Science.gov

Sample records for pre-monsoon daily temperature

  1. Predictability of the Indian Summer Monsoon onset through an analysis of variations in surface air temperature and relative humidity during the pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Stolbova, V.; Surovyatkina, E.; Bookhagen, B.; Kurths, J.

    2014-12-01

    The prediction of the Indian Summer monsoon (ISM) onset is one of the vital questions for the Indian subcontinent, as well as for areas directly or indirectly affected by the ISM. In previous studies, the areas used for ISM-onset prediction were often too large (or too small), or did not include all necessary information for the ISM-onset forecasting. Here, we present recent findings that suggest that a climate network approach may help to provide better definitions for areas used for ISM-onset prediction and an overall better ISM-onset prediction. Our analysis focuses on the following domains: North West Pakistan (NP) and the Eastern Ghats (EG) as they have been identified to include important pre-monsoon information for predicting ISM onset dates. Specifically, we focus on the analysis of surface air temperature and relative humidity in both areas that allows us to derive temporal trends and to estimate the ISM onset. We propose an approach, which allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In addition, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the forthcoming ISM will be normal or weaker/stronger.

  2. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period. PMID:12167846

  3. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  4. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2016-08-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  5. Trend analysis and ARIMA modelling of pre-monsoon rainfall data for western India

    NASA Astrophysics Data System (ADS)

    Narayanan, Priya; Basistha, Ashoke; Sarkar, Sumana; Kamna, Sachdeva

    2013-01-01

    Spatial and temporal variability of rainfall over different seasons influence physical, social and economic parameters. Pre-monsoon (March, April and May - MAM) rainfall over the country is highly variable. Since heat lows and convective rainfall in MAM have an impact on the intensity of the ensuing monsoons, hence the pre-monsoon period was chosen for the study. The pre-whitened Mann Kendall test was used to explore presence of rainfall trend during MAM. The results indicate presence of significant (at 10% level) increasing trend in two stations (Ajmer, Bikaner). The practical significance of the change in rainfall was also explored as percentage changes over long term mean, using Theil and Sen's median slope estimator. Forecast using univariate ARIMA model for pre-monsoon months indicates that there is a significant rise in the pre-monsoon rainfall over the northwest part of the country.

  6. Vertical structure of atmosphere in pre-monsoon season over Bangalore

    NASA Astrophysics Data System (ADS)

    Agnihotri, Geeta; Dimri, A. P.

    2015-10-01

    This paper discusses the variation of dry bulb and dew point temperature (T and T d) on the days with and without thunderstorm (TSD and NTSD) over Bangalore during pre-monsoon season. The thermodynamic parameters like convective available potential energy (CAPE), convective inhibition energy (CIN), precipitable water content (PWC) and dynamical parameter vertical wind shear difference (VWS) are studied. The mean profiles of T, T d are generated using March-May upper air data of 1730 hrs IST from 2000-2007 for Bangalore. These are also generated on the TSD and NTSD respectively. It is found that the difference between mean profile of T for TSD/NTSD and seasonal mean is negative/positive till 200 hPa. On the other hand, the difference of the seasonal mean of T d and that of T d on the TSD/NTSD is found to be positive/negative till 300 hPa. These results are found to be significant at 99% confidence. It is found that T is less than the mean at surface till 600 hPa on TSD, whereas it is 0.5 ∘C above average on the NTSD respectively. The difference between the T d on the TSD and mean T d is of the order of 3-5 ∘C till 300 hPa. On the NTSD, this difference ranges between -1 and -2∘C in the entire troposphere. The mean values of CAPE, CIN, PWC and VWS for Bangalore in pre-monsoon season are found to be 1324, 49.3 J/kg, 30 mm and -0.0007 s -1, respectively. These parameters were used as predictors for forecasting a thunderstorm. The critical success index and Heidke skill score were used for evaluating the forecast skill of the above parameters for 2 years from 2008 to 2009. CAPE and PWC are able to distinguish a TSD from that of a NTSD with 99% confidence. It is found that these scores are 0.44 and 0.35 for CAPE and 0.49 and 0.53 for precipitable water content.

  7. Daily temperature variations on Mars

    NASA Technical Reports Server (NTRS)

    Ditteon, R.

    1982-01-01

    It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.

  8. Seasonal Variation in Daily Temperature Ranges.

    NASA Astrophysics Data System (ADS)

    Ruschy, David L.; Baker, Donald G.; Skaggs, Richard H.

    1991-12-01

    Abrupt spring and autumnal changes in the daily temperature range, from low winter values to higher nonwinter values, were noted in the Minneapolis-St. Paul temperature record. Since this feature was even more evident in five rural and small town Minnesota stations, it can be accepted as real.The inverse relationship found between surface albedo and the daily temperature range indicated that the reduced winter temperature range is associated with snow cover. A second factor controlling the temperature range is cloud cover. This led to the conclusion that variation in net solar radiation is the primary factor.A strong statistical relationship between daily temperature range and the three variables considered (solar radiation, albedo, and cloud cover) was limited to the spring and fall. In March-April the statistically significant factors were solar radiation and albedo, while in October-November they were solar radiation and cloud cover. For the October-December period albedo was also statistically important.

  9. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  10. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  11. Thunderstorm characteristics in Nepal during the pre-monsoon season 2012

    NASA Astrophysics Data System (ADS)

    Mäkelä, Antti; Shrestha, Rajendra; Karki, Ramchandra

    2014-02-01

    A training period of lightning location data usage has been carried out in Nepal during the pre-monsoon season April-June 2012. The training was one part of a Finnish-Nepalese Project (FNEP) between the Department of Hydrology and Meteorology of Nepal (DHM) and the Finnish Meteorological Institute (FMI). FNEP aimed for the development of operational meteorological readiness in a developing country such as Nepal. The lightning location training included the introduction to lightning location techniques and principles and the actual hands-on training for the operational DHM forecasters. The lightning location system used was the Vaisala long range Global Lightning Dataset 360 (GLD360), which has practically a global coverage. During the three months of training, a dataset of Nepalese lightning was also collected, indicating the pre-monsoon thunderstorm characteristics of Nepal.

  12. Climatology: Contrails reduce daily temperature range

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  13. Pre-monsoon/monsoon thunderstorm characteristics over Pune—An investigation using Doppler Sodar observations

    NASA Astrophysics Data System (ADS)

    Murthy, B. S.; Latha, R.; Sreeja, P.; Kalapureddy, M. C. R.; Dharmaraj, T.; Waghmare, R. T.

    2011-10-01

    Doppler sodar observations of three dimensional (3D) wind fields and thermal structure of convective boundary layer (CBL) on a few thunderstorm days of 2009 during pre-monsoon (May and June; June due to delayed arrival of monsoon over Pune) and monsoon (July and August) are analyzed. They reveal the typical signatures of wind fields for the late afternoon thunderstorm (TS) such as deceleration of winds with or without change in direction leading to convergence a few minutes (˜15-30 min) prior to the onset of TS. Pre-monsoon TS are characterized by broad updrafts and narrow downdrafts in CBL in contrast to the narrow updrafts and broad downdrafts of a normal day (i.e. No-TS day). Mean vertical velocity averaged over CBL period shows net updraft on TS days and net downdraft on No-TS day for the pre-monsoon cases. Similarly calm winds are observed in the CBL on TS-days that support enhanced free convection. During the monsoon period updrafts are observed on both TS and No-TS days with higher values on TS days in comparison, due to the dominance of large-scale monsoon flow over local convection. Relatively higher turbulence kinetic energy (TKE) in CBL is observed on all TS days. Analysis shows that TKE maximum for the day is attained about 1.5-2.0 h prior to the onset of afternoon TS. Mixed-layer depth, determined from TKE profile, is higher than lifting condensation level (LCL) on TS days in May and June indicating saturation of air parcels in updrafts.

  14. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2016-07-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season (kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics (α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test (α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  15. [Body temperature measurement in daily practice].

    PubMed

    Sermet-Gaudelus, I; Chadelat, I; Lenoir, G

    2005-08-01

    The use of rectal mercury thermometer has long been the standard method for measurement of body temperature. The restriction of mercury use since 1996 has led to development of other devices. The liquid crystal strip thermometer held against the forehead has a low sensitivity. The single-use chemical thermometer measures oral temperature. Its accuracy must be evaluated. Infrared ear thermometers are routinely used because it is convenient and fast to use. However, numerous studies have shown that it does not show sufficient correlation with rectal temperature, leading to the risk to miss cases of true fever. Rectal temperature remains the gold standard in case of fever. Rectal temperature measurement with an electronic device is well correlated with the glass mercury standard. Galistan thermometer accuracy must be evaluated because of sterilization of the whole device, which is not the case for the electronic thermometer. A pediatric study is necessary to evaluate the performance of this device in comparison with the electronic thermometer.

  16. Possible development mechanisms of pre-monsoon thunderstorms over northeast and east India

    NASA Astrophysics Data System (ADS)

    Narayanan, Sunanda; Vishwanathan, Gokul; Mrudula, G.

    2016-05-01

    Thunderstorms are mesoscale convective systems of towering cumulonimbus clouds of high vertical and horizontal extent lasting from a few minutes to several hours. Pre-monsoon thundershowers over the past 10 years have been analyzed to understand the organization, horizontal and vertical development and dissipation of such severe events. Kalbaisakhi's/ Norwester's over north east and East India is given preference in this study, while some of the other extreme events are also analyzed due to their severity. The meteorological parameters like horizontal and vertical wind, precipitable water etc., and derived variables such as Severe Weather Threat (SWEAT) Index, Convective Available Potential Energy (CAPE), and Convective Inhibition Energy (CINE) of the identified cases are analyzed using observations from NCEP and IMD. Satellite observations from IMD and TRMM are also used to analyze the development and moisture flow of such systems. The analysis shows that some of the parameters display a clear signature of developing thunderstorms. It is also seen that cloud parameters such as convective precipitation rate and convective cloud cover from NCEP FNL didn't show much variation during the development of storms, which may be attributed to the limitation of spatial and temporal resolution. The parameters which showed indications of a developing thunderstorm were studied in detail in order to understand the possible mechanisms behind the development and organization of thunderstorm cells.

  17. Characterization of aerosols over oceanic regions around India during pre-monsoon 2006

    NASA Astrophysics Data System (ADS)

    Kalapureddy, M. C. R.; Devara, P. C. S.

    Ship cruise observations of aerosol optical properties have been carried out over oceanic areas around India during pre-monsoon season of 2006. The results reveal rather significant day-to-day variability in aerosol optical thickness (AOT). Aerosol loading is found to be relatively high over the Bay of Bengal (BoB) i.e., AOT at 500 nm is 0.36 ± 0.12 which is higher than those over Arabian Sea (AS) i.e., 0.23 ± 0.09 and North Indian Ocean (NIO) i.e., 0.26 ± 0.10. Dominance of fine-mode ( α = 1.21 ± 0.11) and coarse-mode ( α = 0.86 ± 0.20) aerosol particles has been observed, respectively, over the BoB and AS regions. Second order Angstrom exponent shows predominant positive and negative curvatures over BoB and AS, respectively. High fine-mode aerosol loading over BoB is found to be associated with air masses originating from northeastern Indo-Gangetic plains and southeastern Myanmar. The observed short wave solar flux decrease due to aerosol extinction is found to be 24, 19 and 21 W m -2 for the BoB, AS and NIO, respectively.

  18. Modeling maximum daily temperature using a varying coefficient regression model

    NASA Astrophysics Data System (ADS)

    Li, Han; Deng, Xinwei; Kim, Dong-Yun; Smith, Eric P.

    2014-04-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature. A good predictive model for daily maximum temperature is required because daily maximum temperature is an important measure for predicting survival of temperature sensitive fish. To appropriately model the strong relationship between water and air temperatures at a daily time step, it is important to incorporate information related to the time of the year into the modeling. In this work, a time-varying coefficient model is used to study the relationship between air temperature and water temperature. The time-varying coefficient model enables dynamic modeling of the relationship, and can be used to understand how the air-water temperature relationship varies over time. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina, and Georgia using daily maximum temperatures. It provides a better fit and better predictions than those produced by a simple linear regression model or a nonlinear logistic model.

  19. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ˜ 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  20. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  1. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  2. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  3. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  4. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  5. Daily extreme temperature multifractals in Catalonia (NE Spain)

    NASA Astrophysics Data System (ADS)

    Burgueño, A.; Lana, X.; Serra, C.; Martínez, M. D.

    2014-02-01

    The multifractal character of the daily extreme temperatures in Catalonia (NE Spain) is analyzed by means of the multifractal detrended fluctuation analysis (MF-DFA) applied to 65 thermometric records covering years 1950-2004. Although no clear spatial patterns of the multifractal spectrum parameters appear, factor scores deduced from Principal Component analysis indicate some signs of spatial gradients. Additionally, the daily extreme temperature series are classified depending on their complex time behavior, through four multifractal parameters (Hurst exponent, Hölder exponent with maximum spectrum, spectrum asymmetry and spectrum width). As a synthesis of the three last parameters, a basic measure of complexity is proposed through a normalized Complexity Index. Its regional behavior is found to be free of geographical dependences. This index represents a new step towards the description of the daily extreme temperatures complexity.

  6. Spatial distribution of aerosol black carbon over India during pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Moorthy, K. Krishna; Babu, S. Suresh; Satheesh, S. K.; Vinoj, V.; Badarinath, K. V. S.; Safai, P. D.; Devara, P. C. S.; Singh, Sacchidanand; Vinod; Dumka, U. C.; Pant, P.

    Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a mutli-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each in Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 μg m -3 over industrial/urban locations to as low as 0.065 μg m -3 over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with an afternoon low and a nighttime high; (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL). At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May. This is attributed to the increased convective mixing and to the

  7. Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Rajagopalan, B.

    2011-12-01

    Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other

  8. A stochastic model for the analysis of maximum daily temperature

    NASA Astrophysics Data System (ADS)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2016-08-01

    In this paper, a stochastic model for the analysis of the daily maximum temperature is proposed. First, a deseasonalization procedure based on the truncated Fourier expansion is adopted. Then, the Johnson transformation functions were applied for the data normalization. Finally, the fractionally autoregressive integrated moving average model was used to reproduce both short- and long-memory behavior of the temperature series. The model was applied to the data of the Cosenza gauge (Calabria region) and verified on other four gauges of southern Italy. Through a Monte Carlo simulation procedure based on the proposed model, 105 years of daily maximum temperature have been generated. Among the possible applications of the model, the occurrence probabilities of the annual maximum values have been evaluated. Moreover, the procedure was applied for the estimation of the return periods of long sequences of days with maximum temperature above prefixed thresholds.

  9. Daily rhythms of activity and temperature of Macaca nemestrina

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Sickles, S. A.

    1982-01-01

    The activity and temperature rhythms of pig-tailed macaques (Macaca nemestrina) maintained in LD 16:8 at 25 C in specially designed restraint chairs have been examined. Activity was monitored via a sensor that was attached to the restraint chair. Temperature was monitored at the axilla, ankle and ear. All variables showed prominent day-night variations, and except for ankle temperature, had highest values during the daytime. These results show that the regulation of the daily rhythm of body temperature involves anatomical sites that are utilized in a temporally distinct fashion.

  10. Homogenization of daily Spanish temperatures using SNHT and HOM methods

    NASA Astrophysics Data System (ADS)

    Aguilar, E.; Rodrigo, F. S.; Fernández-Montes, S.; Luna, M. Y.; Rasilla, D.; Sigró, J.; Brunet, M.

    2009-04-01

    In recent years, in connection with the need to improve our knowledge about climatic extremes, the homogenization community has focused on the adjustment of daily climatological data. The Spanish funded projects EXPICA (Spanish grant CGL2007-65546-C03) and its coordinated project CAFIDEXPI (Spanish grant CGL2007-65546-C03-02) is devoted to analyze changes in extremes over the Iberian Peninsula, thus needing daily homogeneous data suitable for such purposes. As daily resolution would increase the problems encountered by homogenizers to apply the different detection/correction methods, a widely used approach (as demonstrated by the survey conducted in the framework of the Working Group I of the COST-ES0601: Advances in homogenization methods of climate series: an integrated approach-HOME) is to combine a detection approach based on lower resolution data (monthly, seasonal, annual) and a correction method specifically designed for daily data. In this work, we present the results of the homogenization of a subset of 28 daily temperature stations, centered around the Iberian Peninsula, which were subsequently used to derive a basic climatology for the above mentioned projects. All stations are almost complete for the 1971-2000 reference period and many of them go back to the 19th century. The procedure detects potential breaks applying the SNHT test to annual and quarterly data, using additional support station as references and the limited available metadata. Daily adjustments were calculated using the HOM method and covering the longest possible period (variable for each station), allowed by available, well correlated, overlapping data. Trends before and after homogenization were assessed by calculating a set of climate change indices.

  11. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Harrington, Luke J.; Frame, David J.; Fischer, Erich M.; Hawkins, Ed; Joshi, Manoj; Jones, Chris D.

    2016-05-01

    Understanding how the emergence of the anthropogenic warming signal from the noise of internal variability translates to changes in extreme event occurrence is of crucial societal importance. By utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from eleven earth system models, we demonstrate that the inherently lower internal variability found at tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances of the 99.9th percentile derived from pre-industrial climate simulations) occurring much earlier than for mid-to-high latitude regions. Most of the world’s poorest people live at low latitudes, when considering 2010 GDP-PPP per capita; conversely the wealthiest population quintile disproportionately inhabit more variable mid-latitude climates. Consequently, the fraction of the global population in the lowest socio-economic quintile is exposed to substantially more frequent daily temperature extremes after much lower increases in both mean global warming and cumulative CO2 emissions.

  12. Examining the spring discontinuity in daily temperature ranges

    SciTech Connect

    Schwartz, M.D.

    1996-04-01

    The atmosphere and biosphere both change rapidly throughout midlatitude spring. Many weather variables are modified during this season, including the diurnal temperature range (DTR). The mean DTR trend displays a discontinuity at the onset of spring characterized by a rapid increase for several weeks, followed by an abrupt leveling off. The trend then remains essentially flat throughout the remainder of the warm season. These DTR changes reflect the interactive role many weather variables play with surface-layer processes. Thus, diagnosing the causes of these variations may provide background information for numerous global change analyses, as daily temperature data become increasingly available worldwide. The results of this study suggest that several factors (snow cover loss, more frequent southerly winds, and increased ceiling heights) are responsible for the initial rapid increase in the DTR. The second half of the discontinuity (subsequent leveling off) is connected with increased atmospheric moisture and coincides with the onset of plant transpiration. 14 refs., 5 figs, 2 tabs.

  13. Trends in Observed Summer Daily Temperature Maximum Across Colorado

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Arvidson, L.

    2015-12-01

    Increases in the anthropogenic greenhouse forcing are expected to increase the tendency for longer and stronger heat waves in summer. We examine if there is a trend in the observed daytime extreme temperature (Tmax) during summer between 1900-2014 at select high quality stations (n=9) across Colorado. We compile daily observations of Tmax and other variables during summer (JJA), and derive and analyze trends in five different extreme metrics from this data that include the maximum five-day Tmax average, warm spell duration index, and the number of days when Tmax exceeds the 95th, 99th, and 99.9th percentile conditions. We find that the 1930s and 2000s in Colorado had some outstandingly hot years, when we also find exceptionally high count of summer Tmax extremes. Five out of the nine stations show increases in extreme temperature indicators in the more recent decades. The variability in trends in the daily summer Tmax extremes across the nine stations correspond with the mean annual warming trends at those stations. We also find that wetter summers have much smaller instances of Tmax extremes as compared to drier summers.

  14. Recent high mountain rockfalls and warm daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Allen, S. K.; Huggel, C.

    2012-04-01

    Linkages between longer term warming of the climate, related changes in the cryosphere, and destabilisation of high mountain rockwalls have been documented in several studies. Although understanding is far from complete, a range of physical processes related to longer term warming are understood to have an effect on slope stability. More recently, some attention has turned to the possible influence of much shorter periods of extremely warm temperatures, as a contributing factor, or even trigger of slope failures. So far, studies have not extended beyond highlighting one or a few individual events, and no common approach to quantifying the 'extremity' of the prevailing temperatures has been used. In the current study, we integrate established practices used in the climatology community in the analyses of climate extremes, together with an inventory of ca. 20 recent rock failures (1987 - 2010) in the central European Alps, to assess temporal relationships between daily air temperature extremes and rock failure occurrence. Using data from three high elevation recording sites across Switzerland, we focus on daily maximum temperatures in the 4 weeks immediately prior to each rockfall occurrence, where an extremely warm day is defined as exceeding the 95th percentile during the climatological reference period of 1971 - 2000. The 95th percentile is calculated in a 21 day moving window, so that extreme temperatures are considered relative to the time of year, and not on an annual basis. In addition, rock failures from the Southern Alps of New Zealand are analysed, although high elevation climate data are limited from this region. Results from the European Alps show that a majority of recent slope failures have been preceded by one or more extreme, unseasonably warm days, most notably in the week immediately prior to the failure. For example, for 9 slope failures in the Valais - Mt Blanc region (based on Grand St Bernhard climate data), 6 were proceeded by extremely warm

  15. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  16. Reconstruction of MODIS daily land surface temperature under clouds

    NASA Astrophysics Data System (ADS)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  17. Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon

    NASA Astrophysics Data System (ADS)

    Ray, R.; Rixen, T.; Baum, A.; Malik, A.; Gleixner, G.; Jana, T. K.

    2015-12-01

    The sources and distribution of dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC) in the Indian Sundarbans mangrove and Hooghly estuarine system were examined during the pre-monsoon (summer) 2014. DOC is the dominant form of organic matter (OM) in the studied estuarine waters and represents a mixture of mangrove and riverine sources. Microbial degradation of land derived OM results in a high pCO2 in the Hooghly estuarine waters while enrichment in δ13C-DIC ascribes to CO2 uptake by phytoplankton in the Sundarbans water. Higher δ15N in the particulate organic nitrogen (PON) of the mangrove and marine zone could be associated with enhanced phytoplankton production sustained by nitrate from mangrove derived OM decomposition and/or nitrate imported from the Bay of Bengal. Low organic carbon contents and elemental ratios (TN/TOC) indicate an intense mineralization and transformation of OM in the sediments, resulting insignificantly different OM compositions compared to those of the three major sources: land derived OM, mangrove leaf litter (Avicennia marina) and in situ phytoplankton production.

  18. How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Kuhlmann, J.; Quaas, J.

    2010-05-01

    The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.

  19. How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Kuhlmann, J.; Quaas, J.

    2010-02-01

    The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.

  20. Bioaccumulation of hexachlorocyclohexane, dichlorodiphenyltrichloroethane, and estradiol-17beta in catfish and carp during the pre-monsoon season in India.

    PubMed

    Singh, Pratap B; Singh, Vandana

    2008-03-01

    This investigation was performed to monitor hexachlorocyclohexane isomers (HCHs), dichlorodiphenyltrichloroethane (DDT, and its metabolites, refered to as DDTs), plasma levels of estradiol-17beta (E2), and the gonadosomatic index (GSI) between sampling sites of unpolluted ponds of Gujartal, Jaunpur (control site) and the polluted rivers Gomti (Jaunpur) and Ganga (Varanasi), which affect the reproductive physiology of some edible catfish and carp during the pre-monsoon season. HCHs and DDTs were measured by gas liquid chromatography (GLC) and hormones by radioimmunoassay (RIA). The results indicated that the level of HCHs and DDTs was very high in both the catfish and the carp captured from the polluted rivers compared with the fish captured from the control site. The GSI and E2 values were lower in both groups of fish when compared to the fish from the control site. The results also indicate that catfish showed greater bioaccumulation of HCHs and DDTs than carp, above the permissible limit, as compared to the fish from the control site. In conclusion, fish from the Gomti and Ganga rivers were highly polluted when compared with fish from the control site, as was evident from high levels of tissue bioaccumulation of HCHs and DDTs and decreased levels of plasma E2, inhibiting the reproductive physiology of these species at the receptor level. The levels exceeded the maximum residue limits (MRL) as recommended by Codex, hence it is suggested that the fish should be avoided for food purposes. PMID:18649020

  1. Future changes in daily summer temperature variability: Driving processes and its role for temperature extremes

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Schär, C.

    2008-12-01

    Anthropogenic greenhouse gases are expected to lead to more frequent and intense summer temperature extremes not only due to mean warming itself but also due to changes in temperature variability. To test this hypothesis, we analyze daily output of the ENSEMBLES and PRUDENCE regional climate multi-model ensemble projects. These two recent European multi-model scenario experiments provide a large number of simulations based on different combinations of GCMs and 10 RCMs, which allow for a careful inter-model comparison and a better quantification of projection uncertainties. All models project more frequent temperature extremes particularly over the Mediterranean and central Europe. The fact that the projected warming of the uppermost percentiles of daily summer temperatures is largest over France (strongest variability increase) and not over the (strongest mean warming) suggests an important role of daily variability changes. Such changes in daily temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over central Europe and depending upon the RCM, the total daily summer temperature variability is projected to increase by 20-40% as a result of increases in all three components: interannual variability (+30-95%), seasonal variability (+35-105%), and intraseasonal variability (+10-30%). Changes in northern and southern Europe are substantially smaller. Over central Europe the models simulate a progressive warming within the summer season, with the projected temperature change in August exceeding that in June by 2--3K. Thus, the most distinct warming is superimposed upon the maximum of the seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). Analyses of the underlying

  2. Daily temperature extremes play an important role in predicting thermal effects.

    PubMed

    Ma, Gang; Hoffmann, Ary A; Ma, Chun-Sen

    2015-07-01

    Organisms in natural environments experience diel temperature fluctuations, including sporadic extreme conditions, rather than constant temperatures. Studies based mainly on model organisms have tended to focus on responses to average temperatures or short-term heat stress, which overlooks the potential impact of daily fluctuations, including stressful daytime periods and milder night-time periods. Here, we focus on daily maximum temperatures, while holding night-time temperatures constant, to specifically investigate the effects of high temperature on demographic parameters and fitness in the English grain aphid Sitobion avenae. We then compared the observed effects of different daily maximum temperatures with predictions from constant temperature-performance expectations. Moderate daily maximum temperatures depressed aphid performance while extreme conditions had dramatic effects, even when mean temperatures were below the critical maximum. Predictions based on daily average temperature underestimated negative effects of temperature on performance by ignoring daily maximum temperature, while predictions based on daytime maximum temperatures overestimated detrimental impacts by ignoring recovery under mild night-time temperatures. Our findings suggest that daily maximum temperature will play an important role in regulating natural population dynamics and should be considered in predictions. These findings have implications for natural population dynamics, particularly when considering the expected increase in extreme temperature events under climate change. PMID:26026043

  3. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City

    PubMed Central

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007–2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0–15 years old). Middle-aged people (16–65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8–1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place. PMID

  4. Spatial downscaling and mapping of daily precipitation and air temperature using daily station data and monthly mean maps

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.; Stern, M. A.

    2013-12-01

    Accurate maps of daily weather variables are an essential component of hydrologic and ecologic modeling. Here we present a four-step method that uses daily station data and transient monthly maps of precipitation and air temperature. This method uses the monthly maps to help interpolate between stations for more accurate production of daily maps at any spatial resolution. The first step analyzes the quality of the each station's data using a discrepancy analysis that compares statistics derived from a statistical jack-knifing approach with a time-series evaluation of discrepancies generated for each station. Although several methods could be used for the second step of producing initial maps, such as kriging, splines, etc., we used a gradient plus inverse distance squared method that was developed to produce accurate climate maps for sparse data regions with widely separated and few climate stations, far fewer than would be needed for techniques such as kriging. The gradient plus inverse distance squared method uses local gradients in the climate parameters, easting, northing, and elevation, to adjust the inverse distance squared estimates for local gradients such as lapse rates, inversions, or rain shadows at scales of 10's of meters to kilometers. The third step is to downscale World Wide Web (web) based transient monthly data, such as Precipitation-Elevation Regression on Independent Slope Method (PRISM) for the US (4 km or 800 m maps) or Climate Research Unit (CRU 3.1) data sets (40 km for global applications) to the scale of the daily data's digital elevation model. In the final step the downscaled transient monthly maps are used to adjust the daily time-series mapped data (~30 maps/month) for each month. These adjustments are used to scale daily maps so that summing them for precipitation or averaging them for temperature would more accurately reproduce the variability in selected monthly maps. This method allows for individual days to have maxima or minima

  5. Future changes in daily summer temperature variability: driving processes and role for temperature extremes

    NASA Astrophysics Data System (ADS)

    Fischer, Erich M.; Schär, Christoph

    2009-12-01

    Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071-2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20-40% as a result of increases in all three components: interannual variability (30-95%), seasonal variability (35-105%), and intraseasonal variability (10-30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2-3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but

  6. Numbers of Stroke Patients and Stroke Subtypes According to Highest and Lowest Daily Temperatures in Seoul

    PubMed Central

    Shin, Dong-Won; Yoon, Jee-Eun; Hwang, Hye-Won; Kim, Ji-Sun; Park, Sukh-Que; Roh, Hakjae; Ahn, Moo-Young

    2016-01-01

    Background and Purpose There is conflicting evidence for whether or not the incidence of stroke is influenced by the daily temperature. The association between daily temperature and incidence of stroke is largely unknown in Korea. This study attempted to evaluate whether the maximum or minimum daily temperature is associated with increased numbers of strokes and stroke subtypes among Seoul residents. Methods We obtained the maximum and minimum daily temperatures in Seoul from the Korean Meteorological Administration between January 2005 and December 2014. Consecutive patients with acute stroke were registered who visited the emergency room or outpatient clinic in Soonchunhyang University Hospital, Seoul. The residential addresses of cases were restricted to within a 2-kilometer radius of this hospital. The stroke events were prospectively recorded with onset time, and were classified by subtypes. The categories of daily temperature were divided by 10℃ from the mean temperature. The mean daily number of strokes was calculated during the study period. One-way analysis of variance and Duncan's post-hoc test were applied to compare the number of strokes among the temperature groups. Results In total, 2,313 acute strokes were identified during the period: 1,643 ischemic strokes and 670 hemorrhagic strokes. The number of cases was significantly higher when the maximum daily temperature was >32℃ or ≤3℃ (p=0.048) or the minimum daily temperature was ≤-11.0℃ (p=0.020). The lowest maximum daily temperature was associated with increased instances of intracerebral hemorrhage (p=0.029) and small-vessel occlusion (p=0.013), while the highest maximum daily temperature was associated with an increased instance of large-artery atherosclerosis (p=0.045). Conclusions The daily temperature had measurable and different associations with the number of strokes and strokes subtypes in Seoul, Korea.

  7. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  8. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    NASA Astrophysics Data System (ADS)

    Panwar, Chhagan; Vyas, B. M.

    2016-05-01

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (Reff), integrated content of total aerosols (Nt), columnar content of accumulation and coarse size aerosols particles concentration (Na) (size < 0.5 µm) and (Nc) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 1013 m2 μm-1 at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 1010 to 1011 m2/μm-1 occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 1012 m2μm-3 is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT

  9. Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Madronich, S.; Naja, M.; Carmichael, G. R.; Pfister, G. G.; Knote, C.; Brasseur, G. P.; Ojha, N.; Sarangi, T.

    2014-07-01

    This study examines the effect of a typical pre-monsoon season dust storm on tropospheric chemistry through a case study in northern India. Dust can alter photolysis rates by scattering and absorbing solar radiation and provide surface area for heterogeneous reactions. We use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate the dust storm that occurred during 17-22 April 2010 and investigate the contribution of different processes on mixing ratios of several key trace gases including ozone, nitrogen oxides, hydrogen oxides, methanol, acetic acid and formaldehyde. We revised the Fast Troposphere Ultraviolet Visible (F-TUV) photolysis scheme to include effects of dust aerosols on photolysis rates in a manner consistent with the calculations of aerosol optical properties for feedback to the meteorology radiation schemes. In addition, we added 12 heterogeneous reactions on the dust surface, for which 6 reactions have relative-humidity-dependent reactive uptake coefficients (γ). The inclusion of these processes in WRF-Chem is found to reduce the difference between observed and modeled O3 from 16 ± 9 to 2 ± 8 ppbv and that in NOy from 2129 ± 1425 to 372 ± 1225 pptv compared to measurements at the high-altitude site Nainital in the central Himalayas, and reduce biases by up to 30% in tropospheric column NO2 compared to OMI retrievals. The simulated dust storm acted as a sink for all the trace gases examined here and significantly perturbed their spatial and vertical distributions. The reductions in these gases are estimated as 5-100%, and more than 80% of this reduction was due to heterogeneous chemistry. The RH dependence of γ is also found to have substantial impact on the distribution of trace gases, with changes of up to 20-25% in O3 and HO2, 50% in H2O2 and 100% in HNO3. A set of sensitivity analyses revealed that dust aging could change H2O2 and CH3COOH levels by up to 50% but has a relatively small impact on other gases.

  10. Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Madronich, S.; Naja, M.; Carmichael, G. R.; Pfister, G. G.; Knote, C.; Brasseur, G. P.; Ojha, N.; Sarangi, T.

    2014-01-01

    This study examines the effect of a typical pre-monsoon season dust storm on tropospheric chemistry through a case study in northern India. Dust can alter photolysis rates by scattering and absorbing solar radiation, and provide surface area for heterogeneous reactions. We use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate the dust storm that occurred during 17-22 April 2010 and investigate the contribution of different processes on mixing ratios of several key trace gases including ozone, nitrogen oxides, hydrogen oxides, methanol, acetic acid and formaldehyde. We revised the Fast Troposphere Ultraviolet Visible (F-TUV) photolysis scheme to include effects of dust aerosols on photolysis rates in a manner consistent with the calculations of aerosol optical properties for feedback to the meteorology radiation schemes. In addition, we added twelve heterogeneous reactions on the dust surface, for which six reactions have relative humidity dependent reactive uptake coefficients (γ). The inclusion of these processes in WRF-Chem is found to reduce difference between observed and modeled ozone from 16 ± 9 to 2 ± 8 ppbv and that in NOy from 2129 ± 1425 to 372 ± 1225 pptv compared to measurements at the high altitude site Nainital in the central Himalayas, and reduce biases by up to 30% in tropospheric column NO2 compared to OMI retrievals. The simulated dust storm acted as a sink for all the trace gases examined here and significantly perturbed their spatial and vertical distributions. The reductions in these gases are estimated as 5-100% and more than 80% of this reduction was due to heterogeneous chemistry. The RH dependence of γ is also found to have substantial impact on the distribution of trace gases, with changes of up to 20-25% in ozone and HO2, 50% in H2O2 and 100% in HNO3. A set of sensitivity analyses revealed that dust aging can reduce the uptake of trace gases (especially of H2O2 and acetic acid) by up to 50% in

  11. Simulation of daily energy budget and mean soil temperatures at an arid site

    NASA Astrophysics Data System (ADS)

    Matthias, A. D.

    1990-03-01

    Soil temperature is often inadequately based upon relatively few measurements at widely dispersed locations. Within arid regions, such as the desert southwestern United States, soils, microclimates, and thus soil temperature may be markedly heterogeneous. Because extensive measurement of soil temperature is often not feasible, models are needed that simulate soil temperature based on readily available soil survey and “above-ground” weather information. This paper describes a simple energy-budget based model for simulating daily mean temperatures within a bare arid land soil. The model requires basic information on soil physical properties, and daily weather data including air temperature, windspeed, rainfall, and solar radiation to calculate daily surface energy budget components and surface temperature. One of two alternative numerical methods is then used to calculated subsurface temperatures. Tests of the model using 1987 daily temperature data from an arid site at Yuma, Arizona resulted in root mean square deviations within 1.4°C between daily modeled and measured temperatures at both 0.05 and 0.10 m depths. Sensitivity analysis showed modeled temperatures at 0.05 m depth to be most sensitive to parameters affecting the surface energy balance such as air temperature and solar radiation. Modeled temperatures at 1.0m depth were relatively more sensitive to initial temperature conditions and to parameters affecting distribution of energy within the profile such as thermal conductivity.

  12. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia

  13. Quantifying the relevance of local blockings for temperature extremes on sub-daily to daily time scales

    NASA Astrophysics Data System (ADS)

    Pfahl, S.

    2012-04-01

    Atmospheric blockings can influence near-surface temperature, on the one hand by inducing circulation anomalies, on the other hand since they are associated with clear-sky conditions, which can lead to anomalies in the surface radiation budget. The latter is due to subsiding motions and the deflection of low pressure systems. In this study, it is quantified how relevant these effects are locally (at the location of the blocking) for the occurrence of sub-daily and daily temperature extremes, based on ERA-Interim reanalysis data in the Northern Hemisphere for the period 1989-2009. Blockings are identified from the reanalysis dataset as negative anomalies of the vertically integrated potential vorticity (PV) between 150 hPa and 500 hPa with a lifetime longer than 5 days. The threshold for the identification of the PV anomalies is varied between -1.3 PVU and -0.7 PVU in order to distinguish between strong and weaker blocking systems. Temperature extremes are identified at each grid point if the six-hourly maximum (minimum) temperature exceeds (falls below) its local 99% (1%) percentile. For investigating extremes on longer time scales, the temperature time series are smoothed with a 1- or 3-day running mean before identifying the extremes. Finally, a blocking is assumed to be locally related to a temperature extreme if both occur simultaneously at the same grid point. The percentage of temperature extremes coinciding with a blocking is then quantified at every grid point. The percentage of hot temperature extremes associated with a strong blocking reaches maxima of more than 50% over southern Greenland and Quebec and around 30% over Northern Europe and Asia, exceeding the climatological blocking frequency by about a factor of 5. The spatial patterns of this percentage are similar if the smoothed time series are used, but the maxima are increased up to 70%. If also weaker blockings are considered, in the order of 80% of the six-hourly hot extremes coincide with such

  14. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  15. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow

  16. Simulation of mosquitoes population dynamic based on rainfall and average daily temperature

    NASA Astrophysics Data System (ADS)

    Widayani, H.; Seprianus, Nuraini, N.; Arum, J.

    2014-02-01

    This paper proposed rainfall and average daily temperature approximation functions using least square method with trigonometry polynomial. Error value from this method is better than Fast Fourier Transform method. This approximation is used to accommodate climatic factors into deterministic model of mosquitoes population by constructing a carrying capacity function which contains rainfall and average daily temperature functions. We develop a mathematical model for mosquitoes population dynamic which formulated by Yang et al (2010) with dynamic parameter of a daily rainfall as well as temperature on that model. Two fixed points, trivial and non-trivial, are obtained when constant entomological parameters assumed. Basic offspring number, Q0 as mosquitoes reproduction parameter is constructed. Non-trivial fixed point is stable if and only if Q0 > 1. Numerical simulation shown the dynamics of mosquitoes population significantly affected by rainfall and average daily temperature function.

  17. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew F.; Sharma, Ashish

    2015-08-01

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 and 10 km resolution for a 20 year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference data set indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local-scale estimates of precipitation and temperature from General Circulation Models.

  18. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    SciTech Connect

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-10-22

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%.

  19. Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria

    NASA Astrophysics Data System (ADS)

    Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.

    2016-07-01

    Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.

  20. Estimation of body temperature rhythm based on heart activity parameters in daily life.

    PubMed

    Sooyoung Sim; Heenam Yoon; Hosuk Ryou; Kwangsuk Park

    2014-01-01

    Body temperature contains valuable health related information such as circadian rhythm and menstruation cycle. Also, it was discovered from previous studies that body temperature rhythm in daily life is related with sleep disorders and cognitive performances. However, monitoring body temperature with existing devices during daily life is not easy because they are invasive, intrusive, or expensive. Therefore, the technology which can accurately and nonintrusively monitor body temperature is required. In this study, we developed body temperature estimation model based on heart rate and heart rate variability parameters. Although this work was inspired by previous research, we originally identified that the model can be applied to body temperature monitoring in daily life. Also, we could find out that normalized Mean heart rate (nMHR) and frequency domain parameters of heart rate variability showed better performance than other parameters. Although we should validate the model with more number of subjects and consider additional algorithms to decrease the accumulated estimation error, we could verify the usefulness of this approach. Through this study, we expect that we would be able to monitor core body temperature and circadian rhythm from simple heart rate monitor. Then, we can obtain various health related information derived from daily body temperature rhythm.

  1. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  2. Modeling daily soil temperature using data-driven models and spatial distribution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Singh, Vijay P.

    2014-11-01

    The objective of this study is to develop data-driven models, including multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using MLP. The ANFIS is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs). From the performance evaluation and scatter diagrams of MLP and ANFIS models, MLP 3 produces the best results for both stations at different depths (10 and 20 cm), and ANFIS 3 produces the best results for both stations at two different depths except for Champaign station at the 20 cm depth. Results of MLP are better than those of ANFIS for both stations at different depths. The MLP-based spatial distribution is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs) at different depths below the ground. The MLP-based spatial distribution estimates daily soil temperature with high accuracy, but the results of MLP and ANFIS are better than those of the MLP-based spatial distribution for both stations at different depths. Data-driven models can estimate daily soil temperature successfully in this study.

  3. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes.

    PubMed

    De Meester, Nele; Dos Santos, Giovanni A P; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  4. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes

    PubMed Central

    De Meester, Nele; Dos Santos, Giovanni A. P.; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  5. Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis.

    PubMed

    Lee, SeoYeon; Kim, Min-Su; Kim, Jung Hoon; Kwon, Jong Kyou; Chi, Byung Hoon; Kim, Jin Wook; Chang, In Ho

    2016-05-01

    This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea.

  6. Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis

    PubMed Central

    2016-01-01

    This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea. PMID:27134497

  7. How do GCMs represent daily maximum and minimum temperatures in La Plata Basin?

    NASA Astrophysics Data System (ADS)

    Bettolli, M. L.; Penalba, O. C.; Krieger, P. A.

