Science.gov

Sample records for prebiotic low-digestible carbohydrate

  1. Low-digestible carbohydrates in practice.

    PubMed

    Grabitske, Hollie A; Slavin, Joanne L

    2008-10-01

    Low-digestible carbohydrates are carbohydrates that are incompletely or not absorbed in the small intestine but are at least partly fermented by bacteria in the large intestine. Fiber, resistant starch, and sugar alcohols are types of low-digestible carbohydrates. Given potential health benefits (including a reduced caloric content, reduced or no effect on blood glucose levels, non-cariogenic effect), the prevalence of low-digestible carbohydrates in processed foods is increasing. Low-digestible carbohydrate fermentation in the gut causes gastrointestinal effects, especially at higher intakes. We review the wide range of low-digestible carbohydrates in food products, offer advice on identifying low-digestible carbohydrates in foods and beverages, and make suggestions for intakes of low-digestible carbohydrates.

  2. Synthesis of carbohydrates in mineral-guided prebiotic cycles.

    PubMed

    Kim, Hyo-Joong; Ricardo, Alonso; Illangkoon, Heshan I; Kim, Myong Jung; Carrigan, Matthew A; Frye, Fabianne; Benner, Steven A

    2011-06-22

    One present obstacle to the "RNA-first" model for the origin of life is an inability to generate reasonable "hands off" scenarios for the formation of carbohydrates under conditions where they might have survived for reasonable times once formed. Such scenarios would be especially compelling if they deliver pent(ul)oses, five-carbon sugars found in terran genetics, and exclude other carbohydrates (e.g., aldotetroses) that may also be able to function in genetic systems. Here, we provide detailed chemical analyses of carbohydrate premetabolism, showing how borate, molybdate, and calcium minerals guide the formation of tetroses (C(4)H(8)O(4)), heptoses (C(7)H(14)O(7)), and pentoses (C(5)H(10)O(5)), including the ribose found in RNA, in "hands off" experiments, starting with formaldehyde and glycolaldehyde. These results show that pent(ul)oses would almost certainly have formed as stable borate complexes on the surface of an early Earth beneath a humid CO(2) atmosphere suffering electrical discharge. While aldotetroses form extremely stable complexes with borate, they are not accessible by pathways plausible under the most likely early Earth scenarios. The stabilization by borate is not, however, absolute. Over longer times, material is expected to have passed from borate-bound pent(ul)oses to a branched heptulose, which is susceptible to Cannizzaro reduction to give dead end products. We show how this fate might be avoided using molybdate-catalyzed rearrangement of a branched pentose that is central to borate-moderated cycles that fix carbon from formaldehyde. Our emerging understanding of the nature of the early Earth, including the presence of hydrated rocks undergoing subduction to form felsic magmas in the early Hadean eon, may have made borate and molydate species available to prebiotic chemistry, despite the overall "reduced" state of the planet.

  3. In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates.

    PubMed

    Hernandez-Hernandez, Oswaldo; Sanz, M Luz; Kolida, Sofia; Rastall, Robert A; Moreno, F Javier

    2011-11-23

    The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides , Lactobacillus - Enterococcus , Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides - Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.

  4. In vitro fermentation of prebiotic carbohydrates by intestinal microbiota in the presence of Lactobacillus amylovorus DSM 16998.

    PubMed

    Cardarelli, H R; Martinez, R C R; Albrecht, S; Schols, H; Franco, B D G M; Saad, S M I; Smidt, H

    2016-02-01

    The aim of this study was to evaluate the assimilation of the prebiotics fructooligosaccharides (FOS), galactooligosaccharides (GOS), and Konjac glucomannan oligosaccharides (KGMO) by three human (H1, H2 and H3) and pig (P1, P2 and P3) faecal microbiotas in the presence of the potentially probiotic strain Lactobacillus amylovorus DSM 16698, using an in vitro batch fermentation model. Total bacteria and L. amylovorus populations were quantified using qPCR and biochemical features (pH, production of short chain fatty acids (SCFA), lactate, ammonia, and carbohydrate assimilation) were determined. L. amylovorus did not have a competitive advantage under in vitro conditions, reflected by its reduced relative abundance during fermentation despite the carbohydrate sources added. Pig microbiota sustained more stable probiotic counts. Intermittently produced lactate was possibly assimilated by the microbiota and converted to other SCFA as the carbohydrates were assimilated, with H3 probably having a methanogenic metabolism with high lactate and acetate consumption except in the presence of FOS, which assimilation resulted in the highest total SCFA for this volunteer. Addition of FOS also resulted in lower pH and ammonia, which might have been used as nitrogen source by pig microbiota. KGMO needed longer fermentation periods to be completely assimilated by both human and porcine faecal microbiotas. Overall, our results reinforce the notion that care must be taken when generalising the effects claimed for a given probiotic or potentially probiotic strain, including the combination with different prebiotic substrates, since they may vary considerably among individuals, which is important when studying potentially pro- and prebiotic combinations for application as functional foods and feed ingredients.

