29c, and -26b). Identified miRNAs as well as their experimentally validated targets participate in pathways that involve organismal injury, reproductive system disease, connective tissue disorders, cancer, cellular development, growth and proliferation. Pre-pregnancy body mass index is associated with circulating miRNAs in early-mid pregnancy. Published by Elsevier Ltd.

  11. MicroRNAs in Breast Cancer: One More Turn in Regulation.

    PubMed

    Eroles, Pilar; Asensio, Pilar E; Tormo, Eduardo; Martin, Eduardo T; Pineda, Begoña; Merlo, Begoña P; Espin, Estefanía; Armas, Estefanía E; Lluch, Ana; Hernández, Ana L

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that critically regulate the expression of genes. MiRNAs are involved in physiological cellular processes; however, their deregulation has been associated with several pathologies, including cancer. In human breast cancer, differently expressed levels of miRNAs have been identified from those in normal breast tissues. Moreover, several miRNAs have been correlated with pathological phenotype, cancer subtype and therapy response in breast cancer. The resistance to therapy is increasingly a problem in patient management, and miRNAs are emerging as novel therapeutic targets and potential predictive biomarkers for treatment. This review provides an overview of the current situation of miRNAs in breast cancer, focusing on their involvement in resistance and the circulating miRNA. The mechanisms of therapeutic resistance regulated by miRNAs, such as the regulation of receptors, the modification of enzymes of drug metabolism, the inhibition of cell cycle control or pro-apoptotic proteins, the alteration of histone activity and the regulation of DNA repair machinery among others, are discussed for breast cancer clinical subtypes. Additionally, in this review, we summarize the recent knowledge that has established miRNA detection in peripheral body fluids as a suitable biomarker. We review the detection of miRNA in liquid biopsies and its implications for the diagnosis and monitoring of breast cancer. This new generation of cancer biomarkers may lead to a significant improvement in patient management.

  12. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-01-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  14. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    PubMed

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  15. An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes

    PubMed Central

    Chen, Chang-Zheng

    2013-01-01

    MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275

  16. Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in Homo sapiens.

    PubMed

    Sharma, Ankita; Sahu, Sarika; Kumari, Pooja; Gopi, Soundhara Rajan; Malhotra, Rajesh; Biswas, Sagarika

    2017-05-01

    MicroRNAs (miRNAs) are newly discovered non-coding small (~17-24 nucleotide) RNAs that regulate gene expression of its target mRNA at the post-transcriptional levels. In this study, total 12,593 ESTs of Curcuma longa were taken from database of expressed sequence tags (dbEST) and clustered into 2821 contigs using EGassembler web server. Precursor miRNAs (pre-miRNAs) were predicted from these contigs that folded into stem-loop structure using MFold server. Thirty-four mature C. longa miRNAs (clo-miRNAs) were identified from pre-miRNAs having targets involved in various important functions of plant such as self-defence, growth and development, alkaloid metabolic pathway and ethylene signalling process. Sequence analysis of identified clo-miRNAs indicated that 56% miRNAs belong to ORF and 44% belong to non-ORF region. clo-mir-5 and clo-mir-6 were established as the conserved miRNAs, whereas clo-mir-20 was predicted to be the most stable miRNA. Phylogenetic analysis carried out by molecular evolutionary genetics analysis (MEGA) software indicated close evolutionary relationship of clo-mir-5075 with osa-MIR5075. Further, identified clo-miRNAs were checked for their cross-kingdom regulatory potential. clo-mir-14 was found to regulate various gene transcripts in humans that has been further investigated for its biostability in foetal bovine serum (FBS). The results indicated higher degree of stability of clo-mir-14 (48 h) in FBS. Thus, contribution of this miRNA to the cellular immune response during the inflamed condition of rheumatoid arthritis and adequate stability may make it a good choice for the therapeutic agent in near future.

  17. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.

    PubMed

    Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-03-15

    Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhanced Reactive Oxygen Species Production, Acidic Cytosolic pH and Upregulated Na+/H+ Exchanger (NHE) in Dicer Deficient CD4+ T Cells.

    PubMed

    Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian

    2017-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus.

    PubMed

    Whisnant, Adam W; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin; Cullen, Bryan R

    2014-05-01

    While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.

  20. Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus

    PubMed Central

    Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin

    2014-01-01

    ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910

  1. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.

    PubMed

    Jeyaraj, Anburaj; Zhang, Xiao; Hou, Yan; Shangguan, Mingzhu; Gajjeraman, Prabu; Li, Yeyun; Wei, Chaoling

    2017-11-21

    MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.

  2. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

    PubMed Central

    Donohoe, Owen H.; Henshilwood, Kathy; Way, Keith; Hakimjavadi, Roya; Stone, David M.; Walls, Dermot

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3. PMID:25928140

  3. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfiz

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well asmore » their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.« less

  4. Trehalose significantly enhances the recovery of serum and serum exosomal miRNA from a paper-based matrix.

    PubMed

    Neo, Shu Hui; Chung, Ka Yan; Quek, Jia Min; Too, Heng-Phon

    2017-11-30

    The preservation of nucleic acids from clinical samples is critical to facilitate accurate molecular diagnosis. The use of a paper matrix, Flinders Technology Associates (FTA) Elute cards, to archive DNA and viral RNA is well-documented. However, the feasibility of FTA Elute cards for archiving serum and serum exosomal microRNAs (miRNAs) remains unclear. Here, we performed a comprehensive evaluation of FTA Elute cards for miRNA storage and recovery in different pre-analytical conditions. The recovery of serum miRNA dry-spotted on FTA Elute cards by direct elution with water at high temperature was poor. However, serum miRNAs dry-spotted on the cards were isolated with about 40% yield when using QIAzol lysis reagent and recovery was improved remarkably (>80%) upon extraction from cards pre-treated with trehalose. miRNAs stored on the cards remained stable at room temperature and can be kept for prolonged periods. Furthermore, miRNAs could be similarly recovered from serum exosomes dry-spotted on the cards. Importantly, when using sera from gastric cancer (GC) patients, the miRNAs were efficiently recovered from trehalose pre-treated cards without affecting their representation. Collectively, we have demonstrated the potential of FTA Elute cards to archive serum and serum exosomal miRNAs, making it useful for biomarker discovery and diagnostics.

  5. Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development

    PubMed Central

    Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin

    2013-01-01

    Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761

  6. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    PubMed

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  7. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function.

    PubMed

    Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro

    2014-08-01

    Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The impact of feature selection on one and two-class classification performance for plant microRNAs.

    PubMed

    Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  9. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    PubMed

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Implication of microRNAs in drug resistance for designing novel cancer therapy

    PubMed Central

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan

    2010-01-01

    Recently, microRNAs (miRNAs) have received increasing attention in the field of cancer research. miRNAs play important roles in many normal biological processes; however, the aberrant miRNA expression and its correlation with the development and progression of cancers is an emerging field. Therefore, miRNAs could be used as biomarkers for diagnosis of cancer and prediction of prognosis. Importantly, some miRNAs could regulate the formation of cancer stem cells and the acquisition of epithelial-mesenchymal transition, which are critically associated with drug resistance. Moreover, some miRNAs could target genes related to drug-sensitivity, resulting in the altered sensitivity of cancer cells to anti-cancer drugs. Emerging evidences have also shown that knock-down or re-expression of specific miRNAs by synthetic antisense oligonucleotides or pre-miRNAs could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. More importantly, recent studies have shown that natural agents including isoflavone, 3,3′-diindolylmethane, and (−)-epigallocatechin-3-gallate altered miRNA expression profiles, leading to an increased sensitivity of cancer cells to conventional therapeutics. These emerging results suggest that specific targeting of miRNAs by different approaches could open new avenues for cancer treatment through overcoming drug resistance and thereby improve the outcome of cancer therapy. PMID:20236855

  11. MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population.

    PubMed

    Barragán, Rocío; Coltell, Oscar; Asensio, Eva M; Francés, Francesc; Sorlí, José V; Estruch, Ramon; Salas-Huetos, Albert; Ordovas, Jose M; Corella, Dolores

    2016-08-16

    Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consumption at the population level. Our aim was to investigate the association between a functional polymorphism in the pre-miR-27a (rs895819 A>G) gene and alcohol consumption in an elderly population. We undertook a cross-sectional study of PREvención con DIeta MEDiterránea (PREDIMED)-Valencia participants (n = 1007, including men and women aged 67 ± 7 years) and measured their alcohol consumption (total and alcoholic beverages) through a validated questionnaire. We found a strong association between the pre-miR-27a polymorphism and total alcohol intake, this being higher in GG subjects (5.2 ± 0.4 in AA, 5.9 ± 0.5 in AG and 9.1 ± 1.8 g/day in GG; padjusted = 0.019). We also found a statistically-significant association of the pre-miR-27a polymorphism with the risk of having a high alcohol intake (>2 drinks/day in men and >1 in women): 5.9% in AA versus 17.5% in GG; padjusted < 0.001. In the sensitivity analysis, this association was homogeneous for sex, obesity and Mediterranean diet adherence. In conclusion, we report for the first time a significant association between a miRNA polymorphism (rs895819) and daily alcohol consumption.

  12. Role of regulatory micro RNAs in type 2 diabetes mellitus-related inflammation.

    PubMed

    Hamar, Péter

    2012-10-01

    Micro RNAs (miRNAs) are small, non-coding RNAs with the function of post-transcriptional gene expression regulation. Micro RNAs may function in networks, forming a complex relationship with diseases. Alterations of specific miRNA levels have significant correlation with diseases of divergent origin, such as diabetes. Type 2 diabetes mellitus (T2DM) has an increasing worldwide epidemic with serious complications. However, T2DM is a chronic process, and from early metabolic alterations to manifest complications decades may pass, during which our diagnostic arsenal is limited. Micro RNAs may thus serve as novel diagnostic tools as well as therapeutic targets in pre-diabetes. Recent Fundings: Micro RNAs (miRNAs) involved in inflammatory processes contributing to the development of type 2 diabetes mellitus (T2DM) published mostly in the past 2 years. MiRNAs are involved in such early diabetic processes as non-alcoholic steatohepatitis (NASH) and inflammation of the visceral adipose tissue. Evidence is emerging regarding the continuous spectrum between type 1 diabetes (T1DM) and T2DM being just 2 endpoints of the same disease with different genetic background. Thus, miRNA regulation of autoimmune components in T2DM may shed new light on pathogenesis. Finally, the involvement of miRNAs in inflammation as a key driving force of diabetic complications is also summarized. Inflammation is emerging as a central pathophysiological process in the development of T2DM. Visceral adipose tissue inflammation and non-alcoholic steatohepatitis together with insulitis are probably the first events leading to a complex metabolic disorder. These early events may be diagnosed or even influenced through our increasing knowledge about the involvement of post-transcriptional gene regulation by miRNAs.

  13. Asymmetry of intronic pre-miRNA structures in functional RISC assembly

    PubMed Central

    Lin, Shi-Lung; Chang, Donald; Ying, Shao-Yao

    2006-01-01

    The two oligonucleotide strands of a siRNA duplex are functionally asymmetric in assembling the RNAi effector, RNA-induced gene silencing complex (RISC). Based on this asymmetric RISC assembly model in vitro, formation of a microRNA (miRNA) and complementary miRNA (miRNA*) duplex was proposed to be an essential step for the assembly of miRNA-associated RISC (miRISC). We observed here that a strong structural bias exists in the selection of a mature miRNA strand for RISC assembly in zebrafish using an intronic miRNA-like vector to target EGFP mRNA for regulation. The position of the stemloop in a precursor miRNA (pre-miRNA) was involved in the determination of miRNA–miRNA* asymmetry of the pre-miRNA stemarm, leading to different miRNA maturation during miRISC assembly. These findings suggest that the miRISC assembly is likely different from the RISC assembly model of siRNA in zebrafish, providing the first in vivo evidence for asymmetric miRISC assembly. PMID:16005165

  14. MicroRNA categorization using sequence motifs and k-mers.

    PubMed

    Yousef, Malik; Khalifa, Waleed; Acar, İlhan Erkin; Allmer, Jens

    2017-03-14

    Post-transcriptional gene dysregulation can be a hallmark of diseases like cancer and microRNAs (miRNAs) play a key role in the modulation of translation efficiency. Known pre-miRNAs are listed in miRBase, and they have been discovered in a variety of organisms ranging from viruses and microbes to eukaryotic organisms. The computational detection of pre-miRNAs is of great interest, and such approaches usually employ machine learning to discriminate between miRNAs and other sequences. Many features have been proposed describing pre-miRNAs, and we have previously introduced the use of sequence motifs and k-mers as useful ones. There have been reports of xeno-miRNAs detected via next generation sequencing. However, they may be contaminations and to aid that important decision-making process, we aimed to establish a means to differentiate pre-miRNAs from different species. To achieve distinction into species, we used one species' pre-miRNAs as the positive and another species' pre-miRNAs as the negative training and test data for the establishment of machine learned models based on sequence motifs and k-mers as features. This approach resulted in higher accuracy values between distantly related species while species with closer relation produced lower accuracy values. We were able to differentiate among species with increasing success when the evolutionary distance increases. This conclusion is supported by previous reports of fast evolutionary changes in miRNAs since even in relatively closely related species a fairly good discrimination was possible.

  15. Non-coding RNAs—Novel targets in neurotoxicity

    PubMed Central

    Tal, Tamara L.; Tanguay, Robert L.

    2012-01-01

    Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481

  16. Dysregulation of Placental miRNA in Maternal Obesity Is Associated With Pre- and Postnatal Growth.

    PubMed

    Carreras-Badosa, Gemma; Bonmatí, Alexandra; Ortega, Francisco-Jose; Mercader, Josep-Maria; Guindo-Martínez, Marta; Torrents, David; Prats-Puig, Anna; Martinez-Calcerrada, Jose-Maria; de Zegher, Francis; Ibáñez, Lourdes; Fernandez-Real, Jose-Manuel; Lopez-Bermejo, Abel; Bassols, Judit

    2017-07-01

    Human placenta exhibits a specific microRNA (miRNA) expression pattern. Some of these miRNAs are dysregulated in pregnancy disorders such as preeclampsia and intrauterine growth restriction and are potential biomarkers for these pathologies. To study the placental miRNA profile in pregnant women with pregestational overweight/obesity (preOB) or gestational obesity (gestOB) and explore the associations between placental miRNAs dysregulated in maternal obesity and prenatal and postnatal growth. TaqMan Low Density Arrays and real-time polymerase chain reaction were used to profile the placental miRNAs in 70 pregnant women (20 preOB, 25 gestOB, and 25 control). Placentas and newborns were weighed at delivery, and infants were weighed at 1, 4, and 12 months of age. Eight miRNAs were decreased in placentas from preOB or gestOB (miR-100, miR-1269, miR-1285, miR-181, miR-185, miR-214, miR-296, and miR-487) (all P < 0.05). Among them, miR-100, miR-1285, miR-296, and miR-487 were associated with maternal metabolic parameters (all P < 0.05) and were predictors of lower birth weight (all P < 0.05; R2 > 30%) and increased postnatal weight gain (all P < 0.05; R2 > 20%). In silico analysis showed that these miRNAs were related to cell proliferation and insulin signaling pathways. miR-296 was also present in plasma samples and associated with placental expression and prenatal and postnatal growth parameters (all P < 0.05). We identified a specific placental miRNA profile in maternal obesity. Placental miRNAs dysregulated in maternal obesity may be involved in mediation of growth-promoting effects of maternal obesity on offspring and could be used as early markers of prenatal and postnatal growth. Copyright © 2017 Endocrine Society

  17. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma

    PubMed Central

    Konishi, H; Ichikawa, D; Komatsu, S; Shiozaki, A; Tsujiura, M; Takeshita, H; Morimura, R; Nagata, H; Arita, T; Kawaguchi, T; Hirashima, S; Fujiwara, H; Okamoto, K; Otsuji, E

    2012-01-01

    Background: Recently, it was reported that plasma microRNAs (miRNAs) are low-invasive useful biomarkers for cancer. We attempted to isolate gastric cancer (GC)-associated miRNAs comparing pre- and post-operative paired plasma, thereby excluding the possible effects of individual variability. Methods: This study was divided into four steps: (1) microarray analysis comparing pre- and post-operative plasma; (2) validation of candidate miRNAs by quantitative RT–PCR; (3) validation study of selected miRNAs using paired plasma; and (4) comparison of the levels of selected miRNAs in plasma between healthy controls and patients. Results: From the results of microarray analysis, nine candidate miRNAs the levels of which were markedly decreased in post-operative plasma were selected for further studies. After confirmation of their post-operative marked reduction, two candidate miRNAs, miR-451 and miR-486, were selected as plasma biomarkers, considering the abundance in plasma, and marked decrease in post-operative samples. In validation, the two miRNAs were found to decrease in post-operative plasma in 90 and 93% of patients (both P<0.01). In comparison with healthy controls, the levels of both miRNAs were found to be significantly higher in patients, and the area under the curve values were high at 0.96 and 0.92. Conclusion: Plasma miR-451 and miR-486 could be useful blood-based biomarkers for screening GC. PMID:22262318

  18. Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates

    PubMed Central

    Shenker, Sol; Mohammed, Jaaved; Lai, Eric C.

    2015-01-01

    Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing of endogenous hairpin transcripts. PMID:26325366

  19. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma

    PubMed Central

    Turchinovich, Andrey; Burwinkel, Barbara

    2012-01-01

    Studies of miRNA association with Argonaute (AGO) proteins in mammalian cells have indicated lack of bias toward particular AGO. However, to our knowledge, the use of quantitative methods for studying miRNA association with different AGOs has not been reported so far. In this work we compared the total miRNA content in AGO1 and AGO2 immunoprecipitates obtained from MCF7 adenocarcinoma cells using TaqMan Low Density miRNA Arrays and successfully verified selected miRNAs with qPCR. For most of the miRNA species AGO1 and AGO2 profiles were well correlated, however, some miRNAs demonstrated consistent biases toward one of the Argonautes. Furthermore, miRNAs which were predominantly AGO2-associated derived mostly from sense strands of the corresponding pre-miRNAs while the majority of AGO1 biased miRNAs originated from antisense strands of the pre-miRNAs. Additionally, we show that circulating miRNA in human blood plasma can be immunoprecipitated with both AGO1 and AGO2 antibody. However, unlike in cell lysates, AGO1 and AGO2 associated miRNA profiles in plasma did not correlate, indicating that many cell types contribute to circulating miRNA (given that expression of AGO proteins is tissue specific). Furthermore, AGO-specific miRNA profiles in blood cells differed significantly from miRNAs profiles in plasma indicating that most circulating miRNAs are likely to derive from non-blood cells. Since circulating miRNAs hold great promise as biomarkers for numerous cancers and other diseases, we hypothesize that AGO-specific miRNA profiles might add an additional dimension to circulating miRNA-based diagnostics. PMID:22858679

  20. Loop nucleotides control primary and mature miRNA function in target recognition and repression

    PubMed Central

    Yue, Si-Biao; Deis Trujillo, Robin; Tang, Yujie; O'Gorman, William E

    2011-01-01

    MicroRNA (miRNA) genes produce three major RNA products; primary (pri-), precursor (pre-), and mature miRNAs. Each product includes sequences complementary to cognate targets, thus they all can in principle interact with the targets. In a recent study we showed that pri-miRNAs play a direct role in target recognition and repression in the absence of functional mature miRNAs. Here we examined the functional contribution of pri-miRNAs in target regulation when full-length functional miRNAs are present. We found that pri-let-7 loop nucleotides control the production of the 5′ end of mature miRNAs and modulate the activity of the miRNA gene. This insight enabled us to modulate biogenesis of functional mature miRNAs and dissect the causal relationships between mature miRNA biogenesis and target repression. We demonstrate that both pri- and mature miRNAs can contribute to target repression and that their contributions can be distinguished by the differences between the pri- and mature miRNAs' sensitivity to bind to the first seed nucleotide. Our results demonstrate that the regulatory information encoded in the pri-/pre-miRNA loop nucleotides controls the activities of pri-miRNAs and mature let-7 by influencing pri-miRNA and target complex formation and the fidelity of mature miRNA seed generation. PMID:22142974

  1. Identification and characterization of microRNAs in the screwworm flies Cochliomyia hominivorax and Cochliomyia macellaria (Diptera: Calliphoridae).

    PubMed

    Paulo, D F; Azeredo-Espin, A M L; Canesin, L E C; Vicentini, R; Junqueira, A C M

    2017-02-01

    MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression through post-transcriptional regulation. Here, we report the identification and characterization of miRNAs in two closely related screwworm flies with different feeding habits: Cochliomyia hominivorax and Cochliomyia macellaria. The New World screwworm, C. hominivorax, is an obligatory parasite of warm-blooded vertebrates, whereas the secondary screwworm, C. macellaria, is a free-living organism that feeds on decaying organic matter. Here, the small RNA transcriptomes of adults and third-instar larvae of both species were sequenced. A total of 110 evolutionarily conserved miRNAs were identified, and 10 putative precursor miRNAs (pre-miRNAs) were predicted. The relative expression of six selected miRNAs was further investigated, including miRNAs that are related to reproduction and neural processes in other insects. Mature miRNAs were also characterized across an evolutionary time scale, suggesting that the majority of them have been conserved since the emergence of the Arthropoda [540 million years ago (Ma)], Hexapoda (488 Ma) and Brachycera (195 Ma) lineages. This study is the first report of miRNAs for screwworm flies. We also performed a comparative analysis with the hereby predicted miRNAs from the sheep blowfly, Lucilia cuprina. The results presented may advance our understanding of parasitic habits within Calliphoridae and assist further functional studies in blowflies. © 2016 The Royal Entomological Society.

  2. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  3. Using Proteomics to Identify Viral microRNA-Regulated Genes | Center for Cancer Research

    Cancer.gov

    Kaposi sarcoma is a soft tissue malignancy that affects the skin, the mucous membranes, the lymph nodes and other organs of individuals with compromised immune systems. It is caused by infection with human herpesvirus-8 also known as Kaposi sarcoma-associated herpesvirus or KSHV. The herpesvirus family is unique in that it is the only viral family currently known to express multiple microRNAs (miRNAs); KSHV produces 12 pre-miRNAs, which are processed into at least 25 mature miRNAs. While their functions are not well understood, these miRNAs may be a way for the virus to alter the host immune response without producing proteins that could be recognized and targeted by the immune system. Joseph Ziegelbauer, Ph.D., in CCR’s HIV and AIDS Malignancy Branch, and his colleagues set out to identify human targets of KSHV miRNAs and to understand their functional importance.

  4. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy.

    PubMed

    Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T

    2016-05-01

    miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative identification of proteins that influence miRNA biogenesis by RNA pull-down-SILAC mass spectrometry (RP-SMS).

    PubMed

    Choudhury, Nila Roy; Michlewski, Gracjan

    2018-06-08

    RNA-binding proteins mediate and control gene expression. As some examples, they regulate pre-mRNA synthesis and processing; mRNA localisation, translation and decay; and microRNA (miRNA) biogenesis and function. Here, we present a detailed protocol for RNA pull-down coupled to stable isotope labelling by amino acids in cell culture (SILAC) mass spectrometry (RP-SMS) that enables quantitative, fast and specific detection of RNA-binding proteins that regulate miRNA biogenesis. In general, this method allows for the identification of RNA-protein complexes formed using in vitro or chemically synthesized RNAs and protein extracts derived from cultured cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera)

    PubMed Central

    Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162

  7. Characterization and evolution of conserved MicroRNA through duplication events in date palm (Phoenix dactylifera).

    PubMed

    Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.

  8. Global identification of target recognition and cleavage by the Microprocessor in human ES cells

    PubMed Central

    Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo

    2014-01-01

    The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein–RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3′ overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. PMID:25326327

  9. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  10. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    PubMed Central

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  11. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    PubMed

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.

  12. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a

  13. The role of microRNAs in the pathogenesis of MMPi-induced skin fibrodysplasia

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes involved in extracellular matrix (ECM) homeostasis. MMPs have been an attractive pharmacological target for a number of indications. However, development has been hampered by the propensity of compounds targeting these enzymes to cause connective-tissue pathologies. The broad-spectrum MMP-inhibitor (MMPi) AZM551248 has been shown to induce such effects in the dog. Histopathological changes were consistent with fibrodysplasia (FD), characterised by fibroblast proliferation and the deposition of collagen in the subcutaneous tissues. We conducted a time-course study administering 20mg/kg/day AZM551248 between 4 and 17 days. Cervical subcutaneous tissue and plasma were sampled during the time-course. miRNA expression profiles in subcutaneous skin specimens following the administration of AZM551248 were determined by high-throughput-sequencing. Results An increasing number of miRNAs were differentially expressed compared with vehicle treated control animals as the study progressed. Several of these were members of the miR-200 family and were significantly attenuated in response to MMPi. As the severity of FD increased at the later time-points, other miRNAs associated with TGFβ synthesis and regulation of the acute inflammatory response were modulated. Evidence indicative of epithelial to mesenchymal transition was present at all study time points. Receiver operator curve (ROC) analysis revealed that miR-21 expression in the cervical subcutaneous tissue was a sensitive and specific biomarker of FD incidence. Conclusions Our data reveal significant perturbations in canine skin miRNA expression in response to MMPi administration. Furthermore, we have identified dysregulated miRNAs that are associated with processes relevant to the key histopathological events of MMPi-induced FD. PMID:23688202

  14. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    PubMed

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro . The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  15. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA

    PubMed Central

    James, Amanda Marie; Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples. PMID:28255356

  16. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    PubMed

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.

  17. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing

    PubMed Central

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance. PMID:28950015

  18. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    PubMed

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  19. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    PubMed

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  20. High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.

    PubMed

    Stegmayer, Georgina; Yones, Cristian; Kamenetzky, Laura; Milone, Diego H

    2017-01-01

    The computational prediction of novel microRNA within a full genome involves identifying sequences having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high class-imbalance classification problem. The classical way of approaching it has been training a binary classifier in a supervised manner, using well-known pre-miRNAs as positive class and artificially defining the negative class. However, although the selection of positive labeled examples is straightforward, it is very difficult to build a set of negative examples in order to obtain a good set of training samples for a supervised method. In this work, we propose a novel and effective way of approaching this problem using machine learning, without the definition of negative examples. The proposal is based on clustering unlabeled sequences of a genome together with well-known miRNA precursors for the organism under study, which allows for the quick identification of the best candidates to miRNA as those sequences clustered with known precursors. Furthermore, we propose a deep model to overcome the problem of having very few positive class labels. They are always maintained in the deep levels as positive class while less likely pre-miRNA sequences are filtered level after level. Our approach has been compared with other methods for pre-miRNAs prediction in several species, showing effective predictivity of novel miRNAs. Additionally, we will show that our approach has a lower training time and allows for a better graphical navegability and interpretation of the results. A web-demo interface to try deepSOM is available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.

  1. Global identification of target recognition and cleavage by the Microprocessor in human ES cells.

    PubMed

    Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo

    2014-11-10

    The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein-RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3' overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases?

    PubMed

    Hackl, Matthias; Heilmeier, Ursula; Weilner, Sylvia; Grillari, Johannes

    2016-09-05

    Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    PubMed

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  4. Post-transcriptional control of DGCR8 expression by the Microprocessor.

    PubMed

    Triboulet, Robinson; Chang, Hao-Ming; Lapierre, Robert J; Gregory, Richard I

    2009-06-01

    The Microprocessor, comprising the RNase III Drosha and the double-stranded RNA binding protein DGCR8, is essential for microRNA (miRNA) biogenesis. In the miRNA processing pathway certain hairpin structures within primary miRNA (pri-miRNA) transcripts are specifically cleaved by the Microprocessor to release approximately 60-70-nucleotide precursor miRNA (pre-miRNA) intermediates. Although both Drosha and DGCR8 are required for Microprocessor activity, the mechanisms regulating the expression of these proteins are unknown. Here we report that the Microprocessor negatively regulates DGCR8 expression. Using in vitro reconstitution and in vivo studies, we demonstrate that a hairpin, localized in the 5' untranslated region (5'UTR) of DGCR8 mRNA, is cleaved by the Microprocessor. Accordingly, knockdown of Drosha leads to an increase in DGCR8 mRNA and protein levels in cells. Furthermore, we found that the DGCR8 5'UTR confers Microprocessor-dependent repression of a luciferase reporter gene in vivo. Our results uncover a novel feedback loop that regulates DGCR8 levels.

  5. Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis

    PubMed Central

    Melo, Sonia A.; Sugimoto, Hikaru; O’Connell, Joyce T.; Kato, Noritoshi; Villanueva, Alberto; Vidal, August; Qiu, Le; Vitkin, Edward; Perelman, Lev T.; Melo, Carlos A.; Lucci, Anthony; Ivan, Cristina; Calin, George A.; Kalluri, Raghu

    2014-01-01

    SUMMARY Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. PMID:25446899

  6. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.

    PubMed

    Singh, Noopur; Sharma, Ashok

    2014-12-01

    microRNA is known to play an important role in growth and development of the plants and also in environmental stress. Ocimum basilicum (Basil) is a well known herb for its medicinal properties. In this study, we used in-silico approaches to identify miRNAs and their targets regulating different functions in O. basilicum using EST approach. Additionally, functional annotation, gene ontology and pathway analysis of identified target transcripts were also done. Seven miRNA families were identified. Meaningful regulations of target transcript by identified miRNAs were computationally evaluated. Four miRNA families have been reported by us for the first time from the Lamiaceae. Our results further confirmed that uracil was the predominant base in the first positions of identified mature miRNA sequence, while adenine and uracil were predominant in pre-miRNA sequences. Phylogenetic analysis was carried out to determine the relation between O. basilicum and other plant pre-miRNAs. Thirteen potential targets were evaluated for 4 miRNA families. Majority of the identified target transcripts regulated by miRNAs showed response to stress. miRNA 5021 was also indicated for playing an important role in the amino acid metabolism and co-factor metabolism in this plant. To the best of our knowledge this is the first in silico study describing miRNAs and their regulation in different metabolic pathways of O. basilicum. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A deeper view into the significance of simple sequence repeats in pre-miRNAs provides clues for its possible roles in determining the function of microRNAs.

    PubMed

    Joy, Nisha; Maimoonath Beevi, Y P; Soniya, E V

    2018-05-09

    The central tenet of 'genome content' has been that the 'non-coding' parts are highly enriched with 'microsatellites' or 'Simple Sequence Repeats' (SSRs). We presume that the presence and change in number of repeat unit (n) of SSRs in different genomic locations may or may not become beneficial, depending on the position of SSRs in a gene. Very few studies have looked into the existence of SSRs in the hair-pin precursors of miRNAs (pre-miRNAs). The interplay between SSRs and miRNAs is not yet clearly understood. Considering the potential significance of SSRs in pre-miRNAs, we analysed the miRNA hair-pin precursors of 171 organisms, which revealed a noticeable (29.8%) existence of SSRs in their pre-miRNAs. The maintenance of SSRs in pre-miRNAs even in the complex, highly evolved phyla like Chordata and Magnoliophyta shed light upon its diverse functions. Putative effects of SSRs in either regulating the biogenesis or function of miRNAs were more underlined based on computational and experimental analysis. A preliminary computational analysis to explore the relevance of such SSRs maintained in pre-miRNA sequences led to the detection of splicing regulatory elements (SREs) either in or near to the SSRs. The absence of SSRs correspondingly decreased the detection of SREs. The present study is the first implication for the possible involvement of SSRs in shaping the SREs to undergo Alternative Splicing events to produce miRNA isoforms in accordance with different stress environments. This part of work well demonstrates the importance of studying such consistently maintained SSRs residing in pre-miRNAs and can enhance more and more research towards deciphering the exact function of SSRs in the near future.

  8. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    PubMed

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  9. Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.

    PubMed

    Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M

    2017-07-11

    From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels. Copyright © 2017 Serquiña et al.

  10. Gene silencing efficiency and INF-β induction effects of splicing miRNA 155-based artificial miRNA with pre-miRNA stem-loop structures.

    PubMed

    Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin

    2012-02-01

    Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.

  11. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  12. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    PubMed

    Nakano, Masataka; Nakajima, Miki

    2018-05-01

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  13. Identification of an miRNA candidate reflects the possible significance of transcribed microsatellites in the hairpin precursors of black pepper.