    2013-05-01

    This work focuses on southern La Plata Basin region which is one of the most important agriculture and hydropower producing regions worldwide. Extreme climate events such as cold and heat waves and frost events have a significant socio-economic impact. It is a big challenge for global climate models (GCMs) to simulate regional patterns, temporal variations and distribution of temperature in a daily basis. Taking into account the present and future relevance of the region for the economy of the countries involved, it is very important to analyze maximum and minimum temperatures for model evaluation and development. This kind of study is aslo the basis for a great deal of the statistical downscaling methods in a climate change context. The aim of this study is to analyze the ability of the GCMs to reproduce the observed daily maximum and minimum temperatures in the southern La Plata Basin region. To this end, daily fields of maximum and minimum temperatures from a set of 15 GCMs were used. The outputs corresponding to the historical experiment for the reference period 1979-1999 were obtained from the WCRP CMIP5 (World Climate Research Programme Coupled Model Intercomparison Project Phase 5). In order to compare daily temperature values in the southern La Plata Basin region as generated by GCMs to those derived from observations, daily maximum and minimum temperatures were used from the gridded dataset generated by the Claris LPB Project ("A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin"). Additionally, reference station data was included in the study. The analysis was focused on austral winter (June, July, August) and summer (December, January, February). The study was carried out by analyzing the performance of the 15 GCMs , as well as their ensemble mean, in simulating the probability distribution function (pdf) of maximum and minimum temperatures which include mean values, variability, skewness, et c, and regional

  8. Daily ambient temperature and renal colic incidence in Guangzhou, China: a time-series analysis

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Chen, Xinyu; Chen, Renjie; Cai, Jing; Meng, Xia; Wan, Yue; Kan, Haidong

    2016-08-01

    Few previous studies have examined the association between temperature and renal colic in developing regions, especially in China, the largest developing country in the world. We collected daily emergency ambulance dispatches (EADs) for renal colic from Guangzhou Emergency Center from 1 January 2008 to 31 December 2012. We used a distributed-lag nonlinear model in addition to the over-dispersed generalized additive model to investigate the association between daily ambient temperature and renal colic incidence after controlling for seasonality, humidity, public holidays, and day of the week. We identified 3158 EADs for renal colic during the study period. This exposure-response curve was almost flat when the temperature was low and moderate and elevated when the temperature increased over 21 °C. For heat-related effects, the significant risk occurred on the concurrent day and diminished until lag day 7. The cumulative relative risk of hot temperatures (90th percentile) and extremely hot temperatures (99th percentile) over lag days 0-7 was 1.92 (95 % confidence interval, 1.21, 3.05) and 2.45 (95 % confidence interval, 1.50, 3.99) compared with the reference temperature of 21 °C. This time-series analysis in Guangzhou, China, suggested a nonlinear and lagged association between high outdoor temperatures and daily EADs for renal colic. Our findings might have important public health significance to prevent renal colic.

  9. [The effect of daily exposure to low hardening temperature on plant vital activity].

    PubMed

    Markovskaia, E F; Sysoeva, M I; Sherudilo, E G

    2008-01-01

    Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia x hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher rate of increase in cold tolerance (cf. two- or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3-4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to rapidly increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible methods underlying the plant response to daily short-term exposure to low temperature are proposed.

  10. Temperature and daily mortality in Suzhou, China: a time series analysis.

    PubMed

    Wang, Cuicui; Chen, Renjie; Kuang, Xingya; Duan, Xiaoli; Kan, Haidong

    2014-01-01

    The evidence concerning the association between ambient temperature and mortality is limited in developing countries, especially in China. We assessed the effects of temperature on daily mortality between 2005 and 2008 in Suzhou, China. A Poisson regression model combined with a distributed-lag nonlinear model was used to examine the association between temperature and daily mortality. We investigated effect modification by individual characteristics, including gender, age and educational attainment. We found significant non-linear effects of temperature on total and cardiovascular mortality. Heat effects were immediate and lasted for 1-2 days, whereas cold effects persisted for 10 days. The relative risk of total morality associated with extreme cold temperature (1st percentile of temperature, -0.3 °C) over lags 0-14 days was 1.75 [95% confidence interval (CI): 1.43, 2.14)], compared with the minimum mortality temperature (26 °C). The relative risk associated with extremely hot temperature (99th percentile of temperature, 32.6 °C) over lags 0-3 days was 1.43 (95% CI: 1.31, 1.56). We did not observe significant modifying effect by gender, age or educational level. This study showed that exposure to both hot and cold temperatures was associated with increased mortality in Suzhou. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures. PMID:23994732

  11. [Assessment for spatial uncertainty of daily minimum temperature by using sequential Gaussian simulation].

    PubMed

    Zhang, Guo-Feng; Qu, Ming-Kai; Cheng, Zhao-Jin; Chen, Hui-Lin

    2014-01-01

    Understanding daily minimum temperature is of great importance for assessing low temperature damages to crops and guiding people to take timely remedial measures to ensure food security. Kriging is a widely used technology for mapping the spatial distribution of the near-surface temperature. However, the smoothing effect, commonly found in the Kriging maps, leads to low values to be overestimated and high values to he underestimated. For daily minimum temperature on Hainan Island which was affected by cold air on December 12, 2011, cross-validation was adopted to evaluate the prediction accuracy of ordinary Kriging (OK) and Kriging with external drift (KED). The spatial distribution maps of daily minimum temperature on Hainan Island on December 12, 2011 produced by OK and sequential Gaussian simulation (SGS) were compared. Results showed that the prediction accuracy of KED (r = 0.86) was not superior to OK (r = 0.86) significantly. SGS could generate multiple equiprobable simulation realizations, and the distribution and variance function of the original data could be reproduced in the realizations. The simulation realizations generated by SGS overcame the smoothing effect of Kriging and could more truly reflect the spatial distribution of minimum temperature on the day on Hainan Island. In the region where daily minimum temperature was low, and the temperature change was small, the conditional variance of the SGS results was less than the ordinary Kriging variance. Spatial uncertainty of a potential chilling damage area could be quantified by multiple simulation realizations generated by SGS. SGS was a valuable tool for assessing agro-meteorological disasters caused by low temperature. PMID:24765850

  12. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; Sinyuk, A.

    2010-01-01

    opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.

  13. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    SciTech Connect

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  14. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  15. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China

    NASA Astrophysics Data System (ADS)

    Sun, Qiaohong; Miao, Chiyuan; Duan, Qingyun

    2015-05-01

    This study assesses the simulations of the daily mean, maximum, and minimum temperatures and daily precipitation over China during the period 1990-1999, based on phase 3 and phase 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Fourteen CMIP3 models and 14 CMIP5 models were investigated over eight regions across China. Skill scores quantifying the match between the simulated and observed probability density functions (PDFs) were applied to evaluate the performance of the models. For daily mean, maximum, and minimum temperatures, the results revealed that CMIP3 and CMIP5 models captured the basic pattern of the observed PDFs in all regions. However, the probabilities at lower values were overestimated in most models. In all regions except the west of Northwest China (region 7), all CMIP5 models captured more than 80% of the observed PDFs. Compared with performance at the annual time scale, the models tended to perform relatively worse over the period June to August. The performances of the CMIP5 and CMIP3 models were not as good for daily precipitation as for daily temperature, and the skill scores for precipitation were generally lower than 0.7 in all regions. The amount of drizzle (daily precipitation < 5 mm) was overestimated notably in all regions. The amount of very heavy precipitation (daily precipitation ≥ 20 mm) tended to be underestimated in humid regions but overestimated in arid regions. Compared with CMIP3, CMIP5 models showed some improvements in the simulation of daily mean, maximum, and minimum temperatures, but there was a lack of apparent improvement for simulation of daily precipitation.

  16. Body core temperature of rats subjected to daily exercise limited to a fixed time

    NASA Astrophysics Data System (ADS)

    Shido, O.; Sugimoto, Naotoshi; Sakurada, Sotaro; Kaneko, Yoshiko; Nagasaka, Tetsuo

    Several timed daily environmental cues alter the pattern of nycthemeral variations in body core temperature in rodents. The present study investigated the effect of timed exercise on variations of daily body core temperature. Male rats were housed in cages with a running wheel at an ambient temperature of 24° C with a 12:12 h light/dark cycle. Timed daily exercise rats (TEX) were allowed access to the wheel for 6 h in the last half of the dark phase, freely exercising rats (FEX) could run at any time, and sedentary rats (NEX) were not allowed to run. After a 3-week exercise period, all animals were denied access to the wheel. The intraabdominal temperatures (Tab) and spontaneous activities of rats were measured for 6 days after the exercise period. The Tab values of the TEX rats were significantly higher than those of the other two groups only in the last half of the dark phase, while Tab in the FEX and NEX rats showed no significant difference. The specific Tab changes in the TEX rats lasted for 2 days after the exercise period. Spontaneous activity levels were higher in the TEX rats than the FEX and NEX rats in the last half of the dark phase for 1 day after the exercise period. The results suggest that daily exercise limited to a fixed time per day modifies nycthemeral variations of body core temperature in rats so that the temperature increases during the period when the animals had previously exercised. Such a rise in body core temperature is partly attributed to an increase in the spontaneous activity level.

  17. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  18. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters

  19. Daily metabolic patterns of short-tailed shrews (Blarina) in three natural seasonal temperature regimes

    SciTech Connect

    Randolph, J.C.

    1980-01-01

    An automatic, continuous-flow gas analysis system was used to determine daily metabolic patterns of individual short-tailed shrews (Blarina) in three natural seasonal temperature regimes in eastern Tennessee. Average daily metabolic rates (ADMR) were lowest in the summer (0.426 kcal g/sup -1/day/sup -1/), approximately doubled under winter conditions (0.810 kcal g/sup -1/day/sup -1/) but were the highest under fall conditions (1.110 kcal g/sup -1/day/sup -1/) possibly due to incomplete acclimatization of the shrews. The shape of the daily metabolic pattern for Blarina does not change seasonally; however, summer metabolic rates are the least variable and are lower than most values previously reported in the literature. Polynomial multiple regression analyses were conducted to examine the relative influence of body mass, ambient temperature, and time of day on metabolic rates; only ambient temperature was significant in predicting metabolic rates of this shrew. Average daily metabolic rates of Blarina observed under summer and winter conditions further substantiate the general predictive equations of metabolic rates formulated for small mammals by French et al. (1976). Comparisons of metabolic patterns of Blarina with those of Peromyscus leucopus observed under nearly identical conditions indicate similar rates with strong seasonal influences.

  20. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2016-09-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  1. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines

    PubMed Central

    Cober, Elroy R.; Curtis, Daniel F.; Stewart, Douglas W.; Morrison, Malcolm J.

    2014-01-01

    Soybean isolines with different combinations of photoperiod sensitivity alleles were planted in a greenhouse at different times during the year resulting in natural variation in daily incident irradiance and duration. The time from planting to first flower were observed. Mathematical models, using additive and multiplicative modes, were developed to quantify the effect of photoperiod, temperature, photoperiod-temperature interactions, rate of photoperiod change, and daily solar irradiance on flowering time. Observed flowering times correlated with predicted times (R2 = 0.92, Standard Error of the Estimate (SSE) = 2.84 d, multiplicative mode; R2 = 0.91, SSE = 2.88 d, additive mode). The addition of a rate of photoperiod change function and an irradiance function to the temperature and photoperiod functions improved the accuracy of flowering time prediction. The addition of a modified photoperiod function, which allowed for photoperiod sensitivity at shorter photoperiods, improved prediction of flowering time. Both increasing and decreasing rate of photoperiod change, as well as low levels of daily irradiance delayed flowering in soybean. The complete model, which included terms for the rate of photoperiod change, photoperiod, temperature and irradiance, predicted time to first flower in soybean across a range of environmental conditions with an SEE of 3.6 days when tested with independent data. PMID:27135515

  2. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines.

    PubMed

    Cober, Elroy R; Curtis, Daniel F; Stewart, Douglas W; Morrison, Malcolm J

    2014-01-01

    Soybean isolines with different combinations of photoperiod sensitivity alleles were planted in a greenhouse at different times during the year resulting in natural variation in daily incident irradiance and duration. The time from planting to first flower were observed. Mathematical models, using additive and multiplicative modes, were developed to quantify the effect of photoperiod, temperature, photoperiod-temperature interactions, rate of photoperiod change, and daily solar irradiance on flowering time. Observed flowering times correlated with predicted times (R² = 0.92, Standard Error of the Estimate (SSE) = 2.84 d, multiplicative mode; R² = 0.91, SSE = 2.88 d, additive mode). The addition of a rate of photoperiod change function and an irradiance function to the temperature and photoperiod functions improved the accuracy of flowering time prediction. The addition of a modified photoperiod function, which allowed for photoperiod sensitivity at shorter photoperiods, improved prediction of flowering time. Both increasing and decreasing rate of photoperiod change, as well as low levels of daily irradiance delayed flowering in soybean. The complete model, which included terms for the rate of photoperiod change, photoperiod, temperature and irradiance, predicted time to first flower in soybean across a range of environmental conditions with an SEE of 3.6 days when tested with independent data. PMID:27135515

  3. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions

    PubMed Central

    Bouâouda, Hanan; Achâaban, Mohamed R.; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-01-01

    Abstract In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. PMID:25263204

  4. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions.

    PubMed

    Bouâouda, Hanan; Achâaban, Mohamed R; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-09-01

    In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light-dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light-dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high-amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light-dark cycle.

  5. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association.

    PubMed

    Delava, Emilie; Fleury, Frédéric; Gibert, Patricia

    2016-08-01

    Koinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study. Regime 1 included a range of 16-23-16°C and regime 2 included a range of 16-21-26-21-16°C (mean temperature 20.1°C) compared to a 20.1°C constant temperature. Under an average temperature of 20.1°C, which corresponds to a cold condition of L. boulardi development, we showed that the success of parasitism is significantly higher under a fluctuating temperature regime than at constant temperature. A fluctuating regime also correlated with a reduced development time of the parasitoids. In contrast, the thermal regime did not affect the ability of Drosophila to resist parasitoid infestation. Finally, we demonstrated that daily temperature fluctuation prevented the entry into diapause for this species, which is normally observed at a constant temperature of 21°C. Overall, the results reveal that constant temperature experiments can produce misleading results, highlighting the need to study the thermal biology of organisms under fluctuating regimes that reflect natural conditions as closely as possible. This is particularly a major issue in host-parasitoid associations, which constitute a good model to understand the effect of climate warming on interacting species. PMID:27503721

  6. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Spencer, Roy W.; McNider, Richard T.

    1995-01-01

    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated.

  7. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Spencer, Roy W.; McNider, Richard T.

    1996-01-01

    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by almost 50% and 35%. respectively, by analyzing and adjusting (if necessary) for errors due to 1) missing data, 2) residual harmonics of the annual cycle unique to particular satellites, 3) lack of filtering, and 4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C. or about 0.03 C per decade cooler than previously calculated.

  8. Tempo-spatial characteristics of sub-daily temperature trends in mainland China

    NASA Astrophysics Data System (ADS)

    Ren, Yuyu; Parker, David; Ren, Guoyu; Dunn, Robert

    2016-05-01

    The spatial and temporal pattern of sub-daily temperature change in mainland China was analysed for the period from 1973 to 2011 using a 3-hourly dataset based on 408 stations. The increase in surface air temperature was more significant by night between 1973 and 1992, with the fastest upward trend around local midnight being about 0.27 °C/decade, while it was more significant by day between 1992 and 2011, with the fastest upward trend being about 0.46 °C/decade in mid-late morning. The season with rapid temperature increase also shifted from winter in 1973-1992 (the largest increase happened near midnight in December, 0.75 °C/decade) to spring in 1992-2011 (the largest increase happened at in the early afternoon in March, 0.82 °C/decade). The change in the spatial distributions of the sub-daily temperature trends shows that Northeast China warmed more significantly in 1973-1992 than elsewhere, but it cooled in 1992-2011, when Southwest China was the new focus of temperature increase whereas it had previously been cooling. A preliminary analysis of the possible causes implies that changes in solar radiation, cloud cover, aerosols and the observational environments near the stations might have contributed to these observed temperature changes.

  9. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal

    PubMed Central

    2010-01-01

    Background Evidence that elevated temperatures can lead to increased mortality is well documented, with population vulnerability being location specific. However, very few studies have been conducted that assess the effects of temperature on daily mortality in urban areas in Portugal. Methods In this paper time-series analysis was used to model the relationship between mean apparent temperature and daily mortality during the warm season (April to September) in the two largest urban areas in Portugal: Lisbon and Oporto. We used generalized additive Poisson regression models, adjusted for day of week and season. Results Our results show that in Lisbon, a 1°C increase in mean apparent temperature is associated with a 2.1% (95%CI: 1.6, 2.5), 2.4% (95%CI: 1.7, 3.1) and 1.7% (95%CI: 0.1, 3.4) increase in all-causes, cardiovascular, and respiratory mortality, respectively. In Oporto the increase was 1.5% (95%CI: 1.0, 1.9), 2.1% (95%CI: 1.3, 2.9) and 2.7% (95%CI: 1.2, 4.3) respectively. In both cities, this increase was greater for the group >65 years. Conclusion Even without extremes in apparent temperature, we observed an association between temperature and daily mortality in Portugal. Additional research is needed to allow for better assessment of vulnerability within populations in Portugal in order to develop more effective heat-related morbidity and mortality public health programs. PMID:20219128

  10. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control.

  11. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh

    PubMed Central

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control. PMID:26161895

  12. A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature

    SciTech Connect

    Karl, T.R.; Knight, R.W.; Gallo, K.P.; Peterson, T.C. ); Jones, P.D. ); Kukla, G. ); Plummer, N. ); Razuvayev, V. ); Lindseay, J. ); Charlson, R.J. )

    1993-06-01

    In this work, it was concluded that monthly mean maximum and minimum temperatures for over 50% (10%) of the Northern (Southern) Hemisphere landmass, accounting for 37% of the global landmass, indicate that the rise of the minimum temperature has occurred at a rate three times that of the maximum temperature during the period 1951-90 (0.84[degrees]C versus 0.28[degrees]C). The decrease of the diurnal temperature range is approximately equal to the increase of mean temperature. The asymmetry is detectable in all seasons and in most of the regions studied. The decrease in the daily temperature range is partially related to increases in cloud cover. Furthermore, a large number of atmospheric and surface boundary conditions are shown to differentially affect the maximum and minimum temperature. Linkages of the observed changes in the diurnal temperature range to large-scale climate forcings, such as anthropogenic increases in sulfate aerosols, greenhouse gases, or biomass burning (smoke), remain tentative. Nonetheless, the observed decrease of the diurnal temperature range is clearly important, both scientifically and practically. 36 refs., 9 figs., 5 tabs.

  13. Effects of daily temperature highs on development of Phakopsora pachyrhizi on soybean.

    PubMed

    Bonde, M R; Nester, S E; Berner, D K

    2012-08-01

    Although considerable information exists regarding the importance of moisture in the development of soybean rust, little is known about the influence of temperature. The purpose of our study was to determine whether temperature might be a significant limiting factor in the development of soybean rust in the southeastern United States. Soybean plants infected with Phakopsora pachyrhizi were incubated in temperature-controlled growth chambers simulating day and night diurnal temperature patterns representative of the southeastern United States during the growing season. At 3-day intervals beginning 12 days after inoculation, urediniospores were collected from each plant and counted. The highest numbers of urediniospores were produced when day temperatures peaked at 21 or 25°C and night temperatures dipped to 8 or 12°C. When day temperatures peaked at 29, 33, or 37°C for a minimum of 1 h/day, urediniospore production was reduced to 36, 19, and 0%, respectively, compared with urediniospore production at the optimum diurnal temperature conditions. Essentially, no lesions developed when the daily temperature high was 37°C or above. Temperature data obtained from the National Climatic Data Center showed that temperature highs during July and August in several southeastern states were too high for significant urediniospore production on 55 to 77% of days. The inhibition of temperature highs on soybean rust development in southeastern states not only limits disease locally but also has implications pertaining to spread of soybean rust into and development of disease in the major soybean-producing regions of the Midwestern and northern states. We concluded from our results that temperature highs common to southeastern states are a factor in the delay or absence of soybean rust in much of the United States.

  14. Case study of a tropical-extratropical interaction and associated heat low development during the AMMA SOP 2006 pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Pohle, S.

    2009-04-01

    Tropical Extra-tropical Interactions (TEIs) are often observed in association with an upper-level subtropical trough that penetrates into the tropics and, therefore, interacts with the tropical circulation. As a visible sign, a mid- to upper-level cloud band at the eastern flank of the trough and its related Subtropical Jet, named Tropical Plume (TP), is identifiable in infrared satellite imagery. McGuirk et al. (1987) gave a definition of Tropical Plumes and described the cloud bands as a northern hemisphere winter time phenomena. Previous studies identified TPs throughout the year with being rare in the June-mid- September period. Results of convection dynamics influenced/caused by TEIs during a pre-monsoon season event between 19 and 30 May 2006 will be presented. This case is characterized by two different investigation regions affected by TEI: During the first half of the event high precipitation amounts south-east of the cloud band over Burkina Faso, Benin, Togo, and Ivory Coast are observed caused by thermal forcing and dynamical maintenance by trough related good upper-level outflow conditions due to ageostrophic acceleration towards the trough and low inertial stability, or even inertial instability. This presentation is focused on the second half of this TEI event, which is characterized by the development of a pronounced heat low (HL) south-east of the upper-level trough over tropical West Africa, followed by convection south-east of the low pressure centre. A modified form of the pressure tendency equation (PTE) used by Knippertz and Fink (2008) is a diagnostic tool to investigate, which processes cause pressure drop near the Mali-Burkina Faso border by using both, the operational ECMWF Analysis and the AMMA EU re-analysis. The latter contains additionally the diabatic heating tendencies. Therefore, all terms of the PTE were calculated and will be discussed.

  15. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  16. Spatial and temporal changes in daily temperature extremes in China during 1960-2011

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjin; Liu, Binhui; Lu, Xianguo; Fan, Gaohua

    2016-09-01

    Based on daily maximum and minimum temperature data from 437 weather stations over China, this study examined the spatiotemporal change of temperature extremes in China from 1960 to 2011. Results showed a general downward trends in the occurrence of cold days (TX10) and nights (TN10) (base period 1961-1990), but upward tendency on the occurrence of warm days (TX90) and nights (TN90), the temperatures of coldest day (TXn), coldest night (TNn), warmest day (TXx), and warmest night (TNx) in China and most climate regions. At the national scale, TX10 and TN10 have significantly decreased by -1.89 and -4.39 days/decade, and TX90 and TN90 have significantly increased by 2.49 and 4.72 days/decade from 1960 to 2011. The national average trends for TXn, TNn, TXx, and TNx were 0.28, 0.54, 0.17, and 0.27 °C/decade, respectively. The temporal changes of extremes indices showed that changes in cold (warm) relative indices may be primarily related to that of corresponding winter (summer) Tmax and Tmin, respectively. Regionally, the magnitudes of changes in extreme indices decreased from the north to south of China. However, we found significant increase of warm extremes, especially warm days and nights in Southeast China. For most climate regions, the trend magnitudes in warm days/nights were larger than that in cold days/nights, but the trend in coldest temperature was much higher than that in warmest temperature. The trend magnitudes in minimum temperature indices were larger than those based on daily maximum temperature, explaining the faster increase of Tmin than Tmax in China.

  17. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  18. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    NASA Technical Reports Server (NTRS)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  19. Trends in indices of daily temperature and precipitations extremes in Morocco

    NASA Astrophysics Data System (ADS)

    Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y.

    2016-05-01

    The purpose of this paper is to provide a summary of Morocco's climate extreme trends during the last four decades. Indices were computed based on a daily temperature and precipitation using a consistent approach recommended by the ETCCDI. Trends in these indices were calculated at 20 stations from 1970 to 2012. Twelve indices were considered to detect trends in temperature. A large number of stations have significant trends and confirm an increase in temperature, showing increased warming during spring and summer seasons. The results also show a decrease in the number of cold days and nights and an increase in the number of warm days and nights. Increasing trends have also been found in the absolute warmest and coldest temperatures of the year. A clear increase is detected for warm nights and diurnal temperature range. Eight indices for precipitation were also analyzed, but the trends for these precipitation indices are much less significant than for temperature indices and show more mixed spatial patterns of change. Heavy precipitation events do not exhibit significant trends except at a few locations, in the north and central parts of Morocco, with a general tendency towards drier conditions. The correlation between these climate indices and the large-scale atmospheric circulations indices such as the NAO, MO, and WEMO were also analyzed. Results show a stronger relationship with these climatic indices for the precipitation indices compared to the temperature indices. The correlations are more significant in the Atlantic regions, but they remain moderate at the whole country scale.

  20. Daily variations in the influence of noradrenaline on preferred ambient temperature of the Siberian hamster.

    PubMed

    Jefimow, Małgorzata; Wojciechowski, Michał; Tegowska, Eugenia

    2003-04-01

    Daily variations in sensitivity to noradrenaline (NA) and the activation of nonshivering thermogenesis (NST) are important for survival under a potentially wide range of environmental conditions. However, little is known regarding the ability of the Siberian hamster and other species to activate NST in the day and night when they may be subjected to marked variations in environmental temperature. In this study, the effects of acclimation temperature and time of day on the behavioral thermoregulatory response to NA injections in Siberian hamsters (Phodopus sungorus) was investigated. Hamsters were acclimated for 4 weeks to 23 degrees C and a L:D 12:12 h photoperiod. After acclimation, preferred ambient temperatures (PT(a)) in saline- and NA-injected animals were measured continuously in the temperature gradient system. NA (0.6 mg/kg; s.c.) was given every 4 h while PT(a) was monitored. After NA injections there was a rapid drop in PT(a), decreasing to approximately 15 degrees C within 10-20 min after each NA injection. Following 4 weeks of acclimation to 10 degrees C and a L:D 8:16 h photoperiod, the same hamsters were re-tested in the temperature gradient system. Cold acclimation led to an accentuation in the behavioral response with a decrease in PT(a) of approximately 10 degrees C. The maximal decrease in preferred ambient temperatures was recorded during the light phase of the day and during the second part of the night. Lowering of PT(a) after NA allows for rapid dissipation of the heat from NST. Overall, the behavioral response reflects the daily changes in brown adipose tissue sensitivity to NA and thus capacity for NST.

  1. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae)

    PubMed Central

    2014-01-01

    Background Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. Methods We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). Results L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Conclusions Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular

  2. Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods

    NASA Astrophysics Data System (ADS)

    Casanueva, A.; Herrera, S.; Fernández, J.; Frías, M. D.; Gutiérrez, J. M.

    2013-08-01

    The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles). In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th) and low (5th) percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical). First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.

  3. Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison

    SciTech Connect

    Lobell, D; Bonfils, C; Duffy, P

    2006-11-09

    Several impacts of climate change may depend more on changes in mean daily minimum (T{sub min}) or maximum (T{sub max}) temperatures than daily averages. To evaluate uncertainties in these variables, we compared projections of T{sub min} and T{sub max} changes by 2046-2065 for 12 climate models under an A2 emission scenario. Average modeled changes in T{sub max} were slightly lower in most locations than T{sub min}, consistent with historical trends exhibiting a reduction in diurnal temperature ranges. However, while average changes in T{sub min} and T{sub max} were similar, the inter-model variability of T{sub min} and T{sub max} projections exhibited substantial differences. For example, inter-model standard deviations of June-August T{sub max} changes were more than 50% greater than for T{sub min} throughout much of North America, Europe, and Asia. Model differences in cloud changes, which exert relatively greater influence on T{sub max} during summer and T{sub min} during winter, were identified as the main source of uncertainty disparities. These results highlight the importance of considering separately projections for T{sub max} and T{sub min} when assessing climate change impacts, even in cases where average projected changes are similar. In addition, impacts that are most sensitive to summertime T{sub min} or wintertime T{sub max} may be more predictable than suggested by analyses using only projections of daily average temperatures.

  4. Spatial modeling of the highest daily maximum temperature in Korea via max-stable processes

    NASA Astrophysics Data System (ADS)

    Lee, Youngsaeng; Yoon, Sanghoo; Murshed, Md. Sharwar; Kim, Maeng-Ki; Cho, ChunHo; Baek, Hee-Jeong; Park, Jeong-Soo

    2013-11-01

    This paper examines the annual highest daily maximum temperature (DMT) in Korea by using data from 56 weather stations and employing spatial extreme modeling. Our approach is based on max-stable processes (MSP) with Schlather’s characterization. We divide the country into four regions for a better model fit and identify the best model for each region. We show that regional MSP modeling is more suitable than MSP modeling for the entire region and the pointwise generalized extreme value distribution approach. The advantage of spatial extreme modeling is that more precise and robust return levels and some indices of the highest temperatures can be obtained for observation stations and for locations with no observed data, and so help to determine the effects and assessment of vulnerability as well as to downscale extreme events.

  5. New Version of the Data Set "Daily Temperature and Precipitation Data for 223 USSR Stations"

    NASA Astrophysics Data System (ADS)

    Razuvaev, V. N.; Bulygina, O. N.

    2008-12-01

    The first version of the data set "Daily Temperature and Precipitation Data for 223 USSR Stations" contains mean daily, minimum and maximum air temperatures and daily precipitation totals for 223 stations of the former USSR for the period 1881 - 1989. The data set was created by RIHMI-WDC and was jointly prepared for publication by RIHMI-WDC and Carbon Dioxide Information Analysis Center (CDIAC; ORNL, Oak Ridge, USA). The data set was described by V.N. Razuvaev, E.G. Apasova, R.A. Martuganov (RIHMI-WDC) and Russel Vose (CDIAC) and was published by CDIAC in 1993 as ORNL/CDIAC 56 (NDP-40) (Razuvaev et al. 1993). The data set is distributed free of charge by request. The data set has recently been widely used by the international scientific community to study climate changes over the Russian territory and their relation to global climate changes. The authors have received a lot of responses and comments concerning data quality, errors and uncertainties, and proposals to improve the data set. Particular attention was given to the need for complementing the data set with current data. Currently, a new version of the data set has been prepared, including the data up to 2006. Wherever possible, errors in data are corrected and gaps are filled. The new version has a data retrieval system and is complemented with a metadata set. Unfortunately, some stations over the Russian territory were closed and a number of stations in the former USSR republics (beyond Russia) do not make their information available for the international data exchange. The new version has already been used in analyzing the climate changes and the frequency of extreme events over the Russian territory (Bulygina et al. 2007). The new version of the data set is available from the RIHMI-WDC Web site http://www.meteo.ru and is disseminated free of charge. The English copy of the data set will also be available from the CDIAC Web site.

  6. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  7. Temperature fluctuations in the lower limbs of young and elderly individuals during activities of daily living.

    PubMed

    Borisov, Vladimir V; Lin, David C

    2014-09-01

    Age-related deficiencies in thermoregulation diminish the capacity to defend against heat loss under conditions often encountered during activities of daily living (ADL). A potential consequence of these deficiencies is that elderly individuals could have colder lower limbs, which would exacerbate the age-related decline in plantarflexor contractile properties and compromise recovery from a tripping incident. Moreover, a common self-perception among the elderly is that their limbs are cold. However, this impression has never been documented, especially under ADL conditions. Our objective was to test the hypothesis that elderly individuals have lower plantarflexor temperatures than their younger counterparts. Skin temperatures above the plantarflexors of elderly and young individuals were continuously recorded during ADL in the winter months and compared under three conditions: quiescent indoor temperature, during a cold challenge, and the recovery period subsequent to the cold challenge. For quiescent indoor periods, differences in skin temperature between the two groups were not statistically significant. During cold exposures, both age and exposure duration were statistically significant factors related to the decrease in skin temperature, with the elderly group maintaining warmer temperatures. In the recovery period following short duration cold exposures, a statistically significant difference between the two groups for the decrease in skin temperature persisted for the first 9min of recovery. The results do not support the hypothesis that the lower limbs of elderly participants are colder. Higher limb temperatures observed in elderly participants were consistent with previous studies of age-related thermoregulatory changes, indicating that deficiencies in vasoconstriction are persistent in ADL.

  8. Influences of dust aerosols on regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season dust storm in northern India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Madronich, S.; Naja, M. K.; Carmichael, G. R.; Pfister, G.; Knote, C. J.; Brasseur, G. P.; Ojha, N.; Sarangi, T.

    2013-12-01

    The effects of dust aerosols on the regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season (April-June) dust storm event in northern India are analyzed. The MOZCART chemical mechanism of WRF-Chem is extended to simulate heterogeneous chemistry on dust surface and F-TUV photolysis scheme is updated to account for effects of dust aerosols on photolysis rates. The dust storm event lasted from 17 to 22 April 2010 and large changes (>50%) in local to regional scale aerosol optical properties are observed in both AERONET and satellite observations during this period. The extended version of WRF-Chem model captured several important features of the spatio-temporal distributions of dust plumes, aerosol optical properties and trace gases during the dust storm. Model results show that dust particles cool the surface and the top of the atmosphere, and warm the atmosphere. The regionally averaged radiative perturbation due to dust aerosols is estimated as -2.0×3.0 W m-2 at the top of the atmosphere, 2.3×1.8 W m-2 in the atmosphere and -4.4×3.1 W m-2 at the surface. The impact of these radiative perturbations on the surface energy budget is estimated to be small on a regional scale but significant locally. The dust storm acted as a sink for many key trace gases including ozone, nitrogen oxides, hydrogen oxides, methanol, acetic acid and formaldehyde, and significantly perturbed their spatial and vertical distributions. The reductions in these gases are estimated as 5-99% and more than 80% of this reduction came from the heterogeneous chemistry. The RH dependence of reactive uptake coefficient is found to have a significant impact on the distributions of trace gases. A set of sensitivity analyses revealed that dust aging can play an important role in heterogeneous chemistry. Model experiments based on laboratory measurements of changes in the uptake of ozone by dust with aging showed that dust aging can lead to

  9. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    PubMed

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  10. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  11. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    PubMed Central

    Hocking, Daniel J.; O’Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O’Donnell, Matthew J.

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  12. [Interpolation of daily mean temperature by using geographically weighted regression-Kriging].

    PubMed

    Zhang, Guo-feng; Yang, Li-rong; Qu, Ming-kai; Chen, Hui-lin

    2015-05-01

    Air temperature is the input variable of numerous models in agriculture, hydrology, climate, and ecology. Currently, in study areas where the terrain is complex, methods taking into account correlation between temperature and environment variables and autocorrelation of regression residual (e.g., regression Kriging, RK) are mainly adopted to interpolate the temperature. However, such methods are based on the global ordinary least squares (OLS) regression technique, without taking into account the spatial nonstationary relationship of environment variables. Geographically weighted regression-Kriging (GWRK) is a kind of method that takes into account spatial nonstationarity relationship of environment variables and spatial autocorrelation of regression residuals of environment variables. In this study, according to the results of correlation and stepwise regression analysis, RK1 (covariates only included altitude), GWRK1 (covariates only included altitude), RK2 (covariates included latitude, altitude and closest distance to the seaside) and GWRK2 (co-variates included altitude and closest distance to the seaside) were compared to predict the spatial distribution of mean daily air temperature on Hainan Island on December 18, 2013. The prediction accuracy was assessed using the maximum positive error, maximum negative error, mean absolute error and root mean squared error based on the 80 validation sites. The results showed that GWRK1's four assessment indices were all closest to 0. The fact that RK2 and GWRK2 were worse than RK1 and GWRK1 implied that correlation among covariates reduced model performance. PMID:26571674

  13. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  14. Daily temperature grids for Austria since 1961—concept, creation and applicability

    NASA Astrophysics Data System (ADS)

    Hiebl, Johann; Frei, Christoph

    2016-04-01

    Current interest into past climate change and its potential role for changes in the environment call for spatially distributed climate datasets of high temporal resolution and extending over several decades. To foster such research, we present a new gridded dataset of daily minimum and maximum temperature covering Austria at 1-km resolution and extending back till 1961 at daily time resolution. To account for the complex and highly variable thermal distributions in this high-mountain region, we adapt and employ a recently published interpolation method that estimates nonlinear temperature profiles with altitude and accounts for the non-Euclidean spatial representativity of station measurements. The spatial analysis builds upon 150 station series in and around Austria (homogenised where available), all of which extend over or were gap-filled to cover the entire study period. The restriction to (almost) complete records shall avoid long-term inconsistencies from changes in the station network. Systematic leave-one-out cross-validation reveals interpolation errors (mean absolute error) of about 1 °C. Errors are relatively larger for minimum compared to maximum temperatures, for the interior of the Alps compared to the flatland and for winter compared to summer. Visual comparisons suggest that valley-scale inversions and föhn are more realistically captured in the new compared to existing datasets. The usefulness of the presented dataset (SPARTACUS) is illustrated in preliminary analyses of long-term trends in climate impact indices. These reveal spatially variable and eventually considerable changes in the thermal climate in Austria.

  15. On the use of gridded daily temperature data to calculate the extended spring indices phenological models

    NASA Astrophysics Data System (ADS)

    Zurita-Milla, Raul; Mehdipoor, Hamed; Batarseh, Sana; Ault, Toby; Schwartz, Mark D.

    2014-05-01

    Models that predict the timing of recurrent biological events play an important role in supporting the systematic study of phenological changes at a variety of spatial and temporal scales. One set of such models are the extended Spring indices (SI-x). These models predicts a suite of phenological metrics ("first leaf" and "first bloom," "last freeze" and the "damage index") from temperature data and geographic location (to model the duration of the day). The SI-x models were calibrated using historical phenological and weather observations from the continental US. In particular, the models relied on first leaf and first bloom observations for lilac and honeysuckle and on daily minimum and maximum temperature values from a number of weather stations located near to the sites where phenological observations were made. In this work, we study the use of DAYMET (http://daymet.ornl.gov/) to calculate the SI-x models over the continental USA. DAYMET offers daily gridded maximum and minimum temperature values for the period 1980 to 2012. Using an automatic downloader, we downloaded complete DAYMET temperature time series for the over 1100 geographic locations where historical lilac observations were made. The temperature values were parsed and, using the recently available MATLAB code, the SI-x indices were calculated. Subsequently, the predicted first leaf and first bloom dates were compared with historical lilac observations. The RMSE between predicted and observed lilac leaf/bloom dates was calculated after identifying data from the same geographic location and year. Results were satisfactory for the lilac observations in the Eastern US (e.g. the RMSE for the blooming date was of about 5 days). However, the correspondence between the observed and predicted lilac values in the West was rather week (e.g. RMSE for the blooming date of about 22 days). This might indicate that DAYMET temperature data in this region of the US might contain larger uncertainties due to a more

  16. Influence of repeated daily menthol exposure on human temperature regulation and perception.

    PubMed

    Gillis, D Jason; Weston, Neil; House, James R; Tipton, Michael J

    2015-02-01

    A single exposure to menthol can, depending on concentration, enhance both cool sensations and encourage body heat storage. This study tested whether there is an habituation in either response after repeated-daily exposures. Twenty-two participants were assigned to one of three spray groups: Control (CON; n=6), 0.05% L-menthol (M(0.05%); n=8), and 0.2% L-menthol (M(0.2%); n=8). On Monday (20°C, 50% rh) participants were sprayed with 100 mL of solution and undertook 40 min of cycling at 45% of their peak power (Ex1), from Tuesday to Thursday (30°C, 50% rh) they were sprayed twice daily whilst resting (R1 to R6), Friday was a repeat of Monday (Ex2). Thermal sensation (TS), thermal comfort, perceived exertion, irritation, rectal and skin temperature (Tsk), skin blood flow (SkBF) and sweat rate were monitored. A two-way ANOVA (alpha=0.05) compared responses from the beginning (Ex1, R1) and end (Ex2, R5) of the testing week. M(0.2%) induced significantly (P<0.05) cooler TS at the beginning of the week (Ex1, R1) compared to the end (Ex2, R5), indicating habituation of TS; this was not observed in M(0.05%). No other perceptual or physiological responses habituated. 0.2% Menthol caused a heat storage response, mediated by vasoconstriction, at the beginning and end of the week, suggesting the habituation of TS occurred in a pathway specific to sensation. In summary, the cooling influence of 0.2% menthol habituates after repeated-daily exposures, but with no habituation in heat storage.

  17. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2014-06-01

    One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol-1 for aromatic VOCs, 5.9 to 37.5 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulfur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant

  18. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models. PMID:26165141

  19. Seasonal patterns of body temperature daily rhythms in group-living Cape ground squirrels Xerus inauris.

    PubMed

    Scantlebury, Michael; Danek-Gontard, Marine; Bateman, Philip W; Bennett, Nigel C; Manjerovic, Mary Beth; Manjerovic, Mary-Beth; Joubert, Kenneth E; Waterman, Jane M

    2012-01-01

    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T(a)). We measured core body temperature (T(b)) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T(a) provided the greatest explanatory power for mean T(b) whereas sunrise had greatest power for T(b) acrophase. There were significant changes in mean T(b) and T(b) acrophase over time with mean T(b) increasing and T(b) acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T(b), sometimes in excess of 5°C, were noted during the first hour post emergence, after which T(b) remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T(b) amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T(a)-T(b) gradient. Finally, there were significant effects of age and group size on T(b) with a lower and less variable T(b) in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T(b) which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable

  20. Ice surface temperatures: seasonal cycle and daily variability from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Madsen, Kristine S.; Dybkjær, Gorm; Høyer, Jacob L.; Nielsen-Englyst, Pia; Rasmussen, Till A. S.; Tonboe, Rasmus T.

    2016-04-01

    Surface temperature is an important parameter for understanding the climate system, including the Polar Regions. Yet, in-situ temperature measurements over ice- and snow covered regions are sparse and unevenly distributed, and atmospheric circulation models estimating surface temperature may have large biases. To change this picture, we will analyse the seasonal cycle and daily variability of in-situ and satellite observations, and give an example of how to utilize the data in a sea ice model. We have compiled a data set of in-situ surface and 2 m air temperature observations over land ice, snow, sea ice, and from the marginal ice zone. 2523 time series of varying length from 14 data providers, with a total of more than 13 million observations, have been quality controlled and gathered in a uniform format. An overview of this data set will be presented. In addition, IST satellite observations have been processed from the Metop/AVHRR sensor and a merged analysis product has been constructed based upon the Metop/AVHRR, IASI and Modis IST observations. The satellite and in-situ observations of IST are analysed in parallel, to characterize the IST variability on diurnal and seasonal scales and its spatial patterns. The in-situ data are used to estimate sampling effects within the satellite observations and the good coverage of the satellite observations are used to complete the geographical variability. As an example of the application of satellite IST data, results will be shown from a coupled HYCOM-CICE ocean and sea ice model run, where the IST products have been ingested. The impact of using IST in models will be assessed. This work is a part of the EUSTACE project under Horizon 2020, where the ice surface temperatures form an important piece of the puzzle of creating an observationally based record of surface temperatures for all corners of the Earth, and of the ESA GlobTemperature project which aims at applying surface temperatures in models in order to

  1. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  2. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...