  5. Prebiotic Carbohydrates: Effect on Reconstitution, Storage, Release, and Antioxidant Properties of Lime Essential Oil Microparticles.

    PubMed

    Campelo-Felix, Pedro Henrique; Souza, Hugo Júnior Barbosa; Figueiredo, Jayne de Abreu; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; de Oliveira, Cassiano Rodrigues; Yoshida, Maria Irene; Borges, Soraia Vilela

    2017-01-18

    The aim of this study was to include prebiotic biopolymers as wall material in microparticles of lime essential oil. Whey protein isolate (WPI), inulin (IN), and oligofructose (OL) biopolymers were used in the following combinations: WPI, WPI/IN (4:1), and WPI/OL (4:1). The emulsion droplets in the presence of inulin and oligofructose showed larger sizes on reconstitution. There was no significant difference in solubility of the particles, but the wettability was improved on addition of the polysaccharides. The size of the oligofructose chains favored the adsorption of water. Prebiotic biopolymers reduced thermal and chemical stability of the encapsulated oil. Microparticles produced with WPI showed a higher bioactive compound release rate, mainly due to its structural properties, that enabled rapid diffusion of oil through the pores. The use of prebiotic biopolymers can be a good option to add value to encapsulated products, thus promoting health benefits.

  6. Net energy value of two low-digestible carbohydrates, Lycasin HBC and the hydrogenated polysaccharide fraction of Lycasin HBC in healthy human subjects and their impact on nutrient digestive utilization.

    PubMed

    Sinau, S; Montaunier, C; Wils, D; Verne, J; Brandolini, M; Bouteloup-Demange, C; Vermorel, M

    2002-02-01

    The metabolizable energy content of low-digestible carbohydrates does not correspond with their true energy value. The aim of the present study was to determine the tolerance and effects of two polyols on digestion and energy expenditure in healthy men, as well as their digestible, metabolizable and net energy values. Nine healthy men were fed for 32 d periods a maintenance diet supplemented either with dextrose, Lycasin HBC (Roquette Frères, Lestrem, France), or the hydrogenated polysaccharide fraction of Lycasin HBC, at a level of 100 g DM/d in six equal doses per d according to a 3 x 3 Latin square design with three repetitions. After a 20 d progressive adaptation period, food intake was determined for 12d using the duplicate meal method and faeces and urine were collected for 10 d for further analyses. Subjects spent 36 h in one of two open-circuit whole-body calorimeters with measurements during the last 24h. Ingestion of the polyols did not cause severe digestive disorders, except excessive gas emission, and flatulence and gurgling in some subjects. The polyols induced significant increases in wet (+45 and +66% respectively, P<0.01) and dry (+53 and +75 % respectively, P<0.002) stool weight, resulting in a 2% decrease in dietary energy digestibility (P<0.001). They resulted also in significant increases in sleeping (+4.1%, P<0.03) and daily energy expenditure (+2.7 and +2.9% respectively, P<0.02) compared with dextrose ingestion. The apparent energy digestibility of the two polyols was 0.82 and 0.79 respectively, their metabolizable energy value averaged 14.1 kJ/g DM, and their net energy value averaged 10.8 kJ/g DM, that is, 35 % less than those of sucrose and starch.

  7. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan—an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)—stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract—is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested ‘lente’ carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  8. Carbohydrates

    MedlinePlus

    Starches; Simple sugars; Sugars; Complex carbohydrates; Diet - carbohydrates; Simple carbohydrates ... forms of carbohydrates to function properly. Sugars and starches are broken down by the body into glucose ( ...

  9. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus.

    PubMed

    Hernandez-Hernandez, O; Muthaiyan, A; Moreno, F J; Montilla, A; Sanz, M L; Ricke, S C

    2012-06-01

    Resistance to gastrointestinal conditions is a requirement for bacteria to be considered probiotics. In this work, we tested the resistance of six different Lactobacillus strains and the effect of carbon source to four different gastrointestinal conditions: presence of α-amylase, pancreatin, bile extract and low pH. Novel galactooligosaccharides synthesized from lactulose (GOS-Lu) as well as commercial galactooligosaccharides synthesized from lactose (GOS-La) and lactulose were used as carbon sources and compared with glucose. In general, all strains grew in all carbon sources, although after 24 h of fermentation the population of all Lactobacillus strains was higher for both types of GOS than for glucose and lactulose. No differences were found among GOS-Lu and GOS-La. α-amylase and pancreatin resistance was retained at all times for all strains. However, a dependence on carbon source and Lactobacillus strain was observed for bile extract and low pH resistance. High hydrophobicity was found for all strains with GOS-Lu when compared with other carbon sources. However, concentrations of lactic and acetic acids were higher in glucose and lactulose than GOS-Lu and GOS-La. These results show that the resistance to gastrointestinal conditions and hydrophobicity is directly related with the carbon source and Lactobacillus strains. In this sense, the use of prebiotics as GOS and lactulose could be an excellent alternative to monosaccharides to support growth of probiotic Lactobacillus strains and improve their survival through the gastrointestinal tract.