    PubMed

    Joy, Nisha; Soniya, Eppurathu Vasudevan

    2012-06-01

    Plant miRNAs (18-24nt) are generated by the RNase III-type Dicer endonuclease from the endogenous hairpin precursors ('pre-miRNAs') with significant regulatory functions. The transcribed regions display a higher frequency of microsatellites, when compared to other regions of the genomic DNA. Simple sequence repeats (SSRs) resulting from replication slippage occurring in transcripts affect the expression of genes. The available experimental evidence for the incidence of SSRs in the miRNA precursors is limited. Considering the potential significance of SSRs in the miRNA genes, we carried out a preliminary analysis to verify the presence of SSRs in the pri-miRNAs of black pepper (Piper nigrum L.). We isolated a (CT) dinucleotide SSR bearing transcript using SMART strategy. The transcript was predicted to be a 'pri-miRNA candidate' with Dicer sites based on miRNA prediction tools and MFOLD structural predictions. The presence of this 'miRNA candidate' was confirmed by real-time TaqMan assays. The upstream sequence of the 'miRNA candidate' by genome walking when subjected to PlantCARE showed the presence of certain promoter elements, and the deduced amino acid showed significant similarity with NAP1 gene, which affects the transcription of many genes. Moreover the hairpin-like precursor overlapped the neighbouring NAP1 gene. In silico analysis revealed distinct putative functions for the 'miRNA candidate', of which majority were related to growth. Hence, we assume that this 'miRNA candidate' may get activated during transcription of NAP gene, thereby regulating the expression of many genes involved in developmental processes.

  14. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    PubMed

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  15. Regulation of mouse stomach development and Barx1 expression by specific microRNAs

    PubMed Central

    Kim, Byeong-Moo; Woo, Janghee; Kanellopoulou, Chryssa; Shivdasani, Ramesh A.

    2011-01-01

    Although microRNAs (miRNAs) are postulated to fine-tune many developmental processes, their relationships with specific targets and tissues remain largely undefined. The mesenchymal transcription factor Barx1 controls spleen and stomach morphogenesis and is required to specify stomach-specific epithelium in adjacent endoderm. Barx1 expression is precisely regulated in space and time, with a sharp drop in stomach levels after epithelial specification. We tested the hypothesis that specific miRNAs mediate this marked decline in Barx1 levels. Depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchyme and conditional Dicer gene deletion in mice significantly increased Barx1 levels, disrupted stomach and intestine development and caused spleen agenesis. Computational and experimental studies identified miR-7a and miR-203 as candidate miRNAs that regulate Barx1 and are expressed in inverse proportion to it in the fetal mouse stomach. Through specific interactions with cognate sequences in the Barx1 3′ untranslated region, miR-7a and miR-203 repress Barx1 expression in stomach mesenchymal cells and its function in inducing gastric epithelium. These results indicate that miRNAs are required for proper digestive tract organogenesis and that miR-7a and miR-203 control expression of the stomach homeotic regulator Barx1. PMID:21307095

  16. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    PubMed

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.

  17. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative approach for simple, sensitive, and selective miRNA quantification.

  18. Expression and Regulation of Drug Transporters and Metabolizing Enzymes in the Human Gastrointestinal Tract.

    PubMed

    Drozdzik, M; Oswald, S

    2016-01-01

    Orally administered drugs must pass through the intestinal wall and then through the liver before reaching systemic circulation. During this process drugs are subjected to different processes that may determine the therapeutic value. The intestinal barrier with active drug metabolizing enzymes and drug transporters in enterocytes plays an important role in the determination of drug bioavailability. Accumulating information demonstrates variable distribution of drug metabolizing enzymes and transporters along the human gastrointestinal tract (GI), that creates specific barrier characteristics in different segments of the GI. In this review, expression of drug metabolizing enzymes and transporters in the healthy and diseased human GI as well as their regulatory aspects: genetic, miRNA, DNA methylation are outlined. The knowledge of unique interplay between drug metabolizing enzymes and transporters in specific segments of the GI tract allows more precise definition of drug release sites within the GI in order to assure more complete bioavailability and prediction of drug interactions.

  19. miRNA signature associated with outcome of gastric cancer patients following chemotherapy

    PubMed Central

    2011-01-01

    Background Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA microarray analysis was performed using endoscopic biopsy samples. Methods Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression levels with the time to progression (TTP) of disease after CF therapy. Results A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of 82 cancer patients (P<0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that selection for the expression of these miRNAs occurred as chemoresistance arose. Conclusions We have identified 1) a miRNA expression signature that distinguishes gastric cancer from normal stomach epithelium from healthy volunteers, and 2) a chemoreresistance miRNA expression signature that is correlated with TTP after CF therapy. The chemoresistance miRNA expression signature includes several miRNAs previously shown to regulate apoptosis in vitro, and warrants further validation. PMID:22112324

  20. Computational miRNomics.

    PubMed

    Allmer, Jens; Yousef, Malik

    2016-12-01

    Editorial The term MicroRNA or its contraction miRNA currently appears in 21,215 titles of abstracts, published between 1997 and now, available on Pubmed (2016-21-22:12:59 EET). 4,108 of these were published in 2016 alone which signifies the importance of miRNA-related research. MicroRNAs can be detected experimentally using various techniques like directional cloning of endogenous small RNAs but they are time consuming [1]. Additionally, it is necessary for the miRNA and its mRNA target(s) to be co-expressed to infer a functional relationship which is difficult, if not impossible, to achieve [2]. Since experimental approaches are facing such difficulties, they have been complemented by computational approaches [3] thereby defining the field of computational miRNomics. Due to the rapid development in the discipline, it is important to assess the state-of-the-art. In this special issue, several areas of the field are investigated ranging from pre-miRNA detection via machine learning to application of differential expression analysis in plants. First, Saçar Demirci et al. discuss an approach to virus pre-miRNA detection using machine learning [4]. Such approaches are based on parameterization of miRNAs and Yousef et al. discuss how to select among such features [5]. A different computational perspective is provided by Kotipalli et al. who model the kinetics of miRNA genesis and targeting [6]. To fuel more refined future models for genesis and targeting, it is important to establish miRNA and target expression under varying conditions. Zhang et al. [7] and Kanke et al. [8] discuss two approaches to quantify miRNAs and other non-coding short RNAs. Diler et al., finally, discuss actual biological implications of differentially expressed miRNAs [9]. This special issue on computational miRNomics, thus, provides a trajectory from detection of pre-miRNAs to biological implications of differentially expressed miRNAs. Additional topics will be covered in the upcoming second volume of the special issue on computational miRNomics.

  1. Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs

    PubMed Central

    Gaeta, Xavier; Le, Luat; Lin, Ying; Xie, Yuan; Lowry, William E.

    2017-01-01

    The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition. Less-well defined are modes of transcriptional regulation of the pri-miRNAs for let-7. let-7 pri-miRNAs are expressed in polycistronic fashion, in long transcripts newly annotated based on chromatin-associated RNA-sequencing. Upon differentiation, we found that some let-7 pri-miRNAs are regulated at the transcriptional level, while others appear to be constitutively transcribed. Using the Epigenetic Roadmap database, we further annotated regulatory elements of each polycistron identified putative promoters and enhancers. Probing these regulatory elements for transcription factor binding sites identified factors that regulate transcription of let-7 in both promoter and enhancer regions, and identified novel regulatory mechanisms for this important class of miRNAs. PMID:28052101

  2. Serum microRNAs as biomarkers for recurrence in melanoma

    PubMed Central

    2012-01-01

    Background Identification of melanoma patients at high risk for recurrence and monitoring for recurrence are critical for informed management decisions. We hypothesized that serum microRNAs (miRNAs) could provide prognostic information at the time of diagnosis unaccounted for by the current staging system and could be useful in detecting recurrence after resection. Methods We screened 355 miRNAs in sera from 80 melanoma patients at primary diagnosis (discovery cohort) using a unique quantitative reverse transcription-PCR (qRT-PCR) panel. Cox proportional hazard models and Kaplan-Meier recurrence-free survival (RFS) curves were used to identify a miRNA signature with prognostic potential adjusting for stage. We then tested the miRNA signature in an independent cohort of 50 primary melanoma patients (validation cohort). Logistic regression analysis was performed to determine if the miRNA signature can determine risk of recurrence in both cohorts. Selected miRNAs were measured longitudinally in subsets of patients pre-/post-operatively and pre-/post-recurrence. Results A signature of 5 miRNAs successfully classified melanoma patients into high and low recurrence risk groups with significant separation of RFS in both discovery and validation cohorts (p = 0.0036, p = 0.0093, respectively). Significant separation of RFS was maintained when a logistic model containing the same signature set was used to predict recurrence risk in both discovery and validation cohorts (p < 0.0001, p = 0.033, respectively). Longitudinal expression of 4 miRNAs in a subset of patients was dynamic, suggesting miRNAs can be associated with tumor burden. Conclusion Our data demonstrate that serum miRNAs can improve accuracy in identifying primary melanoma patients with high recurrence risk and in monitoring melanoma tumor burden over time. PMID:22857597

  3. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.

    PubMed

    Dong, Haifeng; Meng, Xiangdan; Dai, Wenhao; Cao, Yu; Lu, Huiting; Zhou, Shufeng; Zhang, Xueji

    2015-04-21

    Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.

  4. Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection.

    PubMed

    Demirci, Müşerref Duygu Saçar; Allmer, Jens

    2017-07-28

    MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of protein abundance and thus have a great impact on the resulting phenotype. It is, therefore, no wonder that they have been implicated in many diseases ranging from virus infections to cancer. This impact on the phenotype leads to a great interest in establishing the miRNAs of an organism. Experimental methods are complicated which led to the development of computational methods for pre-miRNA detection. Such methods generally employ machine learning to establish models for the discrimination between miRNAs and other sequences. Positive training data for model establishment, for the most part, stems from miRBase, the miRNA registry. The quality of the entries in miRBase has been questioned, though. This unknown quality led to the development of filtering strategies in attempts to produce high quality positive datasets which can lead to a scarcity of positive data. To analyze the quality of filtered data we developed a machine learning model and found it is well able to establish data quality based on intrinsic measures. Additionally, we analyzed which features describing pre-miRNAs could discriminate between low and high quality data. Both models are applicable to data from miRBase and can be used for establishing high quality positive data. This will facilitate the development of better miRNA detection tools which will make the prediction of miRNAs in disease states more accurate. Finally, we applied both models to all miRBase data and provide the list of high quality hairpins.

  5. A novel function for the DEAD-box RNA helicase DDX-23 in primary microRNA processing in Caenorhabditis elegans.

    PubMed

    Chu, Yu-De; Chen, Hsin-Kai; Huang, Tao; Chan, Shih-Peng

    2016-01-15

    Primary microRNAs (pri-miRNAs) are cleaved by the nuclear RNase III Drosha to produce hairpin-shaped precursor miRNAs (pre-miRNAs). In humans, this process is known to be facilitated by the DEAD-box helicases p68 (DDX5) and p72 (DDX17). In this study, we performed a candidate-based RNAi screen in C. elegans to identify DEAD/H-box proteins involved in miRNA biogenesis. In a let-7(mg279) sensitized genetic background, knockdown of a homolog of yeast splicing factor Prp28p, DDX-23, or a homolog of human helicases p68 and p72, DDX-17, enhanced let-7 loss-of-function phenotypes, suggesting that these helicases play a role in let-7 processing and/or function. In both ddx-23(RNAi) and ddx-17(RNAi), levels of mature let-7 were decreased while pri-let-7 was found to accumulate, indicating that the helicases likely act at the level of pri-let-7 processing. DDX-23 and DDX-17 were also required for the biogenesis of other known heterochronic miRNAs, including lin-4 and the let-7 family members miR-48, miR-84 and miR-241. Their function was not confined to the heterochronic pathway, however, since they were both necessary for down-regulation of cog-1 by the spatial patterning miRNA, lsy-6. Here, we present a novel function for C. elegans DDX-23 in pri-miRNA processing, and also suggest a conserved role for DDX-17 in this process. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Deformability in the cleavage site of primary microRNA is not sensed by the double-stranded RNA binding domains in the microprocessor component DGCR8.

    PubMed

    Quarles, Kaycee A; Chadalavada, Durga; Showalter, Scott A

    2015-06-01

    The prevalence of double-stranded RNA (dsRNA) in eukaryotic cells has only recently been appreciated. Of interest here, RNA silencing begins with dsRNA substrates that are bound by the dsRNA-binding domains (dsRBDs) of their processing proteins. Specifically, processing of microRNA (miRNA) in the nucleus minimally requires the enzyme Drosha and its dsRBD-containing cofactor protein, DGCR8. The smallest recombinant construct of DGCR8 that is sufficient for in vitro dsRNA binding, referred to as DGCR8-Core, consists of its two dsRBDs and a C-terminal tail. As dsRBDs rarely recognize the nucleotide sequence of dsRNA, it is reasonable to hypothesize that DGCR8 function is dependent on the recognition of specific structural features in the miRNA precursor. Previously, we demonstrated that noncanonical structural elements that promote RNA flexibility within the stem of miRNA precursors are necessary for efficient in vitro cleavage by reconstituted Microprocessor complexes. Here, we combine gel shift assays with in vitro processing assays to demonstrate that neither the N-terminal dsRBD of DGCR8 in isolation nor the DGCR8-Core construct is sensitive to the presence of noncanonical structural elements within the stem of miRNA precursors, or to single-stranded segments flanking the stem. Extending DGCR8-Core to include an N-terminal heme-binding region does not change our conclusions. Thus, our data suggest that although the DGCR8-Core region is necessary for dsRNA binding and recruitment to the Microprocessor, it is not sufficient to establish the previously observed connection between RNA flexibility and processing efficiency. © 2015 Wiley Periodicals, Inc.

  7. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper.

    PubMed

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.

  8. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    PubMed Central

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  9. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    PubMed

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  10. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.

  11. Personalized RNA Medicine for Pancreatic Cancer.

    PubMed

    Gilles, Maud-Emmanuelle; Hao, Liangliang; Huang, Ling; Rupaimoole, Rajesha; Lopez-Casas, Pedro P; Pulver, Emilia; Jeong, Jong Cheol; Muthuswamy, Senthil K; Hidalgo, Manuel; Bhatia, Sangeeta N; Slack, Frank J

    2018-04-01

    Purpose: Since drug responses vary between patients, it is crucial to develop pre-clinical or co-clinical strategies that forecast patient response. In this study, we tested whether RNA-based therapeutics were suitable for personalized medicine by using patient-derived-organoid (PDO) and patient-derived-xenograft (PDX) models. Experimental Design: We performed microRNA (miRNA) profiling of PDX samples to determine the status of miRNA deregulation in individual pancreatic ductal adenocarcinoma (PDAC) patients. To deliver personalized RNA-based-therapy targeting oncogenic miRNAs that form part of this common PDAC miRNA over-expression signature, we packaged antimiR oligonucleotides against one of these miRNAs in tumor-penetrating nanocomplexes (TPN) targeting cell surface proteins on PDAC tumors. Results: As a validation for our pre-clinical strategy, the therapeutic potential of one of our nano-drugs, TPN-21, was first shown to decrease tumor cell growth and survival in PDO avatars for individual patients, then in their PDX avatars. Conclusions: This general approach appears suitable for co-clinical validation of personalized RNA medicine and paves the way to prospectively identify patients with eligible miRNA profiles for personalized RNA-based therapy. Clin Cancer Res; 24(7); 1734-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya

    PubMed Central

    2012-01-01

    Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants. PMID:23216749

  13. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya.

    PubMed

    Aryal, Rishi; Yang, Xiaozeng; Yu, Qingyi; Sunkar, Ramanjulu; Li, Lei; Ming, Ray

    2012-12-05

    The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff's purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants.

  14. A Neuron-Specific Deletion of the MicroRNA-Processing Enzyme DICER Induces Severe but Transient Obesity in Mice

    PubMed Central

    Mang, Géraldine M.; Pradervand, Sylvain; Du, Ngoc-Hien; Arpat, Alaaddin Bulak; Preitner, Frédéric; Wigger, Leonore; Gatfield, David; Franken, Paul

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis. PMID:25629159

  15. TargetCompare: A web interface to compare simultaneous miRNAs targets

    PubMed Central

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-dos-Santos, André M; dos Santos, Ândrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. Availability http://lghm.ufpa.br/targetcompare PMID:25352731

  16. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    PubMed

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  17. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID:24896088

  18. C-mii: a tool for plant miRNA and target identification.

    PubMed

    Numnark, Somrak; Mhuantong, Wuttichai; Ingsriswang, Supawadee; Wichadakul, Duangdao

    2012-01-01

    MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of both plant miRNA genes and miRNA targets. With the provided functionalities, it can help accelerate the study of plant miRNAs and targets, especially for small and medium plant molecular labs without bioinformaticians. C-mii is freely available at http://www.biotec.or.th/isl/c-mii for both Windows and Ubuntu Linux platforms.

  19. C-mii: a tool for plant miRNA and target identification

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. Results To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. Conclusions C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of both plant miRNA genes and miRNA targets. With the provided functionalities, it can help accelerate the study of plant miRNAs and targets, especially for small and medium plant molecular labs without bioinformaticians. C-mii is freely available at http://www.biotec.or.th/isl/c-mii for both Windows and Ubuntu Linux platforms. PMID:23281648

  20. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression

    PubMed Central

    Wei, Y B; Liu, J J; Villaescusa, J C; Åberg, E; Brené, S; Wegener, G; Mathé, A A; Lavebratt, C

    2016-01-01

    Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms. PMID:27529677

  1. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression.

    PubMed

    Wei, Y B; Liu, J J; Villaescusa, J C; Åberg, E; Brené, S; Wegener, G; Mathé, A A; Lavebratt, C

    2016-08-16

    Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms.

  2. Existence of a microRNA pathway in anucleate platelets

    PubMed Central

    Landry, Patricia; Plante, Isabelle; Ouellet, Dominique L; Perron, Marjorie P; Rousseau, Guy; Provost, Patrick

    2010-01-01

    Platelets play a critical role in the maintenance of hemostasis as well as in thrombosis and vessel occlusion that underlie stroke and acute coronary syndromes. Anucleate platelets contain messenger RNAs (mRNAs) and are capable of protein synthesis, raising the issue of how these mRNAs are regulated. Here we show that human platelets harbor an abundant and diverse array of microRNAs (miRNAs), which are known as key regulators of mRNA translation. Further analyses revealed that platelets contain Dicer and Argonaute 2 (Ago2) complexes functional in exogenously supplied miRNA precursor (pre-miRNA) processing and the control of specific reporter transcripts, respectively. Detection of the receptor P2Y12 mRNA in Ago2 immunoprecipitates suggests that P2Y12 expression may be subjected to miRNA control in human platelets. Our study lends an additional level of complexity to the control of gene expression in these anucleate elements of the cardiovascular system. PMID:19668211

  3. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  4. Serum microRNAs in clear cell carcinoma of the ovary.

    PubMed

    Chao, Angel; Lai, Chyong-Huey; Chen, Hua-Chien; Lin, Chiao-Yun; Tsai, Chia-Lung; Tang, Yun-Hsin; Huang, Huei-Jean; Lin, Chen-Tao; Chen, Min-Yu; Huang, Kuang-Gen; Chou, Hung-Hsueh; Chang, Ting-Chang; Chen, Shu-Jen; Wang, Tzu-Hao

    2014-12-01

    To identify candidate microRNAs (miRNAs) in the serum of patients with clear cell carcinomas in monitoring disease progression. The sera of patients with diagnosed ovarian clear cell carcinoma were collected from 2009 to 2012. Real-time quantitative polymerase chain reaction (PCR) analysis for 270 miRNAs was performed. To offset the potential extraction bias, an equal amount of Caenorhabditis elegans cel-miR-238 was added to each serum specimen before miRNA isolation. miRNA expression was analyzed using the ΔCt method, with cel-miR-238 as controls. Twenty-one patients with clear cell carcinoma were included. In the discovery phase on four pairs of pre- and postoperative sera, 18 differentially expressed miRNAs were selected from 270 miRNAs. In the validation phase on an independent set of 11 pairs of pre- and postoperative sera, 4 miRNAs (hsa-miR-130a, hsa-miR-138, hsa-miR-187, and hsa-miR-202) were confirmed to be higher in the preoperative sera. In the application phase, hsa-miR-130a remained consistent with the different time points in seven of the 10 patients during clinical follow-up periods. More importantly, in three patients, hsa-miR-130a levels were elevated in early disease recurrences before CA125 was found to be elevated. Hsa-miR-130a may be a useful serum biomarker for detecting recurrence of ovarian clear cell cancer, and warrants further studies. Copyright © 2014. Published by Elsevier B.V.

  5. Multilevel regulation of gene expression by microRNAs.

    PubMed

    Makeyev, Eugene V; Maniatis, Tom

    2008-03-28

    MicroRNAs (miRNAs) are approximately 22-nucleotide-long noncoding RNAs that normally function by suppressing translation and destabilizing messenger RNAs bearing complementary target sequences. Some miRNAs are expressed in a cell- or tissue-specific manner and may contribute to the establishment and/or maintenance of cellular identity. Recent studies indicate that tissue-specific miRNAs may function at multiple hierarchical levels of gene regulatory networks, from targeting hundreds of effector genes incompatible with the differentiated state to controlling the levels of global regulators of transcription and alternative pre-mRNA splicing. This multilevel regulation may allow individual miRNAs to profoundly affect the gene expression program of differentiated cells.

  6. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction.

    PubMed

    Dhahbi, Joseph M; Spindler, Stephen R; Atamna, Hani; Yamakawa, Amy; Guerrero, Noel; Boffelli, Dario; Mote, Patricia; Martin, David I K

    2013-02-01

    MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.

  7. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  8. Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences.

    PubMed

    Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-Peter

    2014-01-13

    Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.

  9. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets.

    PubMed

    Prakash, Pravin; Rajakani, Raja; Gupta, Vikrant

    2016-04-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing.

    PubMed

    Li, Zhixiong; Wang, Hongliang; Chen, Ling; Wang, Lijun; Liu, Xiaolin; Ru, Caixia; Song, Ailong

    2014-02-01

    MicroRNA (miRNA) mediates post-transcriptional gene regulation and plays an important role in regulating the development of immune cells and in modulating innate and adaptive immune responses in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in peripheral blood from healthy and mastitis Holstein cattle by Solexa sequencing and bioinformatics. In total, 608 precursor hairpins (pre-miRNAs) encoding for 753 mature miRNAs were detected. Statistically, 173 unique miRNAs (of 753, 22.98%) were identified that had significant differential expression between healthy and mastitis Holstein cattle (P < 0.001). Most differentially expressed miRNAs (118 of 173, 68.21%) belonged to the chemokine signaling pathway involved in the immune responses. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the peripheral blood from healthy and mastitis Holstein cattle, which provide important information on mastitis in miRNAs expression. Diverse miRNAs may play an important role in the treatment of mastitis in Holstein cattle. © 2013 Stichting International Foundation for Animal Genetics.

  11. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  12. Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons.

    PubMed

    Dorval, Véronique; Smith, Pascal Y; Delay, Charlotte; Calvo, Ezequiel; Planel, Emmanuel; Zommer, Nadège; Buée, Luc; Hébert, Sébastien S

    2012-01-01

    The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25) misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR) of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.

  13. Plasma processing conditions substantially influence circulating microRNA biomarker levels.

    PubMed

    Cheng, Heather H; Yi, Hye Son; Kim, Yeonju; Kroh, Evan M; Chien, Jason W; Eaton, Keith D; Goodman, Marc T; Tait, Jonathan F; Tewari, Muneesh; Pritchard, Colin C

    2013-01-01

    Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts. We therefore hypothesized that the quantity of residual platelets and microparticles remaining after plasma processing might impact miRNA measurements. To systematically investigate this, we subjected matched plasma from healthy individuals to stepwise processing with differential centrifugation and 0.22 µm filtration and performed miRNA profiling. We found a major effect on circulating miRNAs, with the majority (72%) of detectable miRNAs substantially affected by processing alone. Specifically, 10% of miRNAs showed 4-30x variation, 46% showed 30-1,000x variation, and 15% showed >1,000x variation in expression solely from processing. This was predominantly due to platelet contamination, which persisted despite using standard laboratory protocols. Importantly, we show that platelet contamination in archived samples could largely be eliminated by additional centrifugation, even in frozen samples stored for six years. To minimize confounding effects in microRNA biomarker studies, additional steps to limit platelet contamination for circulating miRNA biomarker studies are necessary. We provide specific practical recommendations to help minimize confounding variation attributable to plasma processing and platelet contamination.

  14. The Destiny of Glucose from a MicroRNA Perspective

    PubMed Central

    Mirra, Paola; Nigro, Cecilia; Prevenzano, Immacolata; Leone, Alessia; Raciti, Gregory Alexander; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases. PMID:29535681

  15. The Destiny of Glucose from a MicroRNA Perspective.

    PubMed

    Mirra, Paola; Nigro, Cecilia; Prevenzano, Immacolata; Leone, Alessia; Raciti, Gregory Alexander; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.

  16. Higher miRNA Tolerance in Immortal Li-Fraumeni Fibroblasts with Abrogated Interferon Signaling Pathway

    PubMed Central

    Li, Qunfang; Tainsky, Michael A.

    2013-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway–defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicertransfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. PMID:21199806

  17. Higher miRNA tolerance in immortal Li-Fraumeni fibroblasts with abrogated interferon signaling pathway.

    PubMed

    Li, Qunfang; Tainsky, Michael A

    2011-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway-defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicer-transfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. © 2011 AACR.

  18. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper.

    PubMed

    Hwang, Dong-Gyu; Park, June Hyun; Lim, Jae Yun; Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.

  19. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target themore » retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.« less

  20. Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs.

    PubMed

    Church, Victoria A; Pressman, Sigal; Isaji, Mamiko; Truscott, Mary; Cizmecioglu, Nihal Terzi; Buratowski, Stephen; Frolov, Maxim V; Carthew, Richard W

    2017-09-26

    The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. The influence of BDNF on human umbilical cord blood stem/progenitor cells: implications for stem cell-based therapy of neurodegenerative disorders.

    PubMed

    Paczkowska, Edyta; Łuczkowska, Karolina; Piecyk, Katarzyna; Rogińska, Dorota; Pius-Sadowska, Ewa; Ustianowski, Przemysław; Cecerska, Elżbieta; Dołęgowska, Barbara; Celewicz, Zbigniew; Machaliński, Bogusław

    2015-01-01

    Umbilical cord blood (UCB)-derived stem/progenitor cells (SPCs) have demonstrated the potential to improve neurologic function in different experimental models. SPCs can survive after transplantation in the neural microenvironment and indu ce neuroprotection, endogenous neurogenesis by secreting a broad repertoire of trophic and immunomodulatory cytokines. In this study, the influence of brain-derived neurotrophic factor (BDNF) pre-treatment was comprehensively evaluated in a UCB-derived lineage-negative (Lin-) SPC population. UCB-derived Lin- cells were evaluated with respect to the expression of (i) neuronal markers using immunofluorescence staining and (ii) specific (TrkB) receptors for BDNF using flow cytometry. Next, after BDNF pre-treatment, Lin- cells were extensively assessed with respect to apoptosis using Western blotting and proliferation via BrdU incorporation. Furthermore, NT-3 expression levels in Lin- cells using RQ PCR and antioxidative enzyme activities were assessed. We demonstrated neuronal markers as well as TrkB expression in Lin- cells and the activation of the TrkB receptor by BDNF. BDNF pre-treatment diminished apoptosis in Lin- cells and influenced the proliferation of these cells. We observed significant changes in antioxidants as well as in the increased expression of NT-3 in Lin- cells following BDNF exposure. Complex global miRNA and mRNA profiling analyses using microarray technology and GSEA revealed the differential regulation of genes involved in the proliferation, gene expression, biosynthetic processes, translation, and protein targeting. Our results support the hypothesis that pre-treatment of stem/progenitor cells could be beneficial and may be used as an auxiliary strategy for improving the properties of SPCs.

  2. GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells

    PubMed Central

    Wu, Yongyan; Liu, Fayang; Liu, Yingying; Liu, Xiaolei; Ai, Zhiying; Guo, Zekun; Zhang, Yong

    2015-01-01

    Wnt/β-catenin signalling plays a prominent role in maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). microRNAs (miRNAs) have critical roles in maintaining pluripotency and directing reprogramming. To investigate the effect of GSK3 inhibitors on miRNA expression, we analysed the miRNA expression profile of J1 mESCs in the absence or presence of CHIR99021 (CHIR) or 6-bromoindirubin-3′-oxime (BIO) by small RNA deep-sequencing. The results demonstrate that CHIR and BIO decrease mature miRNAs of most miRNA species, 90.4% and 98.1% of the differentially expressed miRNAs in BIO and CHIR treated cells were downregulated respectively. CHIR and BIO treatment leads to a slight upregulation of the primary transcripts of the miR-302–367 cluster and miR-181 family of miRNAs, these miRNAs are activated by Wnt/β-catenin signalling. However, the precursor and mature form of the miR-302–367 cluster and miR-181 family of miRNAs are downregulated by CHIR, suggesting CHIR inhibits maturation of primary miRNA. Western blot analysis shows that BIO and CHIR treatment leads to a reduction of the RNase III enzyme Drosha in the nucleus. These data suggest that BIO and CHIR inhibit miRNA maturation by disturbing nuclear localisation of Drosha. Results also show that BIO and CHIR induce miR-211 expression in J1 mESCs. PMID:25727520

  3. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  4. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    PubMed

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p<0.05; >2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  5. Predicting novel microRNA: a comprehensive comparison of machine learning approaches.

    PubMed

    Stegmayer, Georgina; Di Persia, Leandro E; Rubiolo, Mariano; Gerard, Matias; Pividori, Milton; Yones, Cristian; Bugnon, Leandro A; Rodriguez, Tadeo; Raad, Jonathan; Milone, Diego H

    2018-05-23

    The importance of microRNAs (miRNAs) is widely recognized in the community nowadays because these short segments of RNA can play several roles in almost all biological processes. The computational prediction of novel miRNAs involves training a classifier for identifying sequences having the highest chance of being precursors of miRNAs (pre-miRNAs). The big issue with this task is that well-known pre-miRNAs are usually few in comparison with the hundreds of thousands of candidate sequences in a genome, which results in high class imbalance. This imbalance has a strong influence on most standard classifiers, and if not properly addressed in the model and the experiments, not only performance reported can be completely unrealistic but also the classifier will not be able to work properly for pre-miRNA prediction. Besides, another important issue is that for most of the machine learning (ML) approaches already used (supervised methods), it is necessary to have both positive and negative examples. The selection of positive examples is straightforward (well-known pre-miRNAs). However, it is difficult to build a representative set of negative examples because they should be sequences with hairpin structure that do not contain a pre-miRNA. This review provides a comprehensive study and comparative assessment of methods from these two ML approaches for dealing with the prediction of novel pre-miRNAs: supervised and unsupervised training. We present and analyze the ML proposals that have appeared during the past 10 years in literature. They have been compared in several prediction tasks involving two model genomes and increasing imbalance levels. This work provides a review of existing ML approaches for pre-miRNA prediction and fair comparisons of the classifiers with same features and data sets, instead of just a revision of published software tools. The results and the discussion can help the community to select the most adequate bioinformatics approach according to the prediction task at hand. The comparative results obtained suggest that from low to mid-imbalance levels between classes, supervised methods can be the best. However, at very high imbalance levels, closer to real case scenarios, models including unsupervised and deep learning can provide better performance.

  6. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    PubMed Central

    2010-01-01

    Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials. PMID:20836854

  7. Expanded RNA-binding activities of mammalian Argonaute 2

    PubMed Central

    Tan, Grace S.; Garchow, Barry G.; Liu, Xuhang; Yeung, Jennifer; Morris, John P.; Cuellar, Trinna L.; McManus, Michael T.; Kiriakidou, Marianthi

    2009-01-01

    Mammalian Argonaute 2 (Ago2) protein associates with microRNAs (miRNAs) or small interfering RNAs (siRNAs) forming RNA-induced silencing complexes (RISCs/miRNPs). In the present work, we characterize the RNA-binding and nucleolytic activity of recombinant mouse Ago2. Our studies show that recombinant mouse Ago2 binds efficiently to miRNAs forming active RISC. Surprisingly, we find that recombinant mouse Ago2 forms active RISC using pre-miRNAs or long unstructured single stranded RNAs as guides. Furthermore, we demonstrate that, in vivo, endogenous human Ago2 binds directly to pre-miRNAs independently of Dicer, and that Ago2:pre-miRNA complexes are found both in the cytoplasm and in the nucleus of human cells. PMID:19808937

  8. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients.