  3. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  4. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    NASA Astrophysics Data System (ADS)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  5. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    NASA Astrophysics Data System (ADS)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  6. Large deviation probabilities for correlated Gaussian stochastic processes and daily temperature anomalies

    NASA Astrophysics Data System (ADS)

    Massah, Mozhdeh; Kantz, Holger

    2016-04-01

    As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).

  7. Statistical Variability and Persistence Change in Daily Air Temperature Time Series from High Latitude Arctic Stations

    NASA Astrophysics Data System (ADS)

    Suteanu, Cristian

    2015-07-01

    In the last decades, Arctic communities have been reporting that weather conditions are becoming less predictable. Most scientific studies have not been able to consistently confirm such a trend. The question regarding the possible increase in weather variability was addressed here based on daily minimum and maximum surface air temperature time series from 15 high latitude Arctic stations from Canada, Norway, and the Russian Federation. A range of analysis methods were applied, distinguished mainly by the way in which they treat time scale. Statistical L-moments were determined for temporal windows of different lengths. While the picture provided by L-scale and L-kurtosis is not consistent with an increasing variability, L-skewness was found to change towards more positive values, reflecting an enhancement of warm spells. Haar wavelet analysis was applied both to the entire time series and to running windows. Persistence diagrams were generated based on running windows advancing through time and on local slopes of Haar analysis graphs; they offer a more nuanced view on variability by reflecting its change over time on a range of temporal scales. Local increases in variability could be identified in some cases, but no consistent change was detected in any of the stations over the studied temporal scales. The possibility for other intervals of temporal scale (e.g., days, hours, minutes) to potentially reveal a different situation cannot be ruled out. However, in the light of the results presented here, explanations for the discrepancy between variability perception and results of pattern analysis might have to be explored using an integrative approach to weather variables such as air temperature, cloud cover, precipitation, wind, etc.

  8. Parameterizations of daily temperature standard deviation for modeling ice sheet mass balances using a temperature-index method under paleoclimate conditions

    NASA Astrophysics Data System (ADS)

    Erokhina, Olga; Rogozhina, Irina

    2016-04-01

    A number of recent studies have suggested time-dependent parameterizations of daily temperature standard deviation for modelling surface mass balances of ice sheets and glaciers using a temperature-index method. These have been inferred from in-situ measurements and climate reanalysis data, which are only available on yearly to decadal time scales. To date, the existing literature has not explored their applicability to climate conditions that are different from those of today. This study presents an ensemble of simulations of the Greenland Ice Sheet's history since the Last Glacial Maximum to assess the performance of existing parameterizations of daily temperature standard deviation on millennial time scales. To limit the influence of the uncertainties arising from poorly constrained external and internal factors we adopt climate strategies of different complexities and a sensitivity analysis of ice sheet model parameters. Our study reveals that previously proposed parameterizations of daily temperature standard deviation have a limited performance during the deglaciation stage, failing to simulate the retreat of ice masses as suggested by geological reconstructions. In contrast multiple studies that use constant values of daily temperature standard deviation within the range of 4 to 5°C receive support from our analysis, implying that either the ice sheet model used is missing the fundamental physics necessary to capture complex processes associated with rapid deglaciation or the values of daily temperature standard deviation suggested by parameterizations based on present-day observations are too low to ensure the consistent Wisconsin-to-Holocene ice sheet retreat.

  9. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  10. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    NASA Astrophysics Data System (ADS)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  11. Relationship between mean daily ambient temperature range and hospital admissions for schizophrenia: Results from a national cohort of psychiatric inpatients.

    PubMed

    Sung, Tzu-I; Chen, Mu-Jean; Lin, Chuan-Yao; Lung, Shih-Chun; Su, Huey-Jen

    2011-12-01

    Environmental temperature is known to correlate with schizophrenia, but little is known about the association with changes in temperature. This 12-year study aimed to evaluate the relationship between the mean daily range of ambient temperature and schizophrenia admissions in a national cohort of psychiatric inpatients in Taiwan. Meteorological data provided by the Central Weather Bureau of Taiwan were interpolated to create representative estimates. Psychiatric inpatient admissions in all hospitals with medical services enrolled in the current health care insurance system were retrieved from the 1996-2007 Psychiatric Inpatient Medical Claim dataset of the National Health Insurance Research Database. Generalized linear models with Poisson distributions were used to analyze the impact of mean diurnal change of temperature on schizophrenia admissions, controlling for internal correlations and demographic covariates. The daily temperature range varied between 1.7°C and 12.1°C (1st to 99th percentile). The relative risk of schizophrenia admission was significantly increased at a temperature range of 3.2°C (10th percentile), and the maximum was at 12.1°C (99th percentile); however, no such association was found with schizoaffective disorder. When restricted to the capital and largest city, the effects of temperature range were prominent and may correlate with temperature itself. The joint effect of temperature and temperature range was associated with elevated risk, particularly at cooler temperatures. A positive correlation was found between increasing temperature range and schizophrenia admissions. The increase in morbidity at high percentiles suggests that the increasing dynamics of temperature range are a valid reflection of risk, highlighting the need for precautionary action. PMID:22018962

  12. A data centred method to estimate and map changes in the full distribution of daily surface temperature

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nicholas

    2016-04-01

    Characterizing how our climate is changing includes local information which can inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily surface temperature. Here we focus on these local changes and on a model independent method to transform daily observations into patterns of local climate change. Our method [1] is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of the distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. For temperature, changes in the distribution itself can yield robust results [2]. We demonstrate how the fundamental timescales of anthropogenic climate change limit the identification of societally relevant aspects of changes. We show that it is nevertheless possible to extract, solely from observations, some confident quantified assessments of change at certain thresholds and locations [3]. We demonstrate this approach using E-OBS gridded data [4] timeseries of local daily surface temperature from specific locations across Europe over the last 60 years. [1] Chapman, S. C., D. A. Stainforth, N. W. Watkins, On estimating long term local climate trends, Phil. Trans. Royal Soc., A,371 20120287 (2013) [2] Stainforth, D. A. S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, ERL 8, 034031 (2013) [3] Chapman, S. C., Stainforth, D. A., Watkins, N. W. Limits to the quantification of local climate change, ERL 10, 094018 (2015) [4] Haylock M. R. et al ., A European daily high-resolution gridded dataset of

  13. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, J.D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  14. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  15. Evaluation of Downscaled CMIP5 Model Skill in Simulating Daily Maximum Temperature Over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Keellings, D.

    2015-12-01

    Downscaled CMIP5 climate projections of maximum daily temperature from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive are examined regionally over the southeastern U.S. Three measures of model skill (means-based, distribution-based, extreme-based) are utilized to assess the ability of 15 downscaled models to simulate daily maximum temperature observations. A new test is proposed to determine statistical significance of the probability density function based skill measures. Skill scores are found to be generally high for all three measures throughout the study region, but lower scores are present in coastal and mountainous areas. Application of the significance test shows that while the skill scores may be high they are not significantly higher than could be expected at random in some areas. The distribution-based skill scores are not significant in much of Florida and the Appalachians. The extreme-based skill scores are not significant in more than 90% of the region for all models investigated. The findings suggest that although the downscaled models have simulated observed means well and are a good match to the entire distribution of observations, they are not simulating the occurrence of extreme (above 90th percentile) maximum daily temperatures.

  16. Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders

    PubMed Central

    Santana, Victor M.; Baeza, M. Jaime; Blanes, M. Carmen

    2013-01-01

    Background and Aims This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). Methods By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. Key Results For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. Conclusions The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of

  17. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of

  18. Fractal structure and predictive strategy of the daily extreme temperature residuals at Fabra Observatory (NE Spain, years 1917-2005)

    NASA Astrophysics Data System (ADS)

    Lana, X.; Burgueño, A.; Serra, C.; Martínez, M. D.

    2015-07-01

    A compilation of daily extreme temperatures recorded at the Fabra Observatory (Catalonia, NE Spain) since 1917 up to 2005 has permitted an exhaustive analysis of the fractal behaviour of the daily extreme temperature residuals, DTR, defined as the difference between the observed daily extreme temperature and the daily average value. The lacunarity characterises the lag distribution on the residual series for several thresholds. Hurst, H, and Hausdorff, Ha, exponents, together with the exponent β of the decaying power law, describing the evolution of power spectral density with frequency, permit to characterise the persistence, antipersistence or randomness of the residual series. The self-affine character of DTR series is verified, and additionally, they are simulated by means of fractional Gaussian noise, fGn. The reconstruction theorem leads to the quantification of the complexity (correlation dimension, μ*, and Kolmogorov entropy, κ) and predictive instability (Lyapunov exponents, λ, and Kaplan-Yorke dimension, D KY) of the residual series. All fractal parameters are computed for consecutive and independent segments of 5-year lengths. This strategy permits to obtain a high enough number of fractal parameter samples to estimate time trends, including their statistical significance. Comparisons are made between results of predictive algorithms based on fGn models and an autoregressive autoregressive integrated moving average (ARIMA) process, with the latter leading to slightly better results than the former. Several dynamic atmospheric mechanisms and local effects, such as local topography and vicinity to the Mediterranean coast, are proposed to explain the complex and instable predictability of DTR series. The memory of the physical system (Kolmogorov entropy) would be attributed to the interaction with the Mediterranean Sea.

  19. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins

    NASA Astrophysics Data System (ADS)

    Berezowski, Tomasz; Szcześniak, Mateusz; Kardel, Ignacy; Michałowski, Robert; Okruszko, Tomasz; Mezghani, Abdelkader; Piniewski, Mikołaj

    2016-03-01

    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data-Gridded Daily Precipitation & Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration-National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in

  20. CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature dataset for two largest Polish river basins

    NASA Astrophysics Data System (ADS)

    Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.

    2015-12-01

    The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07

  1. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of

  2. Daily Water Temperature and River Discharge Modeling for Climate Change Impact Assessment in Large River Basins Globally

    NASA Astrophysics Data System (ADS)

    van Vliet, M. T.; Yearsley, J. R.; Franssen, W. H.; Ludwig, F.; Haddeland, I.; Lettenmaier, D. P.; Kabat, P.

    2010-12-01

    Recent and future changes in climate will affect hydrologic and thermal regimes, having a direct impact on water quality and in turn the growth rate and distribution of freshwater organisms. In addition, changes in river temperature and streamflow are of economic importance for water requirements for industry, electricity and drinking water production. Although integrated hydrological and deterministic water temperature modeling approaches have been successfully applied for small-scale catchments, much less work has been done at large scales. A computationally efficient modeling approach is needed to simulate water temperature and river discharge at large temporal and spatial scales, for purposes such as addressing climate change issues. In addition, realistic simulations of daily water temperature and discharge of rivers with different basin characteristics and anthropogenic impacts are needed to address large-scale water management issues. Here we use the Variable Infiltration Capacity (VIC) model and the computationally efficient 1D stream temperature model RBM to simulate river discharge and water temperature on a daily basis for selected large-scale river basins globally. The models were forced with a new global gridded 0.5° x 0.5° meteorological dataset provided by the EU FP6 Water and Global Change (WATCH) project. The performance of this modeling approach was tested for the period 1980-1999 and during warm, dry periods specifically when water temperatures and water availability are generally most critical for usage functions and freshwater ecosystems. In addition, the impact of climate change on water temperature and river discharge is assessed by forcing the models with bias corrected output of selected Global Climate Models.

  3. Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Cordano, E.; Eccel, E.

    2012-04-01

    The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices

  4. Influences of increased daily repeated upstream releases and varying meteorological conditions on temperature distributions in a river-reservoir system

    NASA Astrophysics Data System (ADS)

    Chen, G.; Fang, X.

    2016-08-01

    Temperature distribution in a river-reservoir system was simulated using a calibrated three-dimensional Environmental Fluid Dynamics Code model under various hypothetical weather conditions and daily repeated large releases (DRLRs) from the upstream boundary. Both DRLRs and weather conditions affect and control the formation and spread of density currents and then affect the bottom-layer temperatures. The DRLRs with longer durations (e.g., 6 or 8 hours) can relatively quickly push cooler release water to the Gorgas upstream monitoring station (GOUS) and the river intake. With the air temperature drops in the first 6 days, simulated bottom temperatures at GOUS for 6- and 8-hr DRLRs are lower than one under 4-hr DRLR, but relatively larger bottom-layer temperature drops only primarily occur during the air-temperature drop and rise period. The release with larger flow rate can also maintain the cooler water temperature downstream. Releasing the same amounts of water, with different release durations and flow rates, has a very similar effect on the downstream water temperatures.

  5. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2016-06-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  6. Oral temperatures of the elderly in nursing homes in summer and winter in relation to activities of daily living

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Tanaka, Masatoshi; Motohashi, Yutaka; Maeda, Akira

    This study was conducted to clarify the seasonal difference in body temperature in summer and winter, and to document the thermal environment of the elderly living in nursing homes. The subjects were 57 healthy elderly people aged >=63 years living in two nursing homes in Japan. One of the homes was characterized by subjects with low levels of activities of daily living (ADL). Oral temperatures were measured in the morning and afternoon, with simultaneous recording of ambient temperature and relative humidity. Oral temperatures in summer were higher than in winter, with statistically significant differences (P<0.05) of 0.25 (SD 0.61) °C in the morning and 0.24 (SD 0.50) °C in the afternoon. Differences between oral temperatures in summer and winter tended to be greater in subjects with low ADL scores, even when their room temperature was well-controlled. In conclusion, the oral temperatures of the elderly are lower in winter than summer, particularly in physically inactive people. It appears that those with low levels of ADL are more vulnerable to large changes in ambient temperature.

  7. Preliminary Estimation of Black Carbon Deposition from Nepal Climate Observatory-Pyramid Data and Its Possible Impact on Snow Albedo Changes Over Himalayan Glaciers During the Pre-Monsoon Season

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.

    2010-01-01

    The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition

  8. The physical basis of enhanced temperature index ice melt parameterizations in the Nepal Himalaya.

    NASA Astrophysics Data System (ADS)

    Litt, Maxime; Shea, Joseph; Koch, Inka; Wagnon, Patrick

    2016-04-01

    Glacier melt is an important component of seasonal water flows in the Himalayas. Due to scarce data availability and computational convenience, most glaciological projections in the Himalayan region derive ice melt from temperature index (TI) or enhanced temperature index (ETI) parameterizations, which require only temperature and solar radiation as inputs. Still, the processes linking these variables to melt remain poorly documented under high-altitude climates, where the air is cold, and the main input is shortwave radiation. In this study, we question the physical basis of enhanced temperature index (ETI) melt parameterizations in the Nepal Himalayas. Using atmospheric weather station (AWS) installed on Yala glacier at 5090 m a.s.l and Mera glaciers at 6350 m a.s.l., we study the surface energy balance (SEB) during one melt season, i.e, the monsoon and surrounding weeks, in 2014. The SEB estimates provide insights into the atmospheric controls on the glaciers. We study the variability of correlation coefficients linking daily means of temperature, SEB and SEB components. On Yala at 5090 m a.s.l, energy inputs are high during the pre-monsoon due to low surface albedo and strong incoming solar radiation near the solstice, and melt is strong. The temperature correlates moderately with the SEB (R = 0.58) mainly through sublimation and net longwave radiation. During the monsoon snow deposition reduces the magnitude of net shortwave radiation, thus dampening the melt rates. Strong longwave emission from clouds compensates for the surface emission, and the correlation of temperature with the SEB, mainly explained through net shortwave radiation, decreases (R = 0.49). During the post-monsoon, high albedo, heat losses through sublimation and clear-skies favoring longwave losses at the surface lead to a near zero SEB, and reduced melt. Temperature correlates well with the SEB (R = 0.88) through net longwave radiation. On Mera at 6300 m a.s.l, high surface albedo and

  9. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  10. Control of continuous irradiation injury on potatoes with daily temperature cycling

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bennett, S. M.; Cao, W.

    1990-01-01

    Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.

  11. Multisite multivariate modeling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models

    NASA Astrophysics Data System (ADS)

    Asong, Zilefac E.; Khaliq, M. N.; Wheater, H. S.

    2016-02-01

    Based on the Generalized Linear Model (GLM) framework, a multisite stochastic modelling approach is developed using daily observations of precipitation and minimum and maximum temperatures from 120 sites located across the Canadian Prairie Provinces: Alberta, Saskatchewan and Manitoba. Temperature is modeled using a two-stage normal-heteroscedastic model by fitting mean and variance components separately. Likewise, precipitation occurrence and conditional precipitation intensity processes are modeled separately. The relationship between precipitation and temperature is accounted for by using transformations of precipitation as covariates to predict temperature fields. Large scale atmospheric covariates from the National Center for Environmental Prediction Reanalysis-I, teleconnection indices, geographical site attributes, and observed precipitation and temperature records are used to calibrate these models for the 1971-2000 period. Validation of the developed models is performed on both pre- and post-calibration period data. Results of the study indicate that the developed models are able to capture spatiotemporal characteristics of observed precipitation and temperature fields, such as inter-site and inter-variable correlation structure, and systematic regional variations present in observed sequences. A number of simulated weather statistics ranging from seasonal means to characteristics of temperature and precipitation extremes and some of the commonly used climate indices are also found to be in close agreement with those derived from observed data. This GLM-based modelling approach will be developed further for multisite statistical downscaling of Global Climate Model outputs to explore climate variability and change in this region of Canada.

  12. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

    PubMed

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2016-04-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably.

  13. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

    PubMed

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2016-04-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  14. Measuring subcutaneous temperature and differential rates of rewarming from hibernation and daily torpor in two species of bats.

    PubMed

    Currie, Shannon E; Körtner, Gerhard; Geiser, Fritz

    2015-12-01

    Prolonged and remote measurement of body temperature (Tb) in undisturbed small hibernators was not possible in the past because of technological limitations. Although passive integrated transponders (PITs) have been used previously to measure subcutaneous temperature (Tsub) during daily torpor in a small marsupial, no study has attempted to use these devices at Tbs below 10°C. Therefore, we investigated whether subcutaneous interscapular PITs can be used as a viable tool for measuring Tb in a small hibernating bat (Nyctophilus gouldi; Ng) and compared it with measurements of Tb during daily torpor in a heterothermic bat (Syconycteris australis; Sa). The precision of transponders was investigated as a function of ambient temperature (Ta) and remote Tsub readings enabled us to quantify Tsub-Tb differentials during steady-state torpor and arousal. Transponders functioned well outside the manufacturer's recommended range, down to ~5°C. At rest, Tsub and rectal Tb (Trec) were strongly correlated for both bat species (Ng r(2)=0.88; Sa r(2)=0.95) and this was also true for N. gouldi in steady-state torpor (r(2)=0.93). During induced rewarming Tsub increased faster than Trec in both species. Our results demonstrate that transponders can be used to provide accurate remote measurement of Tb in two species of bats during different physiological states, both during steady-state conditions and throughout dynamic phases such as rewarming from torpor. We show that, at least during rewarming, regional heterothermy common to larger hibernators and other hibernating bats is also present in bats capable of daily torpor.

  15. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor.

    PubMed

    Saarela, S; Hissa, R

    1993-01-01

    Wood lemmings (Myopus schisticolor) were captured during their autumnal migration in September and October. The animals were maintained at 12 degrees C and under 12L:12D photoperiod. Basal metabolic rate and thermogenic capacity of the wood lemming were studied. Basal metabolic rate was 3.54 ml O2.g-1.h-1, which is 215-238% of the expected value. The high basal metabolic rate seems to be typical of rodents living in high latitudes. The body temperature of the wood lemming was high (38.0-38.8 degrees C), and did not fluctuate much during the 24-h recording. The high basal metabolic rate and the high body temperature are discussed with regard to behavioural adaptation to a low-quality winter diet. Thermogenic capacity, thermal insulation and non-shivering thermogenesis of the wood lemming displayed higher values than expected: 53.0 mW.g-1, 0.53 mW.g-1.degrees C-1 and 53.2 mW.g-1, respectively. Brown adipose tissue showed typical thermogenic properties, although its respiratory property was fairly low, but mitochondrial protein content was high compared to other small mammals. The 24-h recording of body temperature and motor activity did not reveal whether the wood lemming is a nocturnal animal. Possibly, the expression of a circadian rhythm was masked by peculiar feeding behaviour. It is concluded that the wood lemming is well adapted to living in cold-temperature climates.

  16. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require ...

  17. Regional projection of Temperature for the 21st Century over the Eastern India

    NASA Astrophysics Data System (ADS)

    Dhage, Pradnya; Singh Raghuwanshi, Narendra; Singh, Rajendra

    2016-04-01

    Global as well as regional climate has changed due to human activities like land use changes, production of industrial effluents and other developmental activities of the society. The consequences of these changes have a massive impact on atmospheric events like precipitation, temperature etc. The rainfall and temperature are intrinsic parameters of hydrologic cycle. Consequently, these are also the major driving factors of change in hydrologic response due to climate change. Future temperature information is required at regional and basin scales for climate change studies. Therefore, in present study, daily maximum (Tmax) and minimum (Tmin) temperatures scenarios were developed from Multi-GCM ensemble (CanESM2, IPSL-CM5A-LR, MPI-ESM-LR, and CNRM-CM5 GCMs) using bias correction and spatial downscaling (BCSD) method at station scale for Kangsabati reservoir catchment and command, West Bengal, India. Subsequently, temperature intensity and frequency indices like extremes of maximum and minimum temperatures, consecutive hot days, consecutive cold days, and warming nights were analyzed. The GCM data for all the requisite variables corresponding to historic run (1971-2005) and future climate (2006-2100) were used under Representative Concentration Pathway (RCP4.5 and RCP8.5) emission scenarios. The results indicate significant increase in maximum and minimum temperatures in all seasons (pre-monsoon, monsoon, and post-monsoon), with the most significant increase occurring in pre-monsoon season, and for all the stations of the study area. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area are projected as 0.20 and 0.22 °C/decade under RCP4.5, and 0.54 and 0.59 °C/decade under RCP8.5 for 2011-2100 period, respectively. Further, it is found that the temperature intensity and frequency indices will increase (maximum value of Tmax and Tmin, and minimum value of Tmax and Tmin, consecutive hot days, and warming nights) while

  18. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    PubMed

    Matos, Dominick A; Cole, Benjamin J; Whitney, Ian P; MacKinnon, Kirk J-M; Kay, Steve A; Hazen, Samuel P

    2014-01-01

    Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  19. Utilization of an Enhanced Canonical Correlation Analysis (ECCA) to Predict Daily Precipitation and Temperature in a Semi-Arid Environment

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Hogue, T. S.

    2011-12-01

    Global climate models (GCMs) are primarily used to generate historical and future large-scale circulation patterns at a coarse resolution (typical order of 50,000 km2) and fail to capture climate variability at the ground level due to localized surface influences (i.e topography, marine, layer, land cover, etc). Their inability to accurately resolve these processes has led to the development of numerous 'downscaling' techniques. The goal of this study is to enhance statistical downscaling of daily precipitation and temperature for regions with heterogeneous land cover and topography. Our analysis was divided into two periods, historical (1961-2000) and contemporary (1980-2000), and tested using sixteen predictand combinations from four GCMs (GFDL CM2.0, GFDL CM2.1, CNRM-CM3 and MRI-CGCM2 3.2a. The Southern California area was separated into five county regions: Santa Barbara, Ventura, Los Angeles, Orange and San Diego. Principle component analysis (PCA) was performed on ground-based observations in order to (1) reduce the number of redundant gauges and minimize dimensionality and (2) cluster gauges that behave statistically similarly for post-analysis. Post-PCA analysis included extensive testing of predictor-predictand relationships using an enhanced canonical correlation analysis (ECCA). The ECCA includes obtaining the optimal predictand sets for all models within each spatial domain (county) as governed by daily and monthly overall statistics. Results show all models maintain mean annual and monthly behavior within each county and daily statistics are improved. The level of improvement highly depends on the vegetation extent within each county and the land-to-ocean ratio within the GCM spatial grid. The utilization of the entire historical period also leads to better statistical representation of observed daily precipitation. The validated ECCA technique is being applied to future climate scenarios distributed by the IPCC in order to provide forcing data for

  20. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Mengersen, Kerrie; Wang, Xiaoyu; Ye, Xiaofang; Guo, Yuming; Pan, Xiaochuan; Tong, Shilu

    2012-07-01

    The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.

  1. A model to approximate lake temperature from gridded daily air temperature records and its application in risk assessment for the establishment of fish diseases in the UK.

    PubMed

    Thrush, M A; Peeler, E J

    2013-10-01

    Ambient water temperature is a key factor controlling the distribution and impact of disease in fish populations, and optimum temperature ranges have been characterised for the establishment of a number important aquatic diseases exotic to the UK. This study presents a simple regression method to approximate daily average surface water temperature in lakes of 0.5-15 ha in size across the UK using 5 km(2) gridded daily average air temperatures provided by the UK Meteorological Office. A Geographic information system (GIS) is used to present thematic maps of relative risk scores established for each grid cell based on the mean number of days per year that water temperature satisfied optimal criteria for the establishment of two economically important pathogens of cyprinid fish (koi herpesvirus (KHV) and spring viraemia of carp virus (SVCV)) and the distribution and density of fish populations susceptible to these viruses. High-density susceptible populations broadly overlap the areas where the temperature profiles are optimal for KHV (central and south-east England); however, few fish populations occur in areas where temperature profiles are most likely to result in the establishment of spring viremia of carp (SVC) (namely northern England and Scotland). The highest grid-cell risk scores for KHV and SVC were 7 and 6, respectively, out of a maximum score of 14. The proportion of grid cells containing susceptible populations with risk scores of 5 or more was 37% and 5% for KHV and SVC, respectively. This work demonstrates a risk-based approach to inform surveillance for exotic pathogens in aquatic animal health management, allowing efficient use of resources directed towards higher risk animals and geographic areas for early disease detection. The methodology could be used to examine the change in distribution of high-risk areas for both exotic and endemic fish diseases under different climate change scenarios.

  2. Estimation of Daily Reference Evapotranspiration using Temperature Based Models and Remotely Sensed Data over Indian River Basin

    NASA Astrophysics Data System (ADS)

    R, Shwetha H.; D, Nagesh Kumar

    2015-04-01

    Reference evapotranspiration (ETo) is the most significant component of the hydrological budget. Accurate quantification of ETo is vital for proper water management, efficient agricultural activities, irrigation planning and irrigation scheduling. FAO Penman Montieth (FAO-PM) is the widely accepted and used method for the ETo estimation under all climatic conditions, but needs numerous inputs which are difficult to acquire in developing countries. In such conditions, temperature based models such as Hargreaves-Samani (HS) equation and Penman Montieth temperature (PMT) can be used, where only maximum and minimum temperatures are required. Spatial interpolation of meteorological parameters to calculate spatial variation of ETo results in inaccurate estimations at lowly densed weather stations. Hence, there is a necessity of simple and easy method to estimate spatial distribution of ETo. In this regard, remotely sensed data provides viable alternative approach to obtain continuous spatio-temporal ETo. In this study, we used temperature based ETo models with remotely sensed LST data to estimate spatio-temporal variation of ETo. Day and night LST (MYD11A1) data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS sensor of Aqua satellite. Firstly, day and night land surface temperatures (LST) with HS and PMT methods were applied to estimate ETo. Secondly, maximum and minimum air temperatures were estimated from day and night LST respectively using simple linear regression and these air temperature data were used to estimate ETo. Estimated results were validated with the ETo calculated using meteorological data obtained from Automatic Weather Stations (AWS) by applying standard FAO-PM. The preliminary results revealed that, HS method with LST overestimated ETo in the study region. Statistical analysis showed PMT method with both LST and air temperatures performed better than the HS method. These two temperature based methods are often used for

  3. Statistical downscaling of sub-daily (6-hour) temperature in Romania, by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia

    2016-04-01

    The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).

  4. Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality

    NASA Astrophysics Data System (ADS)

    O'Neill, Marie S.; Hajat, Shakoor; Zanobetti, Antonella; Ramirez-Aguilar, Matiana; Schwartz, Joel

    2005-11-01

    We assessed the influence of control for air pollution and respiratory epidemics on associations between apparent temperature (AT) and daily mortality in Mexico City and Monterrey. Poisson regressions were fit to mortality among all ages, children (ages 0 14 years) and the elderly (ages ≥65 years). Predictors included mean daily AT, season, day of week and public holidays for the base model. Respiratory epidemics and air pollution (particulate matter <10 μm in aerodynamic diameter and O3) were added singly and then jointly for a fully adjusted model. Percent changes in mortality were calculated for days of relatively extreme temperatures [cold (10 11°C) for both cities and heat (35 36°C) for Monterrey], compared to days at the overall mean temperature in each city (15°C in Mexico City, 25°C in Monterrey). In Mexico City, total mortality increased 12.4% [95% confidence interval (CI) 10.5%, 14.5%] on cold days (fully adjusted). Among children, the adjusted association was similar [10.9% (95% CI: 5.4%, 16.7%)], but without control for pollution and epidemics, was nearly twice as large [19.7% (95% CI: 13.9%, 25.9)]. In Monterrey, the fully adjusted heat effect for all deaths was 18.7% (95% CI: 11.7%, 26.1%), a third lower than the unadjusted estimate; the heat effect was lower among children [5.5% (95% CI: -10.1%, 23.8%)]. Cold had a similar effect on all-age mortality as in Mexico City [11.7% (95% CI: 3.7%, 20.3%)]. Responses of the elderly differed little from all-ages responses in both cities. Associations between weather and health persisted even with control for air pollution and respiratory epidemics in two Mexican cities, but risk assessments and climate change adaptation programs are best informed by analyses that account for these potential confounders.

  5. Distinguishing snow and ice melt contributions using daily MODIS and a temperature index melt model in the Hunza River basin

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Brodzik, Mary J.; Racoviteanu, Adina; Barrett, Andrew; Jodha Kalsa, Siri; Armstrong, Richard

    2015-04-01

    In mountainous regions of High Asia, snow and ice both contribute to streamflow, but few in-situ observations exist that can help distinguish between the two components of melt. Our goal is to develop a melt model that can distinguish between seasonal snow and glacier ice melt at a continental scale. We use a combination of MODIS-derived data sets to distinguish three surface types at daily resolution: 1) exposed glacier ice, 2) snow over ice and 3) snow over land. We use MODICE to map glacier area and then distinguish areas of exposed ice from snow over ice using thresholds on MODIS-derived albedo or grain size products. We map snow over land using the daily MODSCAG fractional snow cover product, and use the time series of three surface types as input to a temperature index melt model. The model outputs melt volumes from exposed glacier ice, snow over ice and snow over land, respectively. To partition the glacier surface into exposed glacier ice versus snow over ice, we threshold MODIS albedo or grain size based on higher-resolution Landsat 8 imagery. During the ablation period, the high elevation mid-latitude snowpack receives intense incoming solar radiation resulting in surface albedo decreases and snow grain growth. We compare differences in modeled melt using two albedo products (Terra Daily Snow Cover algorithm (MOD10A1) and Surface Reflectance BRDF/Albedo (MCD43)) and two grain size products (MODIS Snow Covered Area and Grain Size Model (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS)). For the Hunza basin, a sub-basin of the Upper Indus basin, for the years 2001-2004, the modeled melt from exposed glacier ice accounts for: 26-44% (MOD10A1 albedo), 24-32% (MCD43 albedo), 17-28% (MODSCAG grain size) or 23-26% (MODDRFS grain size) of the combined melt from all three surface areas.

  6. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  7. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints. PMID:27085998

  8. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy?

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2010-10-01

    Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy. PMID:20502901

  9. Daily Care

    MedlinePlus

    ... to Know Online Tools Enhancing Daily Life Daily Plan Activities Communication Food & Eating Music & Art Personal Care Incontinence Bathing ... Tweet Email | Print Create a Daily Routine Daily Plan Activities Communication Food/Eating Get Tips on Personal Care Bathing ...

  10. Polar microwave brightness temperatures from Nimbus-7 SMMR: Time series of daily and monthly maps from 1978 to 1987

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zwally, H. Jay

    1989-01-01

    A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications.

  11. Trends in Daily and Extreme Temperature and Precipitation Indices for the Countries of the Western Indian Ocean, 1975-2008

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; Vincent, Lucie A.

    2010-05-01

    In the framework of the project "Renforcement des Capacités des Pays de la COI dans le Domaine de l'Adaptation au Changement Climatique (ACCLIMATE)" (Comission de l'Ocean Indien, COI), a workshop on homogenization of climate data and climate change indices analysis was held in Mauritius in October 2009, using the successful format prepared by the CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices. Scientists from the five countries in Western Indian Ocean brought daily climatological data from their region for a meticulous assessment of the data quality and homogeneity, and for the preparation of climate change indices which can be used for analyses of changes in climate extremes. Although the period of analysis is very short, it represents a seminal step for the compilation of longer data set and allows us to examine the evolution of climate extremes in the area during the time period identified as the decades where anthropogenic warming es larger than natural forcings. This study first presents some results of the homogeneity assessment using the software package RHtestV3 (Wang and Feng 2009) which has been developed for the detection of changepoints in climatological datasets. Indices based on homogenized daily temperatures and precipitations were also prepared for the analysis of trends at more than 50 stations across the region. The results show an increase in the percentage of warm days and warm nights over 1975-2008 while changes in extreme precipitations are not as consistent.

  12. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    NASA Astrophysics Data System (ADS)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  13. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998

    NASA Astrophysics Data System (ADS)

    Manton, M. J.; della-Marta, P. M.; Haylock, M. R.; Hennessy, K. J.; Nicholls, N.; Chambers, L. E.; Collins, D. A.; Daw, G.; Finet, A.; Gunawan, D.; Inape, K.; Isobe, H.; Kestin, T. S.; Lefale, P.; Leyu, C. H.; Lwin, T.; Maitrepierre, L.; Ouprasitwong, N.; Page, C. M.; Pahalad, J.; Plummer, N.; Salinger, M. J.; Suppiah, R.; Tran, V. L.; Trewin, B.; Tibig, I.; Yee, D.

    2001-03-01

    Trends in extreme daily temperature and rainfall have been analysed from 1961 to 1998 for Southeast Asia and the South Pacific. This 38-year period was chosen to optimize data availability across the region. Using high-quality data from 91 stations in 15 countries, significant increases were detected in the annual number of hot days and warm nights, with significant decreases in the annual number of cool days and cold nights. These trends in extreme temperatures showed considerable consistency across the region. Extreme rainfall trends were generally less spatially coherent than were those for extreme temperature. The number of rain days (with at least 2 mm of rain) has decreased significantly throughout Southeast Asia and the western and central South Pacific, but increased in the north of French Polynesia, in Fiji, and at some stations in Australia. The proportion of annual rainfall from extreme events has increased at a majority of stations. The frequency of extreme rainfall events has declined at most stations (but not significantly), although significant increases were detected in French Polynesia. Trends in the average intensity of the wettest rainfall events each year were generally weak and not significant.

  14. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group.

    PubMed

    Díaz, Julio; Linares, Cristina; Tobías, Aurelio

    2006-07-01

    This paper analyses the relationship between extreme temperatures and mortality among persons aged 45-64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO(2) concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible.

  15. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941-2007

    NASA Astrophysics Data System (ADS)

    de Lima, M. Isabel P.; Santo, Fátima Espírito; Ramos, Alexandre M.; de Lima, João L. M. P.

    2013-06-01

    Changes in the climatology of precipitation and surface air temperature are being investigated worldwide, searching for changes in variability, the mean and extreme events (maximum and minimum). By exploring recent adjustments in the climate of mainland Portugal, particularly in the intensity, frequency and duration of extreme events, this study investigates trends in selected specific indices that are calculated from daily precipitation data from 57 and surface air temperature data from 23 measuring stations scattered across the territory. Special attention is paid to regional differences and variations in seasonality. The data cover the periods 1941-2007 for precipitation, and 1941-2006 for temperature. They are explored at the annual and seasonal scales and for different sub-periods. Results show that trends in annual precipitation indices are generally weak and, overall, not statistically significant at the 5% level. Nevertheless, a decreasing trend is revealed by regional indices of total wet-day precipitation and extreme precipitation (above the 99th percentile). Seasonal precipitation exhibits significant decreasing trends in spring precipitation, while extreme heavy precipitation events, in terms of both magnitude and frequency, have become more pronounced in autumn. Results for winter and summer suggest that the extremes have not suffered any significant aggravation. Trends for air temperature are statistically more significant and marked than for precipitation and indicate general warming across the territory. This warming trend is revealed very consistently by the time series of individual stations and regional mean temperature, and is also consistent with the findings reported in other studies for Portugal and at the European scale.

  16. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960-2013

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Cao, Lijuan; Zhu, Yani; Yan, Zhongwei

    2016-02-01

    Two homogenized datasets of daily maximum temperature (Tmax), mean temperature (Tm), and minimum temperature (Tmin) series in China have recently been developed. One is CHTM3.0, based on the Multiple Analysis of Series for Homogenization (MASH) method, and includes 753 stations for the period 1960-2013. The other is CHHTD1.0, based on the Relative Homogenization test (RHtest), and includes 2419 stations over the period 1951-2011. The daily Tmax/Tm/Tmin series at 751 stations, which are in both datasets, are chosen and compared against the raw dataset, with regard to the number of breakpoints, long-term climate trends, and their geographical patterns. The results indicate that some robust break points associated with relocations can be detected, the inhomogeneities are removed by both the MASH and RHtest method, and the data quality is improved in both homogenized datasets. However, the differences between CHTM3.0 and CHHTD1.0 are notable. By and large, in CHHTD1.0, the break points detected are fewer, but the adjustments for inhomogeneities and the resultant changes of linear trend estimates are larger. In contrast, CHTM3.0 provides more reasonable geographical patterns of long-term climate trends over the region. The reasons for the differences between the datasets include: (1) different algorithms for creating reference series for adjusting the candidate series—more neighboring stations used in MASH and hence larger-scale regional signals retained; (2) different algorithms for calculating the adjustments—larger adjustments in RHtest in general, partly due to the individual local reference information used; and (3) different rules for judging inhomogeneity—all detected break points are adjusted in CHTM3.0, based on MASH, while a number of break points detected via RHtest but without supporting metadata are overlooked in CHHTD1.0. The present results suggest that CHTM3.0 is more suitable for analyses of large-scale climate change in China, while CHHTD1

  17. Role of deep convection on the tropical tropopause characteristics at sub-daily scales over the South India monsoon region

    NASA Astrophysics Data System (ADS)

    Hemanth Kumar, A.; Venkat Ratnam, M.; Sunilkumar, S. V.; Parameswaran, K.; Krishna Murthy, B. V.

    2015-07-01

    The role of deep convection on the tropical tropopause parameters at sub-daily scales using radiosonde observations at two locations in South-India affected by monsoon has been investigated. Special experiments were conducted under the Tropical Tropopause Dynamics (TTD) campaigns from two stations, (Gadanki (13.5°N, 79.2°E) and Trivandrum (8.5°N, 76.9°E) as a part of CAWSES India Phase-II programme during December 2010 to September 2013. In addition, data from regular radiosonde launches available from April 2006 to September 2013 are also utilized in the present study. Using satellite based infrared brightness temperature data, convection is classified into six categories based on the life cycle of the convection prevailing 3 h before and after the balloon reaching the tropical tropopause. Cold-point and lapse rate tropopause altitudes (CPH, LRH) and temperatures (CPT, LRT), convective outflow level (COH) and tropical tropopause layer (TTL) thickness extracted from individual soundings are grouped into six convection categories. Large amount of water vapour with diabatic cooling prevailed near the CPH during active convection leading to STE processes. At the same time, decrease in TTL thickness is observed not only because of pushing up of the COH but also due to decrease of CPH. On an annual basis a decrease (increase) in CPH and LRH (CPT and LRT) is noticed during active convection. This feature is more significant at Gadanki compared to Trivandrum. During the monsoon and pre-monsoon periods when the convection is rather widespread, CPH (CPT) shows a decrease (increase) at Gadanki while it increases (decreases) over Trivandrum. Large seasonal variation is noticed in the tropopause parameters even when they are segregated into different convective categories mainly due to intensity of the convection being different. During active convection, diabatic and adiabatic processes seem to be dominant at Gadanki and Trivandrum, respectively.

  18. Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951-2010

    NASA Astrophysics Data System (ADS)

    Cinco, Thelma A.; de Guzman, Rosalina G.; Hilario, Flaviana D.; Wilson, David M.

    2014-08-01

    Observed daily precipitation and near surface air temperature data from 34 synoptic weather stations in the Philippines for the period 1951-2010 were subjected to trend analysis which revealed an overall warming tendency compared to the normal mean values for the period 1961-1990. This warming trend can be observed in the annual mean temperatures, daily minimum mean temperatures and to a lesser extent, daily maximum mean temperatures. Precipitation and temperature extremes for the period 1951-2010 were also analysed relative to the mean 1961-1990 baseline values. Some stations (Cotabato, Iloilo, Laoag and Tacloban,) show increases in both frequency and intensity of extreme daily rainfall events which are significant at the 95% level with none of the stations showing decreasing trends. The frequency of daily temperature maximum above the 99th percentile (hot days) and nights at the 1st percentile (cold nights) suggests that both days and nights in particular are becoming warmer. Such indicators of a warming trend and increase in extreme events in the Philippines are discussed in the context of similar national, regional (Asia Pacific) and global studies. The relevance of such empirically based climatology studies, particularly for nations such as the Philippines which are increasingly vulnerable to the multiple impacts of global climate change, is also considered.

  19. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.

    PubMed

    Ziska, Lewis H

    2014-01-01

    Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide) applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year) can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999-2013) from -28.6°C (Minnesota) to -5.1°C (Louisiana). Although soybean yields (per hectare) did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare) increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977-2013) indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023) showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising minimum daily

  20. Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature.

    PubMed

    Kutschke, Maria; Grimpo, Kirsten; Kastl, Anja; Schneider, Sandra; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2013-04-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Increasing evidence suggests depression of mitochondrial respiration during daily torpor of the Djungarian hamster but tissue-specificity and relation to torpor depth is unknown. We first confirmed a previous study by Brown and colleagues reporting on the depressed substrate oxidation in isolated liver mitochondria of the Djungarian hamster (Phodopus sungorus) during daily torpor. Next, we show that mitochondrial respiration is not depressed in kidneys, skeletal muscle and heart. In liver mitochondria, we found that state 3 and state 4 respirations correlate with body temperature, suggesting inhibition related to torpor depth and to metabolic rate. We conclude that molecular events leading to depression of mitochondrial respiration during daily torpor are specific to liver and linked to a decrease in body temperature. Different tissue-specificity of mitochondrial depression may assist to compare and identify the molecular nature of mitochondrial alterations during torpor.