  10. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.

    PubMed

    Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella

    2013-05-01

    Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and

  11. Carbohydrates

    MedlinePlus

    ... glossary girlshealth.gov home http://www.girlshealth.gov/ Home Nutrition Nutrition basics Carbohydrates Carbohydrates Carbohydrates (say: kar-boh-HEYE-drayts) are the body's main source of energy. They are sometimes called "carbs" for short. If ...

  12. Carbohydrates

    MedlinePlus

    Carbohydrates are one of the main types of nutrients. They are the most important source of energy for your body. Your digestive system changes carbohydrates into glucose (blood sugar). Your body uses this ...

  13. Carbohydrates.

    PubMed

    Cocinero, Emilio J; Çarçabal, Pierre

    2015-01-01

    Although carbohydrates represent one of the most important families of biomolecules, they remain under-studied in comparison to the other biomolecular families (peptides, nucleobases). Beyond their best-known function of energy source in living systems, they act as mediator of molecular recognition processes, carrying molecular information in the so-called "sugar code," just to name one of their countless functions. Owing to their high conformational flexibility, they encode extremely rich information conveyed via the non-covalent hydrogen bonds within the carbohydrate and with other biomolecular assemblies, such as peptide subunits of proteins. Over the last decade there has been tremendous progress in the study of the conformational preferences of neutral oligosaccharides, and of the interactions between carbohydrates and various molecular partners (water, aromatic models, and peptide models), using vibrational spectroscopy as a sensitive probe. In parallel, other spectroscopic techniques have recently become available to the study of carbohydrates in the gas phase (microwave spectroscopy, IRMPD on charged species).

  14. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  15. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours.

    PubMed

    Moussou, Nadia; Corzo-Martínez, Marta; Sanz, María Luz; Zaidi, Farid; Montilla, Antonia; Villamiel, Mar

    2017-03-01

    In this paper, the quality of bean, chickpea, fava beans, lentil and pea flours from Algeria has been evaluated. Maillard reaction (MR) indicators, modifications in the carbohydrate and protein fractions, antioxidant activity and α-amylase inhibitor of raw, toasted and stored samples were evaluated. Fava beans, beans and peas showed higher content of raffinose family oligosaccharides while chickpeas and lentils showed higher polyol content. Toasting and storage caused slightly change in pulse quality; MR showed slight losses of lysine but increased antioxidant activity. Moreover, inhibition of α-amylase was slightly augmented during processing; this could increase the undigested carbohydrates that reach the colon, modulating the glycemic response. These results point out the suitability of these flours for preparing high-quality foodstuffs intended for a wide spectrum of the population, including hyperglycemic and gluten intolerant individuals.

  16. Prebiotics: Definition and protective mechanisms.

    PubMed

    Valcheva, Rosica; Dieleman, Levinus A

    2016-02-01

    The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models.

  17. Prebiotics to fight diseases: reality or fiction?

    PubMed

    Di Bartolomeo, F; Startek, J B; Van den Ende, W

    2013-10-01

    Bacteria living in the gastrointestinal tract are crucial for human health and disease occurrence. Increasing the beneficial intestinal microflora by consumption of prebiotics, which are 'functional foods', could be an elegant way to limit the number and incidence of disorders and to recover from dysbiosis or antibiotic treatments. This review focuses on the short-chain low-digestible carbohydrates (LDCs) which are metabolized by gut microbiota serving as energy source, immune system enhancers or facilitators of mineral uptake. Intake of foods containing LDCs can improve the state of health and may prevent diseases as for example certain forms of cancer. Given the large number of different molecules belonging to LDCs, we focused our attention on fructans (inulin, fructo-oligosaccharides), galacto-oligosaccharides and resistant starches and their therapeutic and protective applications. Evidence is accumulating that LDCs can inhibit bacterial and viral infections by modulating host defense responses and by changing the interactions between pathogenic and beneficial bacteria. Animal studies and studies on small groups of human subjects suggest that LDCs might help to counteract colorectal cancer, diabetes and metabolic syndrome. The action mechanisms of LDCs in the human body might be broader than originally thought, perhaps also including reactive oxygen species scavenging and signaling events.

  18. Healthy carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional foods include dietary fiber consisting of health-promoting carbohydrates. We have produced novel prebiotics from orange peel and observed that they extend the shelf life of probiotic bacteria in synbiotics. Some pectic-oligosaccharides and xyloglucan-oligosaccharides also have anti-adhesi...