    PubMed

    Juan, Li; Tong, Hong-li; Zhang, Pengjun; Guo, Guanghong; Wang, Zi; Wen, Xinyu; Dong, Zhennan; Tian, Ya-ping

    2014-09-03

    Small non-coding microRNAs (miRNAs) are involved in cancer development and progression, and serum profiles of cervical cancer patients may be useful for identifying novel miRNAs. We performed deep sequencing on serum pools of cervical cancer patients and healthy controls with 3 replicates and constructed a small RNA library. We used MIREAP to predict novel miRNAs and identified 2 putative novel miRNAs between serum pools of cervical cancer patients and healthy controls after filtering out pseudo-pre-miRNAs using Triplet-SVM analysis. The 2 putative novel miRNAs were validated by real time PCR and were significantly decreased in cervical cancer patients compared with healthy controls. One novel miRNA had an area under curve (AUC) of 0.921 (95% CI: 0.883, 0.959) with a sensitivity of 85.7% and a specificity of 88.2% when discriminating between cervical cancer patients and healthy controls. Our results suggest that characterizing serum profiles of cervical cancers by Solexa sequencing may be a good method for identifying novel miRNAs and that the validated novel miRNAs described here may be cervical cancer-associated biomarkers.

  9. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc

    PubMed Central

    Conde-Muiño, Raquel; Cano, Carlos; Sánchez-Martín, Victoria; Herrera, Antonio; Comino, Ana; Medina, Pedro P.; Palma, Pablo; Cuadros, Marta

    2017-01-01

    Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer. PMID:29137264

  10. Identification of a novel miRNA from the ovine ovary by a combinatorial approach of bioinformatics and experiments

    PubMed Central

    CHANG, Weihua; WANG, Juanhong; TAO, Dayong; ZHANG, Yong; HE, Jianzhong; SHI, Changqing

    2015-01-01

    MicroRNAs (miRNAs) are a class of short endogenous, single-stranded, non-coding small RNA molecules, about 19–25 nucleotides in length that regulate gene expression at the translation level and influence many physiological process, such apoptosis, metabolism, signal transduction, and occurrence and development of diseases. In this study, we constructed a library from the ovine luteal phase ovary by using next-generation sequencing technology (Solexa high-throughput sequencing technique) and identified 267 novel miRNAs by bioinformatics. One of the novel miRNAs (ovis_aries_ovary-m0033_3p), which expressed in the sheep ovary and testis, was confirmed by real time PCR and northern blot. Ovis_aries_ovary-m0033_3p was 21 nucleotides in length and located on chromosome 12, and it had 100% similarity to hsa-miR-214-3p, mmu-miR-214-3p, dre-miR-214and ssc-miR-214. Meanwhile, the pre-miRNA was 82 nucleotides in length and had a standard hairpin stem-loop structure. From the consistency of the sequence and structure, we speculated that ovis_aries_ovary-m0033_3p had a function similar to hsa-miR-214-3p, which is involved in the fine regulation of cell survival, embryonic development, breeding activities and resistance to ovarian cancer, so we defined it as oar-miR-214-3p. These experimental results will enrich the miRNA database for ovis aries and provide the basis for researching the regulation mechanism of miRNA in relation to breeding activities of seasonal breeding animals. PMID:26268666

  11. Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle

    PubMed Central

    Huang, Jinming; Ju, Zhihua; Li, Qiuling; Hou, Qinlei; Wang, Changfa; Li, Jianbin; Li, Rongling; Wang, Lingling; Sun, Tao; Hang, Suqin; Gao, Yundong; Hou, Minghai; Zhong, Jifeng

    2011-01-01

    The posttranscriptional gene regulation mediated by microRNA plays an important role in the development and function of male and female reproductive organs and germ cells in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in the testis and ovary in Holstein cattle by combining the Solexa sequencing with bioinformatics. In total 100 and 104 novel pre-miRNAs were identified in testicular and ovarian tissues, encoding 122 and 136 mature miRNAs, respectively. Of these, 6 miRNAs appear to be bovine-specific. A total of 246 known miRNAs were co-expressed in the testicular and ovarian tissues. Of the known miRNAs, twenty-one testis-specific and nine ovary-specific (1-23 reads) were found. Approximately 30.5% of the known bovine miRNAs in this study were found to have >2-fold differential expression within the two respective reproductive organ systems. The putative miRNA target genes of miRNAs were involved in pathways associated with reproductive physiology. Both known and novel tissue-specific miRNAs are expressed by Real-time quantitative PCR analysis in dairy cattle. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the bovine testicular and ovarian tissues, which provide important information on sex differences in miRNA expression. Diverse miRNAs may play an important regulatory role in the development of the reproductive organs in Holstein cattle. PMID:21912509

  12. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    PubMed

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  13. The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila.

    PubMed

    Liu, Nan; Abe, Masashi; Sabin, Leah R; Hendriks, Gert-Jan; Naqvi, Ammar S; Yu, Zhenming; Cherry, Sara; Bonini, Nancy M

    2011-11-22

    MicroRNAs (miRNAs) are endogenous noncoding small RNAs with important roles in many biological pathways; their generation and activity are under precise regulation [1-3]. Emerging evidence suggests that miRNA pathways are precisely modulated with controls at the level of transcription [4-8], processing [9-11], and stability [12, 13], with miRNA deregulation linked with diseases [14] and neurodegenerative disorders [15]. In the Drosophila miRNA biogenesis pathway, long primary miRNA transcripts undergo sequential cleavage [16-18] to release the embedded miRNAs. Mature miRNAs are then loaded into Argonaute1 (Ago1) within the RNA-induced silencing complex (RISC) [19, 20]. Intriguingly, we found that Drosophila miR-34 displays multiple isoforms that differ at the 3' end, suggesting a novel biogenesis mechanism involving 3' end processing. To define the cellular factors responsible, we performed an RNA interference (RNAi) screen and identified a putative 3'→5' exoribonuclease CG9247/nibbler essential for the generation of the smaller isoforms of miR-34. Nibbler (Nbr) interacts with Ago1 and processes miR-34 within RISC. Deep sequencing analysis revealed a larger set of multi-isoform miRNAs that are controlled by nibbler. These findings suggest that Nbr-mediated 3' end processing represents a critical step in miRNA maturation that impacts miRNA diversity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. MicroRNA Expression Profiling of the Armed Forces Health Surveillance Branch Cohort for Identification of "Enviro-miRs" Associated With Deployment-Based Environmental Exposure.

    PubMed

    Dalgard, Clifton L; Polston, Keith F; Sukumar, Gauthaman; Mallon, Col Timothy M; Wilkerson, Matthew D; Pollard, Harvey B

    2016-08-01

    The aim of this study was to identify serum microRNA (miRNA) biomarkers that indicate deployment-associated exposures in service members at military installations with open burn pits. Another objective was to determine detection rates of miRNAs in Department of Defense Serum Repository (DoDSR) samples with a high-throughput methodology. Low-volume serum samples (n = 800) were profiled by miRNA-capture isolation, pre-amplification, and measurement by a quantitative PCR-based OpenArray platform. Normalized quantitative cycle values were used for differential expression analysis between groups. Assay specificity, dynamic range, reproducibility, and detection rates by OpenArray passed target desired specifications. Serum abundant miRNAs were consistently measured in study specimens. Four miRNAs were differentially expressed in the case deployment group subjects. miRNAs are suitable RNA species for biomarker discovery in the DoDSR serum specimens. Serum miRNAs are candidate biomarkers for deployment and environmental exposure in military service members.

  15. Despacito: the slow evolutionary changes in plant microRNAs.

    PubMed

    Baldrich, Patricia; Beric, Aleksandra; Meyers, Blake C

    2018-02-12

    MicroRNAs (miRNAs) are key regulators of gene expression. A handful of miRNAs are broadly conserved in land plants, while the majority are lineage specific; this review describes the processes by which new miRNAs are hypothesized to have emerged. Two major models describe miRNA origins, firstly, de novo emergence via inverted duplication of target gene fragments, and secondly, the expansion and neofunctionalization of existing miRNA families. The occasional acquisition of target sites by previously un-targeted genes adds further dynamism to the process by which miRNAs may shift roles during evolution. Additional factors guiding miRNA evolution include functional constraints on their length and the importance of precursor conservation that is observed in regions above or below the mature miRNA duplex; these regions represent recognition sites for components of biogenesis machinery and direct precursor processing. Insights into the mechanisms of miRNA emergence and divergence are important for understanding plant genome evolution and the impact of miRNA regulatory networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences

    PubMed Central

    2014-01-01

    Background Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Results Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. Conclusion The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification. PMID:24418292

  17. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  18. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers.

    PubMed

    Lopez, Juan Pablo; Fiori, Laura M; Gross, Jeffrey A; Labonte, Benoit; Yerko, Volodymyr; Mechawar, Naguib; Turecki, Gustavo

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in the post-transcriptional regulation of mRNA. These molecules have been the subject of growing interest as they are believed to control the regulation of a large number of genes, including those expressed in the brain. Evidence suggests that miRNAs could be involved in the pathogenesis of neuropsychiatric disorders. Alterations in metabolic enzymes of the polyamine system have been reported to play a role in predisposition to suicidal behaviour. We have previously shown the expression of the polyamine genes SAT1 and SMOX to be down-regulated in the brains of suicide completers. In this study, we hypothesized that the dysregulation of these genes in depressed suicide completers could be influenced by miRNA post-transcriptional regulation. Using a stringent target prediction analysis, we identified several miRNAs that target the 3'UTR of SAT1 and SMOX. We profiled the expression of 10 miRNAs in the prefrontal cortex (BA44) of suicide completers (N = 15) and controls (N = 16) using qRT-PCR. We found that several miRNAs showed significant up-regulation in the prefrontal cortex of suicide completers compared to psychiatric healthy controls. Furthermore, we demonstrated a significant correlation between these miRNAs and the expression levels of both SAT1 and SMOX. Our results suggest a relationship between miRNAs and polyamine gene expression in the suicide brain, and postulate a mechanism for SAT1 and SMOX down-regulation by post-transcriptional activity of miRNAs.

  19. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review

    PubMed Central

    Huang, Ya-Kai; Yu, Jian-Chun

    2015-01-01

    Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening. PMID:26379393

  20. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

    PubMed Central

    Zhu, Bin; Li, Xiuxia; Liu, Ying; Gao, Xiwu; Liang, Pei

    2017-01-01

    The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects. PMID:28098189

  1. High temperature pre-digestion of corn stover biomass for improved product yields

    DOE PAGES

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; ...

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.more » Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.« less

  2. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development

    PubMed Central

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-01-01

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches. PMID:28216603

  3. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development.

    PubMed

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-02-14

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.

  4. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits. PMID:23116282

  5. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni.

    PubMed

    Mandhan, Vibha; Kaur, Jagdeep; Singh, Kashmir

    2012-11-01

    MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits.

  6. IRE1α prevents hepatic steatosis by processing and promoting the degradation of select microRNAs.

    PubMed

    Wang, Jie-Mei; Qiu, Yining; Yang, Zhao; Kim, Hyunbae; Qian, Qingwen; Sun, Qinghua; Zhang, Chunbin; Yin, Lei; Fang, Deyu; Back, Sung Hong; Kaufman, Randal J; Yang, Ling; Zhang, Kezhong

    2018-05-15

    Obesity or a high-fat diet represses the endoribonuclease activity of inositol-requiring enzyme 1α (IRE1α), a transducer of the unfolded protein response (UPR) in cells under endoplasmic reticulum (ER) stress. An impaired UPR is associated with hepatic steatosis and nonalcoholic fatty liver disease (NAFLD), which is caused by lipid accumulation in the liver. We found that IRE1α was critical to maintaining lipid homeostasis in the liver by repressing the biogenesis of microRNAs (miRNAs) that regulate lipid mobilization. In mice fed normal chow, the endoribonuclease function of IRE1α processed a subset of precursor miRNAs in the liver, including those of the miR-200 and miR-34 families, such that IRE1α promoted their degradation through the process of regulated IRE1-dependent decay (RIDD). A high-fat diet in mice or hepatic steatosis in patients was associated with the S-nitrosylation of IRE1α and inactivation of its endoribonuclease activity. This resulted in an increased abundance of these miRNA families in the liver and, consequently, a decreased abundance of their targets, which included peroxisome proliferator-activated receptor α (PPARα) and the deacetylase sirtuin 1 (SIRT1), regulators of fatty acid oxidation and triglyceride lipolysis. IRE1α deficiency exacerbated hepatic steatosis in mice. The abundance of the miR-200 and miR-34 families was also increased in cultured, lipid-overloaded hepatocytes and in the livers of patients with hepatic steatosis. Our findings reveal a mechanism by which IRE1α maintains lipid homeostasis through its regulation of miRNAs, a regulatory pathway distinct from the canonical IRE1α-UPR pathway under acute ER stress. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. MicroRNAs and their roles in aging

    PubMed Central

    Smith-Vikos, Thalyana; Slack, Frank J.

    2012-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNAs that bind mRNAs through partial base-pair complementarity with their target genes, resulting in post-transcriptional repression of gene expression. The role of miRNAs in controlling aging processes has been uncovered recently with the discovery of miRNAs that regulate lifespan in the nematode Caenorhabditis elegans through insulin and insulin-like growth factor-1 signaling and DNA damage checkpoint factors. Furthermore, numerous miRNAs are differentially expressed during aging in C. elegans, but the specific functions of many of these miRNAs are still unknown. Recently, various miRNAs have been identified that are up- or down-regulated during mammalian aging by comparing their tissue-specific expression in younger and older mice. In addition, many miRNAs have been implicated in governing senescence in a variety of human cell lines, and the precise functions of some of these miRNAs in regulating cellular senescence have helped to elucidate mechanisms underlying aging. In this Commentary, we review the various regulatory roles of miRNAs during aging processes. We highlight how certain miRNAs can regulate aging on the level of organism lifespan, tissue aging or cellular senescence. Finally, we discuss future approaches that might be used to investigate the mechanisms by which miRNAs govern aging processes. PMID:22294612

  8. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    PubMed

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  <   .05). Rifampin-induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3-fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9- and 4.8-fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4- and UGT1A4-mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N-glucuronide exposure (~4-fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  9. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  10. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    PubMed Central

    Melnikova, Nataliya V.; Dmitriev, Alexey A.; Belenikin, Maxim S.; Koroban, Nadezhda V.; Speranskaya, Anna S.; Krinitsina, Anastasia A.; Krasnov, George S.; Lakunina, Valentina A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Klimina, Kseniya M.; Amosova, Alexandra V.; Zelenin, Alexander V.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.

    2016-01-01

    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars. PMID:27092149

  11. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases

    PubMed Central

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia

    2018-01-01

    Abstract The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3′-UTRs, collectively called ‘miRSNPs’, represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. PMID:29106642

  12. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases.

    PubMed

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia; Zhang, Yunpeng; Ning, Shangwei; Li, Xia

    2018-01-04

    The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3'-UTRs, collectively called 'miRSNPs', represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity

    PubMed Central

    Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.

    2014-01-01

    Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607

  14. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  15. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure.

    PubMed

    Bartram, Malte P; Amendola, Elena; Benzing, Thomas; Schermer, Bernhard; de Vita, Gabriella; Müller, Roman-Ulrich

    2016-04-18

    Non-coding RNAs have gained increasing attention during the last decade. The first large group of non-coding RNAs to be characterized systematically starting at the beginning of the 21st century were small oligonucleotides--the so-called microRNAs (miRNAs). By now we have learnt that microRNAs are indispensable for most biological processes including organogenesis and maintenance of organ structure and function. The role of microRNAs has been studied extensively in the development of a number of organs, so far most studies focussed on e.g. the heart or the brain whilst the role of microRNAs in the development and maintenance of complex epithelial organs is less well understood. Furthermore most analyses regarding microRNA function in epithelial organs employed conditional knockout mouse models of the RNAse III Dicer to abrogate microRNA biogenesis. However, there is increasing evidence for Dicer to have multiple functions independent from microRNA maturation. Therefore Dicer independent models are needed to gain further insight into the complex biology of miRNA dependent processes. Here we analyze the contribution of microRNA-dependent transcriptional control in Pax8-expressing epithelial cells. Pax8 is a transcription factor that is crucial to the development of epithelial organs. The miRNA machinery was disrupted by crossing conditional DiGeorge syndrome critical region 8 (Dgcr8) fl/fl mice to Pax8Cre mice. The Dgcr8/Drosha complex processes pri-miRNAs in the nucleus before they are exported as pre-miRNAs for further maturation by Dicer in the cytoplasm. Dgcr8 fl/fl; Pax8Cre+ knockout mice died prematurely, developed massive hypothyroidism and end stage renal disease due to a loss of miRNAs in Pax8 expressing tissue. Pax8Cre-mediated conditional loss of DiGeorge syndrome critical region 8 (Dgcr8), an essential component of the nuclear machinery that is required for microRNA biogenesis, resulted in severe hypothyroidism, massively reduced body weight and ultimately led to renal failure and death of the animals. These data provide further insight into the importance of miRNAs in organ homeostasis using a Dicer independent model.

  16. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  17. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.

    PubMed

    Krol, Jacek; Sobczak, Krzysztof; Wilczynska, Urszula; Drath, Maria; Jasinska, Anna; Kaczynska, Danuta; Krzyzosiak, Wlodzimierz J

    2004-10-01

    We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).

  18. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain

    PubMed Central

    Vesely, Cornelia; Tauber, Stefanie; Sedlazeck, Fritz J.; Tajaddod, Mansoureh; von Haeseler, Arndt; Jantsch, Michael F.

    2014-01-01

    Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2. PMID:25260591

  19. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  20. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  1. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    PubMed Central

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C.; Yen, Hungchen E.

    2016-01-01

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na+ distribution, ice plant likely responds to increased salinity by using Na+ as an osmoticum for cell expansion and guard cell opening. Excessive Na+ could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level. PMID:27555850

  2. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less

  3. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    DOE PAGES

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; ...

    2016-08-09

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less

  4. A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform.

    PubMed

    Xu, Yong; Liu, Haiying; Li, Fei; Sun, Ning; Ren, Yan; Liu, Zhifen; Cao, Xiaohua; Wang, Yanfang; Liu, Pozi; Zhang, Kerang

    2010-12-01

    Growing evidence shows that the etiological causes and pathological processes underlying major depressive disorder (MDD) and schizophrenia (SCZ) overlap. Our previous study revealed a strong association between the polymorphism ss178077483 in the miRNA-30e precursor (pre-miR-30e) and the risk of SCZ. We thus hypothesized that this SCZ risk allele at the pre-miR-30e gene also confers risk of MDD. To explore the relationship between miR-30e ss178077483 and MDD, we conducted an association analyses in 1088 MDD patients and 1102 control subjects from the Han Chinese population. We also determined the effects of miR-30e ss178077483 on the development of P300 event-related potential components induced by an auditory odd-ball task. We detected a statistically significant positive association between miR-30e ss178077483 and MDD (allelic P=0.0287; genotypic P=0.0275). Moreover, the P300 latency was associated with miR-30e ss178077483 genotypes and the individuals with the C/T genotype have a longer P300 latency than those carrying the C/C genotype (P=0.009). Larger numbers of subjects and different ethnic groups would confirm and strengthen these preliminary findings. To our knowledge, this is the first evidence to suggest that miRNA polymorphisms may play an important role in MDD susceptibility. These findings also imply that certain miRNAs may be involved in the etiology of MDD. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis

    PubMed Central

    Suzuki, Hiroshi I.; Young, Richard A; Sharp, Phillip A

    2017-01-01

    Summary Super-enhancers are an emerging sub-class of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and a unrecognized higher-order property of super-enhancers in RNA processing beyond transcription. PMID:28283057

  6. Selective blockade of microRNA processing by Lin-28

    PubMed Central

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  7. Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation.

    PubMed

    Guan, Jiuqiang; Long, Keren; Ma, Jideng; Zhang, Jinwei; He, Dafang; Jin, Long; Tang, Qianzi; Jiang, Anan; Wang, Xun; Hu, Yaodong; Tian, Shilin; Jiang, Zhi; Li, Mingzhou; Luo, Xiaolin

    2017-01-01

    Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.

  8. Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation

    PubMed Central

    Zhang, Jinwei; He, Dafang; Jin, Long; Tang, Qianzi; Jiang, Anan; Wang, Xun; Hu, Yaodong; Tian, Shilin; Jiang, Zhi

    2017-01-01

    Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation. PMID:29109913

  9. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization.

    PubMed

    Abu-Halima, Masood; Häusler, Sebastian; Backes, Christina; Fehlmann, Tobias; Staib, Claudia; Nestel, Sigrun; Nazarenko, Irina; Meese, Eckart; Keller, Andreas

    2017-10-19

    MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We analyzed the potential of miRNAs secreted from pre-implantation embryos into the embryonic culture media as biomarkers to predict successful pregnancy. Using microarray analysis, we profiled the miRNome of the 56 spent culture media (SCM) after embryos transfer and found a total of 621 miRNAs in the SCM. On average, we detected 163 miRNAs in SCM of samples with failed pregnancies, but only 149 SCM miRNAs of embryos leading to pregnancies. MiR-634 predicted an embryo transfer leading to a positive pregnancy with an accuracy of 71% and a sensitivity of 85%. Among the 621 miRNAs, 102 (16.4%) showed a differential expression between positive and negative outcome of pregnancy with miR-29c-3p as the most significantly differentially expressed miRNA. The number of extracellular vehicles was lower in SCM with positive outcomes (3.8 × 10 9 /mL EVs), as compared to a negative outcome (7.35 × 10 9 /mL EVs) possibly explaining the reduced number of miRNAs in the SCM associated with failed pregnancies. The analysis of the miRNome in the SCM of couples undergoing fertility treatment lays the ground towards development of biomarkers to predict successful pregnancy and towards understanding the role of embryonic miRNAs found in the SCM.

  10. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types.

    PubMed

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-04-29

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.

  11. Characteristics of microRNAs enriched in specific cell types and primary tissue types in solid organs.

    PubMed

    Kriegel, Alison J; Liu, Yong; Liu, Pengyuan; Baker, Maria Angeles; Hodges, Matthew R; Hua, Xing; Liang, Mingyu

    2013-12-01

    Knowledge of miRNA expression and function in specific cell types in solid organs is limited because of difficulty in obtaining appropriate specimens. We used laser capture microdissection to obtain nine tissue regions from rats, including the nucleus of the solitary tract, hypoglossal motor nucleus, ventral respiratory column/pre-Bötzinger complex, and midline raphe nucleus from the brain stem, myocardium and coronary artery from the heart, and glomerulus, proximal convoluted tubule, and medullary thick ascending limb from the kidney. Each tissue region consists of or is enriched for a specific cell type. Differential patterns of miRNA expression obtained by deep sequencing of minute amounts of laser-captured cells were highly consistent with data obtained from real-time PCR analysis. miRNA expression patterns correctly clustered the specimens by tissue regions and then by primary tissue types (neural, muscular, or epithelial). The aggregate difference in miRNA profiles between tissue regions that contained the same primary tissue type was as large as one-half of the aggregate difference between primary tissue types. miRNAs differentially expressed between primary tissue types are more likely to be abundant miRNAs, while miRNAs differentially expressed between tissue regions containing the same primary tissue type were distributed evenly across the abundance spectrum. The tissue type-enriched miRNAs were more likely to target genes enriched for specific functional categories compared with either cell type-enriched miRNAs or randomly selected miRNAs. These data indicate that the role of miRNAs in determining characteristics of primary tissue types may be different than their role in regulating cell type-specific functions in solid organs.

  12. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche.

    PubMed

    Sánchez, Catherine A; Andahur, Eliana I; Valenzuela, Rodrigo; Castellón, Enrique A; Fullá, Juan A; Ramos, Christian G; Triviño, Juan C

    2016-01-26

    The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.

  13. Genome-wide characterization of microRNA in foxtail millet (Setaria italica)

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play key roles in many biological processes in both animals and plants. Although many miRNAs have been identified in a large number of organisms, the miRNAs in foxtail millet (Setaria italica) have, until now, been poorly understood. Results In this study, two replicate small RNA libraries from foxtail millet shoots were sequenced, and 40 million reads representing over 10 million unique sequences were generated. We identified 43 known miRNAs, 172 novel miRNAs and 2 mirtron precursor candidates in foxtail millet. Some miRNA*s of the known and novel miRNAs were detected as well. Further, eight novel miRNAs were validated by stem-loop RT-PCR. Potential targets of the foxtail millet miRNAs were predicted based on our strict criteria. Of the predicted target genes, 79% (351) had functional annotations in InterPro and GO analyses, indicating the targets of the miRNAs were involved in a wide range of regulatory functions and some specific biological processes. A total of 69 pairs of syntenic miRNA precursors that were conserved between foxtail millet and sorghum were found. Additionally, stem-loop RT-PCR was conducted to confirm the tissue-specific expression of some miRNAs in the four tissues identified by deep-sequencing. Conclusions We predicted, for the first time, 215 miRNAs and 447 miRNA targets in foxtail millet at a genome-wide level. The precursors, expression levels, miRNA* sequences, target functions, conservation, and evolution of miRNAs we identified were investigated. Some of the novel foxtail millet miRNAs and miRNA targets were validated experimentally. PMID:24330712

  14. Genome-wide characterization of microRNA in foxtail millet (Setaria italica).

    PubMed

    Yi, Fei; Xie, Shaojun; Liu, Yuwei; Qi, Xin; Yu, Jingjuan

    2013-12-13

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play key roles in many biological processes in both animals and plants. Although many miRNAs have been identified in a large number of organisms, the miRNAs in foxtail millet (Setaria italica) have, until now, been poorly understood. In this study, two replicate small RNA libraries from foxtail millet shoots were sequenced, and 40 million reads representing over 10 million unique sequences were generated. We identified 43 known miRNAs, 172 novel miRNAs and 2 mirtron precursor candidates in foxtail millet. Some miRNA*s of the known and novel miRNAs were detected as well. Further, eight novel miRNAs were validated by stem-loop RT-PCR. Potential targets of the foxtail millet miRNAs were predicted based on our strict criteria. Of the predicted target genes, 79% (351) had functional annotations in InterPro and GO analyses, indicating the targets of the miRNAs were involved in a wide range of regulatory functions and some specific biological processes. A total of 69 pairs of syntenic miRNA precursors that were conserved between foxtail millet and sorghum were found. Additionally, stem-loop RT-PCR was conducted to confirm the tissue-specific expression of some miRNAs in the four tissues identified by deep-sequencing. We predicted, for the first time, 215 miRNAs and 447 miRNA targets in foxtail millet at a genome-wide level. The precursors, expression levels, miRNA* sequences, target functions, conservation, and evolution of miRNAs we identified were investigated. Some of the novel foxtail millet miRNAs and miRNA targets were validated experimentally.

  15. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.)

    PubMed Central

    2013-01-01

    Background Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes. Results Six olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves (”on year” and ”off year” leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways. Conclusion A comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data on the miRNA-fruit development interaction and advance perspectives in the miRNA profile of the olive tree. PMID:23320600

  16. MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration.

    PubMed

    Ba, Hengxing; Wang, Datao; Li, Chunyi

    2016-04-01

    MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development and regeneration. Our previous studies showed that antler regeneration is a stem cell-based process and antler stem cells reside in the periosteum of a pedicle, the permanent bony protuberance, from which antler regeneration takes place. Antlers are the only mammalian organ that can fully regenerate and hence provide a unique opportunity to identify miRNAs that are involved in organ regeneration. In the present study, we used next generation sequencing technology sequenced miRNAs of the stem cells derived from either the potentiated or the dormant pedicle periosteum. A population of both conserved and 20 deer-specific miRNAs was identified. These conserved miRNAs were derived from 453 homologous hairpin precursors across 88 animal species, and were further grouped into 167 miRNA families. Among them, the miR-296 is embryonic stem cell-specific. The potentiation process resulted in the significant regulation (>±2 Fold, q value <0.05) of conserved miRNAs; 8 miRNA transcripts were down- and 6 up-regulated. Several GO biology processes and the Wnt, MAPK and TGF-beta signaling pathways were found to be up-regulated as part of antlerogenic stem cell potentiation process. This research has identified miRNAs that are associated either with the dormant or the potentiated antler stem cells and identified some target miRNAs for further research into their role played in mammalian organ regeneration.

  17. Relationship between microRNA-146a expression and plasma renalase levels in hemodialyzed patients

    PubMed Central

    Koch, Wojciech; Kukula-Koch, Wirginia; Gaweł, Kinga; Bednarek-Skublewska, Anna; Małecka-Massalska, Teresa; Milanowski, Janusz; Petkowicz, Beata; Solski, Janusz

    2017-01-01

    Background microRNA (miRNA) belongs to the non-coding RNAs family responsible for the regulation of gene expression. Renalase is a protein composed of 342 amino acids, secreted by the kidneys and possibly plays an important role in the regulation of sympathetic tone and blood pressure. The aim of the present study was to investigate plasma renalase concentration, and explore the relationship between miRNA-146a-5p expression and plasma renalase levels in hemodialyzed patients. Methods The study population comprised 55 subjects who succumbed to various cardiac events, 27 women and 28 men, aged 65–70 years. The total RNA including miRNA fraction was isolated using QiagenmiRNEasy Serum/Plasma kit according to the manufacturer’s protocol. The isolated miRNAs were analyzed using a quantitative polymerase chain reaction (qRT-PCR) technique. The plasma renalase levels were measured using a commercial ELISA kit. Results In the group of patients with high levels of renalase, higher miRNA-146a expression was found, compared with those with low concentration of renalase. Patients with simultaneous low miRNA-146a expression and high level of renalase were confirmed to deliver a significantly longer survival time compared with other patients. Conclusions miRNA-146a and plasma renalase levels were estimated as independent prognostic factors of hemodialyzed patients’ survival time. Patients with low miRNA-146a expression demonstrated a significantly longer survival time in contrast to the patients with a high expression level of miRNA-146a. Moreover, a significantly longer survival time was found in patients with high renalase activity compared with patients with low activity of the enzyme. PMID:28614373

  18. Downregulation of miRNAs during Delayed Wound Healing in Diabetes: Role of Dicer

    PubMed Central

    Bhattacharya, Sushant; Aggarwal, Rangoli; Singh, Vijay Pal; Ramachandran, Srinivasan; Datta, Malabika

    2015-01-01

    Delayed wound healing is a major complication associated with diabetes and is a result of a complex interplay among diverse deregulated cellular parameters. Although several genes and pathways have been identified to be mediating impaired wound closure, the role of microRNAs (miRNAs) in these events is not very well understood. Here, we identify an altered miRNA signature in the prolonged inflammatory phase in a wound during diabetes, with increased infiltration of inflammatory cells in the basal layer of the epidermis. Nineteen miRNAs were downregulated in diabetic rat wounds (as compared with normal rat wound, d 7 postwounding) together with inhibited levels of the central miRNA biosynthesis enzyme, Dicer, suggesting that in wounds of diabetic rats, the decreased levels of Dicer are presumably responsible for miRNA downregulation. Compared with unwounded skin, Dicer levels were significantly upregulated 12 d postwounding in normal rats, and this result was notably absent in diabetic rats that showed impaired wound closure. In a wound-healing specific quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) array, 10 genes were significantly altered in the diabetic rat wound and included growth factors and collagens. Network analyses demonstrated significant interactions and correlations between the miRNA predicted targets (regulators) and the 10 wound-healing specific genes, suggesting altered miRNAs might fine-tune the levels of these genes that determine wound closure. Dicer inhibition prevented HaCaT cell migration and affected wound closure. Altered levels of Dicer and miRNAs are critical during delayed wound closure and offer promising targets to address the issue of impaired wound healing. PMID:26602065

  19. Identification and characterization of microRNAs in the pancreatic fluke Eurytrema pancreaticum.

    PubMed

    Xu, Min-Jun; Wang, Chun-Ren; Huang, Si-Yang; Fu, Jing-Hua; Zhou, Dong-Hui; Chang, Qiao-Cheng; Zheng, Xu; Zhu, Xing-Quan

    2013-01-25

    Eurytrema pancreaticum is one of the most common flukes, which mainly infects ruminants globally and infects human beings accidentally; causing eurytremiasis that has high veterinary and economic importance. MicroRNAs (miRNAs) are small non-coding RNAs and are now considered as a key mechanism of gene regulation at the post-transcription level. We investigated the global miRNA expression profile of E. pancreaticum adults using next-generation sequencing technology combined with real-time quantitative PCR. By using the genome of the closely-related species Schistosoma japonicum as reference, we obtained 27 miRNA candidates out of 16.45 million raw sequencing reads, with 13 of them found as known miRNAs in S. japonicum and/or S. mansoni, and the remaining 14 miRNAs were considered as novel. Five out of the 13 known miRNAs coming from one family named as sja-miR-2, including family members from miR-2a to miR-2e. Targets of 19 miRNAs were successfully predicated out of the 17401 mRNA and EST non-redundant sequences of S. japonicum. It was found that a significant high number of targets were related to "chch domain-containing protein mitochondrial precursor" (n = 29), "small subunit ribosomal protein s30e" (n = 21), and "insulin-induced gene 1 protein" (n = 9). Besides, "egg protein cp3842" (n = 2), "fumarate hydratase" (n = 2), "ubiquitin-conjugating enzyme" (n = 2), and "sperm-associated antigen 6" (n = 1) were also found as targets of the miRNAs of E. pancreaticum. The present study represents the first global characterization of E. pancreaticum miRNAs, which provides novel resources for a better understanding of the parasite, which, in turn, has implications for the effective control of the disease it causes.