  1. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    PubMed

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000-2004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.

  2. The Simulation of Daily Temperature Time Series from GCM Output. Part II: Sensitivity Analysis of an Empirical Transfer Function Methodology.

    NASA Astrophysics Data System (ADS)

    Winkler, Julie A.; Palutikof, Jean P.; Andresen, Jeffrey A.; Goodess, Clare M.

    1997-10-01

    Empirical transfer functions have been proposed as a means for `downscaling' simulations from general circulation models (GCMs) to the local scale. However, subjective decisions made during the development of these functions may influence the ensuing climate scenarios. This research evaluated the sensitivity of a selected empirical transfer function methodology to 1) the definition of the seasons for which separate specification equations are derived, 2) adjustments for known departures of the GCM simulations of the predictor variables from observations, 3) the length of the calibration period, 4) the choice of function form, and 5) the choice of predictor variables. A modified version of the Climatological Projection by Model Statistics method was employed to generate control (1 × CO2) and perturbed (2 × CO2) scenarios of daily maximum and minimum temperature for two locations with diverse climates (Alcantarilla, Spain, and Eau Claire, Michigan). The GCM simulations used in the scenario development were from the Canadian Climate Centre second-generation model (CCC GCMII).Variations in the downscaling methodology were found to have a statistically significant impact on the 2 × CO2 climate scenarios, even though the 1 × CO2 scenarios for the different transfer function approaches were often similar. The daily temperature scenarios for Alcantarilla and Eau Claire were most sensitive to the decision to adjust for deficiencies in the GCM simulations, the choice of predictor variables, and the seasonal definitions used to derive the functions (i.e., fixed seasons, floating seasons, or no seasons). The scenarios were less sensitive to the choice of function form (i.e., linear versus nonlinear) and to an increase in the length of the calibration period.The results of Part I, which identified significant departures of the CCC GCMII simulations of two candidate predictor variables from observations, together with those presented here in Part II, 1) illustrate the

  3. Estimation of black carbon deposition from particulate data in the atmosphere at NCO-P site in Himalayas during pre-monsoon season and its implication to snow surface albedo reduction

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Calzolari, F.; Duchi, R.; Tartari, G.; Lau, W. K.

    2009-12-01

    The black carbon (BC) impact on snow surface may contribute to snow melting and acceleration of glacier retreat. The BC deposition amount onto snow surface in 2006 during pre-monsoon season (March-May) was estimated from the observed equivalent BC (eqBC) concentration (MAAP) and aerosol size distribution observation (SMPS and OPC) in the atmosphere at Nepal Climate Observatory at Pyramid (NCO-P) site in Himalayan region. We, first, carried out correlation analyses in time series data between the eqBC and aerosol size distribution and then determined main eqBC size range here as higher correlations coefficient of more than 0.8. The corresponding eqBC size at NCO-P site was determined predominantly in the 103.1-669.8 nm size range. Simply terminal velocity for each particle size bin was used for calculating deposition flux of BC onto surface. Our estimation of the deposition is considered to be minimal estimation because deposition velocity is in general faster if we include aerodynamic and other terms; moreover we didn’t take into account deposition processes other than gravitational deposition. We estimated the BC deposition of 209 µg m-2 for March-May. If we use snow density variations in surface snow of 192-512 kg m-3, as measured at Yala glacier in Himalayas, the BC concentrations in 2-cm surface snow of 20.4-53.6 µg kg-1 is estimated. This leads to a snow albedo reduction of 1.6-4.1% by using regression relationship between BC concentration in snow and snow albedo reductions by previous studies. If we used the values of the albedo reductions as continuous forcing for a sensitivity test of glacier melting by using a mass-balance model with the same initial settings in a previous study (pointed out for Dongkemadi Glaciers in Tibetan region), increase of total melt water runoff of 54-149 mm w.e. is expected. We are aware of the limitation of this preliminary estimate but it is important to consider that it clearly indicates that BC deposition during March

  4. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petković, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  5. The influence of topographic setting and weather type on the correlation between elevation and daily temperature measures in mountainous terrain in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wood, Wendy; Marshall, Shawn

    2016-04-01

    Temperature estimates for hydrological and ecological studies in mountainous regions are often based on lapse rate adjustments using sparse low elevation measurements. These measurements may not be representative of the area where estimates are required. This study examines the effects varying topographic settings under different weather types have on the temperature/elevation relationship. The Foothills Climate Array study recorded hourly temperature between 2004 and 2010 at ˜230 weather stations over an area of approximately 24 000 km2 in the Canadian Rocky mountains, extending to the Canadian prairies. 132 sites are considered mountain sites, comprising a range of elevation values, surface types and varied terrain morphology. Correlations are calculated between all station pairs for daily minimum and maximum temperatures, grouped by weather type for the 2006 data. Topographic and surface type characteristics - horizontal and vertical separation, height above valley bottom, slope aspect and angle and land surface type - for the 10 highest correlated neighbours for each site are examined as a means of determining which of these measures drives a similar behavior in temperature. Results indicate a weak temperature/elevation relationship for daily minimum temperatures. The average temperature/elevation correlation coefficient is -0.31 for daily minimum temperatures, varying from weaker than -0.2 for weather types where cold air pooling is a common occurrence to stronger than -0.6 for cool wet weather days. Daily maximum temperatures have an average correlation coefficient of -0.78, but the correlation weakens to -0.4 for cold weather events. There is a nonlinear maximum temperature/elevation relationship, with weak correlations below 2000 m and stronger correlations at higher elevations. Choosing sites with similar topographic settings does strengthen the correlation coefficient, but the temperature/elevation relationship remains weak due to large day to day

  6. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    PubMed

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000-2004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon. PMID:27103613

  7. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches

    NASA Astrophysics Data System (ADS)

    Sharifi, Sayed Saber; Rezaverdinejad, Vahid; Nourani, Vahid

    2016-11-01

    Although the sunshine-based models generally have a better performance than temperature-based models for estimating solar radiation, the limited availability of sunshine duration records makes the development of temperature-based methods inevitable. This paper presents a comparative study between Artificial Neural Networks (ANNs), Gene Expression Programming (GEP), Wavelet Regression (WR) and 5 selected temperature-based empirical models for estimating the daily global solar radiation. A new combination of inputs including four readily accessible parameters have been employed: daily mean clearness index (KT), temperature range (ΔT), theoretical sunshine duration (N) and extraterrestrial radiation (Ra). Ten statistical indicators in a form of GPI (Global Performance Indicator) is used to ascertain the suitability of the models. The performance of selected models across the range of solar radiation values, was depicted by the quantile-quantile (Q-Q) plots. Comparing these plots makes it evident that ANNs can cover a broader range of solar radiation values. The results shown indicate that the performance of ANN model was clearly superior to the other models. The findings also demonstrated that WR model performed well and presented high accuracy in estimations of daily global solar radiation.

  8. Influence of day length, ambient temperature, and seasonality on daily travel distance in the Yunnan snub-nosed monkey at Jinsichang, Yunnan, China.

    PubMed

    Baoping, Ren; Ming, Li; Yongcheng, Long; Fuwen, Wei

    2009-03-01

    This article examines the effect of ambient temperature, day length, weather conditions, and seasonality on daily path length (DPL) of a free-ranging group of Yunnan snub-nosed monkeys (Rhinopithecus bieti) using an auto-released GPS collar. Data were collected from December 17, 2003 to October 22, 2004 at Laojunshan in northwestern Yunnan province, China. The average DPL of the monkey group was 909+/-472 m (n=291), with the shortest distance being 180 m and the longest distance 3,626 m. Ambient temperature and day length were found to affect DPL. Both factors were positively correlated with DPL, which means that the monkey group traveled greater distances on longer and warmer days. At the study site, three distinct seasons were identified, and DPL did not vary significantly across these periods. The time of sunrise was not correlated with DPL. Nevertheless, we sometimes observed the group starting its daily trip later on cloudy days than on sunny days. Furthermore, weather conditions (e.g. rainy, cloudy, and sunny) did not influence the average DPL of the study group. Overall we found that the primary factors affecting DPL in R. bieti were day length and ambient temperature, especially daily highest temperature.

  9. Torpor expression in juvenile and adult Djungarian hamsters (Phodopus sungorus) differs in frequency, duration and onset in response to a daily cycle in ambient temperature.

    PubMed

    Diedrich, Victoria; Bank, Jonathan H; Scherbarth, Frank; Steinlechner, Stephan

    2015-10-01

    In addition to morphological and physiological traits of short-day acclimatisation, Djungarian hamsters (Phodopus sungorus) from Central Asia exhibit spontaneous daily torpor to decrease energy demands during winter. Environmental factors such as food scarcity and low temperatures have been shown to facilitate the use of this temporal reduction in metabolism and body temperature. We investigated the effect of a daily cycle in ambient temperature on short-day acclimation and torpor expression in juvenile and adult Djungarian hamsters. The animals were exposed to a cold dark phase (6°C) and a warmer light phase (18°C) and were compared with control hamsters kept at a constant ambient temperature of 18°C. Under constant conditions, torpor expression did not differ between adult and juvenile hamsters. Although the daily temperature cycle evoked an increased metabolic rate in adult and juvenile hamsters during the dark phase and strengthened the synchronization between torpor entrance and the beginning of the light phase, it did not induce the expected torpor facilitation. In adult hamsters, torpor expression profiles did not differ from those under constant conditions at all. In contrast, juvenile hamsters showed a delayed onset of torpor season, a decreased torpor frequency, depth and duration, as well as an increased number of early torpor terminations coinciding with the rise in ambient temperature after the beginning of the light phase. While the temperature challenge appeared to be of minor importance for energy balance and torpor expression in adult hamsters, it profoundly influenced the overall energy saving strategy of juvenile hamsters, promoting torpor-alleviating active foragers over torpor-prone energy-savers. In addition, our data suggest a more efficient acclimation in juvenile hamsters under additional energy challenges, which reduces the need for torpor expression.

  10. Arabian Oryx (Oryx leucoryx) Respond to Increased Ambient Temperatures with a Seasonal Shift in the Timing of Their Daily Inactivity Patterns.

    PubMed

    Davimes, Joshua G; Alagaili, Abdulaziz N; Gravett, Nadine; Bertelsen, Mads F; Mohammed, Osama B; Ismail, Khairy; Bennett, Nigel C; Manger, Paul R

    2016-08-01

    The Arabian oryx inhabits an environment where summer ambient temperatures can exceed 40 °C for extended periods of time. While the oryx uses a suite of adaptations that aid survival, the effects of this extreme environment on inactivity are unknown. To determine how the oryx manages inactivity seasonally, we measured the daily rhythm of body temperature and used fine-grain actigraphy, in 10 animals, to reveal when the animals were inactive in relation to ambient temperature and photoperiod. We demonstrate that during the cooler winter months, the oryx was inactive during the cooler parts of the 24-h day (predawn hours), showing a nighttime (nocturnal) inactivity pattern. In contrast, in the warmer summer months, the oryx displayed a bimodal inactivity pattern, with major inactivity bouts (those greater than 1 h) occurring equally during both the coolest part of the night (predawn hours) and the warmest part of the day (afternoon hours). Of note, the timing of the daily rhythm of body temperature did not vary seasonally, although the amplitude did change, leading to a seasonal alteration in the phase relationship between inactivity and the body temperature rhythm. Because during periods of inactivity the oryx were presumably asleep for much of the time, we speculate that the daytime shift in inactivity may allow the oryx to take advantage of the thermoregulatory physiology of sleep, which likely occurs when the animal is inactive for more than 1 h, to mitigate environmentally induced increases in body temperature. PMID:27154303

  11. Differences in daily rhythms of wrist temperature between obese and normal-weight women: associations with metabolic syndrome features

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circadian rhythm of core body temperature is associated with widespread physiological effects. However, studies with other more practical temperature measures, such as wrist (WT) and proximal temperatures, are still scarce. The aim of this study was to investigate whether obesity is associated w...

  12. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures.

    PubMed

    Atkin, O K; Scheurwater, I; Pons, T L

    2007-01-01

    Here, we investigated the impact of temperature on the carbon economy of two Plantago species from contrasting habitats. The lowland Plantago major and the alpine Plantago euryphylla were grown hydroponically at three constant temperatures: 13, 20 and 27 degrees C. Rates of photosynthetic CO(2) uptake (P) and respiratory CO(2) release (R) in shoots and R in roots were measured at the growth temperature using intact plants. At each growth temperature, air temperatures were changed to establish short-term temperature effects on the ratio of R to P (R/P). In both species, R/P was essentially constant in plants grown at 13 and 20 degrees C. However, R/P was substantially greater in 27 degrees C-grown plants, particularly in P. euryphylla. The increase in R/P at 27 degrees C would have been even greater had biomass allocation to roots not decreased with increasing growth temperature. Short-term increases in air temperature increased R/P in both species, with the effects of air temperature being most pronounced in 13 degrees C-grown plants. We conclude that temperature-mediated changes in biomass allocation play an important role in determining whole-plant R/P values, and, while homeostasis of R/P is achieved across moderate growth temperatures, homeostasis is not maintained when plants are exposed to growth temperatures higher than usually experienced in the natural habitat. PMID:17388899

  13. Interannual Variability and Trends in Daily Temperature and Precipitation Extreme Indices in Finland in Relation to Atmospheric Circulation Patterns, 1961-2011

    NASA Astrophysics Data System (ADS)

    Irannezhad, Masoud; Kløve, Bjørn

    2016-04-01

    Daily temperature (minimum and maximum) and precipitation datasets applied at regular grid points (10×10 km2) throughout Finland for 1961-2011 were analyzed with the aim to evaluate variability and trends in weather extremes on both national and spatial scale of the country and their relationships with atmospheric circulation patterns (ACPs). Recommending by the Expert Team on Climate Change Detection and Indices (ETCCDI), the extreme indices considered for daily temperature were frost days (FD), summer days (SD) and ice days (ID); and for daily precipitation were heavy precipitation days (R10), consecutive dry days (CDD), consecutive wet days (CWD), highest 1-day precipitation amount (RX1day), simple daily intensity index (SDII) and precipitation fraction due to 95th percentile of the reference period (R95pTOT). This study used the well-known influential ACPs for Finland climate variability: North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic (EA), East Atlantic/West Russia (EA/WR), Polar (POL), Scandinavia (SCA). The non-parametric Mann-Kendall test was used to determine significant historical trends in extreme indices, and the Spearman rank correlation (rho) to identify relationships between extreme indices and ACPs. For daily temperature indices, statistically significant (p<0.05) decreasing trends were found in ID (-0.40±0.34 days/year) and FD (-0.45±0.27 days/year) on a national scale of Finland during 1961-2011. The AO and EA/WR were most significant ACPs affecting variations in ID and FD, with rho = -0.73 and 0.42, respectively. For the daily precipitation extreme indices on the nation-wide of country over the study period (1961-2011), significant trends were only determined in SDII (0.01±0.00 mm/wet days year) and R95pTOT (0.19±0.09 %/year). Both of these indices (SDII and R95pTOT) showed the strongest correlations with the EA/WR pattern, with rho between from -0.42 to -0.34. The EA/WR pattern was also the most influential ACP for

  14. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes.

    PubMed

    Willming, Morgan M; Maul, Jonathan D

    2016-04-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18-25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20-26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. PMID:26827148

  15. Seasonal and daily plasma melatonin rhythms and reproduction in Senegal sole kept under natural photoperiod and natural or controlled water temperature.

    PubMed

    Vera, L M; De Oliveira, C; López-Olmeda, J F; Ramos, J; Mañanós, E; Madrid, J A; Sánchez-Vázquez, F J

    2007-08-01

    The melatonin daily rhythm provides the organism with photoperiod-related information and represents a mechanism to transduce information concerning time of day. In addition, the duration and amplitude of the nocturnal elevation gives information about duration and thus the time of year. In this study, we investigate the existence of an annual rhythm of plasma melatonin in the Senegal sole. Differences in plasma melatonin levels between fish kept at a controlled temperature (17-20 degrees C) and those exposed to the environmental temperature cycle (11.5-25 degrees C) were also examined throughout the year. Spawning was registered in both groups to determine the time of year in which reproductive rhythms occurred. Our results pointed to the existence of an annual rhythm of plasma melatonin at mid-darkness (MD), with the highest levels (203 +/- 44 pg/mL) observed when water temperature reached 25 degrees C. Water temperature influenced nocturnal, but not diurnal melatonin. Daily melatonin rhythms showed seasonal differences, with higher mean nocturnal levels during the summer solstice (138 +/- 19 pg/mL) and autumn equinox (149 +/- 49 pg/mL). When animals were kept at a constant temperature throughout the year, plasma melatonin levels differed from those observed in fish exposed to the environmental temperature cycle. Regarding the reproductive rhythms, spawning was observed at the end of spring in sole kept under natural temperature conditions, whereas no spawning at all was registered in sole reared at a constant temperature. In short, both photoperiod and temperature affected melatonin production in the Senegal sole, transducing seasonal information and controlling annual reproductive rhythms. PMID:17614835

  16. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM10 exposures.

    PubMed

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2015-11-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments.

  17. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM10 exposures

    PubMed Central

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2016-01-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments. PMID:26164202

  18. Surface temperature patterns in complex terrain: Daily variations and long-term change in the central Sierra Nevada, California

    USGS Publications Warehouse

    Lundquist, J.D.; Cayan, D.R.

    2007-01-01

    A realistic description of how temperatures vary with elevation is crucial for ecosystem studies and for models of basin-scale snowmelt and spring streamflow. This paper explores surface temperature variability using temperature data from an array of 37 sensors, called the Yosemite network, which traverses both slopes of the Sierra Nevada in the vicinity of Yosemite National Park, California. These data indicate that a simple lapse rate is often a poor description of the spatial temperature structure. Rather, the spatial pattern of temperature over the Yosemite network varies considerably with synoptic conditions. Empirical orthogonal functions (EOFs) were used to identify the dominant spatial temperature patterns and how they vary in time. Temporal variations of these surface temperature patterns were correlated with large-scale weather conditions, as described by National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. Regression equations were used to downscale larger-scale weather parameters, such as Reanalysis winds and pressure, to the surface temperature structure over the Yosemite network. These relationships demonstrate that strong westerly winds are associated with relatively warmer temperatures on the east slope and cooler temperatures on the west slope of the Sierra, and weaker westerly winds are associated with the opposite pattern. Reanalysis data from 1948 to 2005 indicate weakening westerlies over this time period, a trend leading to relatively cooler temperatures on the east slope over decadal timescale's. This trend also appears in long-term observations and demonstrates the need to consider topographic effects when examining long-term changes in mountain regions. Copyright 2007 by the American Geophysical Union.

  19. An examination of yearly and daily temperature change and its significance to the evaluation of sealant performance

    SciTech Connect

    Lacasse, M.A.; Margeson, J.C.; Giffin, G.B.

    1998-12-31

    Standard test methods to assess the degree of movement capability of sealants are currently based on extreme values of amplitude, rate of movement and temperature change. The selection and derivation of these test parameters on the basis of field observations has yet to be fully explained. It appears that these parameters are not based on an understanding of the degree to which sealants undergo cyclic movement on buildings nor the likelihood of occurrence of extreme events. Although joint failure due to cyclic movement has been investigated, there is a need to consider how such models of deterioration can be used to establish test criteria for assessing the long-term performance of sealant products. To address some of these issues, a study was conducted to determine the nature of temperature fluctuations in a northerly climate. Hourly temperature data from the Ottawa international airport for a period of forty years was subjected to probability analysis. The analysis considered the likelihood of occurrence of periods of increasing or decreasing temperature. The occurrence of particular amplitudes ranges and rates of temperature change were also determined on both a seasonal and a yearly basis. Moreover, the annual and multi-year probability of temperature fluctuations at or above extreme values of either rate or amplitude were also assessed. In addition, the maximum and minimum temperatures of the 40 yearly periods were subjected to extremal analysis to determine the likelihood of annual periods covering larger than average temperature ranges. This analysis provides a basis from which to select test parameters.

  20. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951-2005 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; Chase, Thomas N.; Nath Goswami, Bhupendra

    2016-05-01

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1-1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over central India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1-1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over

  1. Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog

    PubMed Central

    2013-01-01

    Background Environmental temperature has profound consequences for early amphibian development and many field and laboratory studies have examined this. Most laboratory studies that have characterized the influence of temperature on development in amphibians have failed to incorporate the realities of diel temperature fluctuations (DTF), which can be considerable for pond-breeding amphibians. Results We evaluated the effects of different ecologically relevant ranges of DTF compared with effects of constant temperatures on development of embryos and larvae of the Korean fire-bellied toad (Bombina orientalis). We constructed thermal reaction norms for developmental stage, snout- vent length, and tail length by fitting a Gompertz-Gaussian function to measurements taken from embryos after 66 hours of development in 12 different constant temperature environments between 14°C and 36°C. We used these reaction norms as null models to test the hypothesis that developmental effects of DTF are more than the sum of average constant temperature effects over the distribution of temperatures experienced. We predicted from these models that growth and differentiation would be positively correlated with average temperature at low levels of DTF but not at higher levels of DTF. We tested our prediction in the laboratory by rearing B. orientalis embryos at three average temperatures (20°C, 24°C, and 28°C) and four levels of thermal variation (0°C, 6°C, 13°C, and 20°C). Several of the observed responses to DTF were significantly different from both predictions of the model and from responses in constant temperature treatments at the same average temperatures. At an average temperature of 24°C, only the highest level of DTF affected differentiation and growth rates, but at both cooler and warmer average temperatures, moderate DTF was enough to slow developmental and tail growth rates. Conclusions These results demonstrate that both the magnitude of DTF range and thermal

  2. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions

    NASA Astrophysics Data System (ADS)

    Nguyen, Jennifer L.; Dockery, Douglas W.

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  3. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    PubMed

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  4. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave

  5. Daily affect and daily beliefs.

    PubMed

    Harris, Claire; Daniels, Kevin

    2005-10-01

    Human resource directorate employees of a large United Kingdom public hospital (N=36) completed an initial questionnaire and then participated in a daily diary study. The questionnaire included measures of affect and beliefs about high work demands' influence on affect and work performance. The diary included measures of affect, extent of high work demands, and daily beliefs, corresponding to those measured in the questionnaire. Participants were required to complete the diary twice daily, before and after work over a 2-week period. Measures of affect after work were associated with beliefs concerning work demands' influence on work performance and on affect measured after work. Beliefs about work demands measured in the questionnaire were associated with subsequent daily assessments of beliefs.

  6. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  7. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    PubMed

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

  8. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    PubMed

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics. PMID:26391383

  9. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake.

    PubMed

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-09

    Availability of remotely sensed multi-spectral images since the 1980's, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr(-1) (*P < 0.05), and of 0.036 °C yr(-1) (***P < 0.001) during summer.

  10. The use of LinkWinds for the validation and analysis of 14 years of Microwave Sounder Unit daily global temperature anomaly data

    NASA Technical Reports Server (NTRS)

    Botts, Michael E.; Spencer, Roy W.

    1995-01-01

    Temperature data derived from the Microwave Sounder Unit (MSU) provides an opportunity for investigating atmospheric temperatures on a global scale since 1979. Fourteen years of global data sets of daily temperature anomalies within the lower stratosphere and lower troposphere are being generated at NASA Marshall Space Flight Center. LinkWinds, a visualization/analysis package under development at NASA Jet Propulsion Laboratory, has been extremely useful for validating and analyzing these data sets. LinkWinds provides the ability to interactively scroll and animate through the 10,220 images of temporal data, to selectively slice and view the data along latitude, longitude, or temporal axes, to interactively analyze spatial and temporal variability within the data, and to perform correlative analysis between various elements of the data. These capabilities have been invaluable in allowing the recognition of processing artifacts, as well as the effects that physical phenomena, such as the El Ninos effects and the Mt. Pinatubo eruption, have had on atmospheric temperatures.

  11. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake.

    PubMed

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980's, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr(-1) (*P < 0.05), and of 0.036 °C yr(-1) (***P < 0.001) during summer. PMID:27502177

  12. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    PubMed Central

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer. PMID:27502177

  13. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr-1 (*P < 0.05), and of 0.036 °C yr-1 (***P < 0.001) during summer.

  14. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr‑1 (*P < 0.05), and of 0.036 °C yr‑1 (***P < 0.001) during summer.

  15. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  16. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    PubMed Central

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-01-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722

  17. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.

    PubMed

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions. PMID:25821722

  18. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Annual Daily Minimum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio

  19. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: Average Annual Daily Maximum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio

  20. Daily rhythms of core temperature and locomotor activity indicate different adaptive strategies to cold exposure in adult and aged mouse lemurs acclimated to a summer-like photoperiod.

    PubMed

    Terrien, Jeremy; Zizzari, Philippe; Epelbaum, Jacques; Perret, Martine; Aujard, Fabienne

    2009-07-01

    Daily variations in core temperature (Tc) within the normothermic range imply thermoregulatory processes that are essential for optimal function and survival. Higher susceptibility towards cold exposure in older animals suggests that these processes are disturbed with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian rhythmicity of Tc, locomotor activity (LA), and energy balance under long-day conditions when exposed to cold. Adult (N = 7) and aged (N = 5) mouse lemurs acclimated to LD14/10 were exposed to 10-day periods at 25 and 12 degrees C. Tc and LA rhythms were recorded by telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1 were measured. During exposure to 25 degrees C, both adult and aged mouse lemurs exhibited strong daily variations in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. Under cold exposure, torpor bout occurrence was never observed whatever the age category. Adult and aged mouse lemurs maintained their Tc in the normothermic range and a positive energy balance. All animals exhibited increase in CI and decrease in IGF-1 in response to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal LA compared to those under Ta = 25 degrees C. However, aged animals exhibited a strong decrease in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal organization and amplitude of the daily phase of low Tc were particularly well preserved under cold exposure in both age groups. Sexually active mouse lemurs exposed to cold thus seemed to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during aging. However, although energy balance was not impaired with age in mouse lemurs after cold exposure

  1. Does diurnal temperature range influence seasonal suicide mortality? Assessment of daily data of the Helsinki metropolitan area from 1973 to 2010

    NASA Astrophysics Data System (ADS)

    Holopainen, Jari; Helama, Samuli; Partonen, Timo

    2014-08-01

    Several studies show a peak in suicide rates during springtime and suggest differences in the seasonal variation of suicides. However, the seasonal distribution of the temperature impact on suicide is less clear. This study investigated the relationship between diurnal temperature range (DTR) on suicide mortality. Daily temperature and suicide data for Helsinki were analyzed for the period of 1973-2010 inclusive. Overall, DTR reached its maximum during the spring from mid-April to mid-June, which is also the season with highest suicide mortality in the study region. Specifically, the seasonal timing and maxima for both DTR and suicides vary from year to year. Time series analysis of DTR and suicide records revealed a significant ( P < 0.01) correlation between the springtime DTR maxima and suicide rates for males. No similar association could be found for females. These results provide evidence that a higher springtime DTR could be linked statistically to a higher seasonal suicide rate each spring, whereas the exact timing of the DTR peak did not associate with the seasonal suicide rate. A possible mechanism behind the springtime association between the DTR and suicides originates from brown adipose tissue (BAT) over-activity. Activation of BAT through the winter improves cold tolerance at the cost of heat tolerance. This might trigger anxiety and psychomotor agitation, affecting mood in a negative way. As a hypothesis, the compromised heat tolerance is suggested to increase the risk of death from suicide.

  2. [Peripuberal development of genetic obesity in beta rats. Daily changes in food intake, body weight, deep body temperature, triglyceridemia and glycemia].

    PubMed

    Calderari, S; Gayol, M C; Elliff, M I; Labourdette, V; Troiano, M F; Romano, G

    1990-01-01

    The moderate quality of beta obesity and its relatively slow evolution make it potentially useful for defining the sequence of events that lead to the overt syndrome. Estimates of food intake, live body weight, deep body temperature, triglyceridemia and glycemia were obtained at several times during the day in beta genetically obese and alpha (alpha) control male rats at peripuberal age, in order to characterize the dynamic phase of this obesity and to attempt the definition of some previous proceedings that eventually produce the full obesity syndrome. Beta higher food intake in the light cycle preceded its whole day hyperphagia. Both genotypes showed the normal pattern of predominantly nocturnal feeding. A lower light phase's weight loss in beta preceded the overweight. Thus, beta rats were not significantly heavier than alpha until the end of the last period studied, when they were 75 days old. A defect in adaptive thermogenesis in beta genotype is suggested, as values on deep body temperature in relation to alpha were significantly lower at all times of day tested. Correlation coefficient value between daily net weight gain versus deep body temperature was: r = -0.601 (p less than 0.01), suggesting a diminished lipolytic stimulation in beta brown adipose tissue. A sustained hypertriglyceridemia in beta at every time of the day studied suggested its endogenous source. Differences in glycemia values were not statistically significant between genotypes, though apparently wider variations in beta could reflect a certain glycemic regulation lability in the obese genotype. PMID:2101545

  3. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  4. Daily exposure to summer temperatures affects the motile subpopulation structure of epididymal sperm cells but not male fertility in an in vivo rabbit model.

    PubMed

    Maya-Soriano, M J; Taberner, E; Sabés-Alsina, M; Ramon, J; Rafel, O; Tusell, L; Piles, M; López-Béjar, M

    2015-08-01

    High temperatures have negative effects on sperm quality leading to temporary or permanent sterility. The aim of the study was to assess the effect of long exposure to summer circadian heat stress cycles on sperm parameters and the motile subpopulation structure of epididymal sperm cells from rabbit bucks. Twelve White New Zealand rabbit bucks were exposed to a daily constant temperature of the thermoneutral zone (from 18 °C to 22 °C; control group) or exposed to a summer circadian heat stress cycles (30 °C, 3 h/day; heat stress group). Spermatozoa were flushed from the epididymis and assessed for sperm quality parameters at recovery. Sperm total motility and progressivity were negatively affected by high temperatures (P < 0.05), as were also specific motility parameters (curvilinear velocity, linear velocity, mean velocity, straightness coefficient, linearity coefficient, wobble coefficient, and frequency of head displacement; P < 0.05, but not the mean amplitude of lateral head displacement). Heat stress significantly increased the percentage of less-motile sperm subpopulations, although the percentage of the high-motile subpopulation was maintained, which is consistent with the fact that no effect was detected on fertility rates. However, prolificacy was reduced in females submitted to heat stress when inseminated by control bucks. In conclusion, our results suggest that environmental high temperatures are linked to changes in the proportion of motile sperm subpopulations of the epididymis, although fertility is still preserved despite the detrimental effects of heat stress. On the other hand, prolificacy seems to be affected by the negative effects of high temperatures, especially by altering female reproduction. PMID:25944779

  5. Daily exposure to summer temperatures affects the motile subpopulation structure of epididymal sperm cells but not male fertility in an in vivo rabbit model.

    PubMed

    Maya-Soriano, M J; Taberner, E; Sabés-Alsina, M; Ramon, J; Rafel, O; Tusell, L; Piles, M; López-Béjar, M

    2015-08-01

    High temperatures have negative effects on sperm quality leading to temporary or permanent sterility. The aim of the study was to assess the effect of long exposure to summer circadian heat stress cycles on sperm parameters and the motile subpopulation structure of epididymal sperm cells from rabbit bucks. Twelve White New Zealand rabbit bucks were exposed to a daily constant temperature of the thermoneutral zone (from 18 °C to 22 °C; control group) or exposed to a summer circadian heat stress cycles (30 °C, 3 h/day; heat stress group). Spermatozoa were flushed from the epididymis and assessed for sperm quality parameters at recovery. Sperm total motility and progressivity were negatively affected by high temperatures (P < 0.05), as were also specific motility parameters (curvilinear velocity, linear velocity, mean velocity, straightness coefficient, linearity coefficient, wobble coefficient, and frequency of head displacement; P < 0.05, but not the mean amplitude of lateral head displacement). Heat stress significantly increased the percentage of less-motile sperm subpopulations, although the percentage of the high-motile subpopulation was maintained, which is consistent with the fact that no effect was detected on fertility rates. However, prolificacy was reduced in females submitted to heat stress when inseminated by control bucks. In conclusion, our results suggest that environmental high temperatures are linked to changes in the proportion of motile sperm subpopulations of the epididymis, although fertility is still preserved despite the detrimental effects of heat stress. On the other hand, prolificacy seems to be affected by the negative effects of high temperatures, especially by altering female reproduction.

  6. Heat waves frequency analysis and spatial-temporal variability of daily maximum temperature in southern Slovakia within the 1951, respectively 1961-2008 periods

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Faško, P.; Mikulová, K.; Šâstný, P.

    2009-09-01

    Heat waves temporal and spatial analysis at selected meteorological stations in southern part of Slovakia within the 1951, respectively 1961-2008 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper deals with analysis of temporal and spatial variability of heat waves occurrence at meteorological station Hurbanovo (time series of daily maximum air temperature available from at least 1901) and some other climatological stations in lowlands of southern Slovakia (Žiharec, Bratislava-airport, Jaslovské Bohunice, Kráľová pri Senci, etc.). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. These methods are quite similar to the intensity-duration-frequency approach often used in the analysis of extreme precipitation events. The HDF-curves (heatwave

  7. Daily rainfall and temperature estimation by kriging with external drift in an Alpine Catchment. Sensitivity analysis to the temporal scale adopted to define the variogram models. (southeast Spain)

    NASA Astrophysics Data System (ADS)

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David; Jimenez-Sanchez, Jorge

    2016-04-01

    The knowledge of the climatic historical variables in a River Basin is essential for an appropriate management of the water resources in the system. Temperature and precipitation are the most important variables from the point of view of the assessment of water availability and its spatially and temporal distribution. The aim of this work is to estimate temperature and precipitation using kriging with external drift (KED). A grid with a spatial resolution of 1 km and a daily temporal resolution has been adopted to estimate values for the period 1980 to 2014 in the "Alto Genil" basin (southeast Spain). The altitude in the catchment changes from 530 to 3100 m a.s.l. The climatic variables depend of the altitude and this variable has been used as external drift. Data from 119 precipitation station and 72 temperature station of the AEMET have been employed. The relationship between the altitude and the variables has been analyzed using the regression function of daily mean precipitation and temperature for annual and monthly scale. Normally the temperature and precipitation increase linearly with the altitude. The relationship between temperature and altitude is clearly linear. In the case of the precipitation there is a value of altitude (approximately 1500 m) from which the precipitation decreases with the altitude (inverse rainfall gradient) for every months with the exception of July that has a linear relationship. This inverse rainfall gradient has been observed in other cases as Andes Mountains, some African high mountains, tropical or subtropical high mountains. Therefore, in the case of the precipitation we have a quadratic external drift and for the temperature we have a linear external drift. The monthly and annual climatic variograms were calibrated in order to study if the climatic variables have a seasonal conduct. The KED allows to obtain an estimation with both models (annual and monthly) for the two variables and we can quantify the sensibility of the

  8. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer.

    PubMed

    Winett, R A; Hatcher, J W; Fort, T R; Leckliter, I N; Love, S Q; Riley, A W; Fishback, J F

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62 degrees F when home and about 59 degrees F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75 degrees F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior

  9. The effects of videotape modeling and daily feedback on residential electricity conservation, home temperature and humidity, perceived comfort, and clothing worn: Winter and summer

    PubMed Central

    Winett, Richard A.; Hatcher, Joseph W.; Fort, T. Richard; Leckliter, Ingrid N.; Love, Susan Q.; Riley, Anne W.; Fishback, James F.

    1982-01-01

    Two studies were conducted in all-electric townhouses and apartments in the winter (N = 83) and summer (N = 54) to ascertain how energy conservation strategies focusing on thermostat change and set-backs and other low-cost/no-cost approaches would affect overall electricity use and electricity used for heating and cooling, the home thermal environment, the perceived comfort of participants, and clothing that was worn. The studies assessed the effectiveness of videotape modeling programs that demonstrated these conservation strategies when used alone or combined with daily feedback on electricity use. In the winter, the results indicated that videotape modeling and/or feedback were effective relative to baseline and to a control group in reducing overall electricity use by about 15% and electricity used for heating by about 25%. Hygrothermographs, which accurately and continuously recorded temperature and humidity in the homes, indicated that participants were able to live with no reported loss in comfort and no change in attire at a mean temperature of about 62°F when home and about 59°F when asleep. The results were highly discrepant with prior laboratory studies indicating comfort at 75°F with the insulation value of the clothing worn by participants in this study. In the summer, a combination of strategies designed to keep a home cool with minimal or no air conditioning, in conjunction with videotape modeling and/or daily feedback, resulted in overall electricity reductions of about 15% with reductions on electricity for cooling of about 34%, but with feedback, and feedback and modeling more effective than modeling alone. Despite these electricity savings, hygrothermograph recordings indicated minimal temperature change in the homes, with no change in perceived comfort or clothing worn. The results are discussed in terms of discrepancies with laboratory studies, optimal combinations of video-media and personal contact to promote behavior change, and energy

  10. User's Guide, software for reduction and analysis of daily weather and surface-water data: Tools for time series analysis of precipitation, temperature, and streamflow data

    USGS Publications Warehouse

    Hereford, Richard

    2006-01-01

    The software described here is used to process and analyze daily weather and surface-water data. The programs are refinements of earlier versions that include minor corrections and routines to calculate frequencies above a threshold on an annual or seasonal basis. Earlier versions of this software were used successfully to analyze historical precipitation patterns of the Mojave Desert and the southern Colorado Plateau regions, ecosystem response to climate variation, and variation of sediment-runoff frequency related to climate (Hereford and others, 2003; 2004; in press; Griffiths and others, 2006). The main program described here (Day_Cli_Ann_v5.3) uses daily data to develop a time series of various statistics for a user specified accounting period such as a year or season. The statistics include averages and totals, but the emphasis is on the frequency of occurrence in days of relatively rare weather or runoff events. These statistics are indices of climate variation; for a discussion of climate indices, see the Climate Research Unit website of the University of East Anglia (http://www.cru.uea.ac.uk/projects/stardex/) and the Climate Change Indices web site (http://cccma.seos.uvic.ca/ETCCDMI/indices.html). Specifically, the indices computed with this software are the frequency of high intensity 24-hour rainfall, unusually warm temperature, and unusually high runoff. These rare, or extreme events, are those greater than the 90th percentile of precipitation, streamflow, or temperature computed for the period of record of weather or gaging stations. If they cluster in time over several decades, extreme events may produce detectable change in the physical landscape and ecosystem of a given region. Although the software has been tested on a variety of data, as with any software, the user should carefully evaluate the results with their data. The programs were designed for the range of precipitation, temperature, and streamflow measurements expected in the semiarid

  11. A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the "year without a summer" 1816

    NASA Astrophysics Data System (ADS)

    Brugnara, Y.; Auchmann, R.; Brönnimann, S.; Allan, R. J.; Auer, I.; Barriendos, M.; Bergström, H.; Bhend, J.; Brázdil, R.; Compo, G. P.; Cornes, R. C.; Dominguez-Castro, F.; van Engelen, A. F. V.; Filipiak, J.; Holopainen, J.; Jourdain, S.; Kunz, M.; Luterbacher, J.; Maugeri, M.; Mercalli, L.; Moberg, A.; Mock, C. J.; Pichard, G.; Řezníčková, L.; van der Schrier, G.; Slonosky, V.; Ustrnul, Z.; Valente, M. A.; Wypych, A.; Yin, X.

    2015-08-01

    The eruption of Mount Tambora (Indonesia) in April 1815 is the largest documented volcanic eruption in history. It is associated with a large global cooling during the following year, felt particularly in parts of Europe and North America, where the year 1816 became known as the "year without a summer". This paper describes an effort made to collect surface meteorological observations from the early instrumental period, with a focus on the years of and immediately following the eruption (1815-1817). Although the collection aimed in particular at pressure observations, correspondent temperature observations were also recovered. Some of the series had already been described in the literature, but a large part of the data, recently digitised from original weather diaries and contemporary magazines and newspapers, is presented here for the first time. The collection puts together more than 50 sub-daily series from land observatories in Europe and North America and from ships in the tropics. The pressure observations have been corrected for temperature and gravity and reduced to mean sea level. Moreover, an additional statistical correction was applied to take into account common error sources in mercury barometers. To assess the reliability of the corrected data set, the variance in the pressure observations is compared with modern climatologies, and single observations are used for synoptic analyses of three case studies in Europe. All raw observations will be made available to the scientific community in the International Surface Pressure Databank.

  12. Temperature, Not Fine Particulate Matter (PM2.5), is Causally Associated with Short-Term Acute Daily Mortality Rates: Results from One Hundred United States Cities

    PubMed Central

    Cox, Tony; Popken, Douglas; Ricci, Paolo F

    2013-01-01

    Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662

  13. New homogenized daily lake surface water temperature data of three decades from multiple sensors confirm warming of large sub-alpine lake Garda

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-04-01

    Availability of remotely sensed multi-spectral images from the early eighties covering three decades of voluminous data could help researchers to study the change dynamics in bio-physical characteristics of land and water. However it is very important to homogenize these data originating from multiple sources which follow different standards and quality. In this study, we explored the thermal dynamics of a large sub-alpine lake Garda over last twentyeight years (1986 - 2014) using Lake Surface Water Temperature (LSWT) derived from the thermal bands of moderate resolution sensors - AVHRR/2, AVHRR/3, ATSR1, ATSR2, A(A)TSR and MODIS aboard multiple satellites. We developed a homogenized daily LSWT dataset (12:00 P.M) at 1km spatial resolution combining the data from these sensors using split window technique and performing an acquisition time correction. The gaps in the temporal database due to clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The results show high correlation (R2 > 90) between satellite derived LSWT (taken into account both individual sensors and the combined data) and the in-situ data. The time correction enable us to perform a trend analysis on unified datasets corrected for its acquisition times. The trend analysis using non-parametric tests shows significant warming in annual trend at the rate of 0.01K yr-1 (p<0.05), while in summer the increasing trend is 0.02K yr-1(p<0.1). The results are in line with similar findings on warming of Alpine lakes. Moreover, the advantage of the spatial coverage at 1 km resolution we are able to characterize the thermal dynamics of the lake Garda at multiple locations of this large lake.

  14. Comparison of the effects of extreme temperatures on daily mortality in Madrid (Spain), by age group: The need for a cold wave prevention plan.