  19. Prebiotics in obesity.

    PubMed

    Carnahan, S; Balzer, A; Panchal, S K; Brown, L

    2014-06-01

    Obesity was probably rare in ancient times, with the current increase starting in the Industrial Revolution of the eighteenth century, and becoming much more widespread from about 1950, so concurrent with the increased consumption of carbohydrates from cereals in the Green Revolution. However, dietary components such as oligosaccharides from plants including cereals may improve health following fermentation to short-chain carboxylic acids in the intestine by bacteria which constitute of the microbiome. Such non-digestible and fermentable components of diet, called prebiotics, have been part of the human diet since at least Palaeolithic times, and include components of the cereals domesticated in the Neolithic Revolution. If consumption of these cereals has now increased, why is obesity increasing? One reason could be lowered prebiotic intake combined with increased intake of simple sugars, thus changing the bacteria in the microbiome. Processing of food has played an important role in this change of diet composition. Since obesity is a low-grade inflammation, changing the microbiome by increased consumption of simple carbohydrates and saturated fats may lead to obesity via increased systemic inflammation. Conversely, there is now reasonable evidence that increased dietary prebiotic intake decreases inflammation, improves glucose metabolism and decreases obesity. Would widespread increases in prebiotics in the modern diet, so mimicking Palaeolithic or Neolithic nutrition, decrease the incidence and morbidity of obesity in our communities?

  20. [Prebiotics: concept, properties and beneficial effects].

    PubMed

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-02-07

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits.

  1. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  2. Prebiotic Petroleum

    NASA Astrophysics Data System (ADS)

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that " the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.

  3. Prebiotic petroleum.

    PubMed

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that "the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.

  4. Manufacture of Prebiotics from Biomass Sources

    NASA Astrophysics Data System (ADS)

    Gullón, Patricia; Gullón, Beatriz; Moure, Andrés; Alonso, José Luis; Domínguez, Herminia; Parajó, Juan Carlos

    Biomass from plant material is the most abundant and widespread renewable raw material for sustainable development, and can be employed as a source of polymeric and oligomeric carbohydrates. When ingested as a part of the diet, some biomass polysaccharides and/or their oligomeric hydrolysis products are selectively fermented in the colon, causing prebiotic effects.

  5. Prebiotics: why definitions matter

    PubMed Central

    Hutkins, Robert W; Krumbeck, Janina A; Bindels, Laure B; Cani, Patrice D; Fahey, George; Goh, Yong Jun; Hamaker, Bruce; Martens, Eric C; Mills, David A; Rastal, Robert A; Vaughan, Elaine; Sanders, Mary Ellen

    2015-01-01

    The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term. PMID:26431716

  6. Fiber and prebiotics: mechanisms and health benefits.

    PubMed

    Slavin, Joanne

    2013-04-22

    The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known "prebiotics", "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health." To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.

  7. Prebiotics as functional food ingredients preventing diet-related diseases.

    PubMed

    Florowska, A; Krygier, K; Florowski, T; Dłużewska, E

    2016-05-18

    This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products.

  8. A MeSH-based text mining method for identifying novel prebiotics

    PubMed Central

    Shan, Guangyu; Lu, Yiming; Min, Bo; Qu, Wubin; Zhang, Chenggang

    2016-01-01

    Abstract Prebiotics contribute to the well-being of their host by altering the composition of the gut microbiota. Discovering new prebiotics is a challenging and arduous task due to strict inclusion criteria; thus, highly limited numbers of prebiotic candidates have been identified. Notably, the large numbers of published studies may contain substantial information attached to various features of known prebiotics that can be used to predict new candidates. In this paper, we propose a medical subject headings (MeSH)-based text mining method for identifying new prebiotics with structured texts obtained from PubMed. We defined an optimal feature set for prebiotics prediction using a systematic feature-ranking algorithm with which a variety of carbohydrates can be accurately classified into different clusters in accordance with their chemical and biological attributes. The optimal feature set was used to separate positive prebiotics from other carbohydrates, and a cross-validation procedure was employed to assess the prediction accuracy of the model. Our method achieved a specificity of 0.876 and a sensitivity of 0.838. Finally, we identified a high-confidence list of candidates of prebiotics that are strongly supported by the literature. Our study demonstrates that text mining from high-volume biomedical literature is a promising approach in searching for new prebiotics. PMID:27930574

  9. Enzymatic synthesis of prebiotic oligosaccharides.

    PubMed

    Rabelo, Maria C; Honorato, Talita L; Gonçalves, Luciana R B; Pinto, Gustavo A S; Rodrigues, Sueli

    2006-04-01

    Prebiotic oligosaccharides are nondigestible carbohydrates that can be obtained by enzymatic synthesis. Glucosyltransferases can be used to produce these carbohydrates through an acceptor reaction synthesis. When maltose is the acceptor a trisaccharide composed of one maltose unit and one glucose unit linked by an alpha-1,6-glycosidic bond (panose) is obtained as the primer product of the dextransucrase acceptor reaction. In this work, panose enzymatic synthesis was evaluated by a central composite experimental design in which maltose and sucrose concentration were varied in a wide range of maltose/sucrose ratios in a batch reactor system. A partially purified enzyme was used in order to reduce the process costs, because enzyme purification is one of the most expensive steps in enzymatic synthesis. Even using high maltose/sucrose ratios, dextran and higher-oligosaccharide formation were not avoided. The results showed that intermediate concentrations of sucrose and high maltose concentration resulted in high panose productivity with low dextran and higher-oligosaccharide productivity.