  20. Structural insights into RNA processing by the human RISC-loading complex.

    PubMed

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  1. Conservation and divergence of microRNAs in Populus

    PubMed Central

    Barakat, Abdelali; Wall, Phillip K; DiLoreto, Scott; dePamphilis, Claude W; Carlson, John E

    2007-01-01

    Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species. PMID:18166134

  2. Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells.

    PubMed

    Gomes, Sofia E; Pereira, Diane M; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Borralho, Pedro M; Rodrigues, Cecília M P

    2018-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.

  3. Detection of Serum microRNAs From Department of Defense Serum Repository

    PubMed Central

    Woeller, Collynn F.; Thatcher, Thomas H.; Van Twisk, Daniel; Pollock, Stephen J.; Croasdell, Amanda; Kim, Nina; Hopke, Philip K.; Xia, Xiaoyan; Thakar, Juilee; Mallon, COL Timothy M.; Utell, Mark J.; Phipps, Richard P.

    2017-01-01

    Objective The aim of this study was to investigate whether serum samples from the Department of Defense Serum Repository (DoDSR) are of sufficient quality to detect microRNAs (miRNAs), cytokines, immunoglobulin E (IgE), and polycyclic aromatic hydrocarbons (PAHs). Methods MiRNAs were isolated and quantified by polymerase chain reaction (PCR) array. Cytokines and chemokines related to inflammation were measured using multiplex immunoassays. Cotinine and IgE were detected by enzyme-linked immunoassay (ELISA) and PAHs were detected by Liquid Chromatography/Mass Spectroscopy. Results We detected miRNAs, cytokines, IgE, and PAHs with high sensitivity. Eleven of 30 samples tested positive for cotinine suggesting tobacco exposure. Significant associations between serum cotinine, cytokine, IgE, PAHs, and miRNA were discovered. Conclusion We successfully quantified over 200 potential biomarkers of occupational exposure from DoDSR samples. The stored serum samples were not affected by hemolysis and represent a powerful tool for biomarker discovery and analysis in retrospective studies. PMID:27501106

  4. Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers

    PubMed Central

    Shi, Jian

    2015-01-01

    Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363

  5. Circulating microRNAs as Potential Biomarkers of Infectious Disease

    PubMed Central

    Correia, Carolina N.; Nalpas, Nicolas C.; McLoughlin, Kirsten E.; Browne, John A.; Gordon, Stephen V.; MacHugh, David E.; Shaughnessy, Ronan G.

    2017-01-01

    microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease. PMID:28261201

  6. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions. PMID:21373187

  7. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    PubMed

    Sun, Lei-Ming; Ai, Xiao-Yan; Li, Wen-Yang; Guo, Wen-Wu; Deng, Xiu-Xin; Hu, Chun-Gen; Zhang, Jin-Zhi

    2012-01-01

    MicroRNAs (miRNAs) are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf.) and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  8. Faster experimental validation of microRNA targets using cold fusion cloning and a dual firefly-Renilla luciferase reporter assay.

    PubMed

    Alvarez, M Lucrecia

    2014-01-01

    Different target prediction algorithms have been developed to provide a list of candidate target genes for a given animal microRNAs (miRNAs). However, these computational approaches provide both false-positive and false-negative predictions. Therefore, the target genes of a specific miRNA identified in silico should be experimentally validated. In this chapter, we describe a step-by-step protocol for the experimental validation of a direct miRNA target using a faster Dual Firefly-Renilla Luciferase Reporter Assay. We describe how to construct reporter plasmids using the simple, fast, and highly efficient cold fusion cloning technology, which does not require ligase, phosphatase, or restriction enzymes. In addition, we provide a protocol for co-transfection of reporter plasmids with either miRNA mimics or miRNA inhibitors in human embryonic kidney 293 (HEK293) cells, as well as a description on how to measure Firefly and Renilla luciferase activity using the Dual-Glo Luciferase Assay kit. As an example of the use of this technology, we will validate glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-1207-5p.

  9. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.

    PubMed

    Xia, Ning; Zhang, Youjuan; Wei, Xin; Huang, Yaping; Liu, Lin

    2015-06-09

    MicroRNAs (MiRNAs) have been regarded as clinically important biomarkers and drug discovery targets. In this work, we reported a simple and ultrasensitive electrochemical method for miRNAs detection based on single enzyme amplification and electrochemical-chemical-chemical (ECC) redox cycling. Specifically, upon contact with the target miRNAs, the hairpin structure of biotinylated DNA immobilized on gold electrode was destroyed and the biotin group in DNA was forced away from the electrode surface, allowing for the coupling of streptavidin-conjugated alkaline phosphatase (SA-ALP). Then, ascorbic acid (AA, the enzymatic product of ALP) triggered the ECC redox cycling with ferrocene methanol (FcM) and tris(2-carboxyethyl)phosphine (TCEP) as the redox mediator and the chemical reducing reagent, respectively. The method was more sensitive than that with horseradish peroxidase (HRP) or glucose oxidase (GOx) triggered recycling since one ALP molecule captured by one target miRNA molecule promoted the production of thousands of AA. Analytical merits (e.g., detection limit, dynamic range, specificity, regeneration and reproducibility) were evaluated. The feasibility of the method for analysis of miRNA-21 in human serum has also been demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comprehensive identification and profiling of host miRNAs in response to Singapore grouper iridovirus (SGIV) infection in grouper (Epinephelus coioides).

    PubMed

    Guo, Chuanyu; Cui, Huachun; Ni, Songwei; Yan, Yang; Qin, Qiwei

    2015-10-01

    microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.) aquaculture was severely affected by iridoviral diseases. However, knowledge regarding the host immune responses to viral infection, especially the miRNA-mediated immune regulatory roles, is rather limited. In this study, by employing Solexa deep sequencing approach, we identified 116 grouper miRNAs from grouper spleen-derived cells (GS). As expected, these miRNAs shared high sequence similarity with miRNAs identified in zebrafish (Danio rerio), pufferfish (Fugu rubripes), and other higher vertebrates. In the process of Singapore grouper iridovirus (SGIV) infection, 45 and 43 miRNAs with altered expression (>1.5-fold) were identified by miRNA microarray assays in grouper spleen tissues and GS cells, respectively. Furthermore, target prediction revealed 189 putative targets of these grouper miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analysis of the microRNA transcriptome of Daphnia pulex during aging.

    PubMed

    Hu, Jiabao; Lin, Chongyuan; Liu, Mengdi; Tong, Qiaoqiong; Xu, Shanliang; Wang, Danli; Zhao, Yunlong

    2018-07-20

    Daphnia pulex is an important food organism that exhibits a particular mode of reproduction known as cyclical parthenogenesis (asexual) and sexual reproduction. Regulation of the aging process by microRNAs (miRNAs) is a research hotspot in miRNA studies. To investigate a possible role of miRNAs in regulating aging and senescence, we used Illumina HiSeq to sequence two miRNA libraries from 1-day-old (1d) and 25-day-old (25d) D. pulex specimens. In total, we obtained 11,218,097 clean reads and 28,569 unique miRNAs from 1d specimens and 11,819,106 clean reads and 44,709 unique miRNAs from 25d specimens. Bioinformatic analyses was used to identify 1335 differentially expressed miRNAs from known miRNAs, including 127 miRNAs that exhibited statistically significant differences (P < 0.01); 92 miRNAs were upregulated and 35 were downregulated. Quantitative real-time (qRT)-PCR experiments were performed for nine miRNAs from five samples (1d, 5d, 10d, 15d, 20d and 25d) during the aging process, and the sequencing and qRT-PCR data were found to be consistent. Ninety-four miRNAs were predicted to correspond to 2014 target genes in known miRNAs with 4032 target gene sites. Sixteen pathways changed significantly (P < 0.05) at different developmental stages, revealing many important principles of the miRNA regulatory aging network of D. pulex. Overall, the difference in miRNA expression profile during aging of D. pulex forms a basis for further studies aimed at understanding the role of miRNAs in regulating aging, reproductive transformation, senescence, and longevity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Clinical and pathological implications of miRNA in bladder cancer.

    PubMed

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20-22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.

  13. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4

    PubMed Central

    Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui

    2018-01-01

    Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510

  14. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    PubMed

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  15. Identification and characterization of miRNAs in two closely related C4 and C3 species of Cleome by high-throughput sequencing

    PubMed Central

    Gao, Shuangcheng; Zhao, Wei; Li, Xiang; You, Qingbo; Shen, Xinjie; Guo, Wei; Wang, Shihua; Shi, Guoan; Liu, Zheng; Jiao, Yongqing

    2017-01-01

    Cleome gynandra and Cleome hassleriana, which are C4 and C3 plants, respectively, are two species of Cleome. The close genetic relationship between C. gynandra and C. hassleriana provides advantages for discovering the differences in leaf development and physiological processes between C3 and C4 plants. MicroRNAs (miRNAs) are a class of important regulators of various biological processes. In this study, we investigate the differences in the characteristics of miRNAs between C. gynandra and C. hassleriana using high-throughput sequencing technology. In total, 94 and 102 known miRNAs were identified in C. gynandra and C. hassleriana, respectively, of which 3 were specific for C. gynandra and 10 were specific for C. hassleriana. Ninety-one common miRNAs were identified in both species. In addition, 4 novel miRNAs were detected, including three in C. gynandra and three in C. hassleriana. Of these miRNAs, 67 were significantly differentially expressed between these two species and were involved in extensive biological processes, such as glycol-metabolism and photosynthesis. Our study not only provided resources for C. gynandra and C. hassleriana research but also provided useful clues for the understanding of the roles of miRNAs in the alterations of biological processes in leaf tissues during the evolution of the C4 pathway. PMID:28422166

  16. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    PubMed Central

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  17. In Vivo Delivery of Cytoplasmic RNA Virus-derived miRNAs

    PubMed Central

    Langlois, Ryan A; Shapiro, Jillian S; Pham, Alissa M; tenOever, Benjamin R

    2012-01-01

    The discovery of microRNAs (miRNAs) revealed an unappreciated level of post-transcriptional control used by the cell to maintain optimal protein levels. This process has represented an attractive strategy for therapeutics that is currently limited by in vivo delivery constraints. Here, we describe the generation of a single-stranded, cytoplasmic virus of negative polarity capable of producing functional miRNAs. Cytoplasmic RNA virus-derived miRNAs accumulated to high levels in vitro, generated significant amounts of miRNA star strand, associated with the RNA-induced silencing complex (RISC), and conferred post transcriptional gene silencing in a sequence-specific manner. Furthermore, we demonstrate that these vectors could deliver miRNAs to a wide range of tissues, and sustain prolonged expression capable of achieving measurable knockdown of physiological targets in vivo. Taken together, these results validate noncanonical processing of cytoplasmic-derived miRNAs and provide a novel platform for small RNA delivery. PMID:22086233

  18. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Min, E-mail: min_jin@zju.edu.cn; Wu, Yutao; Wang, Jing

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study,more » we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.« less

  19. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    PubMed

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR evolution.

  20. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. Copyright © 2016. Published by Elsevier B.V.

  1. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing.

    PubMed

    Zhang, Fengjiao; Dong, Wen; Huang, Lulu; Song, Aiping; Wang, Haibin; Fang, Weimin; Chen, Fadi; Teng, Nianjun

    2015-01-01

    MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3'-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.

  2. In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) Expressed Sequence Tags (ESTs)

    PubMed Central

    Dehury, Budheswar; Panda, Debashis; Sahu, Jagajjit; Sahu, Mousumi; Sarma, Kishore; Barooah, Madhumita; Sen, Priyabrata; Modi, Mahendra Kumar

    2013-01-01

    The endogenous small non-coding micro RNAs (miRNAs), which are typically ~21–24 nt nucleotides, play a crucial role in regulating the intrinsic normal growth of cells and development of the plants as well as in maintaining the integrity of genomes. These small non-coding RNAs function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets, and further inferring miRNA functions is a routine process to understand normal biological processes of miRNAs and their roles in the development of plants. Comparative genomics based approach using expressed sequence tags (EST) and genome survey sequences (GSS) offer a cost-effective platform for identification and characterization of miRNAs and their target genes in plants. Despite the fact that sweet potato (Ipomoea batatas L.) is an important staple food source for poor small farmers throughout the world, the role of miRNA in various developmental processes remains largely unknown. In this paper, we report the computational identification of miRNAs and their target genes in sweet potato from their ESTs. Using comparative genomics-based approach, 8 potential miRNA candidates belonging to miR168, miR2911, and miR156 families were identified from 23 406 ESTs in sweet potato. A total of 42 target genes were predicted and their probable functions were illustrated. Most of the newly identified miRNAs target transcription factors as well as genes involved in plant growth and development, signal transduction, metabolism, defense, and stress response. The identification of miRNAs and their targets is expected to accelerate the pace of miRNA discovery, leading to an improved understanding of the role of miRNA in development and physiology of sweet potato, as well as stress response. PMID:24067297

  3. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  4. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types

    PubMed Central

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. PMID:25938964

  5. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS).

    PubMed

    Dong, Hongyan; Curran, Ivan; Williams, Andrew; Bondy, Genevieve; Yauk, Carole L; Wade, Michael G

    2016-01-01

    Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis. Copyright © 2015. Published by Elsevier B.V.

  6. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production.

    PubMed

    Contreras-Hernández, M G; Ochoa-Martínez, L A; Rutiaga-Quiñones, J G; Rocha-Guzmán, N E; Lara-Ceniceros, T E; Contreras-Esquivel, J C; Prado Barragán, L A; Rutiaga-Quiñones, O M

    2018-02-01

    Approximately 1 million tons of agave plants are processed annually by the Mexican tequila and mezcal industry, generating vast amounts of agroindustrial solid waste. This type of lignocellulosic biomass is considered to be agroindustrial residue, which can be used to produce enzymes, giving it added value. However, the structure of lignocellulosic biomass makes it highly recalcitrant, and results in relatively low yield when used in its native form. The aim of this study was to investigate an effective pre-treatment method for the production of commercially important hydrolytic enzymes. In this work, the physical and chemical modification of Agave durangensis leaves was analysed using ultrasound and high temperature as pre-treatments, and production of enzymes was evaluated. The pre-treatments resulted in modification of the lignocellulosic structure and composition; the ultrasound pre-treatment improved the production of inulinase by 4 U/mg and cellulase by 0.297 U/mg, and thermal pre-treatment improved β-fructofuranosidase by 30 U/mg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    PubMed

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  8. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  9. A Screen in Mice Uncovers Repression of Lipoprotein Lipase by MicroRNA-29a as a Mechanism for Lipid Distribution Away From the Liver

    PubMed Central

    Mattis, Aras N.; Song, Guisheng; Hitchner, Kelly; Kim, Roy Y.; Lee, Andrew Y.; Sharma, Amar D.; Malato, Yann; McManus, Michael T.; Esau, Christine C.; Koller, Erich; Koliwad, Suneil; Lim, Lee P.; Maher, Jacquelyn J.; Raffai, Robert L.; Willenbring, Holger

    2015-01-01

    Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism, and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, Lpl is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing Lpl in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. Conclusion Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a’s known anti-fibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease. PMID:25131933

  10. MicroRNAs in the Pineal Gland

    PubMed Central

    Clokie, Samuel J. H.; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L.; Klein, David C.

    2012-01-01

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ∼75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3′-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis. PMID:22908386

  11. Overexpression of SIRT1 Induced by Resveratrol and Inhibitor of miR-204 Suppresses Activation and Proliferation of Microglia.

    PubMed

    Li, Lihong; Sun, Qiang; Li, Yuqian; Yang, Yang; Yang, Yanlong; Chang, Tao; Man, Minghao; Zheng, Longlong

    2015-08-01

    Microglia activation plays an important role in neuroinflammation. Sirtuin1 (SIRT1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent SIRT1 activator, has anti-inflammation property. MicroRNA (miRNA or miR) related to inflammation pathways has been shown to be a promising therapeutic approach for septic encephalopathy (SE). The miR mediated mechanism of regulation of SIRT1 expression in encephalitis. However, the mechanism of was unknown. To address this question, we investigated whether miRNAs and resveratrol regulate the SIRT1 and the functional changes of mice microglia cell lines pre-treated with or without lipopolysaccharide (LPS). The research about direct role of miR-204 and resveratrol on expression of SIRT1 in mice microglia cell lines (N9 and BV2) pre-treated with or without LPS had been performed. Mice microglia cell lines were transfected with miR-204 mimics and inhibitors or treated with resveratrol, and the effects on cell growth, proliferation, and apoptosis of cells were assessed. LPS induced inflammation and activation of mice microglia. Through overexpression of SIRT1, resveratrol, and inhibitor of miR-204 inhibited inflammation process, proliferation of mice microglia cells and promoted its apoptosis. We identified if resveratrol and miR-204 could repress inflammation process and proliferation of mice microglia cell through promoting the expression of SIRT1.

  12. The Role of microRNA Markers in the Diagnosis, Treatment, and Outcome Prediction of Spinal Cord Injury.

    PubMed

    Martirosyan, Nikolay L; Carotenuto, Alessandro; Patel, Arpan A; Kalani, M Yashar S; Yagmurlu, Kaan; Lemole, G Michael; Preul, Mark C; Theodore, Nicholas

    2016-01-01

    Spinal cord injury (SCI) is a devastating condition that affects many people worldwide. Treatment focuses on controlling secondary injury cascade and improving regeneration. It has recently been suggested that both the secondary injury cascade and the regenerative process are heavily regulated by microRNAs (miRNAs). The measurement of specific biomarkers could improve our understanding of the disease processes, and thereby provide clinicians with the opportunity to guide treatment and predict clinical outcomes after SCI. A variety of miRNAs exhibit important roles in processes of inflammation, cell death, and regeneration. These miRNAs can be used as diagnostic tools for predicting outcome after SCI. In addition, miRNAs can be used in the treatment of SCI and its symptoms. Significant laboratory and clinical evidence exist to show that miRNAs could be used as robust diagnostic and therapeutic tools for the treatment of patients with SCI. Further clinical studies are warranted to clarify the importance of each subtype of miRNA in SCI management.

  13. Using ultrasound technology for the inactivation and thermal sensitization of peroxidase in green coconut water.

    PubMed

    Rojas, Meliza Lindsay; Trevilin, Júlia Hellmeister; Funcia, Eduardo Dos Santos; Gut, Jorge Andrey Wilhelms; Augusto, Pedro Esteves Duarte

    2017-05-01

    Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data[OPEN

    PubMed Central

    2018-01-01

    MicroRNAs (miRNAs) are ∼21-nucleotide-long regulatory RNAs that arise from endonucleolytic processing of hairpin precursors. Many function as essential posttranscriptional regulators of target mRNAs and long noncoding RNAs. Alongside miRNAs, plants also produce large numbers of short interfering RNAs (siRNAs), which are distinguished from miRNAs primarily by their biogenesis (typically processed from long double-stranded RNA instead of single-stranded hairpins) and functions (typically via roles in transcriptional regulation instead of posttranscriptional regulation). Next-generation DNA sequencing methods have yielded extensive data sets of plant small RNAs, resulting in many miRNA annotations. However, it has become clear that many miRNA annotations are questionable. The sheer number of endogenous siRNAs compared with miRNAs has been a major factor in the erroneous annotation of siRNAs as miRNAs. Here, we provide updated criteria for the confident annotation of plant miRNAs, suitable for the era of “big data” from DNA sequencing. The updated criteria emphasize replication and the minimization of false positives, and they require next-generation sequencing of small RNAs. We argue that improved annotation systems are needed for miRNAs and all other classes of plant small RNAs. Finally, to illustrate the complexities of miRNA and siRNA annotation, we review the evolution and functions of miRNAs and siRNAs in plants. PMID:29343505

  15. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus.

    PubMed

    Hashimoto, Naoko; Tanaka, Tomoaki

    2017-02-01

    MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.

  16. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    PubMed Central

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  17. Identification and Expression Analysis of microRNAs at the Grain Filling Stage in Rice(Oryza sativa L.)via Deep Sequencing

    PubMed Central

    Yi, Rong; Zhu, Zhixuan; Hu, Jihong; Qian, Qian; Dai, Jincheng; Ding, Yi

    2013-01-01

    MicroRNAs (miRNAs) have been shown to play crucial roles in the regulation of plant development. In this study, high-throughput RNA-sequencing technology was used to identify novel miRNAs, and to reveal miRNAs expression patterns at different developmental stages during rice (Oryza sativa L.) grain filling. A total of 434 known miRNAs (380, 402, 390 and 392 at 5, 7, 12 and 17 days after fertilization, respectively.) were obtained from rice grain. The expression profiles of these identified miRNAs were analyzed and the results showed that 161 known miRNAs were differentially expressed during grain development, a high proportion of which were up-regulated from 5 to 7 days after fertilization. In addition, sixty novel miRNAs were identified, and five of these were further validated experimentally. Additional analysis showed that the predicted targets of the differentially expressed miRNAs may participate in signal transduction, carbohydrate and nitrogen metabolism, the response to stimuli and epigenetic regulation. In this study, differences were revealed in the composition and expression profiles of miRNAs among individual developmental stages during the rice grain filling process, and miRNA editing events were also observed, analyzed and validated during this process. The results provide novel insight into the dynamic profiles of miRNAs in developing rice grain and contribute to the understanding of the regulatory roles of miRNAs in grain filling. PMID:23469249

  18. Dynamics of miRNA biogenesis and nuclear transport.

    PubMed

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K

    2016-12-01

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC) regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE) solver in the Octave software.

  19. Dynamics of miRNA biogenesis and nuclear transport.

    PubMed

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K

    2016-12-22

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC) regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE) solver in the Octave software.

  20. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)

    PubMed Central

    Ding, Yanfei; Chen, Zhen; Zhu, Cheng

    2011-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate specific target mRNAs at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptations to environmental stresses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to plants. To investigate the responsive functions of miRNAs under Cd stress, miRNA expression in Cd-stressed rice (Oryza sativa) was profiled using a microarray assay. A total of 19 Cd-responsive miRNAs were identified, of which six were further validated experimentally. Target genes were also predicted for these Cd-responsive miRNAs, which encoded transcription factors, and proteins associated with metabolic processes or stress responses. In addition, the mRNA levels of several targets were negatively correlated with the corresponding miRNAs under Cd stress. Promoter analysis showed that metal stress-responsive cis-elements tended to occur more frequently in the promoter regions of Cd-responsive miRNAs. These findings suggested that miRNAs played an important role in Cd tolerance in rice, and highlighted a novel molecular mechanism of heavy metal tolerance in plants. PMID:21362738

  1. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity.

    PubMed

    Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P

    2014-10-15

    Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. Copyright © 2014 the American Physiological Society.

  2. Up-Regulated Dicer Expression in Patients with Cutaneous Melanoma

    PubMed Central

    Ma, Zhihai; Swede, Helen; Cassarino, David; Fleming, Elizabeth; Fire, Andrew; Dadras, Soheil S.

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is deregulated in some human malignancies and it correlates with tumor progression, yet this role has not yet been investigated in skin cancers. Methods and Findings Using an anti-human monoclonal antibody against Dicer and immunohistochemistry, we compared the expression of Dicer protein among 404 clinically annotated controls and skin tumors consisting of melanocytic nevi (n = 71), a variety of melanomas (n = 223), carcinomas (n = 73) and sarcomas (n = 12). Results showed a cell-specific up-regulated Dicer in 81% of cutaneous, 80% of acrolentiginous and 96% of metastatic melanoma specimens compared to carcinoma or sarcoma specimens (P<0.0001). The expression of Dicer was significantly higher in melanomas compared to benign melanocytic nevi (P<0.0001). In patients with cutaneous melanomas, Dicer up-regulation was found to be significantly associated with an increased tumor mitotic index (P = 0.04), Breslow's depth of invasion (P = 0.03), nodal metastasis (P = 0.04) and a higher American Joint Committee on Caner (AJCC) clinical stage (P = 0.009). Using western blot analysis, we confirmed the cell-specific up-regulation of Dicer protein in vitro. A pooled-analysis on mRNA profiling in cutaneous tumors showed up-regulation of Dicer at the RNA level in cutaneous melanoma, also showing deregulation of other enzymes that participate in the biogenesis and maturation of canonical miRNAs. Conclusions Increased Dicer expression may be a clinically useful biomarker for patients with cutaneous melanoma. Understanding deregulation of Dicer and its influence on miRNA maturation is needed to predict the susceptibility of melanoma patients to miRNA-based therapy in the future. PMID:21698147

  3. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    PubMed

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing.

    PubMed

    Xiong, X R; Lan, D L; Li, J; Zi, X D; Li, M Y

    2016-12-01

    Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division. © 2016 Blackwell Verlag GmbH.

  5. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification.

    PubMed

    Oishi, Motoi

    2015-05-01

    An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.

  6. Clinical and pathological implications of miRNA in bladder cancer

    PubMed Central

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer. PMID:25653521

  7. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5.

    PubMed

    Han, Jingjing; Sun, Yuena; Song, Weihua; Xu, Tianjun

    2017-03-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mechanisms of Lin28-Mediated miRNA and mRNA Regulation—A Structural and Functional Perspective

    PubMed Central

    Mayr, Florian; Heinemann, Udo

    2013-01-01

    Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions. PMID:23939427

  9. Slicing-independent RISC activation requires the argonaute PAZ domain.

    PubMed

    Gu, Shuo; Jin, Lan; Huang, Yong; Zhang, Feijie; Kay, Mark A

    2012-08-21

    Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood. The Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose primary function is to bind the 3' end of small RNAs. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells. We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs, PAZ-disrupted Agos bound duplex small interfering RNAs, but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Overview of research on Bombyx mori microRNA

    PubMed Central

    Wang, Xin; Tang, Shun-ming; Shen, Xing-jia

    2014-01-01

    Abstract MicroRNAs (miRNAs) constitute some of the most significant regulatory factors involved at the post-transcriptional level after gene expression, contributing to the modulation of a large number of physiological processes such as development, metabolism, and disease occurrence. This review comprehensively and retrospectively explores the literature investigating silkworm, Bombyx mori L. (Lepidoptera: Bombicidae), miRNAs published to date, including discovery, identification, expression profiling analysis, target gene prediction, and the functional analysis of both miRNAs and their targets. It may provide experimental considerations and approaches for future study of miRNAs and benefit elucidation of the mechanisms of miRNAs involved in silkworm developmental processes and intracellular activities of other unknown non-coding RNAs. PMID:25368077

  11. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects.

    PubMed

    Long, Justin M; Ray, Balmiki; Lahiri, Debomoy K

    2014-02-21

    Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β (Aβ) peptide as neuritic plaques in the brain. The short Aβ peptide is derived from the large transmembrane Aβ precursor protein (APP). The rate-limiting step in the production of Aβ from APP is mediated by the β-site APP-cleaving enzyme 1 (BACE1). Dysregulation of BACE1 levels leading to excess Aβ deposition is implicated in sporadic AD. Thus, elucidating the full complement of regulatory pathways that control BACE1 expression is key to identifying novel drug targets central to the Aβ-generating process. MicroRNAs (miRNAs) are expected to participate in this molecular network. Here, we identified a known miRNA, miR-339-5p, as a key contributor to this regulatory network. Two distinct miR-339-5p target sites were predicted in the BACE1 3'-UTR by in silico analyses. Co-transfection of miR-339-5p with a BACE1 3'-UTR reporter construct resulted in significant reduction in reporter expression. Mutation of both target sites eliminated this effect. Delivery of the miR-339-5p mimic also significantly inhibited expression of BACE1 protein in human glioblastoma cells and human primary brain cultures. Delivery of target protectors designed against the miR-339-5p BACE1 3'-UTR target sites in primary human brain cultures significantly elevated BACE1 expression. Finally, miR-339-5p levels were found to be significantly reduced in brain specimens isolated from AD patients as compared with age-matched controls. Therefore, miR-339-5p regulates BACE1 expression in human brain cells and is most likely dysregulated in at least a subset of AD patients making this miRNA a novel drug target.

  12. MicroRNA-339-5p Down-regulates Protein Expression of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 (BACE1) in Human Primary Brain Cultures and Is Reduced in Brain Tissue Specimens of Alzheimer Disease Subjects*

    PubMed Central

    Long, Justin M.; Ray, Balmiki; Lahiri, Debomoy K.

    2014-01-01

    Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β (Aβ) peptide as neuritic plaques in the brain. The short Aβ peptide is derived from the large transmembrane Aβ precursor protein (APP). The rate-limiting step in the production of Aβ from APP is mediated by the β-site APP-cleaving enzyme 1 (BACE1). Dysregulation of BACE1 levels leading to excess Aβ deposition is implicated in sporadic AD. Thus, elucidating the full complement of regulatory pathways that control BACE1 expression is key to identifying novel drug targets central to the Aβ-generating process. MicroRNAs (miRNAs) are expected to participate in this molecular network. Here, we identified a known miRNA, miR-339-5p, as a key contributor to this regulatory network. Two distinct miR-339-5p target sites were predicted in the BACE1 3′-UTR by in silico analyses. Co-transfection of miR-339-5p with a BACE1 3′-UTR reporter construct resulted in significant reduction in reporter expression. Mutation of both target sites eliminated this effect. Delivery of the miR-339-5p mimic also significantly inhibited expression of BACE1 protein in human glioblastoma cells and human primary brain cultures. Delivery of target protectors designed against the miR-339-5p BACE1 3′-UTR target sites in primary human brain cultures significantly elevated BACE1 expression. Finally, miR-339-5p levels were found to be significantly reduced in brain specimens isolated from AD patients as compared with age-matched controls. Therefore, miR-339-5p regulates BACE1 expression in human brain cells and is most likely dysregulated in at least a subset of AD patients making this miRNA a novel drug target. PMID:24352696

  13. Ensemble-based classification approach for micro-RNA mining applied on diverse metagenomic sequences.

    PubMed

    ElGokhy, Sherin M; ElHefnawi, Mahmoud; Shoukry, Amin

    2014-05-06

    MicroRNAs (miRNAs) are endogenous ∼22 nt RNAs that are identified in many species as powerful regulators of gene expressions. Experimental identification of miRNAs is still slow since miRNAs are difficult to isolate by cloning due to their low expression, low stability, tissue specificity and the high cost of the cloning procedure. Thus, computational identification of miRNAs from genomic sequences provide a valuable complement to cloning. Different approaches for identification of miRNAs have been proposed based on homology, thermodynamic parameters, and cross-species comparisons. The present paper focuses on the integration of miRNA classifiers in a meta-classifier and the identification of miRNAs from metagenomic sequences collected from different environments. An ensemble of classifiers is proposed for miRNA hairpin prediction based on four well-known classifiers (Triplet SVM, Mipred, Virgo and EumiR), with non-identical features, and which have been trained on different data. Their decisions are combined using a single hidden layer neural network to increase the accuracy of the predictions. Our ensemble classifier achieved 89.3% accuracy, 82.2% f-measure, 74% sensitivity, 97% specificity, 92.5% precision and 88.2% negative predictive value when tested on real miRNA and pseudo sequence data. The area under the receiver operating characteristic curve of our classifier is 0.9 which represents a high performance index.The proposed classifier yields a significant performance improvement relative to Triplet-SVM, Virgo and EumiR and a minor refinement over MiPred.The developed ensemble classifier is used for miRNA prediction in mine drainage, groundwater and marine metagenomic sequences downloaded from the NCBI sequence reed archive. By consulting the miRBase repository, 179 miRNAs have been identified as highly probable miRNAs. Our new approach could thus be used for mining metagenomic sequences and finding new and homologous miRNAs. The paper investigates a computational tool for miRNA prediction in genomic or metagenomic data. It has been applied on three metagenomic samples from different environments (mine drainage, groundwater and marine metagenomic sequences). The prediction results provide a set of extremely potential miRNA hairpins for cloning prediction methods. Among the ensemble prediction obtained results there are pre-miRNA candidates that have been validated using miRbase while they have not been recognized by some of the base classifiers.