    PubMed

    Díaz, J; Carmona, R; Mirón, I J; Ortiz, C; Linares, C

    2015-11-01

    A number of studies have shown that there is a time trend towards a reduction in the effects of heat on mortality. In the case of cold, however, there is practically no research of this type and so there is no clearly defined time trend of the impact of cold on mortality. Furthermore, no other specific studies have yet analysed the time trend of the impact of both thermal extremes by age group. We analysed data on daily mortality due to natural causes (ICD-10: A00-R99) in the city of Madrid across the period 2001-2009 and calculated the impact of extreme temperatures on mortality using Poisson regression models for specific age groups. The groups of age selected coinciding with the pre-existing age-groups analyzed in previous papers. For heat waves the groups of age used were: <10 years, 10-17 years, 18-44 years, 45-64 years, 65-74 years and over-75 years. For cold waves the groups of age used were: <1 year; 1-5 years, 6-17 years, 18-44 years, 45-64 years, 65-74 years and over-75 years. <1, 1-17, 18-44, 45-66, 65-74 and over-75 years. We controlled for confounding variables, such as air pollution, noise, influenza, pollen, pressure and relative humidity, trend of the series, as well as seasonalities and autoregressive components of the series. The results of these models were compared to those obtained for the same city during the period 1986-1997 and published in different studies. Our results show a lightly reduction in the effects of heat, especially in the over-45-year age group. In the case of cold, the behaviour pattern was the opposite, with an increase in its effect. Heat adaptation and socio-economic and public-health prevention and action measures may be behind this amelioration in the effects of heat, whereas the absence of such actions in respect of low temperatures may account for the increase in the effects of cold on mortality. From a public health point of view, the implementation of cold wave prevention plans covering all age groups is thus called

  15. Generalized Potential Temperature in a Diagnostic Study of High Impact Weather over an Urban Station of India

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Dutta, Debashree

    2014-08-01

    The tropospheric atmosphere is neither absolutely dry nor completely saturated. It is, in general, moist. The purpose of the present study is to reveal the role of generalized potential temperature (GPT) in describing the humid state of the real moist atmosphere pertaining to understanding the prevalence of high impact weather systems over an urban station, Kolkata (22°32'N; 88°20'E), of India. A comparative study among GPT, equivalent potential temperature (EPT), potential temperature and relative humidity to reveal the significance of GPT in a precise understanding of the high impact weather of Kolkata is carried out. To attain the objectives, 50 cases of thunderstorms, 15 cases of tropical cyclones and 15 heavy rainfall days are selected during the pre-monsoon season (April-May) over Kolkata (22°32'N; 88°20'E), India. The condition—decision support system of rough set theory is adopted as the methodology. The result of the study reveals that GPT is the most pertinent convective parameter in estimating the prevalence of the high impact weather of Kolkata during the pre-monsoon season and is observed to be better than RH. The results, thus, show that the moist air is capable of describing the distribution of water vapour and thermodynamic properties of the real atmosphere more precisely than an absolutely dry and completely saturated state of the atmosphere.

  16. Daily exercise routines

    NASA Technical Reports Server (NTRS)

    Anderson, Patrick L.; Amoroso, Michael T.

    1990-01-01

    Viewgraphs on daily exercise routines are presented. Topics covered include: daily exercise and periodic stress testings; exercise equipment; physiological monitors; exercise protocols; physiological levels; equipment control; control systems; and fuzzy logic control.

  17. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  18. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  19. Meteorology (Temperature)

    Atmospheric Science Data Center

    2014-09-25

    ... daily earth temperature minimum and maximum.   Frost Days (days) The number of days for which the temperature falls below 0 degrees Celsius.   Dew/Frost Point Temperature (° C) Temperature at which air is saturated ...

  20. Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States

    SciTech Connect

    Ashfaq, Moetasim; Bowling, Laura C.; Cherkauer, Keith; Pal, Jeremy; Diffenbaugh, Noah

    2010-01-01

    The Intergovernmental Panel on Climate Change's Fourth Assessment Report concludes that climate change is now unequivocal, and associated increases in evaporation and atmospheric water content could intensify the hydrological cycle. However, the biases and coarse spatial resolution of global climate models limit their usefulness in hydrological impact assessment. In order to reduce these limitations, we use a high-resolution regional climate model (RegCM3) to drive a hydrological model (variable infiltration capacity) for the full contiguous United States. The simulations cover 1961-1990 in the historic period and 2071-2100 in the future (A2) period. A quantile-based bias correction technique is applied to the times series of RegCM3-simulated precipitation and temperature. Our results show that biases in the RegCM3 fields not only affect the magnitude of hydrometeorological variables in the baseline hydrological simulation, but they also affect the response of hydrological variables to projected future anthropogenic increases in greenhouse forcing. Further, we find that changes in the intensity and occurrence of severe wet and hot events are critical in determining the sign of hydrologic change. These results have important implications for the assessment of potential future hydrologic changes, as well as for developing approaches for quantitative impacts assessment.

  1. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse.

    PubMed

    Mitchell, Sharon E; Delville, Camille; Konstantopedos, Penelope; Derous, Davina; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Douglas, Alex; Lusseau, David; Speakman, John R

    2015-07-30

    A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30-35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect.

  2. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse.

    PubMed

    Mitchell, Sharon E; Delville, Camille; Konstantopedos, Penelope; Derous, Davina; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Douglas, Alex; Lusseau, David; Speakman, John R

    2015-07-30

    A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30-35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect. PMID:26286956

  3. Tips for Daily Life

    MedlinePlus

    ... A Share Plus on Google Plus I Have Alzheimer's Disease alz.org | IHaveAlz I Have Alz Homepage Know ... others living with Alzheimer's back to top The Alzheimer's ... living with the disease, share their personal insights about the daily strategies ...

  4. Toothbrushing: Do It Daily.

    ERIC Educational Resources Information Center

    Texas Child Care, 1993

    1993-01-01

    Offers a practical guide for promoting daily toothbrushing in young children. Discusses the importance of proper dental care, explains the causes of tooth decay, describes proper dental care for infants and young children, recommends materials and teaching methods, and discusses visits to the dentist and the benefits of fluoride for dental health.…

  5. Daily Water Use in Nine Cities

    NASA Astrophysics Data System (ADS)

    Maidment, David R.; Miaou, Shaw-Pin

    1986-06-01

    Transfer functions are used to model the short-term response of daily municipal water use to rainfall and air temperature variations. Daily water use data from nine cities are studied, three cities each from Florida, Pennsylvania, and Texas. The dynamic response of water use to rainfall and air temperature is similar across the cities within each State; in addition the responses of the Texas and Florida cities are very similar to one another while the response of the Pennsylvania cities is more sensitive to air temperature and less to rainfall. There is little impact of city size on the response functions. The response of water use to rainfall depends first on the occurrence of rainfall and second on its magnitude. The occurrence of a rainfall more than 0.05 in./day (0.13 cm/day) causes a drop in the seasonal component of water use one day later that averages 38% for the Texas cities, 42% for the Florida cities, and 7% for the Pennsylvania cities. In Austin, Texas, a spatially averaged rainfall series shows a clearer relationship with water use than does rainfall data from a single gage. There is a nonlinear response of water use to air temperature changes with no response for daily maximum air temperatures between 40° and 70°F (4-21°C) an increase in water use with air temperature beyond 70°F; above 85°-90°F (29°-32°C) water use increases 3-5 times more per degree than below that limit in Texas and Florida. The model resulting from these studies can be used for daily water use forecasting and water conservation analysis.

  6. Examining the Physical Drivers of Photosynthetic Temperature Sensitivity Within a Sub-alpine Mixed Conifer Forest

    NASA Astrophysics Data System (ADS)

    Yang, J.; Barron-Gafford, G.; Minor, R.; Heard, M.

    2013-12-01

    Current projections of climate change in the southwestern U.S. suggest increasing temperatures and reduced summer precipitation. High temperature and water deficits have major influence on ecosystem functioning by restricting plant growth and productivity. However, there are limited data on what influences plant sensitivity to temperature, and these dynamics are not often captured in ecosystem models. Understanding the sensitivities, linkages, and feedbacks among biotic processes and abiotic forces is especially important within Critical Zone Sciences, which seeks to integrate among disciplines. Here, we analyzed several potential drivers of photosynthetic temperature sensitivity, including differences in soil parent material, aspect, and seasonality within a suite of species. Each of these variables captures a different physical driver: (i) soil parent material influences water holding capacity of the soil; (ii) aspect influences how incoming energy drives evaporative loss of soil water, creating warmer and drier environments on south/east faces; and (iii) seasonality captures temporal patterns of soil moisture recharge. Our research was conducted within two V shaped zero-order catchment basins of the Santa Catalina Critical Zone Observatory in southern Arizona, one with schist bedrock and the other with granite. We used leaf-level gas exchange measurements on 24 trees across a range of temperatures to quantify this plant temperature sensitivity during the dry pre-monsoon and wet monsoon seasons. Preliminary results show that maximum photosynthetic rate was 51% higher during the monsoon than pre-monsoon season. Optimal photosynthetic temperature decreased 25% while the span of functional temperatures (Ω50) was 21% higher following the onset of monsoon rains. During the rainy season, soil parent material became an important factor. The greater water holding capacity of schist soils yielded greater maximum photosynthesis and reduced tree sensitivity to higher

  7. Quantification of Daily Physical Activity

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Breit, Greg; Quintana, Jason

    1994-01-01

    The influence of physical activity on the maintenance and adaptation of musculoskeletal tissue is difficult to assess. Cumulative musculoskeletal loading is hard to quantify and the attributes of the daily tissue loading history affecting bone metabolism have not been completely identified. By monitoring the vertical component of the daily ground reaction force (GRFz), we have an indirect measure of cumulative daily lower limb musculoskeletal loading to correlate with bone density and structure. The objective of this research is to develop instrumentation and methods of analysis to quantify activity level in terms of the daily history of ground reaction forces.

  8. Unravelling daily human mobility motifs.

    PubMed

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  9. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.

  10. Which metric of ambient ozone to predict daily mortality?

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Hutter, Hans-Peter; Kundi, Michael

    2013-02-01

    It is well known that ozone concentration is associated with daily cause specific mortality. But which ozone metric is the best predictor of the daily variability in mortality? We performed a time series analysis on daily deaths (all causes, respiratory and cardiovascular causes as well as death in elderly 65+) in Vienna for the years 1991-2009. We controlled for seasonal and long term trend, day of the week, temperature and humidity using the same basic model for all pollutant metrics. We found model fit was best for same day variability of ozone concentration (calculated as the difference between daily hourly maximum and minimum) and hourly maximum. Of these the variability displayed a more linear dose-response function. Maximum 8 h moving average and daily mean value performed not so well. Nitrogen dioxide (daily mean) in comparison performed better when previous day values were assessed. Same day ozone and previous day nitrogen dioxide effect estimates did not confound each other. Variability in daily ozone levels or peak ozone levels seem to be a better proxy of a complex reactive secondary pollutant mixture than daily average ozone levels in the Middle European setting. If this finding is confirmed this would have implications for the setting of legally binding limit values.

  11. Tractor Operation and Daily Care.

    ERIC Educational Resources Information Center

    Fore, J. M.; And Others

    Written for the tractor operator, the manual describes, with the aid of colored illustrations and diagrams, the tasks involved in the proper operation and daily maintenance of tractors. It offers explanations for the desirability of the various servicing and adjustment operations, as well as guidelines for tractor operation and safety. The…

  12. Digital Daily Cycles of Individuals

    NASA Astrophysics Data System (ADS)

    Aledavood, Talayeh; Lehmann, Sune; Saramäki, Jari

    2015-10-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We begin at the aggregate level, discuss earlier results, and illustrate differences between population-level daily rhythms in different media. Then we move on to the individual level, and show that there is a strong individual-level variation beyond averages: individuals typically have their distinctive daily pattern that persists in time. We conclude by discussing the driving forces behind these signature daily patterns, from personal traits (morningness/eveningness) to variation in activity level and external constraints, and outline possibilities for future research.

  13. Insolation data manual: Long-term monthly averages of solar radiation, temperature, degree-days, and global KT for 248 National Weather Service stations and direct normal solar radiation data manual: Long-term, monthly mean, daily totals for 235 National Weather Service stations

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data, generally from 1952 to 1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/sq m per day, Btu/sq ft per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global KT (cloudiness index) values were calculated on a monthly and annual basis. Global KT is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

  14. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2015-12-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  15. Observability of market daily volatility

    NASA Astrophysics Data System (ADS)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  16. Awareness of Daily Life Activities

    NASA Astrophysics Data System (ADS)

    Metaxas, Georgios; Metin, Barbaros; Schneider, Jutta; Markopoulos, Panos; De Ruyter, Boris

    The well-publicized aging of Western societies has prompted a growing interest into technologies that support awareness in cross-generational families. The idea of supporting continual and partly automated flow of information between seniors living alone and their social intimates has been gaining ground among researchers but even among industries. It is anticipated that such an information flow can help bridge geographical distance, discrepant lifestyles, and daily routines, potentially providing peace of mind to both parties and feelings of being connected.

  17. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  18. Daily torpor and hibernation in birds and mammals.

    PubMed

    Ruf, Thomas; Geiser, Fritz

    2015-08-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators

  19. Daily torpor and hibernation in birds and mammals

    PubMed Central

    RUF, THOMAS; GEISER, FRITZ

    2014-01-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that

  20. Daily cycles in coastal dunes

    USGS Publications Warehouse

    Hunter, R.E.; Richmond, B.M.

    1988-01-01

    Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

  1. WAPA Daily Energy Accounting Activities

    1990-10-01

    ISA (Interchange, Scheduling, & Accounting) is the interchange scheduling system used by the DOE Western Area Power Administration to perform energy accounting functions associated with the daily activities of the Watertown Operations Office (WOO). The system's primary role is to provide accounting functions for scheduled energy which is exchanged with other power companies and power operating organizations. The system has a secondary role of providing a historical record of all scheduled interchange transactions. The followingmore » major functions are performed by ISA: scheduled energy accounting for received and delivered energy; generation scheduling accounting for both fossil and hydro-electric power plants; metered energy accounting for received and delivered totals; energy accounting for Direct Current (D.C.) Ties; regulation accounting; automatic generation control set calculations; accounting summaries for Basin, Heartland Consumers Power District, and the Missouri Basin Municipal Power Agency; calculation of estimated generation for the Laramie River Station plant; daily and monthly reports; and dual control areas.« less

  2. Intent to Quit among Daily and Non-Daily College Student Smokers

    ERIC Educational Resources Information Center

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2013-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking…

  3. Providing daily updated weather data for online risk assessment

    NASA Astrophysics Data System (ADS)

    Petritsch, R.; Hasenauer, H.

    2009-04-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modeling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapor pressure. These data are usually provided by interpolation techniques using measured values from surrounding stations or weather generators based on monthly mean values. One well-known and frequently used software packages is DAYMET which was adapted and validated for Austrian purposes. The calculation includes the interpolation of maximum and minimum temperature and precipitation based on near-by measurements and the subsequent extrapolation of incident solar radiation and vapor pressure deficit based on the temperature and precipitation values. The Austrian version of DAYMET uses daily weather data from more than 400 measuring stations all over Austria from 1960 to 2005. Due to internal procedures of DAYMET daily values for a whole year are estimated together; thus, the update of the database may only be done with full year records. Whether this approach convenient for retrospective modeling studies risk assessment (e.g. drought stress, forest fire, insect outbreaks) needs a higher update frequency than a full year. At best the measurements would be available immediately after they are taken. In practice the update frequency is limited by the operational provision of daily weather data. The aim of this study is to implement a concept for providing daily updated weather data as it could be used for continuous risk assessment. First we built a new climate database containing all available daily measurements. It is based on a well-established Relational Database Management System (RDBMS) and may be accessed and extended using the Standard Query Language (SQL). Secondly, we re-implemented the interpolation logic for temperature

  4. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    SciTech Connect

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

  5. Daily Medicine Record for Your Child

    MedlinePlus

    ... the-Counter Pain Relievers and Fever Reducers Daily Medicine Record for Your Child (English) Share Tweet Linkedin ... Age: ____ 2 years old___ Weight: ___ 30 pounds ___ Daily Medicine Record Child’s name: ___________________ Today’s date: _________________ Age: ____________ Weight: ________________ (pounds) ...

  6. Weather, season, and daily stroke admissions in Hong Kong

    NASA Astrophysics Data System (ADS)

    Goggins, William B.; Woo, Jean; Ho, Suzanne; Chan, Emily Y. Y.; Chau, P. H.

    2012-09-01

    Previous studies examining daily temperature and stroke incidence have given conflicting results. We undertook this retrospective study of all stroke admissions in those aged 35 years old and above to Hong Kong public hospitals from 1999 through 2006 in order to better understand the effects of meteorological conditions on stroke risk in a subtropical setting. We used Poisson Generalized Additive Models with daily hemorrhagic (HS) and ischemic stroke (IS) counts separately as outcomes, and daily mean temperature, humidity, solar radiation, rainfall, air pressure, pollutants, flu consultation rates, day of week, holidays, time trend and seasonality as predictors. Lagged effects of temperature, humidity and pollutants were also considered. A total of 23,457 HS and 107,505 IS admissions were analyzed. Mean daily temperature had a strong, consistent, negative linear association with HS admissions over the range (8.2-31.8°C) observed. A 1°C lower average temperature over the same day and previous 4 days (lags 0-4) being associated with a 2.7% (95% CI: 2.0-3.4%, P < .0.0001) higher admission rate after controlling for other variables. This association was stronger among older subjects and females. Higher lag 0-4 average change in air pressure from previous day was modestly associated with higher HS risk. The association between IS and temperature was weaker and apparent only below 22°C, with a 1°C lower average temperature (lags 0-13) below this threshold being associated with a 1.6% (95% CI:1.0-2.2%, P < 0.0001) higher IS admission rate. Pollutant levels were not associated with HS or IS. Future studies should examine HS and IS risk separately.

  7. Entrainment of daily serum gonadotropin cycles in the goldfish to photoperiod, feeding, and daily thermocycles.

    PubMed

    Hontela, A; Peter, R E

    1983-10-01

    Female fish were kept under 16L:8D/20 degrees C in November and April and the onset of light and/or feeding times were shifted by several hours in the experimental groups. Photoperiod and feeding entrained significant fluctuations in serum gonadotropin hormone (GTH) levels when the onset of light and the first daily feeding were 4 hr apart, but not when they were 10 hr apart. Fish were subjected to 16L:8D for 14-16 days in February, and to either a constant warm (20 degrees C) or a diurnal sinusoidal (12-20 degrees C) temperature regime, the warmth being imposed during photophase or scotophase. While relatively high, uniform serum GTH levels were found throughout the 24-hr period in fish subjected to constant warmth, warm temperature during the day promoted fluctuations in serum GTH levels, and warmth during night resulted in relatively low, uniform serum GTH levels.

  8. The Daily Practices of Successful Principals

    ERIC Educational Resources Information Center

    Brock, Barbara L.; Grady, Marilyn L.

    2011-01-01

    While many books outline the attributes of successful school leaders, few describe how those traits manifest in daily practice. "The Daily Practices of Successful Principals" goes beyond the outward picture of excellence and provides a compendium of daily practices used by successful principals in various settings. Written by former administrators…

  9. Hibernation and daily torpor minimize mammalian extinctions

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Turbill, Christopher

    2009-10-01

    Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.

  10. Precipitation and temperature changes in eastern India by multiple trend detection methods

    NASA Astrophysics Data System (ADS)

    Sharma, Chandra Shekhar; Panda, Sudhindra N.; Pradhan, Rudra P.; Singh, Amanpreet; Kawamura, Akira

    2016-11-01

    (monsoon) and mean temperature (pre-monsoon and monsoon).

  11. Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission

    PubMed Central

    Rund, Samuel S. C.; O’Donnell, Aidan J.; Gentile, James E.; Reece, Sarah E.

    2016-01-01

    The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control. PMID:27089370

  12. Patrol Officer Daily Noise Exposure.

    PubMed

    Gilbertson, Lynn R; Vosburgh, Donna J H

    2015-01-01

    established by the OSHA or ACGIH occupational exposure levels from the daily occupational tasks that were monitored. PMID:26011417

  13. Daily regulation of hormone profiles.

    PubMed

    Kalsbeek, Andries; Fliers, Eric

    2013-01-01

    The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands' sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment. PMID:23604480

  14. Daily weather variables and affective disorder admissions to psychiatric hospitals.

    PubMed

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2014-12-01

    Numerous studies have reported that admission rates in patients with affective disorders are subject to seasonal variation. Notwithstanding, there has been limited evaluation of the degree to which changeable daily meteorological patterns influence affective disorder admission rates. A handful of small studies have alluded to a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (heat waves in particular), wind direction and sunshine. We used the Kruskal-Wallis test, ARIMA and time-series regression analyses to examine whether daily meteorological variables--namely wind speed and direction, barometric pressure, rainfall, hours of sunshine, sunlight radiation and temperature--influence admission rates for mania and depression across 12 regions in Ireland over a 31-year period. Although we found some very weak but interesting trends for barometric pressure in relation to mania admissions, daily meteorological patterns did not appear to affect hospital admissions overall for mania or depression. Our results do not support the small number of papers to date that suggest a link between daily meteorological variables and affective disorder admissions. Further study is needed.

  15. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  16. Techniques for Daily Living: Curriculum Guides.

    ERIC Educational Resources Information Center

    Wooldridge, Lillian; And Others

    Presented are specific guides concerning techniques for daily living which were developed by the child care staff at the Illinois Braille and Sight Saving School. The guides are designed for cottage parents of the children, who may have both visual and other handicaps, and show what daily living skills are necessary and appropriate for the…

  17. Daily Stressors in Primary Education Students

    ERIC Educational Resources Information Center

    Fernández-Baena, F. Javier; Trianes, María V.; Escobar, Milagros; Blanca, María J.; Muñoz, Ángela M.

    2015-01-01

    Daily stress can have a bearing on children's emotional and academic development. This study aimed to assess daily stressors and to determine their prevalence among primary education students, taking into account their gender, academic year, social adaptation, and the school location. A sample of 7,354 Spanish schoolchildren aged between 6…

  18. Daily Spiritual Experiences and Prosocial Behavior

    ERIC Educational Resources Information Center

    Einolf, Christopher J.

    2013-01-01

    This paper examines how the Daily Spiritual Experiences Scale (DSES) relates to range of prosocial behaviors, using a large, nationally representative U.S. data set. It finds that daily spiritual experiences are a statistically and substantively significant predictor of volunteering, charitable giving, and helping individuals one knows personally.…

  19. Daily Oral Language: Is It Effective?

    ERIC Educational Resources Information Center

    Whittingham, Jeff L.

    2007-01-01

    This study examines the Daily Oral Language (DOL) program aimed at helping students learn mechanics of writing through daily editing exercises. This nine-month study sought to determine if DOL improved editing skills and actual writing skills of seventy fourth-grade students. While the results of this study did not statistically demonstrate the…

  20. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  1. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  2. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  3. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  4. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  5. Daily rhythm of nociception in rats.

    PubMed

    Christina, AJM; Merlin, NJ; Vijaya, C; Jayaprakash, S; Murugesh, N

    2004-03-25

    BACKGROUND: Many behavioral and physiological variables exhibit daily rhythmicity. Few investigations of the daily rhythmicity in nociception have been conducted, and conflicting results have been obtained. The present study evaluated the daily rhythmicity in nociception in Wistar rats. METHODS: Nociception was investigated by Eddy's hot plate method, tail immersion method, and tail clip method. The latency between the noxious stimulus and the animal's response was recorded as reaction time. Separate groups of rats were tested in 4-hour intervals for 24 hours. RESULTS: There was clear daily variation in response latency. Reaction time was shortest a few hours before lights-on and longest at the light-dark transition. CONCLUSION: Nociception exhibits robust daily rhythmicity in rats. Sensitivity to pain is highest late in the dark phase of the light-dark cycle and lowest at the light-dark transition.

  6. Daily rhythm of nociception in rats

    PubMed Central

    Christina, AJM; Merlin, NJ; Vijaya, C; Jayaprakash, S; Murugesh, N

    2004-01-01

    Background Many behavioral and physiological variables exhibit daily rhythmicity. Few investigations of the daily rhythmicity in nociception have been conducted, and conflicting results have been obtained. The present study evaluated the daily rhythmicity in nociception in Wistar rats. Methods Nociception was investigated by Eddy's hot plate method, tail immersion method, and tail clip method. The latency between the noxious stimulus and the animal's response was recorded as reaction time. Separate groups of rats were tested in 4-hour intervals for 24 hours. Results There was clear daily variation in response latency. Reaction time was shortest a few hours before lights-on and longest at the light-dark transition. Conclusion Nociception exhibits robust daily rhythmicity in rats. Sensitivity to pain is highest late in the dark phase of the light-dark cycle and lowest at the light-dark transition. PMID:15043763

  7. Daily weather variables and affective disorder admissions to psychiatric hospitals

    NASA Astrophysics Data System (ADS)

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2014-12-01

    Numerous studies have reported that admission rates in patients with affective disorders are subject to seasonal variation. Notwithstanding, there has been limited evaluation of the degree to which changeable daily meteorological patterns influence affective disorder admission rates. A handful of small studies have alluded to a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (heat waves in particular), wind direction and sunshine. We used the Kruskal-Wallis test, ARIMA and time-series regression analyses to examine whether daily meteorological variables—namely wind speed and direction, barometric pressure, rainfall, hours of sunshine, sunlight radiation and temperature—influence admission rates for mania and depression across 12 regions in Ireland over a 31-year period. Although we found some very weak but interesting trends for barometric pressure in relation to mania admissions, daily meteorological patterns did not appear to affect hospital admissions overall for mania or depression. Our results do not support the small number of papers to date that suggest a link between daily meteorological variables and affective disorder admissions. Further study is needed.

  8. Particulate air pollution and daily mortality in Steubenville, Ohio

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-01-01

    Particulate air pollution has been associated with daily mortality in London, England, both in the smog episodes of the 1950s and at the lower pollution levels of the late 1960s and early 1970s. Replicating these findings in the United States has been difficult, because particulates are usually sampled every sixth day. Replication, particularly with a gravimetric measure of particulates, is important in assessing the causality of the relation. Daily measurements of total suspended particulates by high volume gravimetric sampler are available for the Steubenville, Ohio, metropolitan area. These were matched to daily mortality counts from the detail mortality tapes of the National Center for Health Statistics. Deaths of residents which occurred outside the Steubenville Standard Metropolitan Statistical Area were excluded. Because of the much smaller population, the average total number of deaths per day in the Steubenville Standard Metropolitan Statistical Area over the 11-year period 1974-1984 was about 1% of the deaths in a typical London winter. Despite this reduced statistical power, total suspended particulate count was significantly associated with increased daily mortality in Poisson regression analyses controlling for season and temperature. An increase in particulates of 100 micrograms/m3 was associated with a 4% increase in mortality on the succeeding day. Associations with sulfur dioxide were not significant after adjustment for particulates. The relation appeared to continue at levels well below the current National Ambient Air Quality Standard.

  9. Adolescent Daily and General Maladjustment: Is There Reactivity to Daily Repeated Measures Methodologies?

    ERIC Educational Resources Information Center

    Nishina, Adrienne

    2012-01-01

    The present study examined whether repeated exposure to daily surveys about negative social experiences predicts changes in adolescents' daily and general maladjustment, and whether question content moderates these changes. Across a 2-week period, 6th-grade students (N = 215; mode age = 11) completed 5 daily reports tapping experienced or…

  10. Seasonal Change Detection and Attribution of Surface Temperature changes over Interior Peninsular Region of India

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sonali; Nagesh Kumar, Dasika

    2015-04-01

    A good number of studies have investigated recent trends in the observed and simulated hydrometeorological variables across the world. It has been challenging for the research community to address whether the significant change in climate over the course of 2nd half of 20th century is caused either due to natural or manmade effects. Although evidences for an anthropogenic contribution to climatic trends have been accumulated rapidly worldwide, for India these are scarce. Hence the formal efforts have been undertaken to distinguish whether the recent changes in seasonal temperature over India occurred due to natural internal variation of climate system or human influence using rigorous detection and attribution (D&A) procedure. The surface temperature is the most widely cited indicator of climate fluctuation. Hence maximum and minimum temperatures (Tmax & Tmin) which are among the six most commonly used variables for impact assessment studies are analyzed here. Seasonal divisions are based on conventional meteorological seasons: January-February (winter); March-May (pre monsoon); June-September (monsoon); October-December (post monsoon). Time span considered for this study is 1950-2005. Climate Research Unit (Version 3.21) gridded monthly temperature datasets are considered as observed data. Initially TFPW-MK (Trend Free Pre Whitening Mann Kendall) test is used to search the significant trends in the four seasons over all India. Temporal change detection analysis in evapotranspiration (which is one of the key processes in hydrological cycle) is essential for progress in water resources planning and management. Hence along with Tmax and Tmin, potential evapotranspiration (PET) has also been analyzed for the similar conditions. Significant upward trends in Tmax, Tmin and PET are observed over most of the grid points in Interior Peninsula (IP) region over India. Significant correlation was obtained between PET and Tmax compared to PET and Tmin. Trends in Tmin clearly

  11. REL3.0 LPSA DAILY

    Atmospheric Science Data Center

    2016-06-02

    ... Budget (SRB) Release 3.0 Langley Parameterized Shortwave Model Daily Data in Native grid binary format News:  LPSA ... Clouds Radiation Budget Spatial Coverage:  (-90, 90)(-180,180) Spatial Resolution:  ...

  12. AMSR2 Daily Arctic Sea Ice - 2014

    NASA Video Gallery

    In this animation, the daily Arctic sea ice and seasonal land cover change progress through time, from March 21, 2014 through the 3rd of August, 2014. Over the water, Arctic sea ice changes from da...

  13. REL3.0 SW DAILY UTC

    Atmospheric Science Data Center

    2016-10-05

    ... Active Radiation Flux Cloud Fraction Cosine Solar Zenith Angle From Satellite Cosine Solar Zenith Angle From Astronomy ... ISCCP Data Table SSE Renewable Energy Readme Files:  Readme_3.0_sw_daily ...

  14. REL3.0 SW DAILY LOCAL

    Atmospheric Science Data Center

    2016-10-05

    ... Active Radiation Flux Cloud Fraction Cosine Solar Zenith Angle From Satellite Cosine Solar Zenith Angle From Astronomy ... ISCCP Data Table SSE Renewable Energy Readme Files:  Readme_3.0_sw_daily ...

  15. Estimates of daily rainfall over the Amazon basin

    NASA Technical Reports Server (NTRS)

    Martin, David W.; Goodman, Brian; Schmit, Timothy J.; Cutrim, E. C.

    1990-01-01

    Five geostationary satellite rain estimation techniques were tested over Amazonia. Individually, the techniques explained 1/4 to 1/3 of the variance of daily gage rainfall. Based in large part on cost, one technique, which involves a nonlinear relation in temperature, was selected to provide a mapping of daily Amazonia rainfall between May 6 and 12, 1987. Accumulated over the 7 days, rainfall by this technique averaged 40 mm. It varied from zero in the southeast to more than 150 mm in the northwest. To the southwest the predominantly convective pattern of the rain image was overlaid by a streakines, implying some baroclinic influence. In maps combining gage observations with satellite estimates, rainfall varied significantly from day to day. Only over the largest scale did a trend emerge: a tendency for rain to withdraw from south to north.

  16. [Daily life disability associated with dementia].

    PubMed

    Asada, Takashi

    2013-01-01

    Daily life disability associated with dementia including Alzheimer disease involves a series of difficulties in performing daily tasks. People with this disability have difficulty in being active individually, participating in society, and carrying out daily tasks. Evidence suggests that its causes are lesions in specific areas of the brain. For example, focal lesions appear to be specifically correlated with symptoms of apraxia and agnosia. In general, cognitive decline in the course of dementing illnesses worsens as brain lesions expand. This may be accompanied by the impairment of other organs. However, brain lesions appear to be the overall cause of daily life disability associated with dementia. There are three basic measures that can be taken in response to daily life disability : first, analysis of normal daily life activities ; next, the observation of how the activities of people with dementia deviate from the normal pattern ; and finally, collecting information on caregivers' effective practices to appropriately respond to these deviations. Care for daily life disability associated with dementia should aim to maximize the performance of people with dementia based on their existing abilities. To do this, it is important to recognize disruptions to the normal flow of activity, and understand clues pointing to the causes of these disruptions. In order to examine the daily life disability associated with dementia, we conducted preliminary experiments on the background brain activity. For this purpose, capsaicin derived from red pepper was used to stimulate taste bud receptors on the tongue. During this physiological process, we examined the response within the brain, and observed activity in specific brain regions. For further studies on the background of the disability, we will use fMRI and magnetoencephalography.

  17. Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mizanur; Islam, Md Nazrul; Ahmed, Ahsan Uddin; Georgi, F.

    2012-04-01

    Regional Climate Model of version 3 (RegCM3) was driven with Emissions Scenarios A2 of ECHAM4 at 0.54°×0.54° horizontal grid resolution in two parameterizations: Grell scheme with Arakawa-Schubert (GAS) and Fritch-Chappell (GFC) assumptions. The simulated rainfall and mean surface air temperature were calibrated and validated against ground-based observed data in Bangladesh during the period 1961-1990. The Climate Research Unit (CRU) data is also used for understanding the model performance. Better performance of RegCM3 obtained through validation process, made it confident in utilizing it in rainfall and temperature projection for Bangladesh in the middle of 21st century. Rainfall and mean surface air temperature projection for Bangladesh is experimentally obtained for 2050 and 2060. This work discloses that simulated rainfall and temperature are not directly useful in application-oriented tasks. However, after calibration and validation, reasonable performance can be obtained in estimating seasonal and annual rainfall, and mean surface air temperature in Bangladesh. The projected change of rainfall for Bangladesh is about +35% for monsoon season (JJAS), -67% for pre-monsoon (MAM), -12% for post-monsoon (ON) and 107% for winter (DJF) for 2050. On an average, rainfall may be less by more than 50% for all seasons for the year 2060. Similarly, change of mean surface air temperature in different months is projected about 0.5°-2.1°C and 0.9°-3.5°C for the year 2050 and 2060, respectively.

  18. Simulating multimodal seasonality in extreme daily precipitation occurrence

    NASA Astrophysics Data System (ADS)

    Tye, Mari R.; Blenkinsop, Stephen; Fowler, Hayley J.; Stephenson, David B.; Kilsby, Christopher G.

    2016-06-01

    Floods pose multi-dimensional hazards to critical infrastructure and society and these hazards may increase under climate change. While flood conditions are dependent on catchment type and soil conditions, seasonal precipitation extremes also play an important role. The extreme precipitation events driving flood occurrence may arrive non-uniformly in time. In addition, their seasonal and inter-annual patterns may also cause sequences of several events and enhance likely flood responses. Spatial and temporal patterns of extreme daily precipitation occurrence are characterized across the UK. Extreme and very heavy daily precipitation is not uniformly distributed throughout the year, but exhibits spatial differences, arising from the relative proximity to the North Atlantic Ocean or North Sea. Periods of weeks or months are identified during which extreme daily precipitation occurrences are most likely to occur, with some regions of the UK displaying multimodal seasonality. A Generalized Additive Model is employed to simulate extreme daily precipitation occurrences over the UK from 1901 to 2010 and to allow robust statistical testing of temporal changes in the seasonal distribution. Simulations show that seasonality has the strongest correlation with intra-annual variations in extreme event occurrence, while Sea Surface Temperature (SST) and Mean Sea Level Pressure (MSLP) have the strongest correlation with inter-annual variations. The north and west of the UK are dominated by MSLP in the mid-North Atlantic and the south and east are dominated by local SST. All regions now have a higher likelihood of autumnal extreme daily precipitation than earlier in the twentieth century. This equates to extreme daily precipitation occurring earlier in the autumn in the north and west, and later in the autumn in the south and east. The change in timing is accompanied by increases in the probability of extreme daily precipitation occurrences during the autumn, and in the number of

  19. Associations among Daily Stressors and Salivary Cortisol: Findings from the National Study of Daily Experiences

    PubMed Central

    Stawski, Robert S.; Cichy, Kelly E.; Piazza, Jennifer R.; Almeida, David M.

    2013-01-01

    While much research has focused on linking stressful experiences to emotional and biological reactions in laboratory settings, there is an emerging interest in extending these examinations to field studies of daily life. The current study examined day-to-day associations among naturally-occurring daily stressors and salivary cortisol in a national sample of adults from the second wave of the National Study of Daily Experiences (NSDE). A sample of 1,694 adults (Age=57, Range=33–84; 44% male) completed telephone interviews detailing their stressors and emotions on eight consecutive evenings. Participants also provided saliva samples upon waking, 30 minutes post-waking, before lunch and before bed, on four consecutive interview days resulting in 5,995 days of interview/cortisol data. Analyses revealed three main findings. First, cortisol AUC was significantly higher on stressor days compared to stressor-free days, particularly for arguments and overloads at home, suggesting that daily stressors are associated with increased cortisol output, but that not all daily stressors have such an influence. Second, individuals reporting a greater frequency of stressor days also exhibited a steeper diurnal cortisol slope. Finally, daily stressor-cortisol associations were unaltered after adjustment for daily negative affect and physical symptoms. Our discussion focuses on the influence of naturally-occurring daily stressors on daily cortisol and the role of daily diary approaches for studying healthy cortisol responses to psychosocial stressors outside of traditional laboratory settings. PMID:23856186

  20. Daily mortality in Madrid community 1986-1992: relationship with meteorological variables.

    PubMed

    Alberdi, J C; Díaz, J; Montero, J C; Mirón, I

    1998-09-01

    Daily mortality displays a seasonal pattern linked to weather, air pollution, photoperiod length, influenza incidence and diet, among which temperature ranks as a leading cause. This study thus sought to assess the relationship between temperature, relative humidity, wind speed and mortality in the Madrid Autonomous Region (Spain) for the period January 1986-December 1992, controlling for the effects of air pollution and influenza incidence. Daily data on maximum, minimum and 24-hour mean temperature, relative humidity and wind speed were matched against daily mortality. Transfer function was identified using the Box-Jenkins pre-whitening method. Multivariate time series regression models were used to control for the confounding effects of air pollution and influenza incidence. Separate seasonal analyses were carried out for winter and summer periods. A J-shaped relationship between outdoor temperature, relative humidity and daily mortality was found. Mortality proved to be inversely related to cold temperature (4- to 11-day lag) and directly related to warm temperature (1-day lag). High relative humidity during summer periods was negatively related to mortality. Thermal variation ascribable to Madrid's mesothermal Mediterranean climate was strongly related to daily mortality, even where air pollution and influenza incidence were controlled for.

  1. Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions.

    PubMed

    Kart Gür, Mutlu; Refinetti, Roberto; Gür, Hakan

    2009-02-01

    We studied daily rhythmicity of body temperature (T(b)) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T(b) rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T(b) rhythms with a mean of 37.0 degrees C and a range of excursion of approximately 4 degrees C. No T(b) rhythm was detected during torpor bouts, either because T(b) rhythmicity was absent or because the daily range of excursion was smaller than 0.2 degrees C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.

  2. New daily persistent headache: an update.

    PubMed

    Rozen, Todd D

    2014-07-01

    New daily persistent headache is a primary headache disorder marked by a unique temporal profile which is daily from onset. For many sufferers this is their first ever headache. Very little is known about the pathogenesis of this condition. It might be a disorder of abnormal glial activation with persistent central nervous system inflammation and it may be a syndrome that occurs in individuals who have a history of cervical hypermobility. At present there is no known specific treatment and many patients go for years to decades without any improvement in their condition despite aggressive therapy. This article will present an up-to-date overview of new daily persistent headache on the topics of clinical presentation, treatment, diagnostic criteria, and presumed pathogenesis. It will also provide some of the authors own treatment suggestions based on recognized triggering events and some suggestions for future clinical trials. PMID:24820732

  3. Daily estimates of soil ingestion in children.

    PubMed Central

    Stanek, E J; Calabrese, E J

    1995-01-01

    Soil ingestion estimates play an important role in risk assessment of contaminated sites, and estimates of soil ingestion in children are of special interest. Current estimates of soil ingestion are trace-element specific and vary widely among elements. Although expressed as daily estimates, the actual estimates have been constructed by averaging soil ingestion over a study period of several days. The wide variability has resulted in uncertainty as to which method of estimation of soil ingestion is best. We developed a methodology for calculating a single estimate of soil ingestion for each subject for each day. Because the daily soil ingestion estimate represents the median estimate of eligible daily trace-element-specific soil ingestion estimates for each child, this median estimate is not trace-element specific. Summary estimates for individuals and weeks are calculated using these daily estimates. Using this methodology, the median daily soil ingestion estimate for 64 children participating in the 1989 Amherst soil ingestion study is 13 mg/day or less for 50% of the children and 138 mg/day or less for 95% of the children. Mean soil ingestion estimates (for up to an 8-day period) were 45 mg/day or less for 50% of the children, whereas 95% of the children reported a mean soil ingestion of 208 mg/day or less. Daily soil ingestion estimates were used subsequently to estimate the mean and variance in soil ingestion for each child and to extrapolate a soil ingestion distribution over a year, assuming that soil ingestion followed a log-normal distribution. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7768230

  4. Daily rhythms of physiological parameters in the dromedary camel under natural and laboratory conditions.

    PubMed

    Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto

    2016-08-01

    Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. PMID:27474007

  5. Increased mortality in Philadelphia associated with daily air pollution concentrations

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-03-01

    Cause-specific deaths by day for the years 1973 to 1980 in Philadelphia, Pennsylvania, were extracted from National Center for Health Statistics mortality tapes. Death from accidents (International Classification of Disease, Revision 9 greater than or equal to 800) and deaths outside of the city were excluded. Daily counts of deaths were regressed using Poisson regression on total suspended particulate (TSP) and/or SO2 on the same day and on the preceding day, controlling for year, season, temperature, and humidity. A significant positive association was found between total mortality (mean of 48 deaths/day) and both TSP (second highest daily mean, 222 micrograms/m3) and SO2 (second highest daily mean, 299 micrograms/m3). The strongest associations were found with the mean pollution of the current and the preceding days. Total mortality was estimated to increase by 7% (95% CI, 4 to 10%) with each 100-micrograms/m3 increase in TSP, and 5% (95% CI, 3 to 7%) with each 100-micrograms/m3 increase in SO2. When both pollutants were considered simultaneously, the SO2 association was no longer significant. Mortality increased monotonically with TSP. The effect of 100 micrograms/m3 TSP was stronger in subjects older than 65 yr of age (10% increase) compared with those younger than 65 yr of age (3% increase). Cause-specific mortality was also associated with a 100-micrograms/m3 increase in TSP: chronic obstructive pulmonary disease (ICD9 490-496), +19% (95% CI, 0 to 42%), pneumonia (ICD9 480-486 and 507), +11% (95% CI, -3 to +27%), and cardiovascular disease (ICD9 390-448), +10% (95% CI, 6 to 14%). These results are somewhat higher than previously reported associations, and they add to the body of evidence showing that particulate pollution is associated with increased daily mortality at current levels in the United States.