  10. Dietary fibres as "prebiotics": implications for colorectal cancer.

    PubMed

    Lim, Chiara C; Ferguson, Lynnette R; Tannock, Gerald W

    2005-06-01

    A "prebiotic" is a nondigestible food ingredient whose beneficial effects on the host result from the selective stimulation of growth and/or activity of members of the bacterial community that inhabits the human bowel (the gut microbiota). Although much of the prebiotic literature focuses on nondigestible oligosaccharides, such as oligofructose, most dietary fibres that are fermentable carbohydrates could be considered as prebiotics. Early studies suggested that colonic bacteria were risk factors for colon cancer. However, altering the composition or metabolic activity of the bowel microbiota through the use of dietary fibre might be important in reducing the prevalence of colorectal cancer. Mechanisms for beneficial effects of prebiotics might include changing the activity of exogenous carcinogens through modulating metabolic activation and/or detoxification, or stimulating the production of the short-chain fatty acid, butyrate. However, modern analytical techniques suggest that an important consequence of a modified bacterial community could be a change in the expression not only of a range of different bacterial genes in bowel contents, but also in the bowel mucosa of the host. Analogous with observations with probiotics, the stimulation of cytokines and modification of immune responses could be important in producing beneficial effects. Compared with transitory effects of probiotics, the prebiotic action of fermentable carbohydrates potentially provide the opportunity for sustainable modulation of activity of the gut microbiota. However, their mechanisms of action in humans are speculative, and research aimed at providing an integrated view of the gut microbiota and dietary fibre nutrition of humans needs to be developed.

  11. Prebiotics in infant formula.

    PubMed

    Vandenplas, Yvan; De Greef, Elisabeth; Veereman, Gigi

    2014-01-01

    The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother's milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn't. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited.

  12. Prebiotic mechanisms, functions and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In October 2012, a group of scientists met at the 10th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in Cork, Ireland to discuss issues surrounding prebiotics and their development. This article summarises outputs from the meeting. Various prebiotic defin...

  13. Genetics of carbohydrate accumulation in onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are soluble carbohydrates composed of fructose chains attached to a basal sucrose molecule and act both as health-enhancing pro- and pre-biotics. In onion, higher fructan concentrations are correlated with greater soluble solids content, dry weights, and pungency. We analyzed dry weights ...

  14. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  15. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  16. Prebiotics in foods.

    PubMed

    Charalampopoulos, Dimitris; Rastall, Robert A

    2012-04-01

    A wealth of information has been gathered over the past 15 years on prebiotics through experimental, animal and human studies, with the aim to understand the mechanism of actions and elucidate their beneficial health effects to the human host. Significant amount of evidence exists for their ability to increase the bioavailability of minerals and stimulate the immune system, although there is less clear evidence so far for their prophylactic or therapeutic role in gastrointestinal infections. Moreover, the effect of the food delivery vehicle on the efficacy of prebiotics is an area that has been hardly investigated. Besides their beneficial effects, prebiotics influence the textural and organoleptic properties of the food products, such as dairy and baked products. To do this however, they need to be stable during food processing, in particular under conditions of high temperature and low pH.

  17. Health benefits of prebiotic fibers.

    PubMed

    Meyer, Diederick

    2015-01-01

    This chapter describes the various compounds that can act as prebiotic fibers: their structure, occurrence, production, and physiological effects (health effects) will be presented. The basis for the description is the latest definitions for dietary fibers and for prebiotics. Using as much as possible data from human studies, both the fiber and the prebiotic properties will be described of a variety of compounds. Based on the presented data the latest developments in the area of prebiotics, fibers and gut and immune health will be discussed in more detail as they show best what the potential impact of prebiotics on health of the human host might be.

  18. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  19. The potential of resistant starch as a prebiotic.

    PubMed

    Zaman, Siti A; Sarbini, Shahrul R

    2016-01-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.

  20. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota.

    PubMed

    Holscher, Hannah D

    2017-02-06

    The gastrointestinal microbiota has an important role in human health, and there is increasing interest in utilizing dietary approaches to modulate the composition and metabolic function of the microbial communities that colonize the gastrointestinal tract to improve health, and prevent or treat disease. One dietary strategy for modulating the microbiota is consumption of dietary fiber and prebiotics that can be metabolized by microbes in the gastrointestinal tract. Human alimentary enzymes are not able to digest most complex carbohydrates and plant polysaccharides. Instead, these polysaccharides are metabolized by microbes which generate short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. This article reviews the current knowledge of the impact of fiber and prebiotic consumption on the composition and metabolic function of the human gastrointestinal microbiota, including the effects of physiochemical properties of complex carbohydrates, adequate intake and treatment dosages, and the phenotypic composition of the human microbiota.