  14. MicroRNAs – Important Molecules in Lung Cancer Research

    PubMed Central

    Leidinger, Petra; Keller, Andreas; Meese, Eckart

    2011-01-01

    MicroRNAs (miRNA) are important regulators of gene expression. They are involved in many physiological processes ensuring the cellular homeostasis of human cells. Alterations of the miRNA expression have increasingly been associated with pathophysiologic changes of cancer cells making miRNAs currently to one of the most analyzed molecules in cancer research. Here, we provide an overview of miRNAs in lung cancer. Specifically, we address biological functions of miRNAs in lung cancer cells, miRNA signatures generated from tumor tissue and from patients’ body fluids, the potential of miRNAs as diagnostic and prognostic biomarker for lung cancer, and its role as therapeutic target. PMID:22303398

  15. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR.

    PubMed

    Stein, Erica V; Duewer, David L; Farkas, Natalia; Romsos, Erica L; Wang, Lili; Cole, Kenneth D

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values.

  16. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR

    PubMed Central

    Duewer, David L.; Farkas, Natalia; Romsos, Erica L.; Wang, Lili; Cole, Kenneth D.

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single unit of measurement rather than a ratio of values. PMID:29145448

  17. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression.

    PubMed

    Wingo, Aliza P; Almli, Lynn M; Stevens, Jennifer S; Stevens, Jennifer J; Klengel, Torsten; Uddin, Monica; Li, Yujing; Bustamante, Angela C; Lori, Adriana; Koen, Nastassja; Stein, Dan J; Smith, Alicia K; Aiello, Allison E; Koenen, Karestan C; Wildman, Derek E; Galea, Sandro; Bradley, Bekh; Binder, Elisabeth B; Jin, Peng; Gibson, Greg; Ressler, Kerry J

    2015-12-03

    DICER1 is an enzyme that generates mature microRNAs (miRNAs), which regulate gene expression post-transcriptionally in brain and other tissues and is involved in synaptic maturation and plasticity. Here, through genome-wide differential gene expression survey of post-traumatic stress disorder (PTSD) with comorbid depression (PTSD&Dep), we find that blood DICER1 expression is significantly reduced in cases versus controls, and replicate this in two independent cohorts. Our follow-up studies find that lower blood DICER1 expression is significantly associated with increased amygdala activation to fearful stimuli, a neural correlate for PTSD. Additionally, a genetic variant in the 3' un-translated region of DICER1, rs10144436, is significantly associated with DICER1 expression and with PTSD&Dep, and the latter is replicated in an independent cohort. Furthermore, genome-wide differential expression survey of miRNAs in blood in PTSD&Dep reveals miRNAs to be significantly downregulated in cases versus controls. Together, our novel data suggest DICER1 plays a role in molecular mechanisms of PTSD&Dep through the DICER1 and the miRNA regulation pathway.

  18. A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs

    PubMed Central

    Fulga, Tudor A.; McNeill, Elizabeth M.; Binari, Richard; Yelick, Julia; Blanche, Alexandra; Booker, Matthew; Steinkraus, Bruno R.; Schnall-Levin, Michael; Zhao, Yong; DeLuca, Todd; Bejarano, Fernando; Han, Zhe; Lai, Eric C.; Wall, Dennis P.; Perrimon, Norbert; Van Vactor, David

    2015-01-01

    Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4–8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes. PMID:26081261

  19. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy

    PubMed Central

    Mori, Marcelo A.; Thomou, Thomas; Boucher, Jeremie; Lee, Kevin Y.; Lallukka, Susanna; Kim, Jason K.; Torriani, Martin; Yki-Järvinen, Hannele; Grinspoon, Steven K.; Cypess, Aaron M.; Kahn, C. Ronald

    2014-01-01

    miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and “whitening” of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte–like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy. PMID:24983316

  20. IsomiR Bank: a research resource for tracking IsomiRs.

    PubMed

    Zhang, Yuanwei; Zang, Qiguang; Xu, Bo; Zheng, Wei; Ban, Rongjun; Zhang, Huan; Yang, Yifan; Hao, Qiaomei; Iqbal, Furhan; Li, Ao; Shi, Qinghua

    2016-07-01

    : Next-Generation Sequencing (NGS) technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent differences from their corresponding mature reference sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). These isomiRs mainly originate via the imprecise and alternative cleavage during the pre-miRNA processing and post-transcriptional modifications that influence miRNA stability, their sub-cellular localization and target selection. Although several tools for the identification of isomiR have been reported, no bioinformatics resource dedicated to gather isomiRs from public NGS data and to provide functional analysis of these isomiRs is available to date. Thus, a free online database, IsomiR Bank has been created to integrate isomiRs detected by our previously published algorithm CPSS. In total, 2727 samples (Small RNA NGS data downloaded from ArrayExpress) from eight species (Arabidopsis thaliana, Drosophila melanogaster, Danio rerio, Homo sapiens, Mus musculus, Oryza sativa, Solanum lycopersicum and Zea mays) are analyzed. At present, 308 919 isomiRs from 4706 mature miRNAs are collected into IsomiR Bank. In addition, IsomiR Bank provides target prediction and enrichment analysis to evaluate the effects of isomiRs on target selection. IsomiR Bank is implemented in PHP/PERL + MySQL + R format and can be freely accessed at http://mcg.ustc.edu.cn/bsc/isomir/ : aoli@ustc.edu.cn or qshi@ustc.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Phytoalexins, miRNAs and breast cancer: a review of phytochemical mediated miRNA regulation in breast cancer

    USDA-ARS?s Scientific Manuscript database

    A specific class of endogenous, non-coding RNAs, classified as microRNAs (miRNAs), has been identified. It has been found that miRNAs are associated with many biological processes and disease states, including all stages of cancer from initiation to tumor promotion and progression. These studies d...

  2. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii. PMID:22439676

  3. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

    PubMed Central

    Mathiyalagan, Ramya; Subramaniyam, Sathiyamoorthy; Natarajan, Sathishkumar; Kim, Yeon Ju; Sun, Myung Suk; Kim, Se Young; Kim, Yu-Jin; Yang, Deok Chun

    2013-01-01

    MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes. PMID:23717176

  4. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Tomohito; Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi

    2016-09-20

    Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes.

  5. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    PubMed

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  6. The miiuy croaker microRNA transcriptome and microRNA regulation of RIG-I like receptor signaling pathway after poly(I:C) stimulation.

    PubMed

    Han, Jingjing; Xu, Guoliang; Xu, Tianjun

    2016-07-01

    MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of secondary structural elements in human microRNA hairpin precursors.

    PubMed

    Liu, Biao; Childs-Disney, Jessica L; Znosko, Brent M; Wang, Dan; Fallahi, Mohammad; Gallo, Steven M; Disney, Matthew D

    2016-03-01

    MicroRNAs (miRNAs) regulate gene expression by targeting complementary mRNAs for destruction or translational repression. Aberrant expression of miRNAs has been associated with various diseases including cancer, thus making them interesting therapeutic targets. The composite of secondary structural elements that comprise miRNAs could aid the design of small molecules that modulate their function. We analyzed the secondary structural elements, or motifs, present in all human miRNA hairpin precursors and compared them to highly expressed human RNAs with known structures and other RNAs from various organisms. Amongst human miRNAs, there are 3808 are unique motifs, many residing in processing sites. Further, we identified motifs in miRNAs that are not present in other highly expressed human RNAs, desirable targets for small molecules. MiRNA motifs were incorporated into a searchable database that is freely available. We also analyzed the most frequently occurring bulges and internal loops for each RNA class and found that the smallest loops possible prevail. However, the distribution of loops and the preferred closing base pairs were unique to each class. Collectively, we have completed a broad survey of motifs found in human miRNA precursors, highly expressed human RNAs, and RNAs from other organisms. Interestingly, unique motifs were identified in human miRNA processing sites, binding to which could inhibit miRNA maturation and hence function.

  8. Circulating microRNAs as Biomarkers for Detection of Autologous Blood Transfusion

    PubMed Central

    Leuenberger, Nicolas; Schumacher, Yorck Olaf; Pradervand, Sylvain; Sander, Thomas; Saugy, Martial; Pottgiesser, Torben

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion. PMID:23840438

  9. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    PubMed

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  10. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis.

    PubMed

    Yan, Chao; Shen, Li-Ping; Ma, Rui; Li, Bo; Li, Xiang-Yang; Hua, Hui; Zhang, Bo; Yu, Qian; Wang, Yu-Gang; Tang, Ren-Xian; Zheng, Kui-Yang

    2016-09-01

    Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

    PubMed Central

    Stark, Alexander; Lin, Michael F.; Kheradpour, Pouya; Pedersen, Jakob S.; Parts, Leopold; Carlson, Joseph W.; Crosby, Madeline A.; Rasmussen, Matthew D.; Roy, Sushmita; Deoras, Ameya N.; Ruby, J. Graham; Brennecke, Julius; Hodges, Emily; Hinrichs, Angie S.; Caspi, Anat; Paten, Benedict; Park, Seung-Won; Han, Mira V.; Maeder, Morgan L.; Polansky, Benjamin J.; Robson, Bryanne E.; Aerts, Stein; van Helden, Jacques; Hassan, Bassem; Gilbert, Donald G.; Eastman, Deborah A.; Rice, Michael; Weir, Michael; Hahn, Matthew W.; Park, Yongkyu; Dewey, Colin N.; Pachter, Lior; Kent, W. James; Haussler, David; Lai, Eric C.; Bartel, David P.; Hannon, Gregory J.; Kaufman, Thomas C.; Eisen, Michael B.; Clark, Andrew G.; Smith, Douglas; Celniker, Susan E.; Gelbart, William M.; Kellis, Manolis

    2008-01-01

    Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or ‘evolutionary signatures’, dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies. PMID:17994088

  12. Genome-wide identification of epithelial-mesenchymal transition-associated microRNAs reveals novel targets for glioblastoma therapy

    PubMed Central

    Zhang, Yong; Zeng, Ailiang; Liu, Shuheng; Li, Rui; Wang, Xiefeng; Yan, Wei; Li, Hailin; You, Yongping

    2018-01-01

    MicroRNAs (miRNA) regulate a number of cellular processes. Recent studies have indicated that these molecules function in the epithelial-mesenchymal transition (EMT). However, the crucial systematic role of EMT and miRNAs together in glioblastoma (GBM) remains poorly understood. The present study demonstrated that EMT was closely associated with malignant progression and clinical outcome using three independent glioma databases (GSE16011, Rembrandt and The Cancer Genome Atlas). Furthermore, integrated analysis of miRNAs and mRNA profiling in 491 GBM samples revealed an EMT biological process associated with an miRNA profile (19 positively and 18 negatively correlated miRNAs). Among these miRNAs, miR-95 and miR-223 indicated a high level of functional validation, reflecting their positive correlation with EMT. Additionally, the upregulation of miR-95, which was negatively correlated with EMT, inhibited cellular invasion in glioma U251 and LN229 cells and decreased the expression of the mesenchymal marker N-catenin, whereas an miRNA positively correlated with EMT, miR-223, exhibited the opposite effect. Therefore, the results of the present study could further enhance the current understanding of the functions of miRNAs in GBM, indicating that the EMT-specific miRNA signature may represent a novel target for GBM therapy. PMID:29740486

  13. MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing.

    PubMed

    Yan, Biao; Wang, Zhen-Hua; Zhu, Chang-Dong; Guo, Jin-Tao; Zhao, Jin-Liang

    2014-08-01

    The Nile tilapia (Oreochromis niloticus; Cichlidae) is an economically important species in aquaculture and occupies a prominent position in the aquaculture industry. MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression involved in diverse biological and metabolic processes. To increase the repertoire of miRNAs characterized in tilapia, we used the Illumina/Solexa sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the different developmental stages of tilapia. Bioinformatic analyses suggest that 197 conserved and 27 novel miRNAs are expressed in tilapia. Sequence alignments indicate that all tested miRNAs and miRNAs* are highly conserved across many species. In addition, we characterized the tissue expression patterns of five miRNAs using real-time quantitative PCR. We found that miR-1/206, miR-7/9, and miR-122 is abundantly expressed in muscle, brain, and liver, respectively, implying a potential role in the regulation of tissue differentiation or the maintenance of tissue identity. Overall, our results expand the number of tilapia miRNAs, and the discovery of miRNAs in tilapia genome contributes to a better understanding the role of miRNAs in regulating diverse biological processes.

  14. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.

    PubMed

    Buratti, Emanuele; Baralle, Francisco Ernesto

    2010-01-01

    Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.

  15. Proteomics for understanding miRNA biology

    PubMed Central

    Huang, Tai-Chung; Pinto, Sneha M.; Pandey, Akhilesh

    2013-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. PMID:23125164

  16. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence

    PubMed Central

    Martinez, Ivan; Hayes, Karen E.; Barr, Jamie A.; Harold, Abby D.; Xie, Mingyi; Bukhari, Syed I. A.; Vasudevan, Shobha; Steitz, Joan A.; DiMaio, Daniel

    2017-01-01

    The reversible state of proliferative arrest known as “cellular quiescence” plays an important role in tissue homeostasis and stem cell biology. By analyzing the expression of miRNAs and miRNA-processing factors during quiescence in primary human fibroblasts, we identified a group of miRNAs that are induced during quiescence despite markedly reduced expression of Exportin-5, a protein required for canonical miRNA biogenesis. The biogenesis of these quiescence-induced miRNAs is independent of Exportin-5 and depends instead on Exportin-1. Moreover, these quiescence-induced primary miRNAs (pri-miRNAs) are modified with a 2,2,7-trimethylguanosine (TMG)-cap, which is known to bind Exportin-1, and knockdown of Exportin-1 or trimethylguanosine synthase 1, responsible for (TMG)-capping, inhibits their biogenesis. Surprisingly, in quiescent cells Exportin-1–dependent pri-miR-34a is present in the cytoplasm together with a small isoform of Drosha, implying the existence of a different miRNA processing pathway in these cells. Our findings suggest that during quiescence the canonical miRNA biogenesis pathway is down-regulated and specific miRNAs are generated by an alternative pathway to regulate genes involved in cellular growth arrest. PMID:28584122

  17. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  18. A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression

    PubMed Central

    Goedeke, Leigh; Vales-Lara, Frances M.; Fenstermaker, Michael; Cirera-Salinas, Daniel; Chamorro-Jorganes, Aranzazu; Ramírez, Cristina M.; Mattison, Julie A.; de Cabo, Rafael; Suárez, Yajaira

    2013-01-01

    hsa-miR-33a and hsa-miR-33b, intronic microRNAs (miRNAs) located within the sterol regulatory element-binding protein 2 and 1 genes (Srebp-2 and -1), respectively, have recently been shown to regulate lipid homeostasis in concert with their host genes. Although the functional role of miR-33a and -b has been highly investigated, the role of their passenger strands, miR-33a* and -b*, remains unclear. Here, we demonstrate that miR-33a* and -b* accumulate to steady-state levels in human, mouse, and nonhuman primate tissues and share a similar lipid metabolism target gene network as their sister strands. Analogous to miR-33, miR-33* represses key enzymes involved in cholesterol efflux (ABCA1 and NPC1), fatty acid metabolism (CROT and CPT1a), and insulin signaling (IRS2). Moreover, miR-33* also targets key transcriptional regulators of lipid metabolism, including SRC1, SRC3, NFYC, and RIP140. Importantly, inhibition of either miR-33 or miR-33* rescues target gene expression in cells overexpressing pre-miR-33. Consistent with this, overexpression of miR-33* reduces fatty acid oxidation in human hepatic cells. Altogether, these data support a regulatory role for the miRNA* species and suggest that miR-33 regulates lipid metabolism through both arms of the miR-33/miR-33* duplex. PMID:23547260

  19. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis

    PubMed Central

    Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Fernández-Borges, Natalia; Andréoletti, Olivier; Díez, Juana; Fischer, Andre; Sklaviadis, Theodoros; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer’s disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation. PMID:29357384

  20. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis.

    PubMed

    Llorens, Franc; Thüne, Katrin; Martí, Eulàlia; Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Michel, Uwe; Fernández-Borges, Natalia; Andréoletti, Olivier; Del Río, José Antonio; Díez, Juana; Fischer, Andre; Bonn, Stefan; Sklaviadis, Theodoros; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.

  1. Identification of microRNAs differentially expressed involved in male flower development.

    PubMed

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  2. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing.

    PubMed

    Jain, Mukesh; Chevala, V V S Narayana; Garg, Rohini

    2014-11-01

    MicroRNAs (miRNAs) are essential components of complex gene regulatory networks that orchestrate plant development. Although several genomic resources have been developed for the legume crop chickpea, miRNAs have not been discovered until now. For genome-wide discovery of miRNAs in chickpea (Cicer arietinum), we sequenced the small RNA content from seven major tissues/organs employing Illumina technology. About 154 million reads were generated, which represented more than 20 million distinct small RNA sequences. We identified a total of 440 conserved miRNAs in chickpea based on sequence similarity with known miRNAs in other plants. In addition, 178 novel miRNAs were identified using a miRDeep pipeline with plant-specific scoring. Some of the conserved and novel miRNAs with significant sequence similarity were grouped into families. The chickpea miRNAs targeted a wide range of mRNAs involved in diverse cellular processes, including transcriptional regulation (transcription factors), protein modification and turnover, signal transduction, and metabolism. Our analysis revealed several miRNAs with differential spatial expression. Many of the chickpea miRNAs were expressed in a tissue-specific manner. The conserved and differential expression of members of the same miRNA family in different tissues was also observed. Some of the same family members were predicted to target different chickpea mRNAs, which suggested the specificity and complexity of miRNA-mediated developmental regulation. This study, for the first time, reveals a comprehensive set of conserved and novel miRNAs along with their expression patterns and putative targets in chickpea, and provides a framework for understanding regulation of developmental processes in legumes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Expression of Small RNA in Aphis gossypii and Its Potential Role in the Resistance Interaction with Melon

    PubMed Central

    Sattar, Sampurna; Anstead, James A.; Sunkar, Ramanjulu; Thompson, Gary A.

    2012-01-01

    Background The regulatory role of small RNAs (sRNAs) in various biological processes is an active area of investigation; however, there has been limited information available on the role of sRNAs in plant-insect interactions. This study was designed to identify sRNAs in cotton-melon aphid (Aphis gossypii) during the Vat-mediated resistance interaction with melon (Cucumis melo). Methodology/Principal Findings The role of miRNAs was investigated in response to aphid herbivory, during both resistant and susceptible interactions. sRNA libraries made from A. gossypii tissues feeding on Vat+ and Vat− plants revealed an unexpected abundance of 27 nt long sRNA sequences in the aphids feeding on Vat+ plants. Eighty-one conserved microRNAs (miRNAs), twelve aphid-specific miRNAs, and nine novel candidate miRNAs were also identified. Plant miRNAs found in the aphid libraries were most likely ingested during phloem feeding. The presence of novel miRNAs was verified by qPCR experiments in both resistant Vat+ and susceptible Vat− interactions. The comparative analyses revealed that novel miRNAs were differentially regulated during the resistant and susceptible interactions. Gene targets predicted for the miRNAs identified in this study by in silico analyses revealed their involvement in morphogenesis and anatomical structure determination, signal transduction pathways, cell differentiation and catabolic processes. Conclusion/Significance In this study, conserved and novel miRNAs were reported in A. gossypii. Deep sequencing data showed differences in the abundance of miRNAs and piRNA-like sequences in A. gossypii. Quantitative RT-PCR revealed that A. gossypii miRNAs were differentially regulated during resistant and susceptible interactions. Aphids can also ingest plant miRNAs during phloem feeding that are stable in the insect. PMID:23173035

  4. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis.

    PubMed

    Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Matoušek, Jaroslav

    2015-12-01

    Among computationally predicted and experimentally validated plant miRNAs, several are conserved across species boundaries in the plant kingdom. In this study, a combined experimental-in silico computational based approach was adopted for the identification and characterization of miRNAs in Humulus lupulus (hop), which is widely cultivated for use by the brewing industry and apart from, used as a medicinal herb. A total of 22 miRNAs belonging to 17 miRNA families were identified in hop following comparative computational approach and EST-based homology search according to a series of filtering criteria. Selected miRNAs were validated by end-point PCR and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), confirmed the existence of conserved miRNAs in hop. Based on the characteristic that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences, a total of 47 potential miRNA targets were identified in hop. Strikingly, the majority of predicted targets were belong to transcriptional factors which could regulate hop growth and development, including leaf, root and even cone development. Moreover, the identified miRNAs may also be involved in other cellular and metabolic processes, such as stress response, signal transduction, and other physiological processes. The cis-regulatory elements relevant to biotic and abiotic stress, plant hormone response, flavonoid biosynthesis were identified in the promoter regions of those miRNA genes. Overall, findings from this study will accelerate the way for further researches of miRNAs, their functions in hop and shows a path for the prediction and analysis of miRNAs to those species whose genomes are not available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Chui Sun; Sinha, Rohit Anthony; Ota, Sho

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we usedmore » a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.« less

  6. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery.

    PubMed

    Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J

    2015-07-01

    Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.

  7. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery

    PubMed Central

    Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J

    2015-01-01

    Background/Objectives: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. Subjects/Methods: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Results: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. Conclusions: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting. PMID:25783038

  8. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development

    PubMed Central

    Wang, Guangzhi; Ma, Xinli; Li, Meihua; Wu, Haibo; Fu, Qiushi; Zhang, Yi; Yi, Hongping

    2017-01-01

    MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, “transcription, DNA-dependent”, “rRNA processing”, “oxidation reduction”, “signal transduction”, “regulation of transcription, DNA-dependent”, and “metabolic process” were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5’ RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices. PMID:28742088

  9. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process.

    PubMed

    Xie, Wenyan; Melzig, Matthias F

    2018-04-16

    Herbal medicine is now globally accepted as a valid alternative system of pharmaceutical therapies. Various studies around the world have been initiated to develop scientific evidence-based herbal therapies. Recently, the therapeutic potential of medicinal plant derived miRNAs has attracted great attraction. MicroRNAs have been indicated as new bioactive ingredients in medicinal plants. However, the stability of miRNAs during the herbal preparation process and their bioavailability in humans remain unclear. Viscum album L. (European mistletoe) has been widely used in folk medicine for the treatment of cancer and cardiovascular diseases. Our previous study has indicated the therapeutic potential of mistletoe miRNAs by using bioinformatics tools. To evaluate the stability of these miRNAs, various mistletoe extracts that mimic the clinical medicinal use as well as traditional folk medicinal use were prepared. The mistletoe miRNAs including miR166a-3p, miR159a, miR831-5p, val-miR218 and val-miR11 were quantified by stem-loop qRT-PCR. As a result, miRNAs were detectable in the majority of the extracts, indicating that consumption of medicinal plant preparations might introduce miRNAs into mammals. The factors that might cause miRNA degradation include ultrasonic treatment, extreme heat, especially RNase treatment, while to be associated with plant molecules (e.g., proteins, exosomes) might be an efficient way to protect miRNAs against degradation. Our study confirmed the stability of plant derived miRNAs during herb preparations, suggesting the possibility of functionally intact medicinal plant miRNAs in mammals.

  10. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos.

    PubMed

    Stowe, Heather M; Curry, Erin; Calcatera, Samantha M; Krisher, Rebecca L; Paczkowski, Melissa; Pratt, Scott L

    2012-06-15

    MicroRNA (miRNA) is a class of small, single-stranded ribonucleic acids that regulate gene expression post-transcriptionally and are involved in somatic cell, germ cell, and embryonic development. As the enzyme responsible for producing mature miRNA, Dicer is crucial to miRNA production. Characterization of Dicer and its expression at the nucleotide level, as well as the identification of miRNA expression in reproductive tissues, have yet to be reported for the domestic pig (Sus scrofa), a species important for disease modeling, biomedical research, and food production. In this study we determined the primary cDNA sequence of porcine Dicer (pDicer), confirmed its expression in porcine oocytes and early stage embryos, and evaluated the expression of specific miRNA during early embryonic development and between in vivo (IVO) and in vitro (IVF) produced embryos. Total cellular RNA (tcRNA) was isolated and subjected to end point RT-PCR, subcloning, and sequencing. The pDicer coding sequence was found to be highly conserved, and phylogenetic analysis showed that pDicer is more highly conserved to human Dicer (hDicer) than the mouse homolog. Expression of pDicer mRNA was detected in oocytes and in IVO produced blastocyst embryos. Two RT-PCR procedures were conducted to identify and quantitate miRNA expressed in metaphase II oocytes (MII) and embryos. RT-PCR array was conducted using primers designed for human miRNA, and 86 putative porcine miRNA in MII and early embryos were detected. Fewer miRNAs were detected in 8-cell (8C) embryos compared to MII and blastocysts (B) (P=0.026 and P<0.0001, respectively). Twenty-one miRNA (of 88 examined) were differentially expressed between MII and 8C, 8C and B, or MII and B. Transcripts targeted by the differentially expressed miRNA were enriched in gene ontology (GO) categories associated with cellular development and differentiation. Further, we evaluated the effects of IVF culture on the expression of specific miRNA at the blastocyst stage. Quantitative RT-PCR was conducted on blastocyst tcRNA isolated from individual IVO and IVF produced embryos for miR-18a, -21, and -24. Only the expression level of miR-24 differed due to culture conditions, with lower levels detected in the IVO embryos. These data show that pDicer and miRNA are present in porcine oocytes and embryos. In addition, specific miRNA levels are altered due to stage of embryonic development and, in the case of miR-24, due to culture conditions, making this miRNA a candidate for screening of embryo quality. Additional studies characterizing Dicer and miRNA expression during early embryonic development from IVO and IVF sources are required to further examine and evaluate the use of miRNA as a marker for embryo quality. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  12. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  13. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

    PubMed Central

    Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.

    2014-01-01

    ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines. PMID:24807715

  14. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions

    PubMed Central

    Shukla, Girish C.; Singh, Jagjit; Barik, Sailen

    2012-01-01

    The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia. PMID:22468167

  15. Cryopreservation of boar sperm induces differential microRNAs expression.

    PubMed

    Zhang, Yan; Dai, Dinghui; Chang, Yu; Li, Yuan; Zhang, Ming; Zhou, Guangbin; Peng, Zhanghua; Zeng, Changjun

    2017-06-01

    Lower conception rates and litter sizes limit the wide use of artificial insemination with frozen-thawed boar sperm, due to a lack of understanding of the mechanisms that cause cryodamage and cryoinjury to sperm during cryopreservation. CryoMiRs, a family of freeze-related microRNAs (miRNAs), are associated with freeze tolerance, and regulate metabolism in mammalian hibernators and insects. Thus, we speculate that miRNAs maybe involved in the regulation of the freeze-thaw process and may affect boar sperm function. In this study, we studied the differential expression of 46 miRNAs that have roles in spermatogenesis, sperm maturation, and sperm quality in response to cryopreservation (with or without 3% glycerol). The results indicated that, in response to cryopreservation with 3% glycerol, 14 miRNAs were significantly up-regulated, but only two miRNAs (miR-22 and miR-450b-5p) were significantly down-regulated, relative to fresh sperm. Preservation with 3% glycerol caused up-regulation of 17 miRNAs, but only caused down-regulation of one miRNA (miR-24), relative to sperm cryopreserved without glycerol. Functional annotations of these differentially expressed miRNAs indicated that these miRNAs and their targets are mainly associated with metabolic and cellular processes. Therefore, our findings show that cryopreservation results in changes in miRNA expression, and suggest that the anti-freeze mechanisms of boar sperm need to be studied further. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Review in Translational Cardiology: MicroRNAs and Myocardial Fibrosis in Aortic Valve Stenosis, a Deep Insight on Left Ventricular Remodeling.

    PubMed

    Iacopo, Fabiani; Lorenzo, Conte; Calogero, Enrico; Matteo, Passiatore; Riccardo, Pugliese Nicola; Veronica, Santini; Valentina, Barletta; Riccardo, Liga; Cristian, Scatena; Maria, Mazzanti Chiara; Vitantonio, Di Bello

    2016-01-01

    MicroRNAs (miRNAs) are a huge class of noncoding RNAs that regulate protein-encoding genes (degradation/inhibition of translation). miRNAs are nowadays recognized as regulators of biological processes underneath cardiovascular disorders including hypertrophy, ischemia, arrhythmias, and valvular disease. In particular, circulating miRNAs are promising biomarkers of pathology. This review gives an overview of studies in aortic valve stenosis (AS), exclusively considering myocardial remodeling processes. We searched through literature (till September 2016), all studies and reviews involving miRNAs and AS (myocardial compartment). Although at the beginning of a new era, clear evidences exist on the potential diagnostic and prognostic implementation of miRNAs in the clinical setting. In particular, for AS, miRNAs are modulators of myocardial remodeling and hypertrophy. In our experience, here presented in summary, the principal findings of our research were a confirm of the pathophysiological role in AS of miRNA-21, in particular, the interdependence between textural miRNA-21 and fibrogenic stimulus induced by an abnormal left ventricular pressure overload. Moreover, circulating miRNA-21 (biomarker) levels are able to reflect the presence of significant myocardial fibrosis (MF). Thus, the combined evaluation of miRNA-21, a marker of MF, and hypertrophy, together with advanced echocardiographic imaging (two-dimensional speckle tracking), could fulfill many existing gaps, renewing older guidelines paradigms, also allowing a better risk prognostic and diagnostic strategies.

  17. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme and DNA molecules simultaneously thus resulting in the enormous amplification of the colorimetric signal. This CNT-enzyme label thus aided the ultra-sensitive detection of pancreatic cancer (PC) biomarker miRNA 210 and PC biomarker panel (miRNA 16, miRNA 21 and miRNA 196a). All these LFBs were also applied in the field of real sample detection.

  18. Cloning and analysis of fetal ovary microRNAs in cattle.

    PubMed

    Tripurani, Swamy K; Xiao, Caide; Salem, Mohamed; Yao, Jianbo

    2010-07-01

    Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed. Sequence analysis of random clones from the library identified 679 miRNA sequences, which represent 58 distinct bovine miRNAs. Of these distinct miRNAs, 42 are known bovine miRNAs present in the miRBase database and the remaining 16 miRNAs include 15 new bovine miRNAs that are homologous to miRNAs identified in other species, and one novel miRNA, which does not match any miRNAs in the database. The precursor sequences for 14 of the new 15 miRNAs as well as the novel miRNA were identified from the bovine genome database and their hairpin structures were predicted. Expression analysis of the 58 miRNAs in fetal ovaries in comparison to somatic tissue pools identified 8 miRNAs predominantly expressed in fetal ovaries. Further analysis of the eight miRNAs in germinal vesicle (GV) stage oocytes identified two miRNAs (bta-mir424 and bta-mir-10b), that are highly abundant in GV oocytes. Both miRNAs show similar expression patterns during oocyte maturation and preimplantation development of bovine embryos, being abundant in GV and MII stage oocytes, as well as in early stage embryos (until 16-cell stage). The amount of the novel miRNA is relatively small in oocytes and early cleavage embryos but greater in blastocysts, suggesting a role of this miRNA in blastocyst cell differentiation. Copyright 2010 Elsevier B.V. All rights reserved.