  6. Forecasting of daily air quality index in Delhi.

    PubMed

    Kumar, Anikender; Goyal, P

    2011-11-15

    As the impact of air pollutants on human health through ambient air address much attention in recent years, the air quality forecasting in terms of air pollution parameters becomes an important topic in environmental science. The Air Quality Index (AQI) can be estimated through a formula, based on comprehensive assessment of concentration of air pollutants, which can be used by government agencies to characterize the status of air quality at a given location. The present study aims to develop forecasting model for predicting daily AQI, which can be used as a basis of decision making processes. Firstly, the AQI has been estimated through a method used by US Environmental Protection Agency (USEPA) for different criteria pollutants as Respirable Suspended Particulate Matter (RSPM), Sulfur dioxide (SO2), Nitrogen dioxide (NO2) and Suspended Particulate Matter (SPM). However, the sub-index and breakpoint concentrations in the formula are made according to Indian National Ambient Air Quality Standard. Secondly, the daily AQI for each season is forecasted through three statistical models namely time series auto regressive integrated moving average (ARIMA) (model 1), principal component regression (PCR) (model 2) and combination of both (model 3) in Delhi. The performance of all three models are evaluated with the help of observed concentrations of pollutants, which reflects that model 3 agrees well with observed values, as compared to the values of model 1 and model 2. The same is supported by the statistical parameters also. The significance of meteorological parameters of model 3 has been assessed through principal component analysis (PCA), which indicates that daily rainfall, station level pressure, daily mean temperature, wind direction index are maximum explained in summer, monsoon, post-monsoon and winter respectively. Further, the variation of AQI during the weekends (holidays) and weekdays are found negligible. Therefore all the days of week are accounted same in

  7. Deriving Daily Purpose through Daily Events and Role Fulfillment among Asian American Youth

    ERIC Educational Resources Information Center

    Kiang, Lisa

    2012-01-01

    Establishing life purpose is a key developmental task; however, how it is linked to adolescents' everyday family, school, extracurricular, and leisure experiences remains unclear. Using daily diary data from 180 Asian American ninth and tenth graders (50% ninth; 58% female; 25% first generation), daily purpose was positively related to daily…

  8. Big Ideas behind Daily 5 and CAFE

    ERIC Educational Resources Information Center

    Boushey, Gail; Moser, Joan

    2012-01-01

    The Daily 5 and CAFE were born out of The Sister's research and observations of instructional mentors, their intense desire to be able to deliver highly intentional, focused instruction to small groups and individuals while the rest of the class was engaged in truly authentic reading and writing, and their understanding that a one size fits all…

  9. REL3.0 LPLA DAILY NC

    Atmospheric Science Data Center

    2016-06-02

    ... Budget (SRB) Release 3.0 Langley Parameterized Longwave Model daily Data in 1x1 Degree NetCDF Format News:  LPLA ... Clouds Radiation Budget Spatial Coverage:  (-90, 90)(-180,180) Spatial Resolution:  ...

  10. REL3.0 LPSA DAILY NC

    Atmospheric Science Data Center

    2016-06-02

    ... Budget (SRB) Release 3.0 Langley Parameterized Shortwave Model Daily Data in 1x1 Degree NetCDF Format News:  LPSA ... Clouds Radiation Budget Spatial Coverage:  (-90, 90)(-180,180) Spatial Resolution:  ...

  11. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  12. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  13. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  14. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  15. 27 CFR 19.829 - Daily records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Records § 19.829 Daily records. Each manufacturer of vinegar by the vaporizing process shall keep accurate... spirits used in the manufacture of vinegar; (e) The wine gallons of vinegar produced; and (f) The...

  16. The Case for Daily Physical Education

    ERIC Educational Resources Information Center

    Lynn, Susan

    2007-01-01

    According to a recent study, only 56 percent of high school students participate in physical education, and the percentage of schools requiring physical education has progressively dropped. The goal of providing daily physical education to all K-12 students in the United States presents challenges such as budgetary issues, less time for other…

  17. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  18. Modelling erosion on a daily basis

    NASA Astrophysics Data System (ADS)

    Pikha Shrestha, Dhruba; Jetten, Victor

    2016-04-01

    Effect of soil erosion causing negative impact on ecosystem services and food security is well known. To assess annual erosion rates various empirical models have been extensively used in all the climatic regions. While these models are simple to operate and do not require lot of input data, the effect of extreme rain is not taken into account in the annual estimations. For analysing the effects of extreme rain the event- based models become handy. These models can simulate detail erosional processes including particle detachment, transportation and deposition of sediments during a storm. But they are not applicable for estimating annual erosion rates. Moreover storm event data may not be available everywhere which prohibits their extensive use. In this paper we describe a method by adapting the revised MMF model to assess erosion on daily basis so that the effects of extreme rains are taken into account. We couple it to a simple surface soil moisture balance on a daily basis and include estimation of daily vegetation cover changes. Annual soil loss is calculated by adding daily erosion rates. We compare the obtained results with that obtained from applying the revised MMF model in a case study in the Mamora plateau in northwest Morocco which is affected by severe gully formation. The results show clearly the effects of exceptional rain in erosional processes which cannot be captured in an annual model.

  19. Estimated daily mortality during July 2006 in England and Wales.

    PubMed

    2006-01-01

    During July 2006, temperatures in England and Wales triggered the Government to initiate its Heatwave Plan and issue advice to the public on how to keep healthy during hot weather, and guidance to health care professionals on minimising heat-related health risks. This report presents provisional daily mortality during July by age and region, and estimates excess deaths at the hottest times. The high temperatures during July 2006 did not affect mortality in England and Wales to the extent seen in August 2003--the first hot period of July 2006 showed no increase in mortality nationally and there was a 4 per cent increase over baseline mortality in the second hot period (680 excess deaths). This compares to a 16 per cent increase during the August 2003 heat wave. PMID:17165473

  20. Fasting-induced daily torpor in desert hamsters (Phodopus roborovskii).

    PubMed

    Chi, Qing-Sheng; Wan, Xin-Rong; Geiser, Fritz; Wang, De-Hua

    2016-09-01

    Daily torpor is frequently expressed in small rodents when facing energetically unfavorable ambient conditions. Desert hamsters (Phodopus roborovskii, ~20g) appear to be an exception as they have been described as homeothermic. However, we hypothesized that they can use torpor because we observed reversible decreases of body temperature (Tb) in fasted hamsters. To test this hypothesis we (i) randomly exposed fasted summer-acclimated hamsters to ambient temperatures (Tas) ranging from 5 to 30°C or (ii) supplied them with different rations of food at Ta 23°C. All desert hamsters showed heterothermy with the lowest mean Tb of 31.4±1.9°C (minimum, 29.0°C) and 31.8±2.0°C (minimum, 29.0°C) when fasted at Ta of 23°C and 19°C, respectively. Below Ta 19°C, the lowest Tb and metabolic rate increased and the proportion of hamsters using heterothermy declined. At Ta 5°C, nearly all hamsters remained normothermic by increasing heat production, suggesting that the heterothermy only occurs in moderately cold conditions, perhaps to avoid freezing at extremely low Tas. During heterothermy, Tbs below 31°C with metabolic rates below 25% of those during normothermia were detected in four individuals at Ta of 19°C and 23°C. Consequently, by definition, our observations confirm that fasted desert hamsters are capable of shallow daily torpor. The negative correlation between the lowest Tbs and amount of food supply shows that heterothermy was mainly triggered by food shortage. Our data indicate that summer-acclimated desert hamsters can express fasting-induced shallow daily torpor, which may be of significance for energy conservation and survival in the wild.

  1. Fasting-induced daily torpor in desert hamsters (Phodopus roborovskii).

    PubMed

    Chi, Qing-Sheng; Wan, Xin-Rong; Geiser, Fritz; Wang, De-Hua

    2016-09-01

    Daily torpor is frequently expressed in small rodents when facing energetically unfavorable ambient conditions. Desert hamsters (Phodopus roborovskii, ~20g) appear to be an exception as they have been described as homeothermic. However, we hypothesized that they can use torpor because we observed reversible decreases of body temperature (Tb) in fasted hamsters. To test this hypothesis we (i) randomly exposed fasted summer-acclimated hamsters to ambient temperatures (Tas) ranging from 5 to 30°C or (ii) supplied them with different rations of food at Ta 23°C. All desert hamsters showed heterothermy with the lowest mean Tb of 31.4±1.9°C (minimum, 29.0°C) and 31.8±2.0°C (minimum, 29.0°C) when fasted at Ta of 23°C and 19°C, respectively. Below Ta 19°C, the lowest Tb and metabolic rate increased and the proportion of hamsters using heterothermy declined. At Ta 5°C, nearly all hamsters remained normothermic by increasing heat production, suggesting that the heterothermy only occurs in moderately cold conditions, perhaps to avoid freezing at extremely low Tas. During heterothermy, Tbs below 31°C with metabolic rates below 25% of those during normothermia were detected in four individuals at Ta of 19°C and 23°C. Consequently, by definition, our observations confirm that fasted desert hamsters are capable of shallow daily torpor. The negative correlation between the lowest Tbs and amount of food supply shows that heterothermy was mainly triggered by food shortage. Our data indicate that summer-acclimated desert hamsters can express fasting-induced shallow daily torpor, which may be of significance for energy conservation and survival in the wild. PMID:27215346

  2. A blind test of correction algorithms for daily inhomogeneities

    NASA Astrophysics Data System (ADS)

    Stepanek, Petr; Venema, Victor; Guijarro, Jose; Nemec, Johanna; Zahradnicek, Pavel; Hadzimustafic, Jasmina

    2013-04-01

    As part of the COST Action HOME (Advances in homogenisation methods of climate series: an integrated approach), a dataset was generated that serves as a validation tool for correction of daily inhomogeneities. The dataset contains daily air temperature data and was generated based on the temperature series from the Czech Republic. The validation dataset has three different types of series: network, pair and pair-dedicated data. Different types of inhomogeneities have been inserted into the series. Parametric breaks in the first three moments were introduced and the influence of relocation was simulated by exchanging the distribution of two nearby stations. The participants have returned several contributions, including methods that are currently used: HOM, SPLIDHOM (with various modifications like HOMAD and bootstrapped SPLIDHOM), QM (RHtestsV3 software), DAP (ProClimDB), HCL (Climatol), MASH and also simple delta method. The quality of the homogenised data was measured by a large range of metrics, the most important ones are the RMSE and the trends in the moments. Thanks to RHtestsV3 algorithms we could also assess relative and absolute homogenization results. As expected, the simpler methods, correcting only the mean, are best at reducing the RMSE. For more information on the COST Action on homogenisation see: http://www.homogenisation.org/

  3. The key to winter survival: daily torpor in a small arid-zone marsupial.

    PubMed

    Körtner, Gerhard; Geiser, Fritz

    2009-04-01

    Mammalian hibernation, which lasts on average for about 6 months, can reduce energy expenditure by >90% in comparison to active individuals. In contrast, the widely held view is that daily torpor reduces energy expenditure usually by about 30%, is employed for a few hours every few days, and often occurs only under acute energetic stress. This interpretation is largely based on laboratory studies, whereas knowledge on daily torpor in the field is scant. We used temperature telemetry to quantify thermal biology and activity patterns of a small arid-zone marsupial, the stripe-faced dunnart Sminthopsis macroura (16.9 g), in the wild and to test the hypothesis that daily torpor is a crucial survival strategy of this species in winter. All individuals entered torpor daily with the exception of a single male that remained normothermic for a single day (torpor on 212 of 213 observation days, 99.5%). Torpor was employed at air temperatures (T (a)) ranging from approximately -1 degrees C to 36 degrees C. Dunnarts usually entered torpor during the night and aroused at midday with the daily increase of T (a). Torpor was on average about twice as long (mean 11.0 +/- 4.7 h, n = 8) than in captivity. Animals employed sun basking during rewarming, reduced foraging time significantly, and occasionally omitted activity for several days in sequence. Consequently, we estimate that daily torpor in this species can reduce daily energy expenditure by up to 90%. Our study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance of daily torpor in the wild.

  4. The key to winter survival: daily torpor in a small arid-zone marsupial

    NASA Astrophysics Data System (ADS)

    Körtner, Gerhard; Geiser, Fritz

    2009-04-01

    Mammalian hibernation, which lasts on average for about 6 months, can reduce energy expenditure by >90% in comparison to active individuals. In contrast, the widely held view is that daily torpor reduces energy expenditure usually by about 30%, is employed for a few hours every few days, and often occurs only under acute energetic stress. This interpretation is largely based on laboratory studies, whereas knowledge on daily torpor in the field is scant. We used temperature telemetry to quantify thermal biology and activity patterns of a small arid-zone marsupial, the stripe-faced dunnart Sminthopsis macroura (16.9 g), in the wild and to test the hypothesis that daily torpor is a crucial survival strategy of this species in winter. All individuals entered torpor daily with the exception of a single male that remained normothermic for a single day (torpor on 212 of 213 observation days, 99.5%). Torpor was employed at air temperatures ( T a) ranging from approximately -1°C to 36°C. Dunnarts usually entered torpor during the night and aroused at midday with the daily increase of T a. Torpor was on average about twice as long (mean 11.0 ± 4.7 h, n = 8) than in captivity. Animals employed sun basking during rewarming, reduced foraging time significantly, and occasionally omitted activity for several days in sequence. Consequently, we estimate that daily torpor in this species can reduce daily energy expenditure by up to 90%. Our study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance of daily torpor in the wild.

  5. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C‑1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  6. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  7. Air pollution and daily mortality in Rome, Italy

    PubMed Central

    Michelozzi, P.; Forastiere, F.; Fusco, D.; Perucci, C. A.; Ostro, B.; Ancona, C.; Pallotti, G.

    1998-01-01

    OBJECTIVES: To assess the relation between several daily indicators of air pollution (particulates and gases) and daily mortality in the metropolitan area of Rome and in the central part of the city. METHODS: Time series analysis. The associations between daily concentrations of pollutants (particles, SO2, NO2, CO, O3) recorded by five fixed monitors and daily total mortality in the period from January 1992 to June 1995 were evaluated. The analysis included examination of the pollution effect on mortality by place of residence within the metropolitan area, by season, age, place of death (in and out a hospital), and cause of death (cardiovascular and respiratory disease). The Poisson model included loses smooth functions of the day of study, mean temperature, mean humidity, and indicator variables for day of the week and holidays. RESULTS: The mean daily number of deaths was 56.9 (44.8 among people > or = 65 years old). A mean of 36.3 deaths occurred in the city centre; 37.3 deaths a day were recorded in a hospital. Total mortality was significantly associated with a 10 micrograms/m3 increase in particles (0.4%) on that day (log 0), and with a 10 micrograms/m3 increase in NO2 at lag 1 (0.3%) and lag 2 (0.4%) (1 and 2 days before, respectively). The effect of particles (lag 0) and of NO2 (lag 2) on total mortality was higher among those living in the city centre (0.7% and 0.5%, respectively). The risk estimates were higher in the warmer season (1.0% and 1.1%, respectively), whereas no difference was found for those dying in or out of the hospital. The effect of particles was robust to a sensitivity analysis and to the inclusion of NO2 in the regression model. CONCLUSIONS: Increase in particulates and NO2, generated by the same mobile combustion sources, is associated with a short term increase in mortality in Rome. The effect is more evident among residents in the city centre, where the levels of exposure to pollutants recorded by fixed monitors are probably more

  8. An introduction to quiet daily geomagnetic fields

    USGS Publications Warehouse

    Campbell, W.H.

    1989-01-01

    On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.

  9. Heavy metals in common foodstuff: Daily intake

    SciTech Connect

    Tsoumbaris, P.; Tsoukali-Papadopoulou, H. )

    1994-07-01

    Lately, toxic effects of some heavy metals (Pb, Cd) as well as desirable ones of some others (Ni, Mn, Zn) have been a field of thorough investigation. The main way of human body fortification in metals is through foodchain depending on the kind and quantity of the consumed food, according to dietary habits. The purpose of this study is the calculation of metals daily intake through common foodstuff of Greek inhabitants. The calculation is based on results from quantitative analysis of Pb, Cd, Ni, Mn, and Zn in common foodstuff from the market of the city of Thessaloniki. The daily food consumption data is derived from three sources: (a) answers to a questionnaire distributed to families of the city of Thessaloniki, (b) nutrition data provided by the Agricultural Bank of Greece and (c) nutrition data according to international bibliography.

  10. Daily rhythms in plasma levels of homocysteine

    PubMed Central

    Lavie, Lena; Lavie, Peretz

    2004-01-01

    Background There is accumulated evidence that plasma concentration of the sulfur-containing amino-acid homocysteine (Hcy) is a prognostic marker for cardiovascular morbidity and mortality. Both fasting levels of Hcy and post methionine loading levels are used as prognostic markers. The aim of the present study was to investigate the existence of a daily rhythm in plasma Hcy under strictly controlled nutritional and sleep-wake conditions. We also investigated if the time during which methionine loading is performed, i.e., morning or evening, had a different effect on the resultant plasma Hcy concentration. Methods Six healthy men aged 23–26 years participated in 4 experiments. In the first and second experiments, the daily rhythm in Hcy as well as in other amino acids was investigated under a normal or an inverse sleep-wake cycle. In the third and fourth, Hcy concentrations were investigated after a morning and evening methionine loading. To standardize food consumption in the first two experiments, subjects received every 3 hours 150 ml of specially designed low-protein liquid food (Ensure® formula). Results In both the first and second experiments there was a significant daily rhythm in Hcy concentrations with a mid-day nadir and a nocturnal peak. Strikingly different 24-h patterns were observed in methionine, leucine, isoleucine and tyrosine. In all, the 24-h curves revealed a strong influence of both the sleep-wake cycle and the feeding schedule. Methionine loading resulted in increased plasma Hcy levels during both morning and evening experiments, which were not significantly different from each other. Conclusions There is a daily rhythm in plasma concentration of the amino acid Hcy, and this rhythm is independent of sleep-wake and food consumption. In view of the fact that increased Hcy concentrations may be associated with increased cardiovascular risks, these findings may have clinical implications for the health of rotating shift workers. PMID:15347422

  11. The Sub-Daily Distribution of Snowmelt

    NASA Astrophysics Data System (ADS)

    Webb, R.; Gooseff, M. N.; Fassnacht, S. R.

    2015-12-01

    The hydrologic cycle in many mountainous headwaters around the world have snowmelt dominated hydrographs. In addition to water resources for communities and ecosystems, high rates of snowmelt can cause flooding that results in damages to infrastructure. The standard in the United States flood forecasting looks primarily at rainfall estimates but lacks estimates for high rates of snowmelt in regions such as the Southern Rocky Mountains. Recent studies have shown that events such as a 10 year 24 hour snowmelt event is as much as 45% greater than the same recurrence interval rain event. Additionally, this 24 hour snowmelt likely occurs over a much shorter time period due to snowmelt being primarily driven by solar radiation. This study presents and tests a sub-daily temporal distribution of snowmelt. The snowmelt distribution presented herein is tested against hourly data for known daily melt rates from snow telemetry (SNOTEL) stations, and then for conditions when weekly or bi-weekly snow loss is known. It is additionally utilized for modeling a one-dimensional soil profile for infiltration across the soil-snow interface. The intent of this study is to create a less computationally intensive method than the mass energy approach and improve upon the simple degree-day method for the representation of snowmelt at sub-daily time steps. This can be used for streamflow, groundwater recharge, soil moisture distribution, and other land surface modeling efforts. Results of the study display strong agreement with hourly SNOTEL data from Colorado Front Range stations for an assumed 8-hour melt period. Peak flow estimates from snowmelt driven floods could be estimated from long-term datasets to calculate frequency of these flood events. Further application of this sub-daily distribution of snowmelt could be for partially or fully glaciated watersheds with modifications for differences in latitude and/or elevation causing longer or shorter periods of melt per day.

  12. The Probability Distribution of Daily Streamflow

    NASA Astrophysics Data System (ADS)

    Blum, A.; Vogel, R. M.

    2015-12-01

    Flow duration curves (FDCs) are a graphical illustration of the cumulative distribution of streamflow. Daily streamflows often range over many orders of magnitude, making it extremely challenging to find a probability distribution function (pdf) which can mimic the steady state or period of record FDC (POR-FDC). Median annual FDCs (MA-FDCs) describe the pdf of daily streamflow in a typical year. For POR- and MA-FDCs, Lmoment diagrams, visual assessments of FDCs and Quantile-Quantile probability plot correlation coefficients are used to evaluate goodness of fit (GOF) of candidate probability distributions. FDCs reveal that both four-parameter kappa (KAP) and three-parameter generalized Pareto (GP3) models result in very high GOF for the MA-FDC and a relatively lower GOF for POR-FDCs at over 500 rivers across the coterminous U.S. Physical basin characteristics, such as baseflow index as well as hydroclimatic indices such as the aridity index and the runoff ratio are found to be correlated with one of the shape parameters (kappa) of the KAP and GP3 pdfs. Our work also reveals several important areas for future research including improved parameter estimators for the KAP pdf, as well as increasing our understanding of the conditions which give rise to improved GOF of analytical pdfs to large samples of daily streamflows.

  13. Progress towards daily "swath" solutions from GRACE

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S. V.; Sakumura, C.

    2015-12-01

    The GRACE mission has provided invaluable and the only data of its kind that measures the total water column in the Earth System over the past 13 years. The GRACE solutions available from the project have been monthly average solutions. There have been attempts by several groups to produce shorter time-window solutions with different techniques. There is also an experimental quick-look GRACE solution available from CSR that implements a sliding window approach while applying variable daily data weights. All of these GRACE solutions require special handling for data assimilation. This study explores the possibility of generating a true daily GRACE solution by computing a daily "swath" total water storage (TWS) estimate from GRACE using the Tikhonov regularization and high resolution monthly mascon estimation implemented at CSR. This paper discusses the techniques for computing such a solution and discusses the error and uncertainty characterization. We perform comparisons with official RL05 GRACE solutions and with alternate mascon solutions from CSR to understand the impact on the science results. We evaluate these solutions with emphasis on the temporal characteristics of the signal content and validate them against multiple models and in-situ data sets.

  14. Physiological responses to daily light exposure

    PubMed Central

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-01-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth. PMID:27098210

  15. Understanding metropolitan patterns of daily encounters.

    PubMed

    Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng

    2013-08-20

    Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes.

  16. Understanding metropolitan patterns of daily encounters.

    PubMed

    Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng

    2013-08-20

    Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373

  17. Physiological responses to daily light exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-04-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.

  18. 20 CFR 330.3 - Daily rate of compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Daily rate of compensation. 330.3 Section 330... INSURANCE ACT DETERMINATION OF DAILY BENEFIT RATES § 330.3 Daily rate of compensation. (a) Definition. An employee's daily rate of compensation is his or her straight-time rate of pay, including any...

  19. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  20. Difference in nephrotoxicity of vancomycin administered once daily and twice daily in rats.

    PubMed

    Konishi, Hiroki; Morita, Yukiko; Mizumura, Miyo; Iga, Ikumi; Nagai, Katsuhito

    2013-10-01

    We compared the degree of nephrotoxicity of vancomycin (VCM) administered once daily and twice daily in rats. VCM was intraperitoneally administered once daily to rats at a dose of 400 mg/kg (VCM-1-treated) or administered at a dose of 200 mg/kg twice daily at 12-hour intervals (VCM-2-treated) for 7 consecutive days. Creatinine clearance was decreased more markedly in VCM-1 rats relative to VCM-2 rats, although there was no significant difference in renal accumulation of VCM between the two groups. Renal superoxide dismutase activity was lower in VCM-1 rats than that in VCM-2 rats. The magnitude of histological change in kidney tissue was in agreement with the degree of alterations in the abovementioned biochemical values. These results suggest that the nephrotoxic effect of once-daily VCM administration is more pronounced than that of the twice-daily treatment. Our findings provide fundamental evidence for the advantage in choosing a divided VCM administration to attenuate nephrotoxicity.

  1. Parameterization of daily solar global ultraviolet irradiation.

    PubMed

    Feister, U; Jäkel, E; Gericke, K

    2002-09-01

    Daily values of solar global ultraviolet (UV) B and UVA irradiation as well as erythemal irradiation have been parameterized to be estimated from pyranometer measurements of daily global and diffuse irradiation as well as from atmospheric column ozone. Data recorded at the Meteorological Observatory Potsdam (52 degrees N, 107 m asl) in Germany over the time period 1997-2000 have been used to derive sets of regression coefficients. The validation of the method against independent data sets of measured UV irradiation shows that the parameterization provides a gain of information for UVB, UVA and erythemal irradiation referring to their averages. A comparison between parameterized daily UV irradiation and independent values of UV irradiation measured at a mountain station in southern Germany (Meteorological Observatory Hohenpeissenberg at 48 degrees N, 977 m asl) indicates that the parameterization also holds even under completely different climatic conditions. On a long-term average (1953-2000), parameterized annual UV irradiation values are 15% and 21% higher for UVA and UVB, respectively, at Hohenpeissenberg than they are at Potsdam. Daily global and diffuse irradiation measured at 28 weather stations of the Deutscher Wetterdienst German Radiation Network and grid values of column ozone from the EPTOMS satellite experiment served as inputs to calculate the estimates of the spatial distribution of daily and annual values of UV irradiation across Germany. Using daily values of global and diffuse irradiation recorded at Potsdam since 1937 as well as atmospheric column ozone measured since 1964 at the same site, estimates of daily and annual UV irradiation have been derived for this site over the period from 1937 through 2000, which include the effects of changes in cloudiness, in aerosols and, at least for the period of ozone measurements from 1964 to 2000, in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the eruption of Mt

  2. Developing hourly weather data for locations having only daily weather data

    SciTech Connect

    Talbert, S.G.; Herold, K.E.; Jakob, F.E.; Lundstrom, D.K.

    1983-06-01

    A methodology was developed to modify an hourly TMY weather tape to be representative of a location for which only average daily weather parameters were avilable. Typical hourly and daily variations in solar flux, and other parameters, were needed to properly exercise a computer model to predict the transient performance of a solar controlled greenhouse being designed for Riyadh, Saudi Arabia. The starting point was a TMY tape for Yuma, Arizona, since the design temperatures for summer and winter are nearly identical for Yuma and Riyadh. After comparing six of the most important weather variables, the hourly values on the Yuma tape were individually adjusted to give the same overall daily average conditions as existed in the long-term Riyadh data. Finally, a statistical analysis was used to confirm quantitatively that the daily variations between the long term average values for Riyadh and the modified TMY weather tape for Yuma matched satisfactorily.

  3. Air pollution and daily mortality in Shenyang, China

    SciTech Connect

    Xu, Z.; Yu, D.; Jing, L.; Xu, X.

    2000-04-01

    The authors analyzed daily mortality data in Shenyang, China, for calendar year 1992 to identify possible associations with ambient sulfur dioxide and total suspended particulates. Both total suspended particulate concentrations and sulfur dioxide concentrations far exceeded the World Health Organizations' recommended criteria. An average of 45.5 persons died each day. The lagged moving averages of air-pollution levels, calculated as the mean of the nonmissing air-pollution levels of the concurrent and 3 preceding days, were used for all analyses. Locally weighted regression analysis, including temperature, humidity, day of week, and a time variable, showed a positive association between daily mortality and both total suspended particulates and sulfur dioxide. When the authors included total suspended particulates and sulfur dioxide separately in the model, both were highly significant predictors of daily mortality. The risk of all-cause mortality increased by an estimated 1.7% and 2.4% with a 100-{micro}g/m{sup 3} concomitant increase in total suspended particulate and sulfur dioxide, respectively. When the authors analyzed mortality separately by cause of death, the association with total suspended particulates was significant for cardiovascular disease, but not statistically significant for chronic obstructive pulmonary diseases. In contrast, the association with sulfur dioxide was significant for chronic obstructive pulmonary diseases, but not for cardiovascular disease. The mortality from cancer was not associated significantly with total suspended particles or with sulfur dioxide. The correlation between sulfur dioxide and total suspended particulates was high. When the authors included sulfur dioxide and total suspended particulates simultaneously in the model, the association between total suspended particulates and mortality from all causes and cardiovascular diseases remained significant. Sulfur dioxide was associated significantly with increased

  4. Is the Growth of Birch at the UPPER Timberline in the Himalayas Limited By Moisture or By Temperature?

    NASA Astrophysics Data System (ADS)

    Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D.

    2014-12-01

    Birch (Betula) trees and forests are found across much of the temperate and boreal zones of the Northern Hemisphere. Yet, despite being an ecologically-significant genus, it is much less-well studied compared to common genera like Pinus, Picea, Juniperus, Quercus, and Fagus. In the Himalayas, Himalayan birch (Betula utilis) is a widespread, important broadleaf timberline species that survives in mountain rain shadows via access to water from snowmelt. Because precipitation in the Nepalese Himalayas decreases with increasing elevation, we hypothesized that the growth of birch at the upper timberlines between 3,900 and 4,150 m a.s.l. is primarily limited by moisture availability rather than by low temperature. To verify this assumption, a total of 292 increment cores were extracted from 211 birch trees at nine timberline sites. The synchronous occurrence of narrow rings and high inter-series correlations within and among sites evidenced a reliable cross-dating and a common climatic signal in the tree-ring widths variations. From March-May, all nine tree-ring width site chronologies showed a strongly positive response to total precipitation and a less strongly negative response to temperature. During the instrumental meteorological record (after 1960), years with a high percentage of missing rings coincided with pre-monsoon drought events. Periods of below-average growth are in phase with well-known drought events all over monsoon Asia, showing additional evidence that Himalayan birch growth at the upper timberlines is persistently limited by moisture availability. Our study describes the rare case of a drought-induced altitudinal timberline that is composed by a broadleaf tree species.

  5. Formation of the southern Bay of Bengal cold pool

    NASA Astrophysics Data System (ADS)

    Das, Umasankar; Vinayachandran, P. N.; Behara, Ambica

    2016-09-01

    A pool of relatively cooler water, called here as the southern Bay of Bengal cold pool, exists around Sri Lanka and southern tip of India during the summer monsoon. This cold pool is enveloped by the larger Indian Ocean warm pool and is believed to affect the intraseasonal variations of summer monsoon rainfall. In this study, we have investigated the mechanisms responsible for the formation of the cold pool using a combination of both satellite data sets and a general circulation model of the Indian Ocean. Sea surface temperature (SST) within the cold pool, after the steady increase during the February-April period, decreases first during a pre-monsoon spell in April and then with the monsoon onset during May. The onset cooling is stronger (~1.8°C) than the pre-monsoon cooling (~0.8°C) and culminates in the formation of the cold pool. Analysis of the model temperature equation shows that SST decrease during both events is primarily due to a decrease in incoming solar radiation and an increase in latent heat loss. These changes in the net heat flux are brought about by the arrival of cloud bands above the cold pool during both periods. During the pre-monsoon period, a cloud band originates in the western equatorial Indian Ocean and subsequently arrives above the cold pool. Similarly, during the monsoon onset, a band of clouds originating in the eastern equatorial Indian Ocean comes over the cold pool region. A lead-lag correlation calculation between daily SST and rainfall anomalies suggest that cooling in SST occurs in response to rainfall events with a lag of 5 days. These sequence of events occur every year with certain amount of interannual variability.

  6. Patterns of parasite transmission in polar seas: Daily rhythms of cercarial emergence from intertidal snails

    NASA Astrophysics Data System (ADS)

    Prokofiev, Vladimir V.; Galaktionov, Kirill V.; Levakin, Ivan A.

    2016-07-01

    Trematodes are common parasites in intertidal ecosystems. Cercariae, their dispersive larvae, ensure transmission of infection from the first intermediate molluscan host to the second intermediate (invertebrates and fishes) or the final (fishes, marine birds and mammals) host. Trematode transmission in polar seas, while interesting in many respects, is poorly studied. This study aimed to elucidate the patterns of cercarial emergence from intertidal snails at the White Sea and Barents Sea. The study, involving cercariae of 12 species, has provided the most extensive material obtained so far in high latitude seas (66-69° N). The experiments were conducted in situ. Multichannel singular spectral analysis (MSSA) used for processing primary data made it possible to estimate the relative contribution of different oscillations into the analysed time series and to separate the daily component from the other oscillatory components and the noise. Cercarial emergence had pronounced daily rhythms, which did not depend on the daily tidal schedule but were regulated by thermo- and photoperiod. Daily emergence maximums coincided with periods favourable for infecting the second intermediate hosts. Cercarial daily emergence rhythms differed in species using the same molluscan hosts which can be explained by cercarial host searching behaviour. Daily cercarial output (DCO) correlated negatively with larval volume and positively with that of the molluscan host except in cercariae using ambuscade behaviour. In the Barents Sea cercariae emerged from their molluscan hosts at lower temperatures than in the warmer White Sea but the daily emergence period was prolonged. Thus, DCO of related species were similar in these two seas and comparable with DCO values reported for boreal seas. Local temperature adaptations in cercarial emergence suggests that in case of Arctic climate warming trematode transmission in coastal ecosystems is likely to be intensified not because of the increased

  7. Melatonin production accompanies arousal from daily torpor in Siberian hamsters.

    PubMed

    Larkin, Jennie E; Yellon, Steven M; Zucker, Irving

    2003-01-01

    Arousal from deep hibernation is accompanied by a transient rise of melatonin (Mel) in circulation; there are no comparable analyses of Mel concentrations in species that undergo much shallower, shorter duration episodes of daily torpor. Serum Mel concentrations were determined during arousal from both natural daily torpor and torpor induced by 2-deoxy-D-glucose (2-DG) treatment (2,500 mg/kg, intraperitoneal [IP]); blood samples were drawn from the retro-orbital sinus of anesthetized Siberian hamsters. For animals kept in darkness during torpor, Mel concentrations were highest during early arousal when thermogenesis is maximal, and they decreased as body temperature increased during arousal and returned to baseline once euthermia was reestablished. In hamsters kept in the light during the torpor bout, Mel concentrations were elevated above basal values during arousal, but the response was significantly blunted in comparison with values recorded in darkness. Increased Mel concentrations were detected in hamsters only during arousal from torpor (either natural or 2-DG induced) and were not simply a result of the drug treatment; hamsters that remained euthermic or manifested mild hypothermia after drug treatment maintained basal Mel concentrations. We propose that increased Mel production may reflect enhanced sympathetic activation associated with intense thermogenesis during arousal from torpor rather than an adjustment of the circadian rhythm of Mel secretion.

  8. Biometeorological classification of daily weather types for the humid tropics

    NASA Astrophysics Data System (ADS)

    Lecha Estela, Luis B.

    This paper describes the methodology for an objective classification of weather types for biometeorological purposes in a tropical-humid climate, such as the Cuban climate. The classification considers the daily behavior of extreme air temperatures, the mean partial vapor pressure, the mean diurnal cloudiness, the wind speed at 1300 hours local time, and the occurrence of precipitation during the day, in order to identify up to 18 weather types. Descriptions are given of the main biometeorological characteristics of some significant weather types, considering typical geographical locations, and their seasonal variations related to the seasonal pattern of asthma and acute respiratory infections. The relationship between the daily occurrence of diseases and the distribution of these local weather types is also discribed. A significant relationship was found between the incidence of cardiovascular and neurological diseases and the occurrence of hot stress, while the presence of cold and very cold days was closely related with increases of bronchial asthma in adults and children. The appearance of large meteoropathological reactions in the native population could be explained by the day to day pattern of change in the weather types.

  9. Daily lsa-saf evapotranspiration product

    NASA Astrophysics Data System (ADS)

    Arboleda Rodallega, Alirio; Ghilain, Nicolas; Meulenberghs, Francoise

    2010-05-01

    In the framework of the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF), some models have been implemented in view to characterize continental surfaces by using information obtained from MSG and EPS satellites. In this context a method has been developed in order to monitor the flux of water (Evapotranspiration) between the land surface and the atmosphere. The method is based on a physical approach in which radiative data derived from Meteosat Second Generation (MSG) satellites together with land-cover information are used to constrain a physical model of energy exchange between the soil-vegetation system and the atmosphere. The implemented algorithm provides instantaneous ET estimates over four regions defined in the MSG FOV (the defined regions cover Europe, Africa and the west of south America), with MSG spatial resolution (3km at sub satellite point) and a temporal time step of 30 minutes. The scope of the method is limited to evaporation from terrestrial surfaces rather than from lakes or oceans. The instantaneous product has been validated over different vegetation cover and climatic conditions, providing evidence that the algorithm is able to reproduce ET estimates with accuracy equivalent to the accuracy of ET obtained from observations. In 2009 the instantaneous ET product has been declared pre-operational by EUMETSAT, allowing the product to be disseminated to a larger community of users (http://landsaf.meteo.pt). In some areas like agriculture, hydrology, water management, ecology and climate studies the main concern is not instantaneous but accumulated values over days, months or longer periods. To encompass the need for these community of users, a daily ET product in which daily evapotranspiration is obtained as temporal integration of instantaneous values has been developed. In this contribution we will present the methodology used to obtain instantaneous ET estimates and the procedure applied to derive daily

  10. Detection of daily clouds on Titan.

    PubMed

    Griffith, C A; Hall, J L; Geballe, T R

    2000-10-20

    We have discovered frequent variations in the near-infrared spectrum of Titan, Saturn's largest moon, which are indicative of the daily presence of sparse clouds covering less than 1% of the area of the satellite. The thermodynamics of Titan's atmosphere and the clouds' altitudes suggest that convection governs their evolutions. Their short lives point to the presence of rain. We propose that Titan's atmosphere resembles Earth's, with clouds, rain, and an active weather cycle, driven by latent heat release from the primary condensible species.

  11. Daily Spiritual Experiences and Adolescent Treatment Response

    PubMed Central

    LEE, MATTHEW T.; VETA, PAIGE S.; JOHNSON, BYRON R.; PAGANO, MARIA E.

    2014-01-01

    The purpose of this study is to explore changes in belief orientation during treatment and the impact of increased daily spiritual experiences (DSE) on adolescent treatment response. One-hundred ninety-five adolescents court-referred to a 2-month residential treatment program were assessed at intake and discharge. Forty percent of youth who entered treatment as agnostic or atheist identified themselves as spiritual or religious at discharge. Increased DSE was associated with greater likelihood of abstinence, increased prosocial behaviors, and reduced narcissistic behaviors. Results indicate a shift in DSE that improves youth self-care and care for others that may inform intervention approaches for adolescents with addiction. PMID:25525291

  12. The Gambro system for home daily dialysis.

    PubMed

    Ledebo, Ingrid; Fredin, Richard

    2004-01-01

    Safety and reliability have been the main emphasis when developing our system for home daily dialysis. The AK 95 is part of a comprehensive system of appropriate products consisting additionally of a silent water treatment module, an ultrafilter, and a range of dry disposables for dialysis fluid preparation and disinfection. The dialyzer can be selected from a family of synthetic, biocompatible filters, both low and high flux. To complete the system, a modern data management tool for online or off-line surveillance and multilingual training manuals in both conventional format as well as animated software are available.

  13. Approach to forecasting daily maximum ozone levels in St. Louis

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Schiess, J. R.; Mcdougal, D. S.

    1981-01-01

    Measurements taken in 1976 from the St. Louis Regional Air Pollution Study (RAPS) data base, conducted by EPA, were analyzed to determine an optimum set of air-quality and meteorological variables for predicting maximum ozone levels for each day in 1976. A 'leaps and bounds' regression analysis was used to identify the best subset of variables. Three particular variables, the 9 a.m. ozone level, the forecasted maximum temperature, and the 6-9 a.m. averaged wind speed, have useful forecasting utility. The trajectory history of air masses entering St. Louis was studied, and it was concluded that transport-related variables contribute to the appearance of very high ozone levels. The final empirical forecast model predicts the daily maximum ozone over 341 days with a standard deviation of 11 ppb, which approaches the estimated error.

  14. Chronic daily headache in the elderly.

    PubMed

    Özge, Aynur

    2013-12-01

    Disabling headache disorders are ubiquitous in all age groups, including the elderly, yet they are under-recognized, underdiagnosed and undertreated worldwide. Surveys and clinic-based research reports on headache disorders in elderly populations are extremely limited in number. Chronic daily headache (CDH) is an important and growing subtype of primary headache disorders, associated with increased burden and disruption to quality of life. CDH can be divided into two forms, based on headache duration. Common forms of primary headache disorders of long duration (>4 hours) were comprehensively defined in the third edition of the International Classification of Headache Disorders (ICHD-3 beta). These include chronic migraine, chronic tension-type headache, new daily persistent headache, and hemicrania continua. Rarer short-duration (<4 hours) forms of CDH are chronic cluster headache, chronic paroxysmal hemicrania, SUNCT, and hypnic headache. Accurate diagnosis, management, and relief of the burden of CDH in the elderly population present numerous unique challenges as the "aging world" continues to grow. In order to implement appropriate coping strategies for the elderly, it is essential to establish the correct diagnosis at each step and to exercise caution in differentiating from secondary causes, while always taking into consideration the unique needs and limitations of the aged body.

  15. Daily Rhythms in Mobile Telephone Communication

    PubMed Central

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I. M.; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals’ social networks. Further, women’s calls were longer than men’s calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day. PMID:26390215

  16. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  17. Daily rhythm changes associated with variations in light intensity and color.

    PubMed

    Winget, C M; Card, D H

    1967-01-01

    Asynchronosis with its symptoms of fatigue, confusion, and discomfort is perhaps the most frequently experienced problem of jet travel; and without synchronization it will represent a major problem with supersonic and interplanetary travel. Current observations suggest that light is the most important environmental factor for the regulation of daily rhythms. Therefore, the purpose of this study was to quantitatively evaluate daily rhythm changes associated with changes in light intensity at given wavelengths of light. Biological rhythm data of birds have been useful for the interpretation of data collected on man. Two normal chickens were used to study three daily physiological rhythms in a controlled environment for approximately 80 days. Variables included the light intensity and wavelength. Heart rate, deep body temperature, and activity were recorded at 6 min intervals. The first two measurements were received from miniature radio transmitters and the third directly from the cage floor. The presence of the cycles was established by periodogram and correlogram analysis. The data were described further by harmonic regression analysis and cross correlations between the three daily rhythms. The physiologic systems studied are arrhythmic in continuous red light. There was no change observed in the periods of the daily rhythms with an increase in light intensity. Deep body temperature oscillations were greater at the higher light intensities and appeared to dissociate from heart rate. Activity and heart rate have a high degree of correlation even at the higher intensities.