  1. Prebiotic chemistry in clouds.

    PubMed

    Oberbeck, V R; Marshall, J; Shen, T

    1991-01-01

    In the traditional concept for the origin of life as proposed by Oparin and Haldane in the 1920s, prebiotic reactants became slowly concentrated in the primordial oceans and life evolved slowly from a series of highly protracted chemical reactions during the first billion years of Earth's history. However, chemical evolution may not have occurred continuously because planetesimals and asteroids impacted the Earth many times during the first billion years, may have sterilized the Earth, and required the process to start over. A rapid process of chemical evolution may have been required in order that life appeared at or before 3.5 billion years ago. Thus, a setting favoring rapid chemical evolution may be required. A chemical evolution hypothesis set forth by Woese in 1979 accomplished prebiotic reactions rapidly in droplets in giant atmospheric reflux columns. However, in 1985 Scherer raised a number of objections to Woese's hypothesis and concluded that it was not valid. We propose a mechanism for prebiotic chemistry in clouds that satisfies Scherer's concerns regarding the Woese hypothesis and includes advantageous droplet chemistry. Prebiotic reactants were supplied to the atmosphere by comets, meteorites, and interplanetary dust or synthesized in the atmosphere from simple compounds using energy sources such as ultraviolet light, corona discharge, or lightning. These prebiotic monomers would have first encountered moisture in cloud drops and precipitation. We propose that rapid prebiotic chemical evolution was facilitated on the primordial Earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by , or synthesized during entry of, meteorites, comets, and interplanetary dust would have been scavenged by cloud drops containing clay condensation nuclei. Polymerization would have occurred within cloud systems during cycles of condensation, freezing, melting, and

  2. [Prebiotics in infant health].

    PubMed

    Chirdo, Fernando G; Menéndez, Ana M; Pita Martín de Portela, María L; Sosa, Patricia; Toca, María del C; Trifone, Liliana; Vecchiarelli, Carmen

    2011-02-01

    The composition of human milk is the main base for the development of infant formulas concerning its macronutrients and micronutrients contents and bioactive compounds. Technological advances in the composition of human milk have identified a great number of bioactive compounds such as prebiotics which are responsible for immunological protection and the prevention of different pathologies. In order to achieve similar benefits, they are part of the contents of infant formulas.

  3. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders.

    PubMed

    Wilson, Bridgette; Whelan, Kevin

    2017-03-01

    Prebiotics are non-digestible selectively fermented dietary fibers that specifically promote the growth of one or more bacterial genera in the gastrointestinal tract and thus provide health benefit to the host. The two most investigated prebiotics being the inulin-type fructans and galacto-oligosaccharides. Prebiotic specificity is mediated through species-specific gene clusters within saccharolytic bacteria controlled by signaling sensors for various substrates. Prebiotic health benefits are attributed to immune regulation and bacterial metabolite production. In humans, prebiotic supplementation leads to increased growth of specific gut microbiota (e.g., bifidobacteria), immune modulation, and depending on the bacterial augmentation, short-chain fatty acid production. Irritable bowel syndrome and Crohn's disease are gastrointestinal disorders associated with reductions in some gut bacteria and greater mucosal inflammation. Prebiotic supplementation studies have shown some promise at low doses for modulation of the gut bacteria and reduction of symptoms in IBS; however, larger doses may have neutral or negative impact on symptoms. Studies in Crohn's disease have not shown benefit to bacterial modulation or inflammatory response with prebiotic supplementation. Dietary restriction of fermentable carbohydrates (low FODMAP diet), which restricts some naturally occurring prebiotics from the diet, has shown efficacy in improving symptoms in irritable bowel syndrome, but it lowers the numbers of some key gut microbiota. Further research is required on the effect of prebiotics in gastrointestinal disorders and, in particular, on their use in conjunction with the low FODMAP diet.

  4. Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria.