  19. A viral microRNA functions as an ortholog of cellular miR-155

    PubMed Central

    Gottwein, Eva; Mukherjee, Neelanjan; Sachse, Christoph; Frenzel, Corina; Majoros, William H.; Chi, Jen-Tsan A.; Braich, Ravi; Manoharan, Muthiah; Soutschek, Jürgen; Ohler, Uwe; Cullen, Bryan R.

    2008-01-01

    All metazoan eukaryotes express microRNAs (miRNAs), ∼22 nt regulatory RNAs that can repress the expression of mRNAs bearing complementary sequences1. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis2. While specific viral miRNAs have been shown to autoregulate viral mRNAs3,4 or downregulate cellular mRNAs5,6, the function of the majority of viral miRNAs remains unknown. Here, we report that the miR-K12−11 miRNA encoded by Kaposi's Sarcoma Associated Herpesvirus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA “seed” region7. Using a range of assays, we demonstrate that expression of physiological levels of miR-K12−11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12−11 functions as an ortholog of cellular miR-155 and has likely evolved to exploit a pre-existing gene regulatory pathway in B-cells. Moreover, the known etiological role of miR-155 in B-cell transformation8-10 suggests that miR-K12−11 may contribute to the induction of KSHV-positive B-cell tumors in infected patients. PMID:18075594

  20. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  1. MicroRNAs: A Puzzling Tool in Cancer Diagnostics and Therapy.

    PubMed

    D'Angelo, Barbara; Benedetti, Elisabetta; Cimini, Annamaria; Giordano, Antonio

    2016-11-01

    MicroRNAs (miRNAs) constitute a dominating class of small RNAs that regulate diverse cellular functions. Due the pivotal role of miRNAs in biological processes, a deregulated miRNA expression is likely involved in human cancers. MicroRNAs possess tumor suppressor capability, as well as display oncogenic characteristics. Interestingly, miRNAs exist in various biological fluids as circulating entities. Changes in the profile of circulating miRNAs are indicative of pathophysiological conditions in human cancer. This concept has led to consider circulating miRNAs valid biomarkers in cancer diagnostics. Furthermore, current research promotes the use of miRNAs as a target in cancer therapy. However, miRNAs are an evolving research field. Although miRNAs have been demonstrated to be potentially valuable tools both in cancer diagnosis and treatment, a greater effort should be made to improve our understanding of miRNAs biology. This review describes the biology of microRNAs, emphasizing on the use of miRNAs in cancer diagnostics and therapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia

    PubMed Central

    Wang, Xiao-Shuang; Zhang, Jun-Wu

    2008-01-01

    Abstract MicroRNAs (miRNAs) are endogenously expressed, functional RNAs that interact with native coding mRNAs to cleave mRNA or repress translation. Several miRNAs contribute to normal haematopoietic processes and some miRNAs act both as tumour suppressors and oncogenes in the pathology of haematological malignancies. While most effort is engaged in identifying and investigating the target genes of miRNAs, miRNA gene promoter methylation or transcriptional regulation is another important field of investigation, since these two main mechanisms can form a regulatory circuit. This review focuses on recent researches on miRNAs with important roles in myeloid cells. PMID:18554315

  3. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum.

    PubMed

    Zhu, Lihui; Zhao, Jiangping; Wang, Jianbin; Hu, Chao; Peng, Jinbiao; Luo, Rong; Zhou, Chunjing; Liu, Juntao; Lin, Jiaojiao; Jin, Youxin; Davis, Richard E; Cheng, Guofeng

    2016-02-01

    Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.

  4. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum

    PubMed Central

    Hu, Chao; Peng, Jinbiao; Luo, Rong; Zhou, Chunjing; Liu, Juntao; Lin, Jiaojiao; Jin, Youxin; Davis, Richard E.; Cheng, Guofeng

    2016-01-01

    Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production. PMID:26871705

  5. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation

    PubMed Central

    Roden, Christine; Gaillard, Jonathan; Kanoria, Shaveta; Rennie, William; Barish, Syndi; Cheng, Jijun; Pan, Wen; Liu, Jun; Cotsapas, Chris; Ding, Ye; Lu, Jun

    2017-01-01

    Mature microRNAs (miRNAs) are processed from hairpin-containing primary miRNAs (pri-miRNAs). However, rules that distinguish pri-miRNAs from other hairpin-containing transcripts in the genome are incompletely understood. By developing a computational pipeline to systematically evaluate 30 structural and sequence features of mammalian RNA hairpins, we report several new rules that are preferentially utilized in miRNA hairpins and govern efficient pri-miRNA processing. We propose that a hairpin stem length of 36 ± 3 nt is optimal for pri-miRNA processing. We identify two bulge-depleted regions on the miRNA stem, located ∼16–21 nt and ∼28–32 nt from the base of the stem, that are less tolerant of unpaired bases. We further show that the CNNC primary sequence motif selectively enhances the processing of optimal-length hairpins. We predict that a small but significant fraction of human single-nucleotide polymorphisms (SNPs) alter pri-miRNA processing, and confirm several predictions experimentally including a disease-causing mutation. Our study enhances the rules governing mammalian pri-miRNA processing and suggests a diverse impact of human genetic variation on miRNA biogenesis. PMID:28087842

  6. Characterization and potential role of microRNA in the Chinese dominant malaria mosquito Anopheles sinensis (Diptera: Culicidae) throughout four different life stages.

    PubMed

    Feng, Xinyu; Wu, Jiatong; Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-01-01

    microRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Many studies have shown that miRNAs play critical roles in development, differentiation, apoptosis, and innate immunity. However, there are a few reports describing miRNAs in Anopheles sinensis , the most common, and one of the dominant malaria mosquito in China. Here, we investigated the global miRNA expression profile across four different developmental stages including embryo, larval, pupal, and adult stages using Illumina Hiseq 2500 sequencing. In total, 164 miRNAs were obtained out of 107.46 million raw sequencing reads. 99 of them identified as known miRNAs, and the remaining 65 miRNAs were considered as novel. By analyzing the read counts of miRNAs in all developmental stages, 95 miRNAs showed stage-specific expression (q < 0.01 and |log2 (fold change)| > 1) in consecutive stages, indicating that these miRNAs may be involved in critical physiological activity during development. Sixteen miRNAs were identified to be commonly dysregulated throughout four developmental stages. Many miRNAs showed stage-specific expression, such as asi-miR-2943 was exclusively expressed in the embryo stage, and asi-miR-1891 could not be detected in larval stage. The expression of six selected differentially expressed miRNAs identified by qRT-PCR were consistent with our sequencing results. Furthermore, 5296 and 1902 target genes were identified for the dysregulated 68 known and 27 novel miRNAs respectively by combining miRanda and RNAhybrid prediction. GO annotation and KEGG pathway analysis for the predicted genes of dysregulated miRNAs revealed that they might be involved in a broad range of biological processes related with the development, such as membrane, organic substance transport and several key pathways including protein processing in endoplasmic reticulum, propanoate metabolism and folate biosynthesis. Thirty-two key miRNAs were identified by microRNA-gene network analysis. The present study represents the first global characterization of An. sinensis miRNAs in its four developmental stages. The presence and differential expression of An. sinensis miRNAs imply that such miRNAs may play critical roles in An. sinensis life cycle. A better understanding of the functions of these miRNAs will have great implication for the effective control of vector population and therefore interrupting malaria transmission.

  7. Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses

    PubMed Central

    Zhou, Yonggang; Chen, Huan; Dong, Yuanyuan; Wang, Nan; Li, Xiaowei; Jameel, Aysha; Yang, He; Zhang, Min; Chen, Kai; Wang, Fawei; Li, Haiyan

    2016-01-01

    Plant microRNAs are small non-coding, endogenic RNA molecule (containing 20–24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels. Normalizing the data using reference genes is essential for the analysis of reliable RT-qPCR data. In this study, two groups of candidate reference mRNAs and miRNAs in soybean leaves and roots treated with various abiotic stresses (PEG-simulated drought, salinity, alkalinity, salinity+alkalinity, and abscisic acid) were analyzed by RT-qPCR. We analyzed the most appropriate reference mRNA/miRNAs using the geNorm, NormFinder, and BestKeeper algorithms. According to the results, Act and EF1b were the most suitable reference mRNAs in leaf and root samples, for mRNA and miRNA precursor data normalization. The most suitable reference miRNAs found in leaf and root samples were 166a and 167a for mature miRNA data normalization. Hence the best combinations of reference mRNAs for mRNA and miRNA precursor data normalization were EF1a + Act or EF1b + Act in leaf samples, and EF1a + EF1b or 60s + EF1b in root samples. For mature miRNA data normalization, the most suitable combinations of reference miRNAs were 166a + 167d in leaf samples, and 171a + 156a or 167a + 171a in root samples. We identified potential reference mRNA/miRNAs for accurate RT-qPCR data normalization for mature miRNA, miRNA precursors, and their targeted mRNAs. Our results promote miRNA-based studies on soybean plants exposed to abiotic stress conditions. PMID:27176476

  8. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans.

    PubMed

    Yu, Dianke; Wu, Leihong; Gill, Pritmohinder; Tolleson, William H; Chen, Si; Sun, Jinchun; Knox, Bridgett; Jin, Yaqiong; Xiao, Wenming; Hong, Huixiao; Wang, Yong; Ren, Zhen; Guo, Lei; Mei, Nan; Guo, Yongli; Yang, Xi; Shi, Leming; Chen, Yinting; Zeng, Linjuan; Dreval, Kostiantyn; Tryndyak, Volodymyr; Pogribny, Igor; Fang, Hong; Shi, Tieliu; McCullough, Sandra; Bhattacharyya, Sudeepa; Schnackenberg, Laura; Mattes, William; Beger, Richard D; James, Laura; Tong, Weida; Ning, Baitang

    2018-02-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.

  9. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    PubMed

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  10. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504

  11. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Asgari, Sassan

    2013-06-01

    MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host-virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from Spodoptera frugiperda cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. S. frugiperda miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5' end of miRNA. The 5' ends of the miRNAs were more conserved than the 3' ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in Bombyx mori, with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host-virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.

  12. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor.

    PubMed

    Zhao, Botao; Ge, Liangfa; Liang, Ruqiang; Li, Wei; Ruan, Kangcheng; Lin, Hongxuan; Jin, Youxin

    2009-04-08

    MicroRNAs (miRNAs) are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. In this study, we identified miR-169g and miR-169n (o) as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp). The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE) in the upstream region of miR-169n (o) suggested that miR-169n (o) may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE). Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants.

  13. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor

    PubMed Central

    Zhao, Botao; Ge, Liangfa; Liang, Ruqiang; Li, Wei; Ruan, Kangcheng; Lin, Hongxuan; Jin, Youxin

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. Results In this study, we identified miR-169g and miR-169n (o) as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp). The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE) in the upstream region of miR-169n (o) suggested that miR-169n (o) may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE). Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. Conclusion We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants. PMID:19351418

  14. Convergent microRNA actions coordinate neocortical development.

    PubMed

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  15. Genome-Wide Identification and Comparative Analysis of Conserved and Novel MicroRNAs in Grafted Watermelon by High-Throughput Sequencing

    PubMed Central

    Liu, Na; Yang, Jinghua; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2013-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted watermelon, and its relevance to diverse biological processes and environmental adaptation. PMID:23468976

  16. Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese.

    PubMed

    Oh, Sangnam; Park, Mi-Ri; Ryu, Sangdon; Maburutse, Brighton; Kim, Ji-Uk; Kim, Younghoon

    2017-09-28

    MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per 200 mg/200 μl of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a timedependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs ( miR-93, miR-106a, miR-130, miR-155, miR-181a , and miR- 223 ) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223 , which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

  17. Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation

    PubMed Central

    Chak, Kayam; Roy-Chaudhuri, Biswajoy; Kim, Hak Kyun; Kemp, Kayla C; Kay, Mark A

    2016-01-01

    MicroRNA-21 (miR-21) is consistently up-regulated in various neurological disorders, including epilepsy. Here, we show that the biogenesis of miR-21 is altered following pilocarpine status epilepticus (SE) with an increase in precursor miR-21 (pre-miR-21) in rats. We demonstrate that pre-miR-21 has an energetically favorable site overlapping with the miR-21 binding site and competes with mature miR-21 for binding in the 3′UTR of TGFBR2 mRNA, but not NT-3 mRNA in vitro. This binding competition influences miR-21-mediated repression in vitro and correlates with the increase in TGFBR2 and decrease in NT-3 following SE. Polysome profiling reveals co-localization of pre-miR-21 in the ribosome fraction with translating mRNAs in U-87 cells. The current work suggests that pre-miR-21 may post-transcriptionally counteract miR-21-mediated suppression following SE and could potentially lead to prolonged TGF-β receptor expression impacting epileptogenesis. The study further supports that the ratio of the pre to mature miRNA may be important in determining the regulatory effects of a miRNA gene. PMID:27725160

  18. Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue.

    PubMed

    Cheung, Louisa; Fisher, Rachel M; Kuzmina, Natalia; Li, Dongqing; Li, Xi; Werngren, Olivera; Blomqvist, Lennart; Ståhle, Mona; Landén, Ning Xu

    2016-03-01

    Psoriasis is an immune-mediated inflammatory disease, which is associated with a high risk of developing systemic comorbidities, such as obesity, cardiovascular disease, and diabetes mellitus. However, the mechanistic links between psoriatic skin inflammation and systemic comorbidities remain largely unknown. MicroRNAs (miRNAs) are recently discovered gene regulators that play important roles in psoriasis skin inflammation. In this study we aimed to explore whether the skin inflammation in psoriasis affects miRNA expression of the underlying subcutaneous adipose tissue and whether this may be a link between psoriasis and comorbidities. To this end, we compared the miRNA expression profile of subcutaneous adipose tissue underneath lesional and nonlesional psoriatic skin. We further validated the differential expression of several miRNAs and characterized their expression patterns in different cell types present in subcutaneous adipose tissue. We focused on miR-26b-5p, which was highly up-regulated in subcutaneous adipose tissue underneath lesional psoriasis skin. We showed that it targets and down-regulates neutral cholesterol ester hydrolase 1, an enzyme essential for cholesterol efflux, in monocytes/macrophages, adipocytes, vascular endothelial cells, and fibroblasts. We conclude that this miRNA may serve as a mechanistic link between psoriatic skin inflammation and its systemic comorbidities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.

    PubMed

    Philip, Anna; Ferro, Valerie A; Tate, Rothwelle J

    2015-10-01

    The "dietary xenomiR hypothesis" proposes that microRNAs (miRNAs) in foodstuffs survive transit through the mammalian gastrointestinal tract and pass into cells intact to affect gene regulation. However, debate continues as to whether dietary intake poses a feasible route for such exogenous gene regulators. Understanding on miRNA levels during pretreatments of human diet is essential to test their bioavailability during digestion. This study makes the novel first use of an in vitro method to eliminate the inherent complexities and variability of in vivo approaches used to test this hypothesis. Plant miRNA levels in soybean and rice were measured during storage, processing, cooking, and early digestion using real-time PCR. We have demonstrated for the first time that storage, processing, and cooking does not abolish the plant miRNAs present in the foodstuffs. In addition, utilizing a simulated human digestion system revealed significant plant miRNA bioavailability after early stage digestion for 75 min. Attenuation of plant messenger RNA and synthetic miRNA was observed under these conditions. Even after an extensive pretreatment, plant-derived miRNA, delivered by typical dietary ingestion, has a robustness that could make them bioavailable for uptake during early digestion. The potential benefit of these regulatory molecules in pharma nutrition could be explored further. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  1. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles

    PubMed Central

    Zheng, Yun; Ji, Bo; Song, Renhua; Wang, Shengpeng; Li, Ting; Zhang, Xiaotuo; Chen, Kun; Li, Tianqing; Li, Jinyan

    2016-01-01

    Various types of mutation and editing (M/E) events in microRNAs (miRNAs) can change the stabilities of pre-miRNAs and/or complementarities between miRNAs and their targets. Small RNA (sRNA) high-throughput sequencing (HTS) profiles can contain many mutated and edited miRNAs. Systematic detection of miRNA mutation and editing sites from the huge volume of sRNA HTS profiles is computationally difficult, as high sensitivity and low false positive rate (FPR) are both required. We propose a novel method (named MiRME) for an accurate and fast detection of miRNA M/E sites using a progressive sequence alignment approach which refines sensitivity and improves FPR step-by-step. From 70 sRNA HTS profiles with over 1.3 billion reads, MiRME has detected thousands of statistically significant M/E sites, including 3′-editing sites, 57 A-to-I editing sites (of which 32 are novel), as well as some putative non-canonical editing sites. We demonstrated that a few non-canonical editing sites were not resulted from mutations in genome by integrating the analysis of genome HTS profiles of two human cell lines, suggesting the existence of new editing types to further diversify the functions of miRNAs. Compared with six existing studies or methods, MiRME has shown much superior performance for the identification and visualization of the M/E sites of miRNAs from the ever-increasing sRNA HTS profiles. PMID:27229138

  2. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity.

    PubMed

    Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A; Nathanielsz, Peter W; Myatt, Leslie; Nijland, Mark J

    2013-10-01

    Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.

  3. High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation

    PubMed Central

    Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.

    2013-01-01

    The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179

  4. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    ERIC Educational Resources Information Center

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  5. Association between Microrna 146a and Microrna 196a2 Genes Polymorphism and Breast Cancer Risk in North Indian Women

    PubMed

    Bodal, Vijay Kumar; Sangwan, Shruti; Bal, Manjit Singh; Kaur, Mohanvir; Sharma, Sidarth; Kaur, Bhavleen

    2017-09-27

    Background: Micro RNAs (miRNAs) are small, noncoding RNA molecules. They can function as either oncogenes or tumor suppressor genes. Single nucleotide polymorphisms (SNP) present in the pre-miRNA region could affect the processing of miRNA and thus alter mature miRNA expression. The studies done so far had shown conflicting results regarding association of two common polymorphisms i.e.hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 with breast cancer. OBJECTIVE: In the study, we examined the hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 SNP association with breast cancer patients in north Indian women. Materials and Methods: This study included 100 breast cancer patients and 100 controls and was done over a period of two years. Genotypes of the hsa-miR-146 (rs2910164 G>C) and hsa-miR-196a2 (rs11614913 C>T) were identified by polymerase chain reaction – restriction length polymorphism (PCR-RFLP) technique in peripheral blood DNA samples. Statistical analysis: We assessed the strength of association of miRNA polymorphisms with breast cancer using Odds ratio (OR) along with 95% confidence intervals. Results: Heterozygous genotypes of hsa-miR-196a2 rs11614913 and combined hsa-miR-146 rs2910164 & hsa-miR-196a2 polymorphism were associated with significantly increased risk of breast cancer (OR-1.7, 95% CI–1.00-3.18) and (OR-1.9, 95% CI-0.85-4.46) respectively. Conclusion: Our study suggests that rs2910164 GC and rs11614913 CT genotypes may contribute to breast cancer susceptibility in north Indian women. Creative Commons Attribution License

  6. Apple miRNAs and tasiRNAs with novel regulatory networks

    USDA-ARS?s Scientific Manuscript database

    MiRNAs, negatively affecting gene expression at the post-transcriptional levels, have been shown to control numerous genes involved in various biological and metabolic processes. To date, the identification of miRNAs in plants focused on certain model plants, such as Arabidopsis and rice. Investig...

  7. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression

    PubMed Central

    Wingo, Aliza P.; Almli, Lynn M.; Stevens, Jennifer J.; Klengel, Torsten; Uddin, Monica; Li, Yujing; Bustamante, Angela C.; Lori, Adriana; Koen, Nastassja; Stein, Dan J.; Smith, Alicia K.; Aiello, Allison E.; Koenen, Karestan C.; Wildman, Derek E.; Galea, Sandro; Bradley, Bekh; Binder, Elisabeth B.; Jin, Peng; Gibson, Greg; Ressler, Kerry J.

    2015-01-01

    DICER1 is an enzyme that generates mature microRNAs (miRNAs), which regulate gene expression post-transcriptionally in brain and other tissues and is involved in synaptic maturation and plasticity. Here, through genome-wide differential gene expression survey of post-traumatic stress disorder (PTSD) with comorbid depression (PTSD&Dep), we find that blood DICER1 expression is significantly reduced in cases versus controls, and replicate this in two independent cohorts. Our follow-up studies find that lower blood DICER1 expression is significantly associated with increased amygdala activation to fearful stimuli, a neural correlate for PTSD. Additionally, a genetic variant in the 3′ un-translated region of DICER1, rs10144436, is significantly associated with DICER1 expression and with PTSD&Dep, and the latter is replicated in an independent cohort. Furthermore, genome-wide differential expression survey of miRNAs in blood in PTSD&Dep reveals miRNAs to be significantly downregulated in cases versus controls. Together, our novel data suggest DICER1 plays a role in molecular mechanisms of PTSD&Dep through the DICER1 and the miRNA regulation pathway. PMID:26632874

  8. Serum miR-146a and miR-223 as potential new biomarkers for sepsis.

    PubMed

    Wang, Jia-feng; Yu, Man-li; Yu, Guang; Bian, Jin-jun; Deng, Xiao-ming; Wan, Xiao-jian; Zhu, Ke-ming

    2010-03-26

    Current biomarkers cannot completely distinguish sepsis from systemic inflammatory response syndrome (SIRS) caused by other non-infectious diseases. Circulating microRNAs (miRNAs) are promising biomarkers for several diseases, but their correlation with sepsis is not totally clarified. Seven miRNAs related to inflammation or infection were included in the present study. Serum miRNA expression was investigated in 50 patients diagnosed with sepsis, 30 patients with SIRS and 20 healthy controls to evaluate the diagnostic and prognostic value. Expression levels of serum miRNAs were determined by quantitative PCR using the Qiagen miScript system. Serum CRP and IL-6 levels were determined by enzyme linked immunosorbent assay. Serum miR-146a and miR-223 were significantly reduced in septic patients compared with SIRS patients and healthy controls. The areas under the receiver operating characteristic curve of miR-146a, miR-223 and IL-6 were 0.858, 0.804 and 0.785, respectively. Serum miR-146a and miR-223 might serve as new biomarkers for sepsis with high specificity and sensitivity. (ClinicalTrials.gov number, NCT00862290.). Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Proteomics for understanding miRNA biology.

    PubMed

    Huang, Tai-Chung; Pinto, Sneha M; Pandey, Akhilesh

    2013-02-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diverse microRNAs with convergent functions regulate tumorigenesis.

    PubMed

    Zhu, Min-Yan; Zhang, Wei; Yang, Tao

    2016-02-01

    MicroRNAs (miRNAs) regulate several biological processes, including tumorigenesis. In order to comprehend the roles of miRNAs in cancer, various screens were performed to investigate the changes in the expression levels of miRNAs that occur in different types of cancer. The present review focuses on the results of five recent screens, whereby a number of overlapping miRNAs were identified to be downregulated or differentially regulated, whereas no miRNAs were observed to be frequently upregulated. Furthermore, the majority of the miRNAs that were common to >1 screen were involved in signaling networks, including wingless-related integration site, receptor tyrosine kinase and transforming growth factor-β, or in cell cycle checkpoint control. The present review will discuss the aforementioned miRNAs implicated in cell cycle checkpoint control and signaling networks.

  11. Viruses and miRNAs: More Friends than Foes.

    PubMed

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  12. Viruses and miRNAs: More Friends than Foes

    PubMed Central

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host–pathogen interaction. PMID:28555130

  13. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes

    PubMed Central

    Stark, Alexander; Kheradpour, Pouya; Parts, Leopold; Brennecke, Julius; Hodges, Emily; Hannon, Gregory J.; Kellis, Manolis

    2007-01-01

    MicroRNAs (miRNAs) are short regulatory RNAs that inhibit target genes by complementary binding in 3′ untranslated regions (3′ UTRs). They are one of the most abundant classes of regulators, targeting a large fraction of all genes, making their comprehensive study a requirement for understanding regulation and development. Here we use 12 Drosophila genomes to define structural and evolutionary signatures of miRNA hairpins, which we use for their de novo discovery. We predict >41 novel miRNA genes, which encompass many unique families, and 28 of which are validated experimentally. We also define signals for the precise start position of mature miRNAs, which suggest corrections of previously known miRNAs, often leading to drastic changes in their predicted target spectrum. We show that miRNA discovery power scales with the number and divergence of species compared, suggesting that such approaches can be successful in human as dozens of mammalian genomes become available. Interestingly, for some miRNAs sense and anti-sense hairpins score highly and mature miRNAs from both strands can indeed be found in vivo. Similarly, miRNAs with weak 5′ end predictions show increased in vivo processing of multiple alternate 5′ ends and have fewer predicted targets. Lastly, we show that several miRNA star sequences score highly and are likely functional. For mir-10 in particular, both arms show abundant processing, and both show highly conserved target sites in Hox genes, suggesting a possible cooperation of the two arms, and their role as a master Hox regulator. PMID:17989255

  14. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    PubMed Central

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. PMID:25749473

  15. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    PubMed

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  16. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    PubMed

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  17. [Progress of study on the detection technique of microRNA].

    PubMed

    Zhao, Hai-Feng; Yang, Ren-Chi

    2009-12-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. MiRNAs are involved in critical biologic processes, including development, cell differentiation, proliferation and the pathogenesis of disease. This review focuses on recent researches on the detection techniques of miRNA including micorarray technique, Northern blot, real-time quantitative PCR, detection technique of miRNA function and so on.

  18. Regulation of microRNAs in Cancer Metastasis

    PubMed Central

    Bouyssou, Juliette M.C.; Manier, Salomon; Huynh, Daisy; Issa, Samar; Roccaro, Aldo M.; Ghobrial, Irene M.

    2014-01-01

    Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process. PMID:24569228

  19. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome.

    PubMed

    Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2018-03-01

    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.

  20. Characterization of microRNAs in Mud Crab Scylla paramamosain under Vibrio parahaemolyticus Infection

    PubMed Central

    Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo

    2013-01-01

    Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S . paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S . paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S . paramamosain . 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S . paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in mud crab under V. parahaemolyticus infection, providing a basis for further investigation of miRNA-modulating networks in innate immunity of mud crab. PMID:24023678

  1. MicroRNAs and cancer.

    PubMed

    Cowland, Jack B; Hother, Christoffer; Grønbaek, Kirsten

    2007-10-01

    MicroRNAs (miRNAs) are a recently discovered group of small RNA molecules involved in the regulation of gene expression. Analogously to mRNAs, the non-protein-encoding pri-miRNAs are synthesized by RNA polymerase II and post-transcriptionally modified by addition of a 5'-cap and a 3'-poly (A) tail. Subsequently, the pri-miRNA undergoes a number of processing steps in the nucleus and cytoplasm, and ends up as a mature approximately 22 nt miRNA, which can exert its function by binding to the 3'-untranslated region of a subset of mRNAs. Binding of the miRNA to the mRNA results in a reduced translation rate and/or increased degradation of the mRNA. In this way a large number of cellular pathways, such as cellular proliferation, differentiation, and apoptosis, are regulated by mi-RNAs. As corruption of these pathways is the hallmark of many cancers, dysregulation of miRNA biogenesis or expression levels may lead to tumorigenesis. The mechanisms that alter the expression of miRNAs are similar to those that change the expression levels of mRNAs of tumor suppressor- and oncogenes, i.e. gross genomic aberrations, epigenetic changes, and minor mutations affecting the expression level, processing, or target-interaction potential of the miRNA. Furthermore, expression profiling of miRNAs has been found to be useful for classification of different tumor types. Taken together, miRNAs can be classified as onco-miRs or tumor suppressor-miRs, and may turn out to be potential targets for cancer therapy.

  2. Small RNA profiling reveals important roles for miRNAs in Arabidopsis response to Bacillus velezensis FZB42.

    PubMed

    Xie, Shanshan; Jiang, Haiyang; Xu, Zhilan; Xu, Qianqian; Cheng, Beijiu

    2017-09-20

    Bacillus velezensis FZB42 (previously classified as Bacillus amyloliquefaciens FZB42) has been confirmed to successfully colonize plant roots and enhance defense response against pathogen infection. This study indicated that FZB42 inoculation enhanced Arabidopsis defense response against Pseudomonas syringae DC3000 through inducing the expression of PR1, PDF1.2 and stomata closure. To further clarify the induced defense response at miRNA level, sRNA libraries from Arabidopsis roots inoculated with FZB42 and control were constructed and sequenced. The reads of 21nt and 24nt in length were the most abundant groups in FZB42-treated library and control library, respectively. 234 known miRNAs and 16 novel miRNAs were identified. Among them, 11 known miRNAs and 4 novel miRNAs were differentially expressed after FZB42 inoculation. Moreover cis-elements (TC-rich repeats, TCA-element and CGTCA-motif) associated with plant defense were also found in the promoters of these miRNAs. Additionally, 141 mRNAs were predicted as potential targets of these differentially expressed miRNAs. GO annotations of the target genes indicated their potential roles in polyamine biosynthetic process and intracellular protein transport biological process, which may contribute to increased defense response. Our findings indicated that Bacillus velezensis FZB42 inoculation altered the expression of Arabidopsis miRNAs and their target genes, which were associated with defense response. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses.

    PubMed

    Zeng, Changying; Xia, Jing; Chen, Xin; Zhou, Yufei; Peng, Ming; Zhang, Weixiong

    2017-12-07

    MicroRNAs (miRNAs) are known to play important roles in various cellular processes and stress responses. MiRNAs can be identified by analyzing reads from high-throughput deep sequencing. The reads realigned to miRNA precursors besides canonical miRNAs were initially considered as sequencing noise and ignored from further analysis. Here we reported a small-RNA species of phased and half-phased miRNA-like RNAs different from canonical miRNAs from cassava miRNA precursors detected under four distinct chilling conditions. They can form abundant multiple small RNAs arranged along precursors in a tandem and phased or half-phased fashion. Some of these miRNA-like RNAs were experimentally confirmed by re-amplification and re-sequencing, and have a similar qRT-PCR detection ratio as their cognate canonical miRNAs. The target genes of those phased and half-phased miRNA-like RNAs function in process of cell growth metabolism and play roles in protein kinase. Half-phased miR171d.3 was confirmed to have cleavage activities on its target gene P-glycoprotein 11, a broad substrate efflux pump across cellular membranes, which is thought to provide protection for tropical cassava during sharp temperature decease. Our results showed that the RNAs from miRNA precursors are miRNA-like small RNAs that are viable negative gene regulators and may have potential functions in cassava chilling responses.

  4. Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality.

    PubMed

    Wang, Xuehui; Zhang, Li; Jin, Jing; Xia, Anting; Wang, Chunmei; Cui, Yingjun; Qu, Bo; Li, Qingzhang; Sheng, Chunyan

    2018-04-19

    miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.

  5. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.

    PubMed Central

    Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao

    2016-01-01

    The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7–2 collected 4–6, 7–9, 12–14, and 18–23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12–14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18–23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation. PMID:27082634

  6. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linkedmore » to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.« less

  7. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.

    PubMed

    Li, Dandan; Liu, Zongcai; Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao

    2016-01-01

    The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7-2 collected 4-6, 7-9, 12-14, and 18-23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12-14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18-23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.

  8. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    PubMed

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  9. MicroRNA Based Liquid Biopsy: The Experience of the Plasma miRNA Signature Classifier (MSC) for Lung Cancer Screening.

    PubMed

    Mensah, Mavis; Borzi, Cristina; Verri, Carla; Suatoni, Paola; Conte, Davide; Pastorino, Ugo; Orazio, Fortunato; Sozzi, Gabriella; Boeri, Mattia

    2017-10-26

    The development of a minimally invasive test, such as liquid biopsy, for early lung cancer detection in its preclinical phase is crucial to improve the outcome of this deadly disease. MicroRNAs (miRNAs) are tissue specific, small, non-coding RNAs regulating gene expression, which may act as extracellular messengers of biological signals derived from the cross-talk between the tumor and its surrounding microenvironment. They could thus represent ideal candidates for early detection of lung cancer. In this work, a methodological workflow for the prospective validation of a circulating miRNA test using custom made microfluidic cards and quantitative Real-Time PCR in plasma samples of volunteers enrolled in a lung cancer screening trial is proposed. In addition, since the release of hemolysis-related miRNAs and more general technical issues may affect the analysis, the quality control steps included in the standard operating procedures are also presented. The protocol is reproducible and gives reliable quantitative results; however, when using large clinical series, both pre-analytical and analytical features should be cautiously evaluated.