  18. Plaque growth and removal with daily toothbrushing.

    PubMed

    De la Rosa, M; Zacarias Guerra, J; Johnston, D A; Radike, A W

    1979-12-01

    Dental plaque growth was observed among 180 teenage boys during a 28-day period following prophylaxis. During this period, subjects brushed their teeth under supervision for 2 minutes daily. Plaque levels were measured immediately after brushing and 24 hours after brushing. Both levels increased rapidly during the first 14 days and appeared to be leveled off at 28 days. Less than half of the plaque was removed with one brushing per day leaving about 60% after brushing to promote rapid regrowth. Regrowth rate after brushing on the 28th day was 0.032 plaque units per hour over a 24-hour period. The regrowth rate for the group brushing with dentifrice was 27% lower than for the group brushing without a dentifrice.

  19. Daily oral iron supplementation during pregnancy

    PubMed Central

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Iron and folic acid supplementation has been the preferred intervention to improve iron stores and prevent anaemia among pregnant women, and it may also improve other maternal and birth outcomes. Objectives To assess the effects of daily oral iron supplements for pregnant women, either alone or in conjunction with folic acid, or with other vitamins and minerals as a public health intervention. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (2 July 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) (2 July 2012) and contacted relevant organisations for the identification of ongoing and unpublished studies. Selection criteria Randomised or quasi-randomised trials evaluating the effects of oral preventive supplementation with daily iron, iron + folic acid or iron + other vitamins and minerals during pregnancy. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results We included 60 trials. Forty-three trials, involving more than 27,402 women, contributed data and compared the effects of daily oral supplements containing iron versus no iron or placebo. Overall, women taking iron supplements were less likely to have low birthweight newborns (below 2500 g) compared with controls (8.4% versus 10.2%, average risk ratio (RR) 0.81; 95% confidence interval (CI) 0.68 to 0.97, 11 trials, 8480 women) and mean birthweight was 30.81 g greater for those infants whose mothers received iron during pregnancy (average mean difference (MD) 30.81; 95% CI 5.94 to 55.68, 14 trials, 9385 women). Preventive iron supplementation reduced the risk of maternal anaemia at term by 70% (RR 0.30; 95% CI 0.19 to 0.46, 14 trials, 2199 women) and iron deficiency at term by 57% (RR 0.43; 95% CI 0.27 to 0.66, seven trials, 1256 women

  20. Thermoluminescence sensitivity of daily-use materials

    NASA Astrophysics Data System (ADS)

    Correcher, V.; Garcia-Guinea, J.; Rivera, T.

    The thermoluminescence (TL) response of silicon-rich daily-use materials, namely charoite (silicate gemstone), Spanish dental crown, phone chip and Spanish glass has been investigated. All the samples previously characterised by means of X-ray diffraction, electron microscopy associated with energy-dispersion and wavelength-dispersive spectrometry and X-ray fluorescence exhibit a reasonable sensitivity to ionising radiation. The preliminary results, based on their TL properties, allow us to speculate that these materials could be potentially of interest in situations where conventional dosimetric systems are not available. The dose dependence of the 400 nm TL emission of the studied samples displays a very good linearity in the range of 0.1-10 Gy.

  1. Estimation of daily micronutrient intake of Filipinos.

    PubMed

    Natera, Erlinda; Trinidad, Trinidad; Valdez, Divina; Kawamura, Hisao; Palad, Lorna; Shiraishi, Kunio

    2002-09-01

    The Fourth National Nutrition Survey of the Food and Nutrition Research Institute conducted in 1993 showed an increasing prevalence of micronutrient-related diseases in various age groups. Hence, the daily diet consumed by the average Filipino was examined for its nutrient content. A total of 19 regional diet samples were collected and analyzed for phosphorous, iron, zinc, magnesium, manganese, calcium, potassium, and sodium by using inductively coupled plasma atomic emission spectrometry (ICP-AES). Iodine was determined by inductively coupled plasma mass spectrometry (ICP-MS). Benchmark data for the abovementioned micronutrients showed decreased intake values as compared to the recommended dietary allowance established in 1989. The information will be useful in assessing the existing nutritional status so that appropriate nutrient interventions can possibly be put in place. PMID:12362801

  2. Ozone and daily mortality in Shanghai, China

    SciTech Connect

    Zhang, Y.H.; Huang, W.; London, S.J.; Song, G.X.; Chen, G.H.; Jiang, L.L.; Zhao, N.Q.; Chen, B.H.; Kan, H.D.

    2006-08-15

    Given the changes in types of air pollution from conventional coal combustion to the mixed coal combustion/motor vehicle emissions in China's large cities, it is worthwhile to investigate the acute effect of O{sub 3} on mortality outcomes in the country. We conducted a time-series study to investigate the relation between O{sub 3} and daily mortality in Shanghai using 4 years of daily data (2001-2004). O{sub 3} was found to be significantly associated with total and cardiovascular mortality in the cold season but not in the warm season. In the whole-year analysis, an increase of 10 pg/m{sup 3} of 2-day average O{sub 3} corresponds to 0.45% (95% confidence interval (CI), 0.16-0.73%), 0.53% (95% CI, 0.10-0.96%), and 0.35% (95% CI, -0.40 to 1.09%) increase of total nonaccidental, cardiovascular, and respiratory mortality, respectively. In the cold season, the estimates increased to 1.38% (95% CI , 0.68-2.07%), 1.53% (95% CI, 0.54-2.52%), and 0.95% (95% CI, -0.71 to 2.60%), respectively. In the warm season, we did not observe significant associations for both total and causespecific mortality. The results were generally insensitive to model specifications such as lag structure of O{sub 3} concentrations and degree of freedom for time trend. Multipoflutant models indicate that the effect of O{sub 3} was not confounded by particulate matter {<=} 10 {mu} m in diameter (PM10) or by sulfur dioxide; however, after adding nitrogen dioxide into the model, the association of O{sub 3} with total and cardiovascular mortality became statistically insignificant.

  3. Allergists: Daily Bath OK for Kids with Eczema

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159633.html Allergists: Daily Bath OK for Kids With Eczema The key is ... Although some doctors advise against giving a daily bath to kids with the skin condition eczema, a ...

  4. Dapagliflozin twice daily or once daily: effect on pharmacokinetics and urinary glucose excretion in healthy subjects.

    PubMed

    Tang, W; Reele, S; Hamer-Maansson, J E; Parikh, S; de Bruin, T W A

    2015-04-01

    The primary objective of this single-centre, open-label crossover study (NCT01072578) was to assess the effect of dapagliflozin on the amount of glucose in the blood and urine in healthy volunteers when dapagliflozin was administered once a day (10 mg) versus twice a day (5 mg every 12 h) after 5 days of dosing. At steady state, the AUC(ss)₀₋₂₄ (area under the dapagliflozin curve (0-24 hours) at steady state), C(ss,av) (average concentration at steady state) between dapagliflozin 5 mg twice daily and 10 mg once daily were similar AUC(ss)₀₋₂₄ [5 mg bid, (458.0 (28.7)) and 10 mg qd, (470.0 (28.5))] and C(ss,av) [5 mg bid 18.8 (28.9)) and 10 mg qd, (19.6(28.5))], but minimum and maximum plasma levels of dapagliflozin differed significantly. Percent inhibition of renal glucose reabsorption (%IRGRA) and total urinary glucose excretion over 24 h were similar for both doses. The relationship between the mean dapagliflozin concentration and %IRGRA and the total urinary glucose excreted was well described by a maximum effect model. The results indicate that dapagliflozin may be used for either once daily or twice daily administration.

  5. Verification of factors to estimate daily milk yield from one milking of cows milked twice daily

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to verify factors to predict daily milk yield when milk is sampled once per d for cows milked twice (2x) per d. Milk weights for both milkings were recorded automatically by 30 herds and collected by Dairy Herd Improvement supervisors. Data was split into 2 subsets...

  6. Ruminative self-focus in daily life: associations with daily activities and depressive symptoms.

    PubMed

    Takano, Keisuke; Sakamoto, Shinji; Tanno, Yoshihiko

    2013-08-01

    The present study examined the situations and conditions in which ruminative self-focus is less likely to occur in daily life. Previous researchers have described a mood-brightening effect of depression, where depressed individuals exhibit greater positive emotional reactivity to positive daily events than do nondepressed individuals. To better understand this paradoxical effect, we investigated the moderating role of depression in the relationship between daily activities and ruminative thinking. Forty-one Japanese undergraduates (9 women and 32 men) recorded their thought contents and the type and subjective appraisals of activities that they engaged in 8 times a day for a week at semirandom intervals. Multilevel modeling analyses indicated that subjectively pleasant activities were associated with improved mood states and reduced ruminative thinking. However, some of these associations were moderated by depressive symptoms, suggesting that individuals with higher levels of depression showed a greater reduction of ruminative thinking during pleasant activities. These results imply that daily activities are important for reducing rumination, particularly for individuals with higher levels of depression, and that the brightening effect of depression is evident for cognitive as well as emotional activities. The cognitive basis of this paradoxical effect is discussed. PMID:23527502

  7. 27 CFR 19.740 - Daily storage records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Daily storage records. 19..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Storage Account § 19.740 Daily storage records. (a) General. Proprietors shall maintain daily records in the storage...

  8. 27 CFR 19.736 - Daily production records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Daily production records..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Production Account § 19.736 Daily production records. (a) Spirits production. Each proprietor shall maintain daily...

  9. 19 CFR 159.35 - Certified daily rate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TREASURY (CONTINUED) LIQUIDATION OF DUTIES Conversion of Foreign Currency § 159.35 Certified daily rate. The daily buying rate of foreign currency which is determined by the Federal Reserve Bank of New York... 19 Customs Duties 2 2011-04-01 2011-04-01 false Certified daily rate. 159.35 Section...

  10. Racial Differences in Exposure and Reactivity to Daily Family Stressors

    ERIC Educational Resources Information Center

    Cichy, Kelly E.; Stawski, Robert S.; Almeida, David M.

    2012-01-01

    Using data from the National Study of Daily Experiences, the authors examined racial differences in exposure and reactivity to daily stressors involving family members. Respondents included African American and European American adults age 34 to 84 (N = 1,931) who participated in 8 days of daily interviews during which they reported on daily…

  11. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  12. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  13. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  14. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  15. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  16. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  17. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  18. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  19. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  20. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  1. Weather factors in the short-term forecasting of daily ambulance calls.

    PubMed

    Wong, Ho-Ting; Lai, Poh-Chin

    2014-07-01

    The daily ambulance demand for Hong Kong is rising, and it has been shown that weather factors (temperature and humidity) play a role in the demand for ambulance services. This study aimed at developing short-term forecasting models of daily ambulance calls using the 7-day weather forecast data as predictors. We employed the autoregressive integrated moving average (ARIMA) method to analyze over 1.3 million cases of emergency attendance in May 2006 through April 2009 and the 7-day weather forecast data for the same period. Our results showed that the ARIMA model could offer reasonably accurate forecasts of daily ambulance calls at 1-7 days ahead of time and with improved accuracy by including weather factors. Specifically, the inclusion of average temperature alone in our ARIMA model improved the predictability of the 1-day forecast when compared to that of a simple ARIMA model (8.8% decrease in the root mean square error, RMSE=53 vs 58). The improvement in the 7-day forecast with average temperature as a predictor was more pronounced, with a 10% drop in prediction error (RMSE=62 vs 69). These findings suggested that weather forecast data can improve the 1- to 7-day forecasts of daily ambulance demand. As weather forecast data are readily accessible from Hong Kong Observatory's official website, there is virtually no cost to including them in the ARIMA models, which yield better prediction for forward planning and deployment of ambulance manpower.

  2. Weather factors in the short-term forecasting of daily ambulance calls

    NASA Astrophysics Data System (ADS)

    Wong, Ho-Ting; Lai, Poh-Chin

    2013-03-01

    The daily ambulance demand for Hong Kong is rising, and it has been shown that weather factors (temperature and humidity) play a role in the demand for ambulance services. This study aimed at developing short-term forecasting models of daily ambulance calls using the 7-day weather forecast data as predictors. We employed the autoregressive integrated moving average (ARIMA) method to analyze over 1.3 million cases of emergency attendance in May 2006 through April 2009 and the 7-day weather forecast data for the same period. Our results showed that the ARIMA model could offer reasonably accurate forecasts of daily ambulance calls at 1-7 days ahead of time and with improved accuracy by including weather factors. Specifically, the inclusion of average temperature alone in our ARIMA model improved the predictability of the 1-day forecast when compared to that of a simple ARIMA model (8.8 % decrease in the root mean square error, RMSE = 53 vs 58). The improvement in the 7-day forecast with average temperature as a predictor was more pronounced, with a 10 % drop in prediction error (RMSE = 62 vs 69). These findings suggested that weather forecast data can improve the 1- to 7-day forecasts of daily ambulance demand. As weather forecast data are readily accessible from Hong Kong Observatory's official website, there is virtually no cost to including them in the ARIMA models, which yield better prediction for forward planning and deployment of ambulance manpower.

  3. Weather factors in the short-term forecasting of daily ambulance calls.

    PubMed

    Wong, Ho-Ting; Lai, Poh-Chin

    2014-07-01

    The daily ambulance demand for Hong Kong is rising, and it has been shown that weather factors (temperature and humidity) play a role in the demand for ambulance services. This study aimed at developing short-term forecasting models of daily ambulance calls using the 7-day weather forecast data as predictors. We employed the autoregressive integrated moving average (ARIMA) method to analyze over 1.3 million cases of emergency attendance in May 2006 through April 2009 and the 7-day weather forecast data for the same period. Our results showed that the ARIMA model could offer reasonably accurate forecasts of daily ambulance calls at 1-7 days ahead of time and with improved accuracy by including weather factors. Specifically, the inclusion of average temperature alone in our ARIMA model improved the predictability of the 1-day forecast when compared to that of a simple ARIMA model (8.8% decrease in the root mean square error, RMSE=53 vs 58). The improvement in the 7-day forecast with average temperature as a predictor was more pronounced, with a 10% drop in prediction error (RMSE=62 vs 69). These findings suggested that weather forecast data can improve the 1- to 7-day forecasts of daily ambulance demand. As weather forecast data are readily accessible from Hong Kong Observatory's official website, there is virtually no cost to including them in the ARIMA models, which yield better prediction for forward planning and deployment of ambulance manpower. PMID:23456448

  4. Weather factors in the short-term forecasting of daily ambulance calls

    NASA Astrophysics Data System (ADS)

    Wong, Ho-Ting; Lai, Poh-Chin

    2014-07-01

    The daily ambulance demand for Hong Kong is rising, and it has been shown that weather factors (temperature and humidity) play a role in the demand for ambulance services. This study aimed at developing short-term forecasting models of daily ambulance calls using the 7-day weather forecast data as predictors. We employed the autoregressive integrated moving average (ARIMA) method to analyze over 1.3 million cases of emergency attendance in May 2006 through April 2009 and the 7-day weather forecast data for the same period. Our results showed that the ARIMA model could offer reasonably accurate forecasts of daily ambulance calls at 1-7 days ahead of time and with improved accuracy by including weather factors. Specifically, the inclusion of average temperature alone in our ARIMA model improved the predictability of the 1-day forecast when compared to that of a simple ARIMA model (8.8 % decrease in the root mean square error, RMSE = 53 vs 58). The improvement in the 7-day forecast with average temperature as a predictor was more pronounced, with a 10 % drop in prediction error (RMSE = 62 vs 69). These findings suggested that weather forecast data can improve the 1- to 7-day forecasts of daily ambulance demand. As weather forecast data are readily accessible from Hong Kong Observatory's official website, there is virtually no cost to including them in the ARIMA models, which yield better prediction for forward planning and deployment of ambulance manpower.

  5. A resampling procedure for generating conditioned daily weather sequences

    USGS Publications Warehouse

    Clark, M.P.; Gangopadhyay, S.; Brandon, D.; Werner, K.; Hay, L.; Rajagopalan, B.; Yates, D.

    2004-01-01

    [1] A method is introduced to generate conditioned daily precipitation and temperature time series at multiple stations. The method resamples data from the historical record "nens" times for the period of interest (nens = number of ensemble members) and reorders the ensemble members to reconstruct the observed spatial (intersite) and temporal correlation statistics. The weather generator model is applied to 2307 stations in the contiguous United States and is shown to reproduce the observed spatial correlation between neighboring stations, the observed correlation between variables (e.g., between precipitation and temperature), and the observed temporal correlation between subsequent days in the generated weather sequence. The weather generator model is extended to produce sequences of weather that are conditioned on climate indices (in this case the Nin??o 3.4 index). Example illustrations of conditioned weather sequences are provided for a station in Arizona (Petrified Forest, 34.8??N, 109.9??W), where El Nin??o and La Nin??a conditions have a strong effect on winter precipitation. The conditioned weather sequences generated using the methods described in this paper are appropriate for use as input to hydrologic models to produce multiseason forecasts of streamflow.

  6. The effects of daily weather variables on psychosis admissions to psychiatric hospitals

    NASA Astrophysics Data System (ADS)

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2013-07-01

    Several studies have noted seasonal variations in admission rates of patients with psychotic illnesses. However, the changeable daily meteorological patterns within seasons have never been examined in any great depth in the context of admission rates. A handful of small studies have posed interesting questions regarding a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (especially heat waves) and sunshine. In this study, we used simple non-parametric testing and more complex ARIMA and time-series regression analysis to examine whether daily meteorological patterns (wind speed and direction, barometric pressure, rainfall, sunshine, sunlight and temperature) exert an influence on admission rates for psychotic disorders across 12 regions in Ireland. Although there were some weak but interesting trends for temperature, barometric pressure and sunshine, the meteorological patterns ultimately did not exert a clinically significant influence over admissions for psychosis. Further analysis is needed.

  7. Changes in daily pollen concentration based on meteorological data and days after seasonal initiation - a case study for Japanese hop

    NASA Astrophysics Data System (ADS)

    Choe, H.; Kim, K. R.; Kim, M.; Han, M. J.; Cho, C.; Choi, B. C.

    2014-12-01

    Pollinosis causes various allergy symptoms such as seasonal rhinitis, asthma, and conjunctivitis (Min, 1991). Japanese hop (Humulus japonicus) is a major allergen in southern Gyonggi-do during the fall seasons (Park, 1998). So that it is needed to forecast the concentration of its pollens.For the germination of Japanese hop, a period of low temperature (<5C) followed by warm (~20C) and humid conditions is needed (Growing and Protecting New Zealand(2010)). The daily concentration of the pollens increases rapidly then decreases a few days afterward. In this study, the changes in daily pollen concentration were analyzed to yield a prediction model.As a result, a regression model was produced to forecast daily pollen concentration. It can be integrated into the daily pollinosis warning system of the Korea Meteorological Administration (KMA) and provide more accurate daily risk information.

  8. Investigation of daily covering material for biocells

    NASA Astrophysics Data System (ADS)

    Bendere, R.; Smigins, R.; Medne, O.; Berzina-Cimdina, L.; Rugele, K.

    2014-02-01

    Bioreactor landfilling, with the acceptance of landfill Directive 1999/31/EC has lost its actuality in European Union; at the same time, this method can still be used for acceleration of biowaste degradation and biogas production. One of the possibilities to reduce the disposal of biowaste is to use biocells for its anaerobic pre-treatment before landfilling. The daily filling up of such a cell requires isolation of the main volume to limit gas emissions, reduce smells, etc. Bioprocesses that are of the utmost importance for biocell treatment are often not taken into account in selection of materials to be used as daily landfill covers. Based on physical, chemical and biological methods the investigations have been carried out into different covering materials offered in the market, with identification of parameters that are the most important for daily covering the biocells. It is found that the materials fitted best this purpose should be of biological origin and consist of small bio-particles with large surface, without the inhibitors of anaerobic processes such as sulphuric compounds. Bioreaktoru pielietošana atkritumu uzglabāšanas sfērā, sakarā ar Direktīvas 1999/31/EC pieņemšanu, ir zaudējusi savu aktualitāti, taču šī metode vēl joprojām var tikt izmantota bioatkritumu noārdīšanai un biogāzes ražošanai. Viena no iespējām kā samazināt bioatkritumu izvietošanu ir biošūnu izmantošana bioatkritumu anaerobai pirmsapstrādei pirms to noglabāšanas. Šūnas piepildīšana ikdienā prasa nepieciešamību izolēt lielāko tās daļu, lai samazinātu gāzes emisiju, smakas, utt. Materiāli, kas ikdienā tiek izmantoti atkritumu pārklāšanai, nepietiekami ietekmē bioprocesus, kas pamatā ir galvenais biošūnas izmantošanas mērķis. Šajā sakarā ir veikta dažādu tirdzniecībā pieejamu pārklājuma materiālu izpēte, pielietojot virkni fizikālo, ķīmisko un bioloģisko metožu, un nosakot svarīgākos parametrus, kas ir b

  9. Coastal eutrophication and temperature variation

    SciTech Connect

    Ganoulis, J.; Rafailidis, S.; Bogardi, I.; Duckstein, L.; Matyasovszky, I.

    1994-12-31

    A 3-D hydroecological model has been developed to simulate the impact of climate-change-induced daily temperature variation on coastal water quality and eutrophication. Historical daily temperature time series over a thirty-year period have been used to link local meteorological variables to large-scale atmospheric circulation patterns (CPs). Then, CPs generated under a 2{times}CO{sub 2} scenario have been used to simulate climate-change-induced local daily temperature variations. Both historical and climate-change-induced temperature time series have been introduced as inputs into the hydroecological model to simulate coastal water quality and eutrophication. Subject to model validation with available data, a case study in the bay of Thessaloniki (N. Greece) indicates a risk of increasing eutrophication and oxygen depletion in coastal areas due to possible climate change.

  10. Particulate air pollution and daily mortality on Utah's Wasatch Front.

    PubMed Central

    Pope, C A; Hill, R W; Villegas, G M

    1999-01-01

    Reviews of daily time-series mortality studies from many cities throughout the world suggest that daily mortality counts are associated with short-term changes in particulate matter (PM) air pollution. One U.S. city, however, with conspicuously weak PM-mortality associations was Salt Lake City, Utah; however, relatively robust PM-mortality associations have been observed in a neighboring metropolitan area (Provo/Orem, Utah). The present study explored this apparent discrepancy by collecting, comparing, and analyzing mortality, pollution, and weather data for all three metropolitan areas on Utah's Wasatch Front region of the Wasatch Mountain Range (Ogden, Salt Lake City, and Provo/Orem) for approximately 10 years (1985-1995). Generalized additive Poisson regression models were used to estimate PM-mortality associations while controlling for seasonality, temperature, humidity, and barometric pressure. Salt Lake City experienced substantially more episodes of high PM that were dominated by windblown dust. When the data were screened to exclude obvious windblown dust episodes and when PM data from multiple monitors were used to construct an estimate of mean exposure for the area, comparable PM-mortality effects were estimated. After screening and by using constructed mean PM [less than/equal to] 10 microm in aerodynamic diameter (PM10) data, the estimated percent change in mortality associated with a 10-mg/m3 increase in PM10 (and 95% confidence intervals) for the three Wasatch Front metropolitan areas equaled approximately 1. 6% (0.3-2.9), 0.8% (0.3-1.3), and 1.0% (0.2-1.8) for the Ogden, Salt Lake City, and Provo/Orem areas, respectively. We conclude that stagnant air pollution episodes with higher concentrations of primary and secondary combustion-source particles were more associated with elevated mortality than windblown dust episodes with relatively higher concentrations of coarse crustal-derived particles. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10379003

  11. Sub-Daily Runoff Simulations with Parameters Inferred at the Daily Time Scale

    NASA Astrophysics Data System (ADS)

    Reynolds, J. E.; Xu, C. Y.; Seibert, J.; Halldin, S.

    2015-12-01

    Concentration times in small and medium-sized watersheds (~100-1000 km2) are commonly less than 24 hours. Flood-forecasting models then require data at sub-daily time scales, but time-series of input and runoff data with sufficient lengths are often only available at the daily time scale, especially in developing countries. This has led to a search for time-scale relationships to infer parameter values at the time scales where they are needed from the time scales where they are available. In this study, time-scale dependencies in the HBV-light conceptual hydrological model were assessed within the generalized likelihood uncertainty estimation (GLUE) approach. It was hypothesised that the existence of such dependencies is a result of the numerical method or time-stepping scheme used in the models rather than a real time-scale-data dependence. Parameter values inferred showed a clear dependence on time scale when the explicit Euler method was used for modelling at the same time steps as the time scale of the input data (1 to 24 h). However, the dependence almost fully disappeared when the explicit Euler method was used for modelling in 1-hour time steps internally irrespectively of the time scale of the input data. In other words, it was found that when an adequate time-stepping scheme was implemented, parameter sets inferred at one time scale (e.g., daily) could be used directly for runoff simulations at other time scales (e.g., 3 h or 6 h) without any time scaling and this approach only resulted in a small (if any) model performance decrease, in terms of Nash-Sutcliffe and volume-error efficiencies. The overall results of this study indicated that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.

  12. The effect of personality on daily life emotional processes.

    PubMed

    Komulainen, Emma; Meskanen, Katarina; Lipsanen, Jari; Lahti, Jari Marko; Jylhä, Pekka; Melartin, Tarja; Wichers, Marieke; Isometsä, Erkki; Ekelund, Jesper

    2014-01-01

    Personality features are associated with individual differences in daily emotional life, such as negative and positive affectivity, affect variability and affect reactivity. The existing literature is somewhat mixed and inconclusive about the nature of these associations. The aim of this study was to shed light on what personality features represent in daily life by investigating the effect of the Five Factor traits on different daily emotional processes using an ecologically valid method. The Experience Sampling Method was used to collect repeated reports of daily affect and experiences from 104 healthy university students during one week of their normal lives. Personality traits of the Five Factor model were assessed using NEO Five Factor Inventory. Hierarchical linear modeling was used to analyze the effect of the personality traits on daily emotional processes. Neuroticism predicted higher negative and lower positive affect, higher affect variability, more negative subjective evaluations of daily incidents, and higher reactivity to stressors. Conscientiousness, by contrast, predicted lower average level, variability, and reactivity of negative affect. Agreeableness was associated with higher positive and lower negative affect, lower variability of sadness, and more positive subjective evaluations of daily incidents. Extraversion predicted higher positive affect and more positive subjective evaluations of daily activities. Openness had no effect on average level of affect, but predicted higher reactivity to daily stressors. The results show that the personality features independently predict different aspects of daily emotional processes. Neuroticism was associated with all of the processes. Identifying these processes can help us to better understand individual differences in daily emotional life.

  13. Daily body energy balance in rats.

    PubMed

    Le Magnen, J; Devos, M

    1982-11-01

    The aim of the present study was to examine the balance between caloric intake and expenditures in successive 12 and 24 hour periods, for several consecutive days in rats. The simultaneous and continuous measurements of respiratory exchanges and of the spontaneous feeding pattern were performed in 6 rats during 38 days, in periods of 2 to 4 successive days. At night, caloric intake exceeded caloric expenditures by 32% on the average. In individual rats, the excess was positively correlated to meal size but not to meal number. During the daytime, caloric intake was 24% lower on the average than the concomitant energy expenditures. In individual subjects, these deficits were correlated to meal number but not to meal size. A nocturnal excess and the subsequent daytime deficit, and the diurnal deficit and the excess during the subsequent night were highly positively correlated. In fact, the 24 hour energy balance was either slightly positive (12% excess) or negative (4% deficit). The daily weight gain or loss was highly correlated to the residual excess and/or deficit with a mean caloric cost of 4.8 kcal per g of body weight. The absence of correlation between balances on successive days indicates that the body energy balance is regulated within 24 hr through 12/12 hr compensations and that no compensatory mechanisms are involved beyond 24 hr.

  14. Egocentric daily activity recognition via multitask clustering.

    PubMed

    Yan, Yan; Ricci, Elisa; Liu, Gaowen; Sebe, Nicu

    2015-10-01

    Recognizing human activities from videos is a fundamental research problem in computer vision. Recently, there has been a growing interest in analyzing human behavior from data collected with wearable cameras. First-person cameras continuously record several hours of their wearers' life. To cope with this vast amount of unlabeled and heterogeneous data, novel algorithmic solutions are required. In this paper, we propose a multitask clustering framework for activity of daily living analysis from visual data gathered from wearable cameras. Our intuition is that, even if the data are not annotated, it is possible to exploit the fact that the tasks of recognizing everyday activities of multiple individuals are related, since typically people perform the same actions in similar environments, e.g., people working in an office often read and write documents). In our framework, rather than clustering data from different users separately, we propose to look for clustering partitions which are coherent among related tasks. In particular, two novel multitask clustering algorithms, derived from a common optimization problem, are introduced. Our experimental evaluation, conducted both on synthetic data and on publicly available first-person vision data sets, shows that the proposed approach outperforms several single-task and multitask learning methods. PMID:26067371

  15. When Daily Sunspot Births Become Positively Correlated

    NASA Astrophysics Data System (ADS)

    Shapoval, Alexander; Le Mouël, Jean-Louis; Shnirman, Mikhail; Courtillot, Vincent

    2015-10-01

    We study the first differences w(t) of the International Sunspot Number (ISSN) daily series for the time span 1850 - 2013. The one-day correlations ρ1 between w(t) and w(t+1) are computed within four-year sliding windows and are found to shift from negative to positive values near the end of Cycle 17 ({˜} 1945). They remain positive during the last Grand Maximum and until {˜} 2009, when they fall to zero. We also identify a prominent regime change in {˜} 1915, strengthening previous evidence of major anomalies in solar activity at this date. We test an autoregressive process of order 1 (AR(1)) as a model that can reproduce the high-frequency component of ISSN: we compute ρ1 for this AR(1) process and find that it is negative. Positive values of ρ1 are found only if the process involves positive correlation: this leads us to suggest that the births of successive spots are positively correlated during the last Grand Maximum.

  16. Mars Daily Global Maps and Animations

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ingersoll, A. P.

    2000-10-01

    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has been taking global map swaths of Mars using its red and blue wide angle cameras every two hours since March 1999. We have processed the global map swaths taken from June to August 1999 which correspond to the end of the northern summer (150 < Ls < 185), and made them into daily global maps and animations with 2-hour and 1-day time steps for the polar regions. The south polar seasonal cap recession, the north polar dust and condensate cloud activity, and the condensate clouds over the Tharsis volcanos and Valles Marineris are clearly displayed. We will continue processing data as they become available. The north polar region stays relatively calm before Ls 160. Active dust storms and condensate clouds show up afterwards. Cloud tracked winds are typically about 15m/s in the north polar region during this season, and there are winds blowing onto and even across the cap. North of 65N, condensate clouds change shape quickly, suggesting transient waves in the atmosphere. Dust storms about 500km and larger usually have well developed cyclonic structure and have lifetime of several days. Dust storms often blow across the residual cap, especially in late summer (Ls 180). There are sometimes condensate clouds that seem to be associated with the dust storms. Dust storms usually show up at longitudes 0 +/- 90 around the north polar cap in this season, suggesting an asymmetric circulation.

  17. Kiwifruit: our daily prescription for health.

    PubMed

    Stonehouse, Welma; Gammon, Cheryl S; Beck, Kathryn L; Conlon, Cathryn A; von Hurst, Pamela R; Kruger, Rozanne

    2013-06-01

    Kiwifruit are unequalled, compared with other commonly consumed fruit, for their nutrient density, health benefits, and consumer appeal. Research into their health benefits has focussed on the cultivars Actinidia deliciosa 'Hayward' (green kiwifruit) and Actinidia chinensis 'Hort 16A', ZESPRI(®) (gold kiwifruit). Compared with other commonly consumed fruit, both green and gold kiwifruit are exceptionally high in vitamins C, E, K, folate, carotenoids, potassium, fibre, and phytochemicals acting in synergy to achieve multiple health benefits. Kiwifruit, as part of a healthy diet, may increase high-density lipoprotein cholesterol, and decrease triglycerides, platelet aggregation, and elevated blood pressure. Consuming gold kiwifruit with iron-rich meals improves poor iron status, and green kiwifruit aids digestion and laxation. As a rich source of antioxidants, they may protect the body from endogenous oxidative damage. Kiwifruit may support immune function and reduce the incidence and severity of cold or flu-like illness in at-risk groups such as older adults and children. However, kiwifruit are allergenic, and although symptoms in most susceptible individuals are mild, severe reactions have been reported. While many research gaps remain, kiwifruit with their multiple health benefits have the potential to become part of our "daily prescription for health."

  18. Effects of converting tacrolimus formulation from twice-daily to once-daily in liver transplantation recipients.

    PubMed

    Thorat, Ashok; Chou, Hong-Shiue; Lee, Chen-Fang; Soong, Ruey-Shyang; Wu, Tsung-Han; Cheng, Chih-Hsien; Wu, Ting-Jung; Chan, Kun-Ming; Lee, Wei-Chen

    2014-01-01

    Typically, tacrolimus is administrated twice daily. Prolonged-release tacrolimus is the once-daily formulation and may be more convenient for patients. Experience with the administration of the once-daily formulation is still limited. This study enrolled 210 liver transplant recipients who had stable liver function and converted tacrolimus from a twice-daily to once-daily formulation on a 1 mg to 1 mg basis. Among 210 patients, seven patients (3.3%) were withdrawn from the once-daily formulation due to allergy and fatigue. For the other patients, the trough concentration after converting to the once-daily formulation was lower than that of the twice-daily formulation. Liver enzymes were mildly elevated in 3 months after formulation conversion and serum creatinine and uric acid were mildly decreased. Seven patients (3.4%) had clinical suspicion of acute rejection after the formulation conversion and three of them were caused by nonadherence. 155 patients (76.4%) experienced a more convenient life with an increase of social activity. Forty-seven patients (23.2%) experienced the convenience of once-daily formulation during overseas trips. In conclusion, tacrolimus can be safely converted from the twice-daily to the once-daily formulation for most stable liver recipients. Acute rejection may occur in a minority of patients during formulation conversion and should be carefully monitored.

  19. Twice-daily and once-daily nedocromil sodium 2% ophthalmic solution for the treatment of seasonal allergic conjunctivitis.

    PubMed

    Alexander, Michael; Allegro, Stacey; Hicks, Angela

    2002-01-01

    In this 8-week open-label, prospective study, 30 patients with grass pollen allergy and ocular itching instilled nedocromil sodium 2% ophthalmic solution twice daily for a 5-day baseline period, followed by once-daily dosing thereafter. Physicians assessed clinical signs after the twice-daily period and after weeks 1 and 3 of the once-daily period; patients rated ocular symptoms daily. Use of specified rescue medication was permitted. Symptom scores for ocular itching, stinging, redness, swelling, burning, tearing, and light sensitivity did not differ significantly between the dosage periods. Scores for erythema, edema, conjunctival injection, and the entire conjunctiva decreased slightly during once-daily administration; discharge scores were unchanged. Of the 20 patients who used rescue medication, only 5 increased their usage by more than two doses per week during the once-daily period. Eighty-three percent of patients were willing to continue the once-daily regimen during the next allergy season. Physicians rated overall control of seasonal allergic conjunctivitis with once-daily administration as "good" or "moderate" in 100% of the patients; 93% of patients applied those ratings themselves. Nedocromil sodium 2% ophthalmic solution instilled once daily maintains control of symptoms in patients who are established on a twice-daily regimen. PMID:12008862

  20. Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea).

    PubMed

    Lovegrove, B G; Lawes, M J; Roxburgh, L

    1999-10-01

    The characteristics of daily torpor were measured in the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea) in response to ambient temperature and food deprivation. Elephant shrews are an ancient mammal order within a superordinal African clade including hyraxes, elephants, dugongs and the aardvark. M. proboscideus only employed torpor when deprived of food; torpor did not occur under an ad libitum diet at ambient temperatures of 10, 15 and 25 degrees C. Torpor bout duration ranged from < 1 h to ca. 18 h. The times of entry into torpor were restricted to the scotophase, despite normothermic body temperature patterns indicating a rest phase coincident with the photophase. Full arousal was always achieved within the first 3 h of the photophase. When food deprived, the onset of the rest phase, and hence torpor, advanced with respect to the experimental photoperiod. The lowest torpor body temperature measured was 9.41 degrees C. Daily torpor in M. proboscideus confirms a pleisiomorphic origin of daily heterothermy. Torpor facilitates risk-averse foraging behaviour in these small omnivores by overcoming long-term energy shortfalls generated by the inherent variability of food availability in their semiarid, El Niño-afflicted habitats.

  1. Medication-Overuse Headache: Differences between Daily and Near-Daily Headache Patients

    PubMed Central

    Krymchantowski, Abouch V.; Tepper, Stewart J.; Jevoux, Carla; Valença, Marcelo M.

    2016-01-01

    Medication-overuse headache (MOH) is a challenging neurological disease, which brings frustration for sufferers and treating physicians. The patient’s lack of adherence and limited treatment evidence are frequent. The aim of this study was to compare the outcome and treatment strategies between consecutive MOH patients with daily and near-daily headache from a tertiary center. Methods: Every consecutive patient seen between January and December 2014 with the diagnosis of MOH was included. Psychiatric comorbidities, inability to inform baseline headache frequency, current or previous two-month use of preventive medications, and refusal to sign informed consent were exclusion criteria. The patients were evaluated in thorough initial consultations and divided in two groups based on their baseline headache frequency. The diagnosis and treatment strategies were clearly explained. The filling out of a detailed headache diary was requested from all patients. Endpoints compared headache frequency and adherence after two, four, and eight months between the two study groups. Results: One-hundred sixty-eight patients (31 male, 137 female) met the inclusion criteria. Nineteen patients (11.3%) were excluded. All patients had migraine or chronic migraine as primary headaches. Eighty had daily (DH), and 69 near-daily headache (NDH), at baseline consultation. Mean baseline frequency was 24.8 headache days/month (18.9 days/month for the near-daily group), average headache history was 20.6 years and mean time with >15 headache days/month was 4.8 years. Outpatient withdrawal, starting prevention, and enforcing the correct use of rescue therapy was carried out with all patients. After two months, 88% of the DH and 71% of the NDH groups adhered to treatment (p = 0.0002). The HF decreased to 12 and 9 headache days/month, respectively in DH and NDH groups (p > 0.05, non-significant) (Intention-to-treat (ITT) 14 DH; 12 NDH; p > 0.05). After four and eight months, 86.3% and 83.7% of the

  2. Gender, Emotion Work, and Relationship Quality: A Daily Diary Study

    PubMed Central

    Curran, Melissa A.; McDaniel, Brandon T.; Pollitt, Amanda M.; Totenhagen, Casey J.

    2015-01-01

    We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others’ emotional well-being. We examined emotion work two ways: trait (individuals’ average levels) and state (individuals’ daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals’ own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners. PMID:26508808

  3. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s-1), daily solar radiation (Rs, MJ m- 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  4. Advances in the homogenization of monthly and daily climate surface data in Switzerland

    NASA Astrophysics Data System (ADS)

    Füllemann, C.; Begert, M.; Z'graggen, L.; Croci-Maspoli, M.

    2009-04-01

    Homogenization of surface climate data is essential for the accurate monitoring of climate variability, climate extremes and climate change. The intention of MeteoSwiss by providing long term series of surface climate data in Switzerland is to a) systematically preserve historical climate data in respect to national and international guidelines and b) to homogenize these data on monthly and daily time scales. The former aspect has been considered by the definition of the Swiss National Basic Climatological Network (Swiss NBCN). This network defines the most valuable climatological surface stations in Switzerland and provides a basis to ensure a long-term perspective of their operation. For the latter aspect well established monthly homogenization methods are applied to the Swiss surface climate data. In addition, a spline method is used to derive daily adjustment values from monthly adjustments for temperature and precipitation. In line with the COST Action "Advances in homogenization methods of climate series: an integrated approach (HOME)" which dedicates a main focus on the comparison and development of daily homogenization methods we present first results of the comparison of the spline method with a labour intensive semi-objective homogenization procedure using long-term temperature series. The semi-objective method is based upon physical dependences of the inhomogenities on radiation and wind conditions and is believed to produce the most accurate daily adjustments. In this presentation results will be presented of the comparison of homogenization techniques for daily mean and extreme values of the temperature during the period 1901 until 2003 for 6 Swiss surface stations.

  5. Austrian Daily Climate Data Rescue and Quality Control

    NASA Astrophysics Data System (ADS)

    Jurkovic, A.; Lipa, W.; Adler, S.; Albenberger, J.; Lechner, W.; Swietli, R.; Vossberg, I.; Zehetner, S.

    2010-09-01

    Checked climate datasets are a "conditio sine qua non" for all projects that are relevant for environment and climate. In the framework of climate change studies and analysis it is essential to work with quality controlled and trustful data. Furthermore these datasets are used as input for various simulation models. In regard to investigations of extreme events, like strong precipitation periods, drought periods and similar ones we need climate data in high temporal resolution (at least in daily resolution). Because of the historical background - during Second World War the majority of our climate sheets were sent to Berlin, where the historical sheets were destroyed by a bomb attack and so important information got lost - only several climate sheets, mostly duplicates, before 1939 are available and stored in our climate data archive. In 1970 the Central Institute for Meteorology and Geodynamics in Vienna started a first attempt to digitize climate data by means of punch cards. With the introduction of a routinely climate data quality control in 1984 we can speak of high-class-checked daily data (finally checked data, quality flag 6). Our group is working on the processing of digitization and quality control of the historical data for the period 1872 to 1983 for 18 years. Since 2007 it was possible to intensify the work (processes) in the framework of an internal project, namely Austrian Climate Data Rescue and Quality Control. The aim of this initiative was - and still is - to supply daily data in an outstanding good and uniform quality. So this project is a kind of pre-project for all scientific projects which are working with daily data. In addition to routine quality checks (that are running since 1984) using the commercial Bull Software we are testing our data with additional open source software, namely ProClim.db. By the use of this spatial and statistical test procedure, the elements air temperature and precipitation - for several sites in Carinthia - could

  6. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  7. The waviness of the extratropical jet and daily weather extremes

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan

    2016-04-01

    In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.