    PubMed

    Cecchini, Davide A; Laville, Elisabeth; Laguerre, Sandrine; Robe, Patrick; Leclerc, Marion; Doré, Joël; Henrissat, Bernard; Remaud-Siméon, Magali; Monsan, Pierre; Potocki-Véronèse, Gabrielle

    2013-01-01

    The human intestine hosts a complex bacterial community that plays a major role in nutrition and in maintaining human health. A functional metagenomic approach was used to explore the prebiotic breakdown potential of human gut bacteria, including non-cultivated ones. Two metagenomic libraries, constructed from ileum mucosa and fecal microbiota, were screened for hydrolytic activities on the prebiotic carbohydrates inulin, fructo-oligosaccharides, xylo-oligosaccharides, galacto-oligosaccharides and lactulose. The DNA inserts of 17 clones, selected from the 167 hits that were identified, were pyrosequenced in-depth, yielding in total 407, 420 bp of metagenomic DNA. From these sequences, we discovered novel prebiotic degradation pathways containing carbohydrate transporters and hydrolysing enzymes, for which we provided the first experimental proof of function. Twenty of these proteins are encoded by genes that are also present in the gut metagenome of at least 100 subjects, whatever are their ages or their geographical origin. The sequence taxonomic assignment indicated that still unknown bacteria, for which neither culture conditions nor genome sequence are available, possess the enzymatic machinery to hydrolyse the prebiotic carbohydrates tested. The results expand the vision on how prebiotics are metabolized along the intestine, and open new perspectives for the design of functional foods.

  5. FAO Technical meeting on prebiotics.

    PubMed

    Pineiro, Maya; Asp, Nils-Georg; Reid, Gregor; Macfarlane, Sandra; Morelli, Lorenzo; Brunser, Oscar; Tuohy, Kieran

    2008-09-01

    Recognizing the possible beneficial effect of prebiotics in food, the Food and Agriculture Organization of the United Nations (FAO) convened a Technical meeting to start work on the evaluation of the functional and health properties of prebiotics. A group of international experts agreed on guidelines, recommended criteria, and methodology for conducting a systematic approach for the evaluation of prebiotics leading to its safe use in food. It was recommended that a full expert consultation be convened under the auspices of FAO. This work provides governments, industry, and consumers with scientific advice in relation to functional and health aspects of prebiotics and general guidance for the assessment of prebiotics in relation to their nutritional properties or safety. These guidelines may also be used by Member Countries and Codex Alimentarius to identify and define what data need to be available to accurately substantiate health and nutrition claims.

  6. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots.

    PubMed

    Caleffi, Edilainy Rizzieri; Krausová, Gabriela; Hyršlová, Ivana; Paredes, Larry Ladislao Ramos; dos Santos, Marcelo Müller; Sassaki, Guilherme Lanzi; Gonçalves, Regina Aparecida Correia; de Oliveira, Arildo José Braz

    2015-09-01

    Pfaffia glomerata (Amaranthaceae) is popularly known as "Brazilian ginseng." Previous studies have shown that fructose is the major carbohydrate component present in its roots. Inulin-type fructans, polymers of fructose, are the most widespread and researched prebiotics. Here, we isolated and chemically characterized inulin extracted from P. glomerata roots and investigated its potential prebiotic effect. Fructans were isolated and their structures were determined using colorimetric, chromatography, polarimetry, and spectroscopic analysis. The degree of polymerization (DP) was determined, and an in vitro prebiotic test was performed. The structure of inulin was confirmed by chromatography and spectroscopic analysis and through comparison with existing data. Representatives from the genera Lactobacillus and Bifidobacterium utilized inulin from P. glomerata, because growth was significantly stimulated, while this ability is strain specific. The results indicated that inulin extracted from P. glomerata roots represents a promising new source of inulin-type prebiotics.

  7. Carbohydrate Analysis

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  8. The effect on the blood lipid profile of soy foods combined with a prebiotic: a randomized controlled trial.

    PubMed

    Wong, Julia M W; Kendall, Cyril W C; de Souza, Russell; Emam, Azadeh; Marchie, Augustine; Vidgen, Ed; Holmes, Candice; Jenkins, David J A

    2010-09-01

    The value of soy protein as part of the cholesterol-lowering diet has been questioned by recent studies. The apparent lack of effect may relate to the absence of dietary factors that increase colonic fermentation and potentiate the cholesterol-lowering effect of soy. Therefore, unabsorbable carbohydrates (prebiotics) were added to the diet with the aim of increasing colonic fermentation and so potentially increasing the hypocholesterolemic effect of soy. Twenty-three hyperlipidemic adults (11 male, 12 female; 58 +/- 7 years old; low-density lipoprotein cholesterol [LDL-C], 4.18 +/- 0.58 mmol/L) completed three 4-week diet intervention phases-a low-fat dairy diet and 10 g/d prebiotic (oligofructose-enriched inulin, a fermentable carbohydrate), a soy food-containing diet (30 g/d soy protein, 61 mg/d isoflavones from soy foods) and 10 g/d placebo (maltodextrin), and a soy food-containing diet with 10 g/d prebiotic--in a randomized controlled crossover study. Intake of soy plus prebiotic resulted in greater reductions in LDL-C (-0.18 +/- 0.07 mmol/L, P = .042) and in ratio of LDL-C to high-density lipoprotein cholesterol (-0.28 +/- 0.11, P = .041) compared with prebiotic. In addition, high-density lipoprotein cholesterol was significantly increased on soy plus prebiotic compared with prebiotic (0.06 +/- 0.02 mmol/L, P = .029). Differences in bifidobacteria, total anaerobes, aerobes, and breath hydrogen did not reach significance. Soy foods in conjunction with a prebiotic resulted in significant improvements in the lipid profile, not seen when either prebiotic or soy alone was taken. Coingestion of a prebiotic may potentiate the effectiveness of soy foods as part of the dietary strategy to lower serum cholesterol.