  10. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure.

    PubMed

    Vegter, Eline L; Schmitter, Daniela; Hagemeijer, Yanick; Ovchinnikova, Ekaterina S; van der Harst, Pim; Teerlink, John R; O'Connor, Christopher M; Metra, Marco; Davison, Beth A; Bloomfield, Daniel; Cotter, Gad; Cleland, John G; Givertz, Michael M; Ponikowski, Piotr; van Veldhuisen, Dirk J; van der Meer, Peter; Berezikov, Eugene; Voors, Adriaan A; Khan, Mohsin A F

    2016-12-01

    Circulating microRNAs (miRNAs) emerge as potential heart failure biomarkers. We aimed to identify associations between acute heart failure (AHF)-specific circulating miRNAs and well-known heart failure biomarkers. Associations between 16 biomarkers predictive for 180day mortality and the levels of 12 AHF-specific miRNAs were determined in 100 hospitalized AHF patients, at baseline and 48hours. Patients were divided in 4 pre-defined groups, based on clinical parameters during hospitalization. Correlation analyses between miRNAs and biomarkers were performed and complemented by miRNA target prediction and pathway analysis. No significant correlations were found at hospital admission. However, after 48hours, 7 miRNAs were significantly negatively correlated to biomarkers indicative for a worse clinical outcome in the patient group with the most unfavorable in-hospital course (n=21); miR-16-5p was correlated to C-reactive protein (R=-0.66, p-value=0.0027), miR-106a-5p to creatinine (R=-0.68, p-value=0.002), miR-223-3p to growth differentiation factor 15 (R=-0.69, p-value=0.0015), miR-652-3p to soluble ST-2 (R=-0.77, p-value<0.001), miR-199a-3p to procalcitonin (R=-0.72, p-value<0.001) and galectin-3 (R=-0.73, p-value<0.001) and miR-18a-5p to procalcitonin (R=-0.68, p-value=0.002). MiRNA target prediction and pathway analysis identified several pathways related to cardiac diseases, which could be linked to some of the miRNA-biomarker correlations. The majority of correlations between circulating AHF-specific miRNAs were related to biomarkers predictive for a worse clinical outcome in a subgroup of worsening heart failure patients at 48hours of hospitalization. The selective findings suggest a time-dependent effect of circulating miRNAs and highlight the susceptibility to individual patient characteristics influencing potential relations between miRNAs and biomarkers. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  12. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  13. Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM).

    PubMed

    Teotia, Sachin; Zhang, Dabing; Tang, Guiliang

    2017-01-01

    Small RNAs, including microRNAs (miRNAs), are abundant in plants and play key roles in controlling plant development and physiology. miRNAs regulate the expression of the target genes involved in key plant processes. Due to functional redundancy among miRNA family members in plants, an ideal approach to silence the expression of all members simultaneously, for their functional characterization, is desirable. Target mimic (TM) was the first approach to achieve this goal. Short tandem target mimic (STTM) is a potent approach complementing TM for silencing miRNAs in plants. STTMs have been successfully used in dicots to block miRNA functions. Here, we describe in detail the protocol for designing STTM construct to block miRNA functions in rice. Such approach can be applied to silence miRNAs in other monocots as well.

  14. microRNA therapies in cancer.

    PubMed

    Rothschild, Sacha I

    2014-01-01

    MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs" Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

  15. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    PubMed

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  16. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  17. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    PubMed

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  18. Aberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence

    PubMed Central

    Wilting, Saskia M.; Boon, Debby; Sørgård, Hanne; Lando, Malin; Snoek, Barbara C.; van Wieringen, Wessel N.; Meijer, Chris J.L.M.; Lyng, Heidi; Snijders, Peter J.F.; Steenbergen, Renske D.M.

    2016-01-01

    Cervical cancer and a subset of anogenital and head-and-neck carcinomas are caused by high-risk types of the human papillomavirus (hrHPV). During hrHPV-induced malignant transformation keratinocytes become able to grow anchorage independently, a tumorigenic trait at least partly associated with inactivation of tumor suppressor genes. We used hrHPV-containing keratinocytes to investigate the role of DNA methylation-mediated silencing of microRNAs (miRNAs) in the acquisition of anchorage independence. Anchorage dependent (n=11) and independent passages (n=19) of 4 hrHPV-immortalized keratinocyte cell lines were treated with 2′-deoxy-5-azacytidine (DAC). Genome-wide miRNA expression profiles before and after treatment were compared to identify miRNAs silenced by methylation. Bisulfite sequencing and methylation-specific PCR showed increased methylation of hsa-mir-129-2/-137/-935/-3663/-3665 and -4281 in anchorage independent HPV-transformed keratinocytes and cervical cancer cell lines. Mature miRNAs derived from hsa-mir-129-2/-137/-3663 and -3665 showed functional relevance as they decreased anchorage independence in cervical cancer cell lines. Cervical (pre)cancerous lesions demonstrated increased methylation of hsa-mir-129-2/-935/-3663/-3665 and -4281, underlining the clinical relevance of our findings. In conclusion, methylation-mediated silencing of tumor suppressive miRNAs contributes to acquisition of an anchorage independent phenotype. This study further substantiates the importance of miRNAs during early stages of carcinogenesis and underlines their potential as both disease markers and therapeutic targets. PMID:27270309

  19. Aberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence.

    PubMed

    Wilting, Saskia M; Miok, Viktorian; Jaspers, Annelieke; Boon, Debby; Sørgård, Hanne; Lando, Malin; Snoek, Barbara C; van Wieringen, Wessel N; Meijer, Chris J L M; Lyng, Heidi; Snijders, Peter J F; Steenbergen, Renske D M

    2016-07-12

    Cervical cancer and a subset of anogenital and head-and-neck carcinomas are caused by high-risk types of the human papillomavirus (hrHPV). During hrHPV-induced malignant transformation keratinocytes become able to grow anchorage independently, a tumorigenic trait at least partly associated with inactivation of tumor suppressor genes. We used hrHPV-containing keratinocytes to investigate the role of DNA methylation-mediated silencing of microRNAs (miRNAs) in the acquisition of anchorage independence.Anchorage dependent (n=11) and independent passages (n=19) of 4 hrHPV-immortalized keratinocyte cell lines were treated with 2'-deoxy-5-azacytidine (DAC). Genome-wide miRNA expression profiles before and after treatment were compared to identify miRNAs silenced by methylation. Bisulfite sequencing and methylation-specific PCR showed increased methylation of hsa-mir-129-2/-137/-935/-3663/-3665 and -4281 in anchorage independent HPV-transformed keratinocytes and cervical cancer cell lines. Mature miRNAs derived from hsa-mir-129-2/-137/-3663 and -3665 showed functional relevance as they decreased anchorage independence in cervical cancer cell lines. Cervical (pre)cancerous lesions demonstrated increased methylation of hsa-mir-129-2/-935/-3663/-3665 and -4281, underlining the clinical relevance of our findings.In conclusion, methylation-mediated silencing of tumor suppressive miRNAs contributes to acquisition of an anchorage independent phenotype. This study further substantiates the importance of miRNAs during early stages of carcinogenesis and underlines their potential as both disease markers and therapeutic targets.

  20. Are microRNAs true sensors of ageing and cellular senescence?

    PubMed

    Williams, Justin; Smith, Flint; Kumar, Subodh; Vijayan, Murali; Reddy, P Hemachandra

    2017-05-01

    All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment.

    PubMed

    Hicks, Steven D; Ignacio, Cherry; Gentile, Karen; Middleton, Frank A

    2016-04-22

    Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that lacks adequate screening tools, often delaying diagnosis and therapeutic interventions. Despite a substantial genetic component, no single gene variant accounts for >1 % of ASD incidence. Epigenetic mechanisms that include microRNAs (miRNAs) may contribute to the ASD phenotype by altering networks of neurodevelopmental genes. The extracellular availability of miRNAs allows for painless, noninvasive collection from biofluids. In this study, we investigated the potential for saliva-based miRNAs to serve as diagnostic screening tools and evaluated their potential functional importance. Salivary miRNA was purified from 24 ASD subjects and 21 age- and gender-matched control subjects. The ASD group included individuals with mild ASD (DSM-5 criteria and Autism Diagnostic Observation Schedule) and no history of neurologic disorder, pre-term birth, or known chromosomal abnormality. All subjects completed a thorough neurodevelopmental assessment with the Vineland Adaptive Behavior Scales at the time of saliva collection. A total of 246 miRNAs were detected and quantified in at least half the samples by RNA-Seq and used to perform between-group comparisons with non-parametric testing, multivariate logistic regression and classification analyses, as well as Monte-Carlo Cross-Validation (MCCV). The top miRNAs were examined for correlations with measures of adaptive behavior. Functional enrichment analysis of the highest confidence mRNA targets of the top differentially expressed miRNAs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), as well as the Simons Foundation Autism Database (AutDB) of ASD candidate genes. Fourteen miRNAs were differentially expressed in ASD subjects compared to controls (p <0.05; FDR <0.15) and showed more than 95 % accuracy at distinguishing subject groups in the best-fit logistic regression model. MCCV revealed an average ROC-AUC value of 0.92 across 100 simulations, further supporting the robustness of the findings. Most of the 14 miRNAs showed significant correlations with Vineland neurodevelopmental scores. Functional enrichment analysis detected significant over-representation of target gene clusters related to transcriptional activation, neuronal development, and AutDB genes. Measurement of salivary miRNA in this pilot study of subjects with mild ASD demonstrated differential expression of 14 miRNAs that are expressed in the developing brain, impact mRNAs related to brain development, and correlate with neurodevelopmental measures of adaptive behavior. These miRNAs have high specificity and cross-validated utility as a potential screening tool for ASD.

  2. MicroRNAs in the intracellular space, regulation of organelle specific pathways in health and disease.

    PubMed

    Nguyen, Thao T; Brenu, Ekua W; Staines, Don R; Marshall-Gradisnik, Sonya M

    2014-01-01

    MicroRNAs (miRNA) are small (~22 nucleotide] non-coding RNA molecules originally characterised as nonsense or junk DNA. Emerging research suggests that these molecules have diverse regulatory roles in an array of molecular, cellular and physiological processes. MiRNAs are versatile and highly stable molecules, therefore, they are able to exist as intracellular or extracellular miRNAs. The purpose of this paper is to review the function and role of miRNAs in the intracellular space with specific focus on the interactions between miRNAs and organelles such as the mitochondria and the rough endoplasmic reticulum. Understanding the role of miRNAs in the intracellular space may be vital in understanding the mechanism of certain diseases.

  3. Identification of microRNAs in PCV2 subclinically infected pigs by high throughput sequencing.

    PubMed

    Núñez-Hernández, Fernando; Pérez, Lester J; Muñoz, Marta; Vera, Gonzalo; Tomás, Anna; Egea, Raquel; Córdoba, Sarai; Segalés, Joaquim; Sánchez, Armand; Núñez, José I

    2015-03-03

    Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of PCV2-systemic disease and has been associated with other swine diseases, all of them collectively known as porcine circovirus diseases. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. miRNAs play an increasing role in many biological processes. The study of miRNA-mediated host-pathogen interactions has emerged in the last decade due to the important role that miRNAs play in antiviral defense. The objective of this study was to identify the miRNA expression pattern in PCV2 subclinically infected and non-infected pigs. For this purpose an experimental PCV2 infection was carried out and small-RNA libraries were constructed from tonsil and mediastinal lymph node (MLN) of infected and non-infected pigs. High throughput sequencing determined differences in miRNA expression in MLN between infected and non-infected while, in tonsil, a very conserved pattern was observed. In MLN, miRNA 126-3p, miRNA 126-5p, let-7d-3p, mir-129a and mir-let-7b-3p were up-regulated whereas mir-193a-5p, mir-574-5p and mir-34a down-regulated. Prediction of functional analysis showed that these miRNAs can be involved in pathways related to immune system and in processes related to the pathogenesis of PCV2, although functional assays are needed to support these predictions. This is the first study on miRNA gene expression in pigs infected with PCV2 using a high throughput sequencing approach in which several host miRNAs were differentially expressed in response to PCV2 infection.

  4. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing.

    PubMed

    Liu, Juan; Zhang, XueJiao; Zhang, FangPeng; Hong, Ni; Wang, GuoPing; Wang, Aiming; Wang, LiPing

    2015-11-16

    MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.

  5. The Effect of Different Pollination on the Expression of Dangshan Su Pear MicroRNA

    PubMed Central

    Cheng, Xi; Yan, Chongchong; Zhang, Jinyun; Ma, Chenhui; Li, Shumei; Jin, Qing; Zhang, Nan; Cao, Yunpeng; Lin, Yi

    2017-01-01

    The high-throughput sequencing of pear “Dangshan Su” × “Yali” (whose fruits lignin and stone cell content are high and quality is poor) and pear “Dangshan Su” × “Wonhwang” (whose fruits with low content of lignin and stone cell and the quality are better ) found that the expressions of these two miRNAs (pyr-1809 and pyr-novel-miR-144-3p) were significantly different; their corresponding target genes encode two kinds of laccase (Pbr018935.1 and Pbr003857.1). qRT-PCR results showed that these two enzymes are involved in the formation of lignin and stone cells and the existence of these two miRNAs has a negative effect on them. It was concluded that the effect of pollination on the development of stone cells may affect the synthesis of lignin, through the regulation of laccase controlled by miRNAs, and ultimately affect the formation of stone cell and fruit quality. PMID:28497043

  6. Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli*

    PubMed Central

    Jung, Jihye; Czabany, Tibor; Wilding, Birgit; Klempier, Norbert; Nidetzky, Bernd

    2016-01-01

    The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = −80.3 kJ/mol; −TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4–7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s−1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s−1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1. 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = −2.3 kJ/mol; −TΔS = −19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data. PMID:27754868

  7. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing

    PubMed Central

    Munding, Elizabeth M.; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-01-01

    Summary During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells RPG repression by rapamycin treatment also increases splicing efficiency. Down-regulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and pre-mRNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s) but also on those of competing pre-mRNAs. Competition between RNAs for limiting RNA processing factors appears to be a general condition in eukaryotic cells important for function of a variety of post-transcriptional control mechanisms including miRNA repression, polyadenylation and splicing. PMID:23891561

  8. MicroRNAs in thyroid development, function and tumorigenesis.

    PubMed

    Fuziwara, Cesar Seigi; Kimura, Edna Teruko

    2017-11-15

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that modulate the vast majority of cellular processes. During development, the correct timing and expression of miRNAs in the tissue differentiation is essential for organogenesis and functionality. In thyroid gland, DICER and miRNAs are necessary for accurately establishing thyroid follicles and hormone synthesis. Moreover, DICER1 mutations and miRNA deregulation observed in human goiter influence thyroid tumorigenesis. The thyroid malignant transformation by MAPK oncogenes is accompanied by global miRNA changes, with a marked reduction of "tumor-suppressor" miRNAs and activation of oncogenic miRNAs. Loss of thyroid cell differentiation/function, and consequently iodine trapping impairment, is an important clinical characteristic of radioiodine-refractory thyroid cancer. However, few studies have addressed the direct role of miRNAs in thyroid gland physiology. Here, we focus on what we have learned in the thyroid follicular cell differentiation and function as revealed by cell and animal models and miRNA modulation in thyroid tumorigenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders

    PubMed Central

    Kamal, Mohammad A.; Mushtaq, Gohar; Greig, Nigel H.

    2018-01-01

    Aberrant expression of microRNAs (miRNAs) has been implicated in various neurological disorders (NDs) of the central nervous system such as Alzheimer disease, Parkinson’s disease, Huntington disease, amyotrophic lateral sclerosis, schizophrenia and autism. If dysregulated miRNAs are identified in patients suffering from NDs, this may serve as a biomarker for the earlier diagnosis and monitoring of disease progression. Identifying the role of miRNAs in normal cellular processes and understanding how dysregulated miRNA expression is responsible for their neurological effects is also critical in the development of new therapeutic strategies for NDs. miRNAs hold great promise from a therapeutic point of view especially if it can be proved that a single miRNA has the ability to influence several target genes, making it possible for the researchers to potentially modify a whole disease phenotype by modulating a single miRNA molecule. Hence, better understanding of the mechanisms by which miRNA play a role in the pathogenesis of NDs may provide novel targets to scientists and researchers for innovative therapies. PMID:25714967

  10. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA

    PubMed Central

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-01-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414

  11. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy

    PubMed Central

    Myers, Jason R.; Gupta, Simone; Weng, Lien-Chun; Ashton, John M.; Cornish, Toby C.; Pandey, Akhilesh; Halushka, Marc K.

    2015-01-01

    Small RNA RNA-seq for microRNAs (miRNAs) is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM). Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA) are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench), miRge was faster (4 to 32-fold) and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html. PMID:26571139

  12. miRnalyze: an interactive database linking tool to unlock intuitive microRNA regulation of cell signaling pathways

    PubMed Central

    Subhra Das, Sankha; James, Mithun; Paul, Sandip

    2017-01-01

    Abstract The various pathophysiological processes occurring in living systems are known to be orchestrated by delicate interplays and cross-talks between different genes and their regulators. Among the various regulators of genes, there is a class of small non-coding RNA molecules known as microRNAs. Although, the relative simplicity of miRNAs and their ability to modulate cellular processes make them attractive therapeutic candidates, their presence in large numbers make it challenging for experimental researchers to interpret the intricacies of the molecular processes they regulate. Most of the existing bioinformatic tools fail to address these challenges. Here, we present a new web resource ‘miRnalyze’ that has been specifically designed to directly identify the putative regulation of cell signaling pathways by miRNAs. The tool integrates miRNA-target predictions with signaling cascade members by utilizing TargetScanHuman 7.1 miRNA-target prediction tool and the KEGG pathway database, and thus provides researchers with in-depth insights into modulation of signal transduction pathways by miRNAs. miRnalyze is capable of identifying common miRNAs targeting more than one gene in the same signaling pathway—a feature that further increases the probability of modulating the pathway and downstream reactions when using miRNA modulators. Additionally, miRnalyze can sort miRNAs according to the seed-match types and TargetScan Context ++ score, thus providing a hierarchical list of most valuable miRNAs. Furthermore, in order to provide users with comprehensive information regarding miRNAs, genes and pathways, miRnalyze also links to expression data of miRNAs (miRmine) and genes (TiGER) and proteome abundance (PaxDb) data. To validate the capability of the tool, we have documented the correlation of miRnalyze’s prediction with experimental confirmation studies. Database URL: http://www.mirnalyze.in PMID:28365733

  13. Identification of mutant phenotypes associated with loss of individual microRNAs in sensitized genetic backgrounds in Caenorhabditis elegans

    PubMed Central

    Brenner, John L.; Jasiewicz, Kristen L.; Fahley, Alisha F.; Kemp, Benedict J.; Abbott, Allison L.

    2010-01-01

    Summary MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the translation and/or the stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single gene knockouts did not result in detectable mutant phenotypes [1]. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes [2]. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways [3]. Using these two approaches, mutant phenotypes were identified for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis. PMID:20579881

  14. Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC.

    PubMed

    Ariyoshi, Jumpei; Momokawa, Daiki; Eimori, Nao; Kobori, Akio; Murakami, Akira; Yamayoshi, Asako

    2015-12-16

    MicroRNAs (miRNAs) are known to be important post-transcription regulators of gene expression. Aberrant miRNA expression is associated with pathological disease processes, including carcinogenesis. Therefore, miRNAs are considered significant therapeutic targets for cancer therapy. MiRNAs do not act alone, but exhibit their functions by forming RNA-induced silencing complex (RISC). Thus, the regulation of RISC activity is a promising approach for cancer therapy. MiRNA is a core component of RISC and is an essential to RISC for recognizing target mRNA. Thereby, it is expected that development of the method to promote the release of miRNA from RISC would be an effective approach for inhibition of RISC activity. In this study, we synthesized novel peptide-conjugated oligonucleotides (RINDA-as) to promote the release of miRNA from RISC. RINDA-as showed a high rate of miRNA release from RISC and high level of inhibitory effect on RISC activity.

  15. Timescales and bottlenecks in miRNA-dependent gene regulation.

    PubMed

    Hausser, Jean; Syed, Afzal Pasha; Selevsek, Nathalie; van Nimwegen, Erik; Jaskiewicz, Lukasz; Aebersold, Ruedi; Zavolan, Mihaela

    2013-12-03

    MiRNAs are post-transcriptional regulators that contribute to the establishment and maintenance of gene expression patterns. Although their biogenesis and decay appear to be under complex control, the implications of miRNA expression dynamics for the processes that they regulate are not well understood. We derived a mathematical model of miRNA-mediated gene regulation, inferred its parameters from experimental data sets, and found that the model describes well time-dependent changes in mRNA, protein and ribosome density levels measured upon miRNA transfection and induction. The inferred parameters indicate that the timescale of miRNA-dependent regulation is slower than initially thought. Delays in miRNA loading into Argonaute proteins and the slow decay of proteins relative to mRNAs can explain the typically small changes in protein levels observed upon miRNA transfection. For miRNAs to regulate protein expression on the timescale of a day, as miRNAs involved in cell-cycle regulation do, accelerated miRNA turnover is necessary.

  16. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators.

    PubMed

    Arfat, Yasir; Chang, Hui; Gao, Yunfang

    2018-04-01

    Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival. © 2017 Wiley Periodicals, Inc.

  17. A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus.

    PubMed

    He, Yuqing; Ding, Yuanlin; Liang, Biyu; Lin, Juanjuan; Kim, Taek-Kyun; Yu, Haibing; Hang, Hanwei; Wang, Kai

    2017-02-28

    MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregulated miRNAs in seven different major sample types. To understand the functional impact of these deregulated miRNAs, we performed targets prediction and pathway enrichment analysis. Results from our analysis suggested that the altered miRNAs are involved in the core processes associated with T2DM, such as carbohydrate and lipid metabolisms, insulin signaling pathway and the adipocytokine signaling pathway. This systematic survey of dysregulated miRNAs provides molecular insights on the effect of deregulated miRNAs in different tissues during the development of diabetes. Some of these miRNAs and their mRNA targets may have diagnostic and/or therapeutic utilities in T2DM.

  18. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  19. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    PubMed

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses cholinesterases to increase cholinergic signaling, resulting in decreased expression of proinflammatory cytokines. ARC treatment confers protection for SH-SY5Y cells through positive regulation of miRNA expression, thereby reducing the inflammatory response. In turn, these effects accelerate injury repair in the scratch-induced injury model. These results might provide insights into the pharmacological role of ARC in anti-inflammation and neuroprotection in neural cells.

  20. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Saroj; Aryal, Niranjan; Lu, Chaofu

    Camelina sativa is an annual oilseed crop that is under intensive development for renewable resources of biofuels and industrial oils. MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play key roles in diverse plant biological processes. Here, we conducted deep sequencing on small RNA libraries prepared from camelina leaves, flower buds and two stages of developing seeds corresponding to initial and peak storage products accumulation. Computational analyses identified 207 known miRNAs belonging to 63 families, as well as 5 novel miRNAs. These miRNAs, especially members of the miRNA families, varied greatly in different tissues and developmental stages. The predictedmore » miRNA target genes are involved in a broad range of physiological functions including lipid metabolism. This report is the first step toward elucidating roles of miRNAs in C. sativa and will provide additional tools to improve this oilseed crop for biofuels and biomaterials.« less

  2. Virus-Based MicroRNA Silencing in Plants1[C][W][OPEN

    PubMed Central

    Sha, Aihua; Zhao, Jinping; Yin, Kangquan; Tang, Yang; Wang, Yan; Wei, Xiang; Hong, Yiguo; Liu, Yule

    2014-01-01

    MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, the functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based microRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through tobacco rattle virus-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato (Solanum lycopersicum) compound leaves. These results demonstrate that tobacco rattle virus-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species. PMID:24296072

  3. Acute Hepatopancreatic Necrosis Disease (AHPND) related microRNAs in Litopenaeus vannamei infected with AHPND-causing strain of Vibrio parahemolyticus.

    PubMed

    Zheng, Zhihong; Aweya, Jude Juventus; Wang, Fan; Yao, Defu; Lun, Jingsheng; Li, Shengkang; Ma, Hongyu; Zhang, Yueling

    2018-05-08

    Acute hepatopancreatic necrosis disease (AHPND) has emerged as a major debilitating disease that causes massive shrimp death resulting in substantial economic losses in shrimp aquaculture. Given that several diseases and infections have been associated with microRNAs (miRNAs), we conducted a comparative transcriptomic analysis using the AHPND (VA) and non-AHPND (VN) strains of Vibrio parahemolyticus to identify miRNAs potentially involved in AHPND pathogenesis in Litopenaeus vannamei. A total of 83 miRNAs (47 upregulated and 36 downregulated) were significantly differentially expressed between the VA and VN challenged groups, while 222 target genes of these miRNAs were predicted. Functional enrichment analysis revealed that the miRNAs target genes were involved in multiple biological processes including metabolic pathways, amoebiasis, Vibrio cholerae infection etc. Finally, interaction network and qPCR (Real-time Quantitative PCR) analysis of 12 potential key AHPND-related miRNAs and their predicted target genes, revealed their possible involvement in modulating several immune-related processes in the pathogenesis of AHPND. We have shown using comparative transcriptomic analysis, miRNAs and their target genes that are responsive to AHPND V. parahemolyticus infection in shrimp, therefore suggesting their possible role in defense response to AHPND V. parahemolyticus infection.

  4. Crosstalk between Hippo signalling and miRNAs in tumour progression.

    PubMed

    Li, Nianshuang; Xie, Chuan; Lu, Nonghua

    2017-04-01

    The Hippo signalling pathway co-ordinately modulates cell regeneration and organ size, and its deregulation contributes to tumorigenesis through many cellular processes, including overproliferation, apoptosis resistance and cell migration. Recent discoveries have shed new light on how microRNAs (miRNAs) are closely linked to the Hippo pathway in tumour progression. Hippo signalling has been reported to affect widespread miRNA biogenesis. In turn, several miRNAs regulate Hippo signalling, which contributes to carcinogenesis. This article will provide an overview of the crosstalk between Hippo signalling and miRNAs in the development of cancer and further appraise potential targets for therapeutic intervention. © 2016 Federation of European Biochemical Societies.

  5. Coronary Heart Disease Alters Intercellular Communication by Modifying Microparticle-Mediated MicroRNA Transport

    PubMed Central

    Finn, Nnenna A.; Eapen, Danny; Manocha, Pankaj; Kassem, Hatem Al; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D.

    2013-01-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. PMID:24042051

  6. Human Milk Cells Contain Numerous miRNAs that May Change with Milk Removal and Regulate Multiple Physiological Processes

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) is a complex biofluid conferring nutritional, protective and developmental components for optimal infant growth. Amongst these are maternal cells, which change in response to feeding and were recently shown to be a rich source of miRNAs. We used next generation sequencing to characterize the cellular miRNA profile of HM collected before and after feeding. HM cells conserved higher miRNA content than the lipid and skim HM fractions or other body fluids, in accordance with previous studies. In total, 1467 known mature and 1996 novel miRNAs were identified, with 89 high-confidence novel miRNAs. HM cell content was higher post-feeding (p < 0.05), and was positively associated with total miRNA content (p = 0.014) and species number (p < 0.001). This coincided with upregulation of 29 known and 2 novel miRNAs, and downregulation of 4 known and 1 novel miRNAs post-feeding, but no statistically significant change in expression was found for the remaining miRNAs. These findings suggest that feeding may influence the miRNA content of HM cells. The most highly and differentially expressed miRNAs were key regulators of milk components, with potential diagnostic value in lactation performance. They are also involved in the control of body fluid balance, thirst, appetite, immune response, and development, implicating their functional significance for the infant. PMID:27322254

  7. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    PubMed Central

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  8. Virus-encoded microRNAs

    PubMed Central

    Grundhoff, Adam; Sullivan, Christopher S.

    2011-01-01

    microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611

  9. Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus.

    PubMed

    Mohammed, Jaaved; Flynt, Alex S; Panzarino, Alexandra M; Mondal, Md Mosharrof Hossein; DeCruz, Matthew; Siepel, Adam; Lai, Eric C

    2018-01-01

    To assess miRNA evolution across the Drosophila genus, we analyzed several billion small RNA reads across 12 fruit fly species. These data permit comprehensive curation of species- and clade-specific variation in miRNA identity, abundance, and processing. Among well-conserved miRNAs, we observed unexpected cases of clade-specific variation in 5' end precision, occasional antisense loci, and putatively noncanonical loci. We also used strict criteria to identify a large set (649) of novel, evolutionarily restricted miRNAs. Within the bulk collection of species-restricted miRNAs, two notable subpopulations are splicing-derived mirtrons and testes-restricted, recently evolved, clustered (TRC) canonical miRNAs. We quantified miRNA birth and death using our annotation and a phylogenetic model for estimating rates of miRNA turnover. We observed striking differences in birth and death rates across miRNA classes defined by biogenesis pathway, genomic clustering, and tissue restriction, and even identified flux heterogeneity among Drosophila clades. In particular, distinct molecular rationales underlie the distinct evolutionary behavior of different miRNA classes. Mirtrons are associated with high rates of 3' untemplated addition, a mechanism that impedes their biogenesis, whereas TRC miRNAs appear to evolve under positive selection. Altogether, these data reveal miRNA diversity among Drosophila species and principles underlying their emergence and evolution. © 2018 Mohammed et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Design of a Sensitive and Selective Electrochemical Aptasensor for the Determination of the Complementary cDNA of miRNA-145 Based on the Intercalation and Electrochemical Reduction of Doxorubicin.

    PubMed

    Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2017-11-01

    The aim of this research was the determination of a microRNA (miRNA) using a DNA electrochemical aptasensor. In this biosensor, the complementary complementary DNA (cDNA) of miRNA-145 (a sense RNA transcript) was the target strand and the cDNA of miRNA-145 was the probe strand. Both cDNAs can be the product of the reverse transcriptase-polymerase chain reaction of miRNA. The proposed aptasensor's function was based on the hybridization of target strands with probes immobilized on the surface of a working electrode and the subsequent intercalation of doxorubicin (DOX) molecules functioning as the electroactive indicators of any double strands that formed. Electrochemical transduction was performed by measuring the cathodic current resulting from the electrochemical reduction of the intercalated molecules at the electrode surface. In the experiment, because many DOX molecules accumulated on each target strand on the electrode surface, amplification was inherently easy, without a need for enzymatic or complicated amplification strategies. The proposed aptasensor also had the excellent ability to regenerate as a result of the melting of the DNA duplex. Moreover, the use of DNA probe strands obviated the challenges of working with an RNA probe, such as sensitivity to RNase enzyme. In addition to the linear relationship between the electrochemical signal and the concentration of the target strands that ranged from 2.0 to 80.0 nM with an LOD of 0.27 nM, the proposed biosensor was clearly capable of distinguishing between complementary (target strand) and noncomplementary sequences. The presented biosensor was successfully applied for the quantification of DNA strands corresponding to miRNA-145 in human serum samples.

  11. MicroRNA Regulation in Extreme Environments: Differential Expression of MicroRNAs in the Intertidal Snail Littorina littorea During Extended Periods of Freezing and Anoxia

    PubMed Central

    Biggar, Kyle K.; Kornfeld, Samantha F.; Maistrovski, Yulia; Storey, Kenneth B.

    2012-01-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at −6 °C for 24 h (P < 0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P < 0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia. PMID:23200140

  12. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production

    PubMed Central

    Kandasamy, Suresh K.

    2016-01-01

    The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22–24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5′-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5′-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing. PMID:27872309

  13. Differential expression profiling of miRNAs between Marek’s disease resistant and susceptible chickens

    USDA-ARS?s Scientific Manuscript database

    Mounting evidence indicates microRNAs (miRNAs) play important roles in various biological processes including all aspects of cancer biology. The aim of this study was to profile and to assess the differences of miRNAs between the treatment groups of two lines of White Leghorns with or without viral ...