  8. Modelling the atmospheric boundary layer for remotely sensed estimates of daily evaporation

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Blyth, K.; Camillo, P. J.

    1984-01-01

    An energy and moisture balance model of the soil surface was used to estimate daily evaporation from wheat and barley fields in West Germany. The model was calibrated using remotely sensed surface temperature estimates. Complete atmospheric boundary layer models are difficult to use because of the number of parameters involved and a simplified model was used here. The resultant evaporation estimates were compared to eddy correlation evaporation estimates and good agreement was found.

  9. Accuracy evaluation of ClimGen weather generator and daily to hourly disaggregation methods in tropical conditions

    NASA Astrophysics Data System (ADS)

    Safeeq, Mohammad; Fares, Ali

    2011-12-01

    Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather

  10. The Effect of Personality on Daily Life Emotional Processes

    PubMed Central

    Komulainen, Emma; Meskanen, Katarina; Lipsanen, Jari; Lahti, Jari Marko; Jylhä, Pekka; Melartin, Tarja; Wichers, Marieke; Isometsä, Erkki; Ekelund, Jesper

    2014-01-01

    Personality features are associated with individual differences in daily emotional life, such as negative and positive affectivity, affect variability and affect reactivity. The existing literature is somewhat mixed and inconclusive about the nature of these associations. The aim of this study was to shed light on what personality features represent in daily life by investigating the effect of the Five Factor traits on different daily emotional processes using an ecologically valid method. The Experience Sampling Method was used to collect repeated reports of daily affect and experiences from 104 healthy university students during one week of their normal lives. Personality traits of the Five Factor model were assessed using NEO Five Factor Inventory. Hierarchical linear modeling was used to analyze the effect of the personality traits on daily emotional processes. Neuroticism predicted higher negative and lower positive affect, higher affect variability, more negative subjective evaluations of daily incidents, and higher reactivity to stressors. Conscientiousness, by contrast, predicted lower average level, variability, and reactivity of negative affect. Agreeableness was associated with higher positive and lower negative affect, lower variability of sadness, and more positive subjective evaluations of daily incidents. Extraversion predicted higher positive affect and more positive subjective evaluations of daily activities. Openness had no effect on average level of affect, but predicted higher reactivity to daily stressors. The results show that the personality features independently predict different aspects of daily emotional processes. Neuroticism was associated with all of the processes. Identifying these processes can help us to better understand individual differences in daily emotional life. PMID:25343494

  11. An analysis of the daily radial activity of 7 boreal tree species, northwestern Quebec.

    PubMed

    Tardif, J; Flannigan, M; Bergeron, Y

    2001-01-01

    In the 'Des Vieux Arbres' ecological reserve situated within northwestern Quebec, 40 band dendrometers were installed on 7 of the major boreal tree species. The late Spring-early Summer daily radial activity registered in 1997 was related to daily weather variables. For each tree species, the daily mean i) cumulative radial increment and ii) radial activity indexed series obtained by first-difference standardization were analyzed. The results indicate the existence of strong similarities among the 7 species. All showed strong synchronous fluctuations in radius during late winter and early spring. This period ended with a short but sharp increase in radial increments that marked the passage of water into the stem. This initial swelling, less obvious in Pinus species was followed by a prolonged period of little change in radial activity. Meteorological data indicated that air temperature was positively related to stem swelling during the late winter-early spring period. Both air and soil temperatures became negatively related to radial expansion once the passage of water has occurred in the stem. Starting in early June, all species registered a sustained increase in radial increments possibly associated with active cell division. After this, radial expansion was negatively related to air temperature and positively to rainfall. PMID:11339696

  12. Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate.

    PubMed

    Le Tallec, Thomas; Perret, Martine; Théry, Marc

    2013-01-01

    Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14(th) night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes.

  13. Daily thermal predictions of the AGR-1 experiment with gas gaps varying with time

    SciTech Connect

    Hawkes, G.; Sterbentz, J.; Maki, J.; Pham, B.

    2012-07-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps changed from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were modeled with a linear change from the original fabrication gap dimensions to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation with the commercial finite element heat transfer code ABAQUS. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented. (authors)

  14. Light Pollution Modifies the Expression of Daily Rhythms and Behavior Patterns in a Nocturnal Primate

    PubMed Central

    Le Tallec, Thomas; Perret, Martine; Théry, Marc

    2013-01-01

    Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14th night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes. PMID:24236115

  15. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  16. Generating daily weather data for ecosystem modelling in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range

  17. Modelling sub-daily evaporation from a small reservoir.

    NASA Astrophysics Data System (ADS)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart

    2013-04-01

    Accurate quantification of evaporation from small water storages is essential for water management and is also required as input in some regional hydrological and meteorological models. Global estimates of the number of small storages or lakes (< 0.1 kilometers) are estimated to be in the order of 300 million (Downing et al., 2006). However, direct evaporation measurements at small reservoirs using the eddy covariance or scintillometry techniques have been limited due to their expensive and complex nature. To correctly represent the effect that small water bodies have on the regional hydrometeorology, reliable estimates of sub-daily evaporation are necessary. However, evaporation modelling studies at small reservoirs have so far been limited to quantifying daily estimates. In order to ascertain suitable methods for accurately modelling hourly evaporation from a small reservoir, this study compares evaporation results measured by the eddy covariance method at a small reservoir in southeast Queensland, Australia, to results from several modelling approaches using both over-water and land-based meteorological measurements. Accurate predictions of hourly evaporation were obtained by a simple theoretical mass transfer model requiring only over-water measurements of wind speed, humidity and water surface temperature. An evaporation model that was recently developed for use in small reservoir environments by Granger and Hedstrom (2011), appeared to overestimate the impact stability had on evaporation. While evaporation predictions made by the 1-dimensional hydrodynamics model, DYRESM (Dynamic Reservoir Simulation Model) (Imberger and Patterson, 1981), showed reasonable agreement with measured values. DYRESM did not show any substantial improvement in evaporation prediction when inflows and out flows were included and only a slighter better correlation was shown when over-water meteorological measurements were used in place of land-based measurements. Downing, J. A., Y. T

  18. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This chart plots the minimum daily atmospheric temperature measured by NASA's Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased. Clouds, ground fog, and frost were observed each night after the temperature started dropping.

  19. Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles

    NASA Astrophysics Data System (ADS)

    Tyler, Jonathan J.; Jones, Matthew; Arrowsmith, Carol; Allott, Tim; Leng, Melanie J.

    2016-09-01

    Understanding the modern day relationship between climate and the oxygen isotopic composition of precipitation (δ18OP) is crucial for obtaining rigorous palaeoclimate reconstructions from a variety of archives. To date, the majority of empirical studies into the meteorological controls over δ18OP rely upon daily, event scale, or monthly time series from individual locations, resulting in uncertainties concerning the representativeness of statistical models and the mechanisms behind those relationships. Here, we take an alternative approach by analysing daily patterns in δ18OP from multiple stations across the British Isles ( n = 10-70 stations). We use these data to examine the spatial and seasonal heterogeneity of regression statistics between δ18OP and common predictors (temperature, precipitation amount and the North Atlantic Oscillation index; NAO). Temperature and NAO are poor predictors of daily δ18OP in the British Isles, exhibiting weak and/or inconsistent effects both spatially and between seasons. By contrast δ18OP and rainfall amount consistently correlate at most locations, and for all months analysed, with spatial and temporal variability in the regression coefficients. The maps also allow comparison with daily synoptic weather types, and suggest characteristic δ18OP patterns, particularly associated with Cylonic Lamb Weather Types. Mapping daily δ18OP across the British Isles therefore provides a more coherent picture of the patterns in δ18OP, which will ultimately lead to a better understanding of the climatic controls. These observations are another step forward towards developing a more detailed, mechanistic framework for interpreting stable isotopes in rainfall as a palaeoclimate and hydrological tracer.

  20. A first approach to the homogenization of daily data using weather types classifications (HOWCLASS)

    NASA Astrophysics Data System (ADS)

    Garcia-Borés, I.; Aguilar, E.; Rasilla, D.; Rodrigo, F. S.; Fernández-Montes, S.; Luna, M. Y.; Sigró, J.; Brunet, M.

    2009-04-01

    The homogenization of daily data is a difficult task, as involves adjusting values recorded under very different and specific meteorological situations and due to larger inter-diurnal and spatial variations compared to those characterizing lower resolution data (i.e. monthly, seasonal and annual data). We introduce here a new method for the (Homogenization of Daily Data Using Weather Types Classifications, HOWCLASS ) for the adjustment of climatological elements on a daily resolution. We benefit from the intensive research which has been done recently in the fields of homogenization and weather types classifications, specially in the framework of two COST Actions: Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME) and Action 733, Harmonisation and Applications of Weather Types Classifications for European Regions). The basic idea underlying HOWCLASS is the aggregation of daily values into weather types and the calculation of average adjustments for each one of them. The development of HOWCLASS needs to combine 3 basic items: the specific characteristics of the climatological element (temperature, precipitation, etc.); the detection/correction algorithm (SNHT, RhTest, Caussinus-Mestre, MASH, etc.) and the adequate weather types classification (manual classifications, like those derived from the Lamb weather; automated classifications, based either on different correlation analyses or clustering methods; hybrid classifications ) for the geographical domain of the studied time series. Other factors cannot be missregarded, like the metadata availability, the impact of the annual cycle, the network density, etc. As a first step, we start -and present here - with a simple approach using the SDATS (Spanish Daily Temperature Series), the Standard Normal Homogeneity Test and the weather type classification developed by D. Rasilla for the Iberian Peninsula, using the EMSLP pressure data, to correct a selection of

  1. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  2. REL3.0 SW DAILY LOCAL NC

    Atmospheric Science Data Center

    2016-10-05

    ... Budget (SRB) Release 3.0 GEWEX Shortwave Daily Local Time Data in 1x1 Degree NetCDF Format   News:  GEWEX ... Temporal Resolution:  Daily from 3-hourly Local Sun time values File Format:  NETCDF Tools:  ...

  3. 20 CFR 330.2 - Computation of daily benefit rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... employment not covered by the Railroad Unemployment Insurance Act are not considered in computing his or her... Section 330.2 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT DETERMINATION OF DAILY BENEFIT RATES § 330.2 Computation of daily benefit rate. (a)...

  4. The Daily Curriculum Guide, Year II, Weeks 1-10.

    ERIC Educational Resources Information Center

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    Spanning two years, the program set forth in the Daily Curriculum Guide for preschool Spanish-speaking children is essentially a language maintenance model in which Spanish is used as a means to develop basic concepts, skills and attitudes. This guide gives daily lesson plans for the first ten weeks of the second year. Each lesson, written in…

  5. The Determinants of Daily Function in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Tseng, Mei-Hui; Chen, Kuan-Lin; Shieh, Jeng-Yi; Lu, Lu; Huang, Chien-Yu

    2011-01-01

    The aim of this study was to identify determinants of daily function in a population-based sample of children with cerebral palsy (CP). The study took into consideration factors from the entire scope of the International Classification of Functioning, Disability, and Health (ICF). Furthermore, the determinants of daily function were examined from…

  6. 40 CFR 75.45 - Daily quality assurance criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Daily quality assurance criteria. 75... (CONTINUED) CONTINUOUS EMISSION MONITORING Alternative Monitoring Systems § 75.45 Daily quality assurance... that such tests are unnecessary for providing quality-assured data....

  7. News Values and Country Non-Daily Reporting.

    ERIC Educational Resources Information Center

    Vines, Josie

    2001-01-01

    Suggests Australia's country, non-daily newspapers present journalism graduates with excellent opportunities to experience a wide range of journalistic responsibilities and compile an impressive portfolio. Argues the need for the news values of these newspapers to be integrated into pedagogical models. Documents the country non-daily's news…

  8. The Flying Newsboy: A Small Daily Attempts Air Delivery.

    ERIC Educational Resources Information Center

    Watts, Elizabeth A.

    For 10 months in 1929-30, subscribers to "The McCook (Nebraska) Daily Gazette" (a daily newspaper serving 33 towns in southwestern Nebraska and northwestern Kansas) received their newspapers via air delivery with "The Newsboy," a Curtis Robin cabin monoplane. In an age when over-the-road travel was difficult and air travel was just emerging,…

  9. Long daily movements of wolves (Canis lupus) during pup raising

    USGS Publications Warehouse

    Mech, L. David; Cluff, H. Dean

    2009-01-01

    Wolves, Canis lupus, on Ellesmere Island traveled a daily round-trip distance of 40.2 km from their den to a landfill during July 2008, plus an undetermined distance hunting after leaving the landfill. Although long travels by Wolves are well known, this appears to be the first documentation of long daily movements by Wolves rearing pups.

  10. 19 CFR 159.35 - Certified daily rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY (CONTINUED) LIQUIDATION OF DUTIES Conversion of Foreign Currency § 159.35 Certified daily rate... the conversion of foreign currency whenever a proclaimed rate or certified quarterly rate is not... 19 Customs Duties 2 2010-04-01 2010-04-01 false Certified daily rate. 159.35 Section...

  11. Manual of Alternative Procedures: Activities of Daily Living.

    ERIC Educational Resources Information Center

    McCormack, James E.; And Others

    Intended for teachers and others providing services for moderately and severely physically and/or mentally handicapped children and young adults, the manual presents strategies, procedures, and task analyses for training in daily living skills. Section I provides an overview of tactics for teaching activities of daily living (ADL) skills,…

  12. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  13. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  14. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  15. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  16. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  17. Experiential avoidance and well-being: a daily diary analysis.

    PubMed

    Machell, Kyla A; Goodman, Fallon R; Kashdan, Todd B

    2015-01-01

    Experiential avoidance (EA) is a regulatory strategy characterised by efforts to control or avoid unpleasant thoughts, feelings and bodily sensations. Most studies of EA have used trait measures without considering the effects of EA on psychological functioning in naturalistic settings. To address this gap, we used daily diary methodology to examine the influence of EA of anxiety on everyday well-being. For two weeks, 89 participants provided daily reports of EA, positive and negative affect, enjoyment of daily events and meaning in life (MIL). Daily EA predicted higher negative affect, lower positive affect, less enjoyment of daily events (exercising, eating food and listening to music) and less MIL. The effect of EA on positive affect was not accounted for by the amount of negative affect experienced. Our daily measure of EA was a stronger predictor of daily well-being than a traditional trait measure (The Acceptance and Action Questionnaire). Taken together, results offer insights into the adverse effects of EA on daily well-being and suggest that EA is a context-specific regulatory strategy that might be best captured using a state-dependent measure. PMID:24800802

  18. Circulation Practices and Pricing in Mid-Sized Dailies.

    ERIC Educational Resources Information Center

    Picard, Robert G.

    A study analyzed circulation practices and pricing of mid-sized daily newspapers, seeking to draw together a comprehensive description of the circulation situation for those papers. Seventy-five circulation directors, randomly selected from newspapers with daily circulation between 25,000 and 100,000, completed mailed questionnaires requesting…

  19. The impact of North Indian Ocean sea surface temperatures on the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Levine, Richard; Turner, Andrew

    2010-05-01

    The relationship between sea surface temperature (SST) in the North Indian Ocean and Indian monsoon rainfall is investigated in both observational/re-analyses and climate model simulations. We focus on the partially land-enclosed Arabian Sea and Bay of Bengal, where SSTs are found to have significant correlations with All Indian Rainfall (AIR). This part of the Indian Ocean is therefore important for monsoon predictions, while this area tends to provide significant problems in coupled atmosphere-ocean model simulations. The observational variability of the SST-rainfall relationship is investigated on seasonal to decadal time-scales. This highlights a predominantly negative correlation over the monsoon trough area in North East India and a positive correlation over the rest of India, while these relationships are found to be weakened by the ENSO-monsoon teleconnection. Mechanisms are further investigated by performing a series of atmosphere-only model simulations using the Met Office Unified Model (MetUM). In these experiments we determine the response of the atmosphere to forced cold SST anomalies over isolated areas, which we also extend out into the equatorial Indian Ocean. The cold SSTs in the Arabian Sea and Bay of Bengal lead to a dramatic reduction in Indian rainfall, while cold biases in the equatorial Indian Ocean have the opposite effect, highlighting the competition between oceanic and continental Tropical Convergence Zones (TCZ). However, the impacts for the Arabian Sea and Bay of Bengal experiments are found to change between the pre-monsoon and post-monsoon onset periods.The impact on monsoon rainfall for cold SST biases in these regions is found to be the result of a balance between changes in regional low-level temperature gradients and the availability of moisture over the oceans, which determine the pathway of the monsoon jet and the moisture transport towards India. These experiments suggest that the intra-seasonal variability of the relationship

  20. The Relationships between Weather-Related Factors and Daily Outdoor Physical Activity Counts on an Urban Greenway

    PubMed Central

    Wolff, Dana; Fitzhugh, Eugene C.

    2011-01-01

    The purpose of this study was to examine relationships between weather and outdoor physical activity (PA). An online weather source was used to obtain daily max temperature [DMT], precipitation, and wind speed. An infra-red trail counter provided data on daily trail use along a greenway, over a 2-year period. Multiple regression analysis was used to examine associations between PA and weather, while controlling for day of the week and month of the year. The overall regression model explained 77.0% of the variance in daily PA (p < 0.001). DMT (b = 10.5), max temp-squared (b = −4.0), precipitation (b = −70.0), and max wind speed (b = 1.9) contributed significantly. Conclusion: Aggregated daily data can detect relationships between weather and outdoor PA. PMID:21556205

  1. Ambient temperature signalling in plants.

    PubMed

    Wigge, Philip A

    2013-10-01

    Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field.

  2. Daily activities and sleep quality in young adults.

    PubMed

    Sexton-Radek, Kathy; Pichler-Mowry, Rene

    2011-04-01

    Daily activity levels were investigated as related to sleep quality in young adult college students aged 18 to 30 years. 85 participants (20 men, 65 women) completed the Young Adult Daily Activity Scale (YADAS). This 37-item checklist has 34 items based on focus group discussion points of college students' typical daily activities and three blank items for students to include their daily activities if not in the listing. The tabulation of type and amount of waking daily activities represents a unique measurement of factors that may affect sleep quality. The participants also rated their typical sleep quality using a standard 5-point scale (low indicating poor sleep). Correlations of sleep ratings and activities were not significant. PMID:21667753

  3. The Association of Daily Physical Symptoms with Future Health

    PubMed Central

    Leger, Kate A.; Charles, Susan T.; Ayanian, John Z.; Almeida, David M.

    2015-01-01

    Rationale Daily physical symptoms play a critical role in health and illness experiences. Despite their daily prevalence, the ability of these symptoms to predict future health status is debated. Objective The current study examined whether physical symptom reports predict future health outcomes independent of trait measures of emotion. Methods Participants (N = 1189) who completed both Midlife in the United States (MIDUS) Surveys I and II as well as the National Study of Daily Experiences (NSDE) reported their daily physical symptoms at baseline and number of reported chronic conditions and functional disability nearly 10 years later. Results Physical symptoms at baseline significantly predicted the occurrence of chronic conditions and functional impairment at long-term follow-up, even after adjusting for self-reported affect, self-reported health, and previous health status. Conclusion Findings suggest that daily physical symptoms are unique indicators of future health status. PMID:26364011

  4. Yaquina Bay, Oregon, Intertidal Sediment Temperature Database, 1998 - 2006.

    EPA Science Inventory

    Detailed, long term sediment temperature records were obtained and compiled in a database to determine the influence of daily, monthly, seasonal and annual temperature variation on eelgrass distribution across the intertidal habitat in Yaquina Bay, Oregon. Both currently and hi...

  5. Short-term effects of daily air pollution on mortality

    NASA Astrophysics Data System (ADS)

    Wan Mahiyuddin, Wan Rozita; Sahani, Mazrura; Aripin, Rasimah; Latif, Mohd Talib; Thach, Thuan-Quoc; Wong, Chit-Ming

    2013-02-01

    The daily variations of air pollutants in the Klang Valley, Malaysia, which includes Kuala Lumpur were investigated for its association with mortality counts using time series analysis. This study located in the tropic with much less seasonal variation than typically seen in more temperate climates. Data on daily mortality for the Klang Valley (2000-2006), daily mean concentrations of air pollutants of PM10, SO2, CO, NO2, O3, daily maximum O3 and meteorological conditions were obtained from Malaysian Department of Environment. We examined the association between pollutants and daily mortality using Poisson regression while controlling for time trends and meteorological factors. Effects of the pollutants (Relative Risk, RR) on current-day (lag 0) mortality to seven previous days (lag 7) and the effects of the pollutants from the first two days (lag 01) to the first eight days (lag 07) were determined. We found significant associations in the single-pollutant model for PM10 and the daily mean O3 with natural mortality. For the daily mean O3, the highest association was at lag 05 (RR = 1.0215, 95% CI = 1.0013-1.0202). CO was found not significantly associated with natural mortality, however the RR's of CO were found to be consistently higher than PM10. In spite of significant results of PM10, the magnitude of RR's of PM10 was not important for natural mortality in comparison with either daily mean O3 or CO. There is an association between daily mean O3 and natural mortality in a two-pollutants model after adjusting for PM10. Most pollutants except SO2, were significantly associated with respiratory mortality in a single pollutant model. Daily mean O3 is also important for respiratory mortality, with over 10% of mortality associated with every IQR increased. These findings are noteworthy because seasonal confounding is unlikely in this relatively stable climate, by contrast with more temperate regions.

  6. Pharmacokinetics and pharmacodynamics of boosted once-daily darunavir.

    PubMed

    Kakuda, Thomas N; Brochot, Anne; Tomaka, Frank L; Vangeneugden, Tony; Van De Casteele, Tom; Hoetelmans, Richard M W

    2014-10-01

    The ability to dose antiretroviral agents once daily simplifies the often complex therapeutic regimens required for the successful treatment of HIV infection. Thus, once-daily dosing can lead to improved patient adherence to medication and, consequently, sustained virological suppression and reduction in the risk of emergence of drug resistance. Several trials have evaluated once-daily darunavir/ritonavir in combination with other antiretrovirals (ARTEMIS and ODIN trials) or as monotherapy (MONET, MONOI and PROTEA trials) in HIV-1-infected adults. Data from ARTEMIS and ODIN demonstrate non-inferiority of once-daily darunavir/ritonavir against a comparator and, together with pharmacokinetic data, have established the suitability of once-daily darunavir/ritonavir for treatment-naive and treatment-experienced patients with no darunavir resistance-associated mutations. The findings of ARTEMIS and ODIN have led to recent updates to treatment guidelines, whereby once-daily darunavir/ritonavir, given with other antiretrovirals, is now a preferred treatment option for antiretroviral-naive adult patients and a simplified treatment option for antiretroviral-experienced adults who have no darunavir resistance-associated mutations. Once-daily dosing with darunavir/ritonavir is an option for treatment-naive and for treatment-experienced paediatric patients with no darunavir resistance-associated mutations based on the findings of the DIONE trial and ARIEL substudy. This article reviews the pharmacokinetics, efficacy, safety and tolerability of once-daily boosted darunavir. The feasibility of darunavir/ritonavir monotherapy as a treatment approach for some patients is also discussed. Finally, data on a fixed-dose combination of 800/150 mg of darunavir/cobicistat once daily are presented, showing comparable darunavir bioavailability to that obtained with 800/100 mg of darunavir/ritonavir once daily. PMID:24951533

  7. Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish

    PubMed Central

    Villamizar, Natalia; Ribas, Laia; Piferrer, Francesc; Vera, Luisa M.; Sánchez-Vázquez, Francisco Javier

    2012-01-01

    In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled “gating” mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation. PMID:23284912

  8. Investigation on seasonal variations of aerosol properties and its influence on radiative effect over an urban location in central India

    NASA Astrophysics Data System (ADS)

    Jose, Subin; Gharai, Biswadip; Niranjan, K.; Rao, P. V. N.

    2016-05-01

    Aerosol plays an important role in modulating solar radiation, which are of great concern in perspective of regional climate change. The study analysed the physical and optical properties of aerosols over an urban area and estimated radiative effect using three years in-situ data from sunphotometer, aethalometer and nephelometer as input to radiative transfer model. Aerosols properties indicate the dominance of fine mode aerosols over the study area. However presence of coarse mode aerosols is also found during pre-monsoon [March-April-May]. Daily mean aerosol optical depth showed a minimum during winter [Dec-Jan-Feb] (0.45-0.52) and a maximum during pre-monsoon (0.6-0.7), while single scattering albedo (ω) attains its maximum (0.78 ± 0.05) in winter and minimum (0.67 ± 0.06) during pre-monsoon and asymmetry factor varied in the range between 0.48 ± 0.02 to 0.53 ± 0.04. Episodic events of dust storm and biomass burning are identified by analyzing intrinsic aerosol optical properties like scattering Ångström exponent (SAE) and absorption Ångström exponent (AAE) during the study periods and it has been observed that during dust storm events ω is lower (˜0.77) than that of during biomass burning (˜0.81). The aerosol direct radiative effect at top of the atmosphere during winter is -11.72 ± 3.5 Wm-2, while during pre-monsoon; it is -5.5 ± 2.5 Wm-2, which can be due to observed lower values of ω during pre-monsoon. A large positive enhancement of atmospheric effect of ˜50.53 Wm-2 is observed during pre-monsoon compared to winter. Due to high aerosol loading in pre-monsoon, a twofold negative surface forcing is also observed in comparison to winter.

  9. Adaptation to Daily Stress among Mothers of Children with an Autism Spectrum Disorder: The Role of Daily Positive Affect

    ERIC Educational Resources Information Center

    Ekas, Naomi V.; Whitman, Thomas L.

    2011-01-01

    Raising a child with an autism spectrum disorder is a challenging experience that can impact maternal well-being. Using a daily diary methodology, this study investigates (1) the relationship between stress and negative affect, and (2) the role of daily positive affect as a protective factor in the stress and negative affect relationship. Results…

  10. Generation of Gridded Daily Weather Ensembles for Decision Support in the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Rajagopalan, B.; Kleiber, W.; Katz, R. W.; Podesta, G. P.

    2014-12-01

    We introduce a stochastic weather generator for the variables of minimum temperature, maximum temperature, and precipitation occurrence. Temperature variables are modeled in vector autoregressive framework, conditional on precipitation occurrence. Precipitation occurrence arises via a probit model, and both temperature and occurrence are spatially correlatedusing spatial Gaussian processes. Additionally, local climate is included by spatially-varying model coefficients, allowing spatially-evolving relationships between variables. The method is illustrated on a network of stations in the Pampas region of Argentina where nonstationary relationships and historical spatial correlation challenge existing approaches. The covariancestructure of this network of stations is then used to produce daily gridded weather scenarios which can be used to drive hydrologic models. Inclusion of other covariates such as seasonal total precipitation and global climate drivers allows the potential for decadal projections, an increasingly useful tool for decision support.

  11. Torpor in the Patagonian opossum ( Lestodelphys halli): implications for the evolution of daily torpor and hibernation

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Martin, Gabriel M.

    2013-10-01

    Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum ( Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2 ± 1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.

  12. Torpor in the Patagonian opossum (Lestodelphys halli): implications for the evolution of daily torpor and hibernation.

    PubMed

    Geiser, Fritz; Martin, Gabriel M

    2013-10-01

    Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum (Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2 ± 1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.

  13. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based

  14. Human responses to the geophysical daily, annual and lunar cycles.

    PubMed

    Foster, Russell G; Roenneberg, Till

    2008-09-01

    Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.

  15. Daily rhythms of the sleep-wake cycle

    PubMed Central

    2012-01-01

    The amount and timing of sleep and sleep architecture (sleep stages) are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake) and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'). The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population); and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes) are examined. PMID:22738268

  16. A statistical analysis of the daily streamflow hydrograph

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Delleur, J. W.

    1984-03-01

    In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.

  17. Contribution of daily and seasonal biorhythms to obesity in humans

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Witowski, Janusz

    2015-04-01

    While the significance of obesity as a serious health problem is well recognized, little is known about whether and how biometerological factors and biorhythms causally contribute to obesity. Obesity is often associated with altered seasonal and daily rhythmicity in food intake, metabolism and adipose tissue function. Environmental stimuli affect both seasonal and daily rhythms, and the latter are under additional control of internal molecular oscillators, or body clocks. Modifications of clock genes in animals and changes to normal daily rhythms in humans (as in shift work and sleep deprivation) result in metabolic dysregulation that favours weight gain. Here, we briefly review the potential links between biorhythms and obesity in humans.

  18. Optimal fluid intake in daily diet: Avicenna's view.

    PubMed

    Nimrouzi, Majid; Tafazoli, Vahid; Daneshfard, Babak; Zare, Manijhe

    2016-07-01

    Adequate daily water consumption is an important factor of keeping regular homeostasis. However, the best quantity of daily water consumption for a healthy individual is not virtually stated in the literature. Despite the dearth of evidence-based recommendations, it is commonly thought that ingesting eight glasses of water a day is good for a healthy person. Avicenna had a unique viewpoint. He believed that daily water intake depended on numerous elements together with age, intercourse, body temperament, season, occupation and various internal and external elements. He also cited a few essential and useful measures regarding proper water consumption, which have additionally been emphasized in Islamic hadiths. PMID:27417170

  19. [Daily recovery and well-being: an overview].

    PubMed

    Demerouti, Evangelia; Sanz Vergel, Ana Isabel

    2012-02-01

    The aim of this article is to provide a literature review on daily recovery and its effects on well-being. Specifically, we will discuss theories that help us understand the process of recovery and we will clarify how recovery and its potential outcomes have been conceptualized so far. Subsequently, we present empirical findings of diary studies addressing the activities that may facilitate or hinder daily recovery. We conclude with an overall framework from which recovery can be understood, claiming that daily recovery is an important moderator in the buffering process of the negative effects of job demands. PMID:22269367

  20. Time series ARIMA models for daily price of palm oil

    NASA Astrophysics Data System (ADS)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  1. Weather conditions and daily television use in the Netherlands, 1996-2005.

    PubMed

    Eisinga, Rob; Franses, Philip Hans; Vergeer, Maurice

    2011-07-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996-2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather conditions are associated with lower human mood, and that watching entertainment and avoiding informational programs may serve to repair such mood. We consequently hypothesize that people spend more time watching television if inclement and uncomfortable weather conditions (low temperatures, little sunshine, much precipitation, high wind velocity, less daylight) coincide with more airtime for entertainment programs, but that they view less if the same weather conditions coincide with more airtime devoted to information fare. We put this interaction thesis to a test using a time series analysis of daily television viewing data of the Dutch audience obtained from telemeters (T = 3,653), merged with meteorological weather station statistics and program broadcast figures, whilst controlling for a wide array of recurrent and one-time societal events. The results provide substantial support for the proposed interaction of program airtime and the weather parameters temperature and sunshine on aggregate television viewing time. Implications of the findings are discussed.

  2. Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities

    PubMed Central

    Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando

    2016-01-01

    Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150

  3. Weather conditions and daily television use in the Netherlands, 1996-2005

    NASA Astrophysics Data System (ADS)

    Eisinga, Rob; Franses, Philip Hans; Vergeer, Maurice

    2011-07-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996-2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather conditions are associated with lower human mood, and that watching entertainment and avoiding informational programs may serve to repair such mood. We consequently hypothesize that people spend more time watching television if inclement and uncomfortable weather conditions (low temperatures, little sunshine, much precipitation, high wind velocity, less daylight) coincide with more airtime for entertainment programs, but that they view less if the same weather conditions coincide with more airtime devoted to information fare. We put this interaction thesis to a test using a time series analysis of daily television viewing data of the Dutch audience obtained from telemeters ( T = 3,653), merged with meteorological weather station statistics and program broadcast figures, whilst controlling for a wide array of recurrent and one-time societal events. The results provide substantial support for the proposed interaction of program airtime and the weather parameters temperature and sunshine on aggregate television viewing time. Implications of the findings are discussed.

  4. The Effects of Daily Weather on Accelerometer-measured Physical Activity among Adults with Arthritis

    PubMed Central

    Feinglass, Joe; Lee, Julia; Dunlop, Dorothy; Song, Jing; Semanik, Pam; Chang, Rowland W.

    2010-01-01

    Background This study analyzes Chicago-area weather effects on objectively measured physical activity over a three year period among a cohort of 241 participants in an on-going arthritis physical activity trial. Methods Uniaxial accelerometer counts and interview data were analyzed for up to six weekly study waves involving 4823 days of wear. The effects of temperature, rainfall, snowfall and daylight hours were analyzed after controlling for participant characteristics, day of the week, and daily accelerometer wear hours in a mixed effects linear regression model. Results Daylight hours, mean daily temperature <20 or ≥ 75 degrees and light or heavy rainfall (but not snowfall) were all significantly associated with lower physical activity after controlling for the significant effects of weekends, accelerometer wear hours, age, sex, type of arthritis, employment, Hispanic ethnicity, obesity, and SF36 physical and mental health scores. Conclusions The cumulative effects of weather are reflected in a 38.3% mean monthly difference in daily counts between November and June, reflecting over three additional hours of sedentary time. Physical activity promotion programs for older persons with chronic conditions need lifestyle physical activity plans adapted to weather extremes. PMID:21885884

  5. Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities.

    PubMed

    Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando

    2016-01-01

    Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material).

  6. Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities.

    PubMed

    Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando

    2016-01-01

    Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150

  7. Effects of the summer heat wave of 1988 on daily mortality in Allegheny County, PA.

    PubMed

    Ramlow, J M; Kuller, L H

    1990-01-01

    The authors studied total mortality in Allegheny County, PA, during the summer of 1988. A heat wave occurred in July of 1988, with daily maximum temperatures near or above 90 degrees Fahrenheit on 15 consecutive days. During that period there were a total of 694 deaths from all causes in the county, compared with an expected 587 deaths (P less than .01). All 107 excess deaths were of persons ages 65 or older, with the majority (78) occurring to persons older than age 75. Daily mortality was most closely correlated with average temperature from the previous day (R = .49, P less than .01), suggesting the cumulative effects of successive high daytime and night-time temperatures on susceptible persons. Evaluation of a possible effect on mortality of high ambient ozone levels detected in early July suggested that ozone did not contribute to excess mortality during the heat wave. Comparison of the 1988 heat wave with a less intense hot spell of 1973 indicated that excess mortality was less than would have been expected in 1988. The authors speculate that increased public awareness and the wider use of air conditioning over the years may have reduced the lethality of periods of extreme summer temperatures in urban areas. Further research is needed to evaluate this hypothesis completely. Public health officials should continue to monitor weather forecasts for predictions of extended periods of unusual heat and should warn the public to take suitable precautions during such periods. PMID:2113688

  8. Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world.

    PubMed

    Rojas, José M; Castillo, Simón B; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco

    2014-01-01

    Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24 ± 0, 24 ± 4 and 24 ± 8 °C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, --i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance.

  9. Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world.

    PubMed

    Rojas, José M; Castillo, Simón B; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco

    2014-01-01

    Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24 ± 0, 24 ± 4 and 24 ± 8 °C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, --i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance. PMID:25207653

  10. Coping with Daily Thermal Variability: Behavioural Performance of an Ectotherm Model in a Warming World

    PubMed Central

    Rojas, José M.; Castillo, Simón B.; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco

    2014-01-01

    Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24±0, 24±4 and 24±8°C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, – i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance. PMID:25207653

  11. Specific dimensions of impulsivity are differentially associated with daily and non-daily cigarette smoking in young adults.

    PubMed

    Lee, Dustin C; Peters, Jessica R; Adams, Zachary W; Milich, Richard; Lynam, Donald R

    2015-07-01

    Young adults are at risk for initiation of tobacco use and progression to tobacco dependence. Not every person who smokes cigarettes becomes tobacco dependent, however, and non-daily smoking is becoming more prevalent among those who use tobacco. It is likely that individual differences in psychosocial and behavioral factors influence risk for engaging in non-daily and daily cigarette smoking. The objective of this study was to investigate the associations between impulsivity and smoking status in young adults who vary in frequency of cigarette smoking. Young adult first-year college students between the ages of 18-24 (512) were classified to one of three groups: non-smokers, non-daily smokers, or daily smokers, and impulsivity was assessed using the UPPS-P (negative and positive urgency, lack of premeditation, lack of perseverance, sensation seeking). When all impulsivity dimensions were used simultaneously to predict smoking status, negative urgency predicted increased risk of membership in the daily smoking group and lack of premeditation predicted increased risk of membership in the non-daily smoking group. These results suggest that dimensions of impulsivity may contribute differentially to forms of smoking behavior in young adults.

  12. Specific dimensions of impulsivity are differentially associated with daily and non-daily cigarette smoking in young adults.

    PubMed

    Lee, Dustin C; Peters, Jessica R; Adams, Zachary W; Milich, Richard; Lynam, Donald R

    2015-07-01

    Young adults are at risk for initiation of tobacco use and progression to tobacco dependence. Not every person who smokes cigarettes becomes tobacco dependent, however, and non-daily smoking is becoming more prevalent among those who use tobacco. It is likely that individual differences in psychosocial and behavioral factors influence risk for engaging in non-daily and daily cigarette smoking. The objective of this study was to investigate the associations between impulsivity and smoking status in young adults who vary in frequency of cigarette smoking. Young adult first-year college students between the ages of 18-24 (512) were classified to one of three groups: non-smokers, non-daily smokers, or daily smokers, and impulsivity was assessed using the UPPS-P (negative and positive urgency, lack of premeditation, lack of perseverance, sensation seeking). When all impulsivity dimensions were used simultaneously to predict smoking status, negative urgency predicted increased risk of membership in the daily smoking group and lack of premeditation predicted increased risk of membership in the non-daily smoking group. These results suggest that dimensions of impulsivity may contribute differentially to forms of smoking behavior in young adults. PMID:25827335

  13. Specific Dimensions of Impulsivity Are Differentially Associated with Daily and Non-Daily Cigarette Smoking in Young Adults

    PubMed Central

    Lee, Dustin C.; Peters, Jessica R.; Adams, Zachary W.; Milich, Richard; Lynam, Donald R.

    2015-01-01

    Young adults are at risk for initiation of tobacco use and progression to tobacco dependence. Not every person who smokes cigarettes becomes tobacco dependent, however, and non-daily smoking is becoming more prevalent among those who use tobacco. It is likely that individual differences in psychosocial and behavioral factors influence risk for engaging in non-daily and daily cigarette smoking. The objective of this study was to investigate the associations between impulsivity and smoking status in young adults who vary in frequency of cigarette smoking. Young adult first-year college students between the ages of 18-24 (512) were classified to one of three groups: non-smokers, non-daily smokers, or daily smokers, and impulsivity was assessed using the UPPS-P(Negative and Positive Urgency, lack of Premeditation, lack of Perseverance, Sensation Seeking). When all impulsivity dimensions were used simultaneously to predict smoking status, negative urgency predicted increased risk of membership in the daily smoking group and lack of premeditation predicted increased risk of membership in the non-daily smoking group. These results suggest that dimensions of impulsivity may contribute differentially to forms of smoking behavior in young adults. PMID:25827335

  14. ERP time series with daily and sub-daily resolution determined from CONT05

    NASA Astrophysics Data System (ADS)

    Artz, T.; Böckmann, S.; Nothnagel, A.; Tesmer, V.

    2007-07-01

    From time to time, continuous VLBI campaigns take place under the direction of the IVS. Even though these observations are continuous over two weeks, the standard VLBI analysis procedure leads to independent daily datasets. In this paper, an alternative approach is presented to estimate earth rotation parameters with different temporal resolutions. By stacking the single sessions to a two-weekly solution on the normal equation level, a consistent time series is produced over the whole CONT05 period. Stacked parameters are station positions which are estimated in a 'global' approach and borders of time dependent parameters e.g. zenith wet delay. Analysis of the correlation matrix of estimated parameters gives an impression of the dependencies between them. Furthermore, it is demonstrated how these dependencies depend on the type of datum used. E.g. correlations between earth rotation parameters (ERP) and tropospheric zenith delay of certain VLBI sites have been detected. The ERP time series resulting from the stacking approach turned out to be more consistent over the fortnightly time span. In particular, time series of hourly ERP exhibit a better behaviour at the session boundaries, since the discrepancies at session borders due to poorly determined intervals is minimized.

  15. Complex dynamical behaviors of daily data series in stock exchange

    NASA Astrophysics Data System (ADS)

    Wang, Hongchun; Chen, Guanrong; Lü, Jinhu

    2004-12-01

    It is well known that many economic data series show chaotic behaviors. In this Letter, we further investigate the complex dynamical behaviors of the daily data series, including opening quotation, closing quotation, maximum price, minimum price, and total exchange quantum, in Shenzhen stock exchange and Shanghai stock exchange, which are two representative stock exchanges in mainland China. The maximum Lyapunov exponents, correlation dimensions, and frequency spectra are calculated for these time series. Our results indicate that some daily data series of stock exchanges display low-dimensional chaotic behaviors, and some other daily data series do not show any chaotic behavior. Moreover, we introduce a weighted one-rank local-region approach for predicting short-term daily data series of stock exchange.

  16. Daily Newspaper Photojournalism in the Rocky Mountain West.

    ERIC Educational Resources Information Center

    Pasternack, Steve; Martin, Don R.

    1985-01-01

    Explores several aspects of photojournalism at daily newspapers in the Rocky Mountain states and provides photojournalism educators with insights into what characteristics photo editors look for in photographers. (FL)

  17. Unsupervised daily routine and activity discovery in smart homes.

    PubMed

    Jie Yin; Qing Zhang; Karunanithi, Mohan

    2015-08-01

    The ability to accurately recognize daily activities of residents is a core premise of smart homes to assist with remote health monitoring. Most of the existing methods rely on a supervised model trained from a preselected and manually labeled set of activities, which are often time-consuming and costly to obtain in practice. In contrast, this paper presents an unsupervised method for discovering daily routines and activities for smart home residents. Our proposed method first uses a Markov chain to model a resident's locomotion patterns at different times of day and discover clusters of daily routines at the macro level. For each routine cluster, it then drills down to further discover room-level activities at the micro level. The automatic identification of daily routines and activities is useful for understanding indicators of functional decline of elderly people and suggesting timely interventions.

  18. Impact of intra-daily SST variability on ENSO characteristics in a coupled model

    NASA Astrophysics Data System (ADS)

    Masson, Sébastien; Terray, Pascal; Madec, Gurvan; Luo, Jing-Jia; Yamagata, Toshio; Takahashi, Keiko

    2012-08-01

    This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it