  14. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex.

    PubMed

    Musilova, K; Mraz, M

    2015-05-01

    MicroRNAs (miRNAs) represent important regulators of gene expression besides transcriptional control. miRNA regulation can be involved in the cell developmental fate decisions, but can also have more subtle roles in buffering stochastic fluctuations in gene expression. They participate in pathways fundamental to B-cell development like B-cell receptor (BCR) signalling, B-cell migration/adhesion, cell-cell interactions in immune niches, and the production and class-switching of immunoglobulins. miRNAs influence B-cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells. In this review, we discuss miRNAs with essential functions in malignant B-cell development (such as miR-150, miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16). We also put these miRNAs in the context of normal B-cell differentiation, as this is intimately connected to neoplastic B-cell development. We review miRNAs' role in the most common B-cell malignancies, including chronic lymphocytic leukaemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). We focus on miR-contribution to the regulation of important signalling pathways (such as NF-κB, PI3K/AKT and TGF-β), BCR signalling and its modulators (such as PTEN, SHIP-1, ZAP-70, GAB1 and BTK), anti- and pro-apoptotic proteins (such as BCL2, MCL1, TCL1, BIM, p53 and SIRT1) and transcription factors (such as MYC, MYB, PU.1, FOXP1 and BCL6). We also discuss the association of miRNAs' expression levels with the patients' survival and response to therapy, summarizing their potential use as predictive and prognostic markers. Importantly, the targeting of miRNAs (like use of anti-miR-155 or miR-34a mimic) could provide a novel therapeutic approach as evidenced by tumour regression in xenograft mouse models and initial promising data from clinical trials.

  15. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  16. Regulation of Isoflavone Biosynthesis by miRNAs in Two Contrasting Soybean Genotypes at Different Seed Developmental Stages.

    PubMed

    Gupta, Om P; Nigam, Deepti; Dahuja, Anil; Kumar, Sanjeev; Vinutha, T; Sachdev, Archana; Praveen, Shelly

    2017-01-01

    Owing to the presence of nutritionally important, health-promoting bioactive compounds, especially isoflavones, soybean has acquired the status of a functional food. miRNAs are tiny riboregulator of gene expression by either decreasing and/or increasing the expression of their corresponding target genes. Despite several works on identification and functional characterization of plant miRNAs, the role of miRNAs in the regulation of isoflavones metabolism is still a virgin field. In the present study, we identified a total of 31 new miRNAs along with their 245 putative target genes from soybean seed-specific ESTs using computational approach. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates metabolism and genetic information processing. Out of that, a total of 5 miRNAs ( Gma -miRNA12, Gma -miRNA24, Gma -miRNA26, Gma -miRNA28, and Gma -miRNA29) were predicted and validated for their probable role during isoflavone biosynthesis. We also validated their five target genes using RA-PCR, which is as good as 5'RLM-RACE. Temporal regulation [35 days after flowering, 45, 55, and 65 DAF] of miRNAs and their targets showed differential expression schema. Differential expression of Gma -miR26 and Gma -miRNA28 along with their corresponding target genes ( Glyma.10G197900 and Glyma.09G127200 ) showed a direct relationship with the total isoflavone content. Therefore, understanding the miRNA-based genetic regulation of isoflavone pathway would assist in selection and manipulation to get high-performing soybean genotypes with better isoflavone yield.

  17. The evolution of microRNAs in plants

    PubMed Central

    Cui, Jie; You, Chenjiang; Chen, Xuemei

    2016-01-01

    MicroRNAs (miRNAs) are a central player in post-transcriptional regulation of gene expression and are involved in numerous biological processes in eukaryotes. Knowledge of the origins and divergence of miRNAs paves the way for a better understanding of the complexity of the regulatory networks that they participate in. The biogenesis, degradation, and regulatory activities of miRNAs are relatively better understood, but the evolutionary history of miRNAs still needs more exploration. Inverted duplication of target genes, random hairpin sequences and small transposable elements constitute three main models that explain the origination of miRNA genes (MIR). Both inter- and intra-species divergence of miRNAs exhibits functional adaptation and adaptation to changing environments in evolution. Here we summarize recent progress in studies on the evolution of MIR and related genes. PMID:27886593

  18. About miRNAs, miRNA seeds, target genes and target pathways.

    PubMed

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  19. A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression.

    PubMed

    Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T

    2017-12-01

    MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.

  20. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  1. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children.

    PubMed

    Kilian, Yvonne; Wehmeier, Udo F; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy

    2016-01-01

    The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min(-1)·kg(-1) peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30', 60', 180') and HVT (d3, 0', 60'). RESULTS of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.

  2. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity.

    PubMed

    Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Hanušová, Veronika; Szotáková, Barbora; Skálová, Lenka

    2014-01-01

    Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.

  3. The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132

    PubMed Central

    Remenyi, Judit; Bajan, Sarah; Fuller-Pace, Frances V.; Arthur, J. Simon C.; Hutvagner, Gyorgy

    2016-01-01

    miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132. PMID:26947125

  4. Green tea and its anti-angiogenesis effects.

    PubMed

    Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed

    2017-05-01

    The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs.

    PubMed

    Louloupi, Annita; Ntini, Evgenia; Liz, Julia; Ørom, Ulf Andersson

    2017-06-01

    miRNAs are small regulatory RNAs involved in the regulation of translation of target transcripts. miRNA biogenesis is a multistep process starting with the cleavage of the primary miRNA transcript in the nucleus by the Microprocessor complex. Endogenous processing of pri-miRNAs is challenging to study and the in vivo kinetics of this process is not known. Here, we present a method for determining the processing kinetics of pri-miRNAs within intact cells over time, using a pulse-chase approach to label transcribed RNA during 15 min, and follow the processing within a 1-hour window after labeling with bromouridine. We show that pri-miRNAs exhibit different processing kinetics ranging from fast over intermediate to slow processing, and we provide evidence that pri-miRNA processing can occur both cotranscriptionally and post-transcriptionally. © 2017 Louloupi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. A discovery of novel microRNAs in the silkworm (Bombyx mori) genome.

    PubMed

    Yu, Xiaomin; Zhou, Qing; Cai, Yimei; Luo, Qibin; Lin, Hongbin; Hu, Songnian; Yu, Jun

    2009-12-01

    MicroRNAs (miRNAs) are pivotal regulators involved in various physiological and pathological processes via their post-transcriptional regulation of gene expressions. We sequenced 14 libraries of small RNAs constructed from samples spanning the life cycle of silkworms, and discovered 50 novel miRNAs previously not known in animals and verified 43 of them using stem-loop RT-PCR. Our genome-wide analyses of 27 species-specific miRNAs suggest they arise from transposable elements, protein-coding genes duplication/transposition and random foldback sequences; which is consistent with the idea that novel animal miRNAs may evolve from incomplete self-complementary transcripts and become fixed in the process of co-adaptation with their targets. Computational prediction suggests that the silkworm-specific miRNAs may have a preference of regulating genes that are related to life-cycle-associated traits, and these genes can serve as potential targets for subsequent studies of the modulating networks in the development of Bombyx mori.

  7. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.).

    PubMed

    Patanun, Onsaya; Lertpanyasampatha, Manassawe; Sojikul, Punchapat; Viboonjun, Unchera; Narangajavana, Jarunya

    2013-03-01

    MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.

  8. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    PubMed

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology.

    PubMed

    Ling, Y H; Ding, J P; Zhang, X D; Wang, L J; Zhang, Y H; Li, Y S; Zhang, Z J; Zhang, X R

    2013-06-13

    MicroRNAs (miRNAs) are an important class of small noncoding RNAs that are highly conserved in plants and animals. Many miRNAs are known to mediate a myriad of cell processes, including proliferation and differentiation, via the regulation of some transcription and signaling factors, which are closely related to muscle development and disease. In this study, small RNA cDNA libraries of Boer goats were constructed. In addition, we obtained the goat muscle miRNAs by using Solexa deep-sequencing technology and analyzed these miRNA characteristics by combining it with the bioinformatics technology. Based on Solexa sequencing and bioinformatics analysis, 562 species-conserved and 5 goat genome-specific miRNAs were identified, 322 of which exceeded 100 in the expression levels. The results of real-time quantitative polymerase chain reaction from 8 randomly selected miRNAs showed that the 8 miRNAs were expressed in goat muscle, and the expression patterns were consistent with the Solexa sequencing results. The identification and characterization of miRNAs in goat muscle provide important information on the role of miRNA regulation in muscle growth and development. These data will help to facilitate studies on the regulatory roles played by miRNAs during goat growth and development.

  10. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  11. A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria)

    PubMed Central

    Quah, Shan; Breuker, Casper J.; Holland, Peter W. H.

    2015-01-01

    microRNAs (miRNAs) are important regulators of animal development and other processes, and impart robustness to living systems through post-transcriptional regulation of specific mRNA transcripts. It is postulated that newly emergent miRNAs are generally expressed at low levels and with spatiotemporally restricted expression domains, thus minimising effects of spurious targeting on animal transcriptomes. Here we present ovarian miRNA transcriptome data for two geographically distinct populations of the Speckled Wood butterfly (Pararge aegeria). A total of 74 miRNAs were identified, including 11 newly discovered and evolutionarily-young miRNAs, bringing the total of miRNA genes known from P. aegeria up to 150. We find a positive correlation between miRNA age and expression level. A common set of 55 miRNAs are expressed in both populations. From this set, we identify seven that are consistently either ovary-specific or highly upregulated in ovaries relative to other tissues. This ‘ovary set’ includes miRNAs with known contributions to ovarian function in other insect species with similar ovaries and mode of oogenesis, including miR-989 and miR-2763, plus new candidates for ovarian function. We also note that conserved miRNAs are overrepresented in the ovary relative to the whole body. PMID:26556800

  12. Association between the miRNA signatures in plasma and bronchoalveolar fluid in respiratory pathologies.

    PubMed

    Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis

    2012-01-01

    The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases.

  13. Computational analysis of microRNA function in heart development.

    PubMed

    Liu, Ganqiang; Ding, Min; Chen, Jiajia; Huang, Jinyan; Wang, Haiyun; Jing, Qing; Shen, Bairong

    2010-09-01

    Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.

  14. Identification of MicroRNAs in the Coral Stylophora pistillata

    PubMed Central

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways. PMID:24658574

  15. Defining age- and lactocrine-sensitive elements of the neonatal porcine uterine microRNA–mRNA interactome†,‡

    PubMed Central

    George, Ashley F.; Rahman, Kathleen M.; Camp, Meredith E.; Prasad, Nripesh; Bartol, Frank F.; Bagnell, Carol A.

    2017-01-01

    Abstract Factors delivered to offspring in colostrum within 2 days of birth support neonatal porcine uterine development. The uterine mRNA transcriptome is affected by age and nursing during this period. Whether uterine microRNA (miRNA) expression is affected similarly is unknown. Objectives were to (1) determine effects of age and nursing on porcine uterine miRNA expression between birth and postnatal day (PND) 2 using miRNA sequencing (miRNAseq) and; (2) define affected miRNA–mRNA interactions and associated biological processes using integrated target prediction analysis. At birth (PND 0), gilts were euthanized, nursed ad libitum, or gavage-fed milk replacer for 48 h. Uteri were collected at birth or 50 h postnatal. MicroRNAseq data were validated using quantitative real-time PCR. Targets were predicted using an established mRNA database generated from the same tissues. For PND 2 versus PND 0 comparisons, 31 differentially expressed (DE) miRNAs were identified for nursed, and 42 DE miRNAs were identified for replacer-fed gilts. Six DE miRNAs were identified for nursed versus replacer-fed gilts on PND 2. Target prediction for inversely correlated DE miRNA–mRNA pairings indicated 20 miRNAs targeting 251 mRNAs in nursed, versus 29 miRNAs targeting 585 mRNAs in replacer-fed gilts for PND 2 versus PND 0 comparisons, and 5 miRNAs targeting 81 mRNAs for nursed versus replacer-fed gilts on PND 2. Biological processes predicted to be affected by age and nursing included cell-to-cell signaling, cell morphology, and tissue morphology. Results indicate novel age- and lactocrine-sensitive miRNA–mRNA relationships associated with porcine neonatal uterine development between birth and PND 2. PMID:28203709

  16. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport.

    PubMed

    Finn, Nnenna A; Eapen, Danny; Manocha, Pankaj; Al Kassem, Hatem; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D

    2013-11-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. Published by Elsevier B.V.

  17. Computational and transcriptional evidence for microRNAs in the honey bee genome

    PubMed Central

    Weaver, Daniel B; Anzola, Juan M; Evans, Jay D; Reid, Jeffrey G; Reese, Justin T; Childs, Kevin L; Zdobnov, Evgeny M; Samanta, Manoj P; Miller, Jonathan; Elsik, Christine G

    2007-01-01

    Background Non-coding microRNAs (miRNAs) are key regulators of gene expression in eukaryotes. Insect miRNAs help regulate the levels of proteins involved with development, metabolism, and other life history traits. The recently sequenced honey bee genome provides an opportunity to detect novel miRNAs in both this species and others, and to begin to infer the roles of miRNAs in honey bee development. Results Three independent computational surveys of the assembled honey bee genome identified a total of 65 non-redundant candidate miRNAs, several of which appear to have previously unrecognized orthologs in the Drosophila genome. A subset of these candidate miRNAs were screened for expression by quantitative RT-PCR and/or genome tiling arrays and most predicted miRNAs were confirmed as being expressed in at least one honey bee tissue. Interestingly, the transcript abundance for several known and novel miRNAs displayed caste or age-related differences in honey bees. Genes in proximity to miRNAs in the bee genome are disproportionately associated with the Gene Ontology terms 'physiological process', 'nucleus' and 'response to stress'. Conclusion Computational approaches successfully identified miRNAs in the honey bee and indicated previously unrecognized miRNAs in the well-studied Drosophila melanogaster genome despite the 280 million year distance between these insects. Differentially transcribed miRNAs are likely to be involved in regulating honey bee development, and arguably in the extreme developmental switch between sterile worker bees and highly fertile queens. PMID:17543122

  18. [MicroRNAs in diagnosis and prognosis in lung cancer].

    PubMed

    Avila-Moreno, Federico; Urrea, Francisco; Ortiz-Quintero, Blanca

    2011-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that regulate gene expression at the posttranscriptional level by blocking translation or inducing degradation of messenger RNA targets. It has been shown that miRNAs participate in a wide spectrum of essential biologic processes including cell cycle, differentiation, development, apoptosis and hematopoiesis, revealing one of the major regulators of human gene expression. Recent studies have shown evidences of abnormal expression of miRNAs in solid and hematological tumors, as well as the association of altered miRNAs with oncogenic or tumor suppressor functions, suggesting a key role of miRNAs in carcinogenesis. Moreover, unique profiles of altered miRNAs expression seem to allow distinction from normal tissue, prediction of disease outcomes, and evaluation of tumor aggressiveness in several types of cancer, including lung cancer. These unique and highly stable miRNAs patterns seems not to depend of age and race, and these characteristics highlight their potential diagnostic and prognosis utility. These findings are particularly promising for lung cancer, a worldwide leading cause of cancer-related deaths with a poor survival rate, despite the discovery of novel therapies. This review describes the potential of miRNAs as biomarkers for diagnosis, cancer classification and estimation of prognosis in lung cancer; and the approaches used to detect and quantify these miRNAs; including the current information about circulating miRNAs as potential biomarkers in lung cancer. This review also provides a description of miRNAs biogenesis, nomenclature and available database for miRNA sequences.

  19. Identification of microRNA-mRNA modules using microarray data.

    PubMed

    Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Yang, Yee H

    2011-03-06

    MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs. We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest. Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.

  20. Association of microRNA-200c expression levels with clinicopathological factors and prognosis in endometrioid endometrial cancer.

    PubMed

    Wilczynski, Milosz; Danielska, Justyna; Domanska-Senderowska, Daria; Dzieniecka, Monika; Szymanska, Bozena; Malinowski, Andrzej

    2018-05-01

    MicroRNAs (miRNAs) are regulators of gene expression, which play an important role in many critical cellular processes including apoptosis, proliferation and cell differentiation. Aberrant miRNA expression has been reported in a variety of human malignancies. Therefore, miRNAs may be potentially used as cancer biomarkers. miRNA-200c, which is a member of the miRNA-200 family, might play an essential role in tumor progression. The purpose of this study was to evaluate the prognostic and clinical significance of miRNA-200c in women with endometrioid endometrial cancer. Total RNA extraction from 90 archival formalin-fixed paraffin-embedded tissue samples of endometri-oid endometrial cancer and 10 normal endometrium samples was performed. After cDNA synthesis, real-time polymerase chain reaction was conducted and relative expression of miRNA-200c was assessed. Then, miRNA-200c expression levels were evaluated with regard to clinicopathological characteristics. The expression levels of miRNA-200c were significantly increased in endometrioid endometrial cancer samples. Expression of miRNA-200c maintained at significantly higher levels in the early stage endometrioid endometrial cancer compared with more advanced stages. In the Kaplan-Meier analysis, lower levels of miRNA-200c expression were associated with inferior survival. Expression levels of miRNA-200c might be associated with clinicopathological factors and survival in endometrioid endometrial cancer. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsicum annuum L.).

    PubMed

    Liu, Zhoubin; Zhang, Yuping; Ou, Lijun; Kang, Linyu; Liu, Yuhua; Lv, Junheng; Wei, Ge; Yang, Bozhi; Yang, Sha; Chen, Wenchao; Dai, Xiongze; Li, Xuefeng; Zhou, Shudong; Zhang, Zhuqing; Ma, Yanqing; Zou, Xuexiao

    2017-04-15

    MicroRNAs (miRNAs) are non-coding small RNAs which play an important regulatory role in various biological processes. Previous studies have reported that miRNAs are involved in fruit development in model plants. However, the miRNAs related to fruit development and quality in hot pepper (Capsicum annuum L.) remains unknown. In this study, small RNA populations from different fruit ripening stages and different varieties were compared using next-generation sequencing technology. Totally, 59 known miRNAs and 310 novel miRNAs were identified from four libraries using miRDeep2 software. For these novel miRNAs, 656 targets were predicted and 402 of them were annotated. GO analysis and KEGG pathways suggested that some of the predicted miRNAs targeted genes involved in starch sucrose metabolism and amino sugar as well as nucleotide sugar metabolism. Quantitative RT-PCR validated the contrasting expression patterns between several miRNAs and their target genes. These results will provide an important foundation for future studies on the regulation of miRNAs involved in fruit development and quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Uptake and Function Studies of Maternal Milk-derived MicroRNAs*

    PubMed Central

    Title, Alexandra C.; Denzler, Rémy; Stoffel, Markus

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of cell-autonomous gene expression that influence many biological processes. They are also released from cells and are present in virtually all body fluids, including blood, urine, saliva, sweat, and milk. The functional role of nutritionally obtained extracellular miRNAs is controversial, and irrefutable demonstration of exogenous miRNA uptake by cells and canonical miRNA function is still lacking. Here we show that miRNAs are present at high levels in the milk of lactating mice. To investigate intestinal uptake of miRNAs in newborn mice, we employed genetic models in which newborn miR-375 and miR-200c/141 knockout mice received milk from wild-type foster mothers. Analysis of the intestinal epithelium, blood, liver, and spleen revealed no evidence for miRNA uptake. miR-375 levels in hepatocytes were at the limit of detection and remained orders of magnitude below the threshold for target gene regulation (between 1000 and 10,000 copies/cell). Furthermore, our study revealed rapid degradation of milk miRNAs in intestinal fluid. Together, our results indicate a nutritional rather than gene-regulatory role of miRNAs in the milk of newborn mice. PMID:26240150

  3. RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.

    PubMed

    Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo

    2015-12-01

    MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. © 2015 The Authors.

  4. Potential Role of microRNAs in Cardiovascular Disease: Are They up to Their Hype?

    PubMed

    Duggal, Bhanu; Gupta, Manveen K; Naga Prasad, Sathyamangla V

    Cardiovascular diseases remain the foremost cause of mortality globally. As molecular medicine unravels the alterations in genomic expression and regulation of the underlying atherosclerotic process, it opens new vistas for discovering novel diagnostic biomarkers and therapeutics for limiting the disease process. miRNAs have emerged as powerful regulators of protein translation by regulating gene expression at the post-transcriptional level. Overexpression and under-expression of specific miRNAs are being evaluated as a novel approach to diagnosis and treatment of cardiovascular disease. This review sheds light on the current knowledge of the miRNA evaluated in cardiovascular disease. In this review we summarize the data, including the more recent data, regarding miRNAs in cardiovascular disease and their potential role in future in diagnostic and therapeutic strategies.

  5. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches.

    PubMed

    Feng, Xinyu; Zhou, Xiaojian; Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-03-12

    microRNAs (miRNAs) are small non-coding RNAs widely identified in many mosquitoes. They are reported to play important roles in development, differentiation and innate immunity. However, miRNAs in Anopheles sinensis, one of the Chinese malaria mosquitoes, remain largely unknown. We investigated the global miRNA expression profile of An. sinensis using Illumina Hiseq 2000 sequencing. Meanwhile, we applied a bioinformatic approach to identify potential miRNAs in An. sinensis. The identified miRNA profiles were compared and analyzed by two approaches. The selected miRNAs from the sequencing result and the bioinformatic approach were confirmed with qRT-PCR. Moreover, target prediction, GO annotation and pathway analysis were carried out to understand the role of miRNAs in An. sinensis. We identified 49 conserved miRNAs and 12 novel miRNAs by next-generation high-throughput sequencing technology. In contrast, 43 miRNAs were predicted by the bioinformatic approach, of which two were assigned as novel. Comparative analysis of miRNA profiles by two approaches showed that 21 miRNAs were shared between them. Twelve novel miRNAs did not match any known miRNAs of any organism, indicating that they are possibly species-specific. Forty miRNAs were found in many mosquito species, indicating that these miRNAs are evolutionally conserved and may have critical roles in the process of life. Both the selected known and novel miRNAs (asi-miR-281, asi-miR-184, asi-miR-14, asi-miR-nov5, asi-miR-nov4, asi-miR-9383, and asi-miR-2a) could be detected by quantitative real-time PCR (qRT-PCR) in the sequenced sample, and the expression patterns of these miRNAs measured by qRT-PCR were in concordance with the original miRNA sequencing data. The predicted targets for the known and the novel miRNAs covered many important biological roles and pathways indicating the diversity of miRNA functions. We also found 21 conserved miRNAs and eight counterparts of target immune pathway genes in An. sinensis based on the analysis of An. gambiae. Our results provide the first lead to the elucidation of the miRNA profile in An. sinensis. Unveiling the roles of mosquito miRNAs will undoubtedly lead to a better understanding of mosquito biology and mosquito-pathogen interactions. This work lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.

  6. miRNA-34b is directly involved in the aging of macrophages.

    PubMed

    Liang, Wei; Gao, Sheng; Liang, Liu; Huang, Xianing; Hu, Nan; Lu, Xiaoling; Zhao, Yongxiang

    2017-08-01

    MicroRNAs (miRNAs) are a class of short noncoding RNA that play important regulatory roles in living organisms. These RNA molecules are implicated in the development and progression of malignant diseases such as cancer and are closely associated with cell aging. Findings demonstrating that microRNA is associated with aging in macrophages have nevertheless rarely been reported. This study's objective was to investigate if miRNA-34 is linked to aging process of macrophages. We built a cell aging model in mouse RAW264.7 macrophages using D-galactose and determined the expression levels of miRNA-34a, miRNA-34b, and miRNA-34c in aging and normal macrophages by fluorescence quantitative polymerase chain reaction (q-PCR). We predicted a target gene of miRNA-34 using biological information techniques and constructed the recombinant plasmid pGL3-E2f3 for the putative target gene E2f3. The expression level of miRNA-34b was 5.23 times higher in aging macrophages than in normal macrophages. The luciferase activity decreased by nearly 50 % in cells transfected with miRNA-34b mimics, while no significant decrease in luciferase activity was noted in cells transfected with the miRNA-34b inhibitor or unrelated sequences. Our findings provide the groundwork for further research into the molecular mechanisms whereby miRNA-34b regulates the aging of macrophages. miRNA-34b is associated with the aging of RAW264.7 macrophages, and E2f3 is a target gene of miRNA-34b.

  7. Fuzzy mutual information based grouping and new fitness function for PSO in selection of miRNAs in cancer.

    PubMed

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2017-10-01

    MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups. Both the steps viz., ranking of miRNAs and selection of the most relevant group of miRNAs, are performed using FMI. Here the number of groups is automatically determined by the grouping method. After the selection process, redundant miRNAs are removed from the selected set of miRNAs as per user's necessity. In a part of the investigation we proposed a FMI based particle swarm optimization (PSO) method for selecting relevant miRNAs, where FMI is used as a fitness function to determine the fitness of the particles. The effectiveness of FMIGS and FMI based PSO is tested on five data sets and their efficiency in selecting relevant miRNAs are demonstrated. The superior performance of FMIGS to some existing methods are established and the biological significance of the selected miRNAs is observed by the findings of the biological investigation and publicly available pathway analysis tools. The source code related to our investigation is available at http://www.jayanta.droppages.com/FMIGS.html. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  9. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    PubMed

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  10. Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: co-expression of Drosha and miR-126 predicts poor survival.

    PubMed

    Lønvik, Kenneth; Sørbye, Sveinung W; Nilsen, Marit N; Paulssen, Ruth H

    2014-01-01

    Dicer and Drosha are important enzymes for processing microRNAs. Recent studies have exhibited possible links between expression of different miRNAs, levels of miRNA processing enzymes, and cancer prognosis. We have investigated the prognostic impact of Dicer and Drosha and their correlation with miR-126 expression in a large cohort of non-small cell lung cancer (NSCLC) patients. We aimed to find patient groups within the cohort that might have an advantage of receiving adjunctive therapies. Dicer expression in the cytoplasm and Drosha expression in the nucleus were evaluated by manual immunohistochemistry of tissue microarrays (TMAs), including tumor tissue samples from 335 patients with resected stages I to IIIA NSCLC. In addition, in situ hybridizations of TMAs for visualization of miR-126 were performed. Kaplan-Meier analysis was performed, and the log-rank test via SPSS v.22 was used for estimating significance levels. In patients with normal performance status (ECOG = 0, n = 197), high Dicer expression entailed a significantly better prognosis than low Dicer expression (P = 0.024). Dicer had no significant prognostic value in patients with reduced performance status (ECOG = 1-2, n = 138). High Drosha expression was significantly correlated with high levels of the microRNA 126 (miR-126) (P = 0.004). Drosha/miR-126 co-expression had a significant negative impact on the disease-specific survival (DSS) rate (P < 0.001). Multivariate analyses revealed that the interaction Dicer*Histology (P = 0.049) and Drosha/miR-126 co-expression (P = 0.033) were independent prognostic factors. In NSCLC patients with normal performance status, Dicer is a positive prognostic factor. The importance of Drosha as a prognostic factor in our material seems to be related to miR-126 and possibly other microRNAs.

  11. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing

    PubMed Central

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation. PMID:27446103

  12. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing.

    PubMed

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.

  13. Chapter 17. Extension of endogenous primers as a tool to detect micro-RNA targets.

    PubMed

    Vatolin, Sergei; Weil, Robert J

    2008-01-01

    Mammalian cells express a large number of small, noncoding RNAs, including micro-RNAs (miRNAs), that can regulate both the level of a target mRNA and the protein produced by the target mRNA. Recognition of miRNA targets is a complicated process, as a single target mRNA may be regulated by several miRNAs. The potential for combinatorial miRNA-mediated regulation of miRNA targets complicates diagnostic and therapeutic applications of miRNAs. Despite significant progress in understanding the biology of miRNAs and advances in computational predictions of miRNA targets, methods that permit direct physical identification of miRNA-mRNA complexes in eukaryotic cells are still required. Several groups have utilized coimmunoprecipitation of RNA associated with a protein(s) that is part of the RNA silencing macromolecular complex. This chapter describes a detailed but straightforward strategy that identifies miRNA targets based on the assumption that small RNAs base paired with a complementary target mRNA can be used as a primer to synthesize cDNA that may be used for cloning, identification, and functional analysis.

  14. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-11-29

    Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a genome-wide analysis of the miRNAs in the ovaries from these two goats using RNA-Seq technology. Thirty miRNAs were differentially expressed between the Jining Grey and Laiwu Black goats. Gene Ontology and KEGG pathway analyses revealed that the target genes of the differentially expressed miRNAs were significantly enriched in several biological processes and pathways. A protein-protein interaction analysis indicated that the miRNAs and their target genes were related to the reproduction complex regulation network. The differential miRNA expression profiles found in the ovaries between the two distinctive breeds of goats studied here provide a unique resource for addressing fecundity differences in goats.

  15. High-Throughput Sequencing of Plasma MicroRNA in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    Brenu, Ekua W.; Ashton, Kevin J.; Batovska, Jana; Staines, Donald R.; Marshall-Gradisnik, Sonya M.

    2014-01-01

    Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers. PMID:25238588

  16. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    NASA Astrophysics Data System (ADS)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  17. An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes[W

    PubMed Central

    Kakrana, Atul; Huang, Kun; Zhai, Jixian; Yan, Zhe; Valdés-López, Oswaldo; Prince, Silvas; Musket, Theresa A.; Stacey, Gary

    2014-01-01

    Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets. PMID:25465409

  18. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

    PubMed

    Haralambieva, Iana H; Kennedy, Richard B; Simon, Whitney L; Goergen, Krista M; Grill, Diane E; Ovsyannikova, Inna G; Poland, Gregory A

    2018-01-01

    MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.

  19. Expression of microRNAs of C19MC in Different Histological Types of Testicular Germ Cell Tumour.

    PubMed

    Flor, Inga; Spiekermann, Meike; Löning, Thomas; Dieckmann, Klaus-Peter; Belge, Gazanfer; Bullerdiek, Jörn

    2016-01-01

    Testicular germ cell tumours (TGCTs) are the most common tumours in men aged from 20 to 40 years, with a steadily increasing incidence. This study aimed to characterize the expression of the miRNA cluster C19MC in TGCT and to evaluate the suitability of a C19MC miRNA as a serum biomarker. By quantitative reverse transcription PCR, we measured the expression of miR-517a-3p, miR-519a-3p, and miR-519c 3p in tissue samples of 25 TGCTs and the level of miR-517a-3p in serum samples obtained pre- and postoperatively from the same patients. We detected a significantly higher expression of C19MC miRNAs in non-seminomas than in seminomas and in clinical stages 2 and 3 than in stage 1 in both tissue and serum samples. miRNAs of C19MC are overexpressed in more aggressive types of TGCT, suggesting they contribute to malignancy. Furthermore, they might serve as serum biomarkers for these types of TGCT. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  20. The importance of the genomic landscape in Waldenström's Macroglobulinemia for targeted therapeutical interventions

    PubMed Central

    Sacco, Antonio; Fenotti, Adriano; Affò, Loredana; Bazzana, Stefano; Russo, Domenico; Presta, Marco; Malagola, Michele; Anastasia, Antonella; Motta, Marina; Patterson, Christopher J.; Rossi, Giuseppe; Imberti, Luisa; Treon, Steven P.; Ghobrial, Irene M.; Roccaro, Aldo M.

    2017-01-01

    The Literature has recently reported on the importance of genomics in the field of hematologic malignancies, including B-cell lymphoproliferative disorders such as Waldenström's Macrolgobulinemia (WM). Particularly, whole exome sequencing has led to the identification of the MYD88L265P and CXCR4C1013G somatic variants in WM, occurring in about 90% and 30% of the patients, respectively. Subsequently, functional studies have demonstrated their functional role in supporting WM pathogenesis and disease progression, both in vitro and in vivo, thus providing the pre-clinical evidences for extremely attractive targets for novel therapeutic interventions in WM. Of note, recent evidences have also approached and defined the transcriptome profiling of WM cells, revealing a signature that mirrors the somatic aberrations demonstrated within the tumor clone. A parallel research field has also reported on microRNAs (miRNAs), highlighting the oncogenic role of miRNA-155 in WM. In the present review, we focus on the latest reports on genomics and miRNAs in WM, providing an overview of the clinical relevance of the latest acquired knowledge about genomics and miRNA aberrations in WM. PMID:28423722

Top