  9. Fermentation pattern of infant formulas containing different prebiotics.

    PubMed

    Vanderhoof, Jon; Ferguson, Paul; Pauley-Hunter, Rosemary; Prestridge, Laurel

    2015-05-01

    Prebiotics play a role in the development of intestinal flora. When exposed to unabsorbed food, such as prebiotic carbohydrates, intestinal bacteria produce hydrogen. Increases in hydrogen may signify a slower rate of fermentation or digestion. In this blinded, crossover study, infants (n = 13) consumed formula containing either 4 g/L galactooligosaccharide (GOS) or 4 g/L polydextrose (PDX) + GOS, and breath hydrogen was measured. Breath hydrogen was higher in the PDX/GOS group versus GOS alone (mean ± standard error, 25.35 ± 2.87 ppm vs 13.69 ± 2.87 ppm, P = 0.0001). These results indicate that the formula with PDX/GOS may have undergone slower digestion.

  10. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  11. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  12. Probiotics, prebiotics, and synbiotics.

    PubMed

    de Vrese, Michael; Schrezenmeir, J

    2008-01-01

    . Prevention of respiratory tract infections (common cold, influenza) and other infectious diseases as well as treatment of urogenital infections. Insufficient or at most preliminary evidence exists with respect to cancer prevention, a so-called hypocholesterolemic effect, improvement of the mouth flora and caries prevention or prevention or therapy of ischemic heart diseases or amelioration of autoimmune diseases (e.g. arthritis). A prebiotic is "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well being and health", whereas synergistic combinations of pro- and prebiotics are called synbiotics. Today, only bifidogenic, non-digestible oligosaccharides (particularly inulin, its hydrolysis product oligofructose, and (trans)galactooligosaccharides), fulfill all the criteria for prebiotic classification. They are dietary fibers with a well-established positive impact on the intestinal microflora. Other health effects of prebiotics (prevention of diarrhoea or obstipation, modulation of the metabolism of the intestinal flora, cancer prevention, positive effects on lipid metabolism, stimulation of mineral adsorption and immunomodulatory properties) are indirect, i.e. mediated by the intestinal microflora, and therefore less-well proven. In the last years, successful attempts have been reported to make infant formula more breast milk-like by the addition of fructo- and (primarily) galactooligosaccharides.

  13. Prebiotics in Chronic Intestinal Inflammation

    PubMed Central

    Looijer–van Langen, Mirjam A.C.; Dieleman, Levinus A.

    2016-01-01

    Prebiotics are nondigestible fermentable fibers that are reported to have health benefits for the host. Older as well as more recent studies show beneficial effects in experimental colitis and lately also in human inflammatory bowel diseases (IBD), such as Crohn’s disease, ulcerative colitis, and chronic pouchitis. In this review we give an overview of the benefits of prebiotics in rodent IBD models and in IBD patients and discuss their possible protective mechanisms. Commensal intestinal bacteria induce and perpetuate chronic intestinal inflammation, whereas others are protective. However, most of the current medications are directed against the exaggerated proinflammatory immune response of the host, some of them toxic and costly. Feeding prebiotics changes the composition of the intestinal microflora toward more protective intestinal bacteria and alters systemic and mucosal immune responses of the host. Therapy for IBD targeting intestinal bacteria and their function is just emerging. Prebiotics have the promise to be relatively safe, inexpensive, and easy to administer. Unraveling their protective mechanisms will help to develop rational applications of prebiotics. However, the initial promising results with dietary prebiotics in preclinical trials as well as small studies in human IBD will need to be confirmed in large randomized controlled clinical trials. PMID:18831524

  14. Counting carbohydrates

    MedlinePlus

    ... There are 3 major types of carbohydrates: Sugars Starches Fiber Sugars are found naturally in some foods ... syrups, such as those added to canned fruit Starches are found naturally in foods. Your body breaks ...

  15. Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.

    PubMed

    Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam

    2015-03-30

    Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier.

  16. High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert.

    PubMed

    Leach, Jeff D; Sobolik, Kristin D

    2010-06-01

    Archaeological evidence from dry cave deposits in the northern Chihuahuan Desert reveal intensive utilisation of desert plants that store prebiotic inulin-type fructans as the primary carbohydrate. In this semi-arid region limited rainfall and poor soil conditions prevented the adoption of agriculture and thus provides a unique glimpse into a pure hunter-forager economy spanning over 10 000 years. Ancient cooking features, stable carbon isotope analysis of human skeletons, and well-preserved coprolites and macrobotanical remains reveal a plant-based diet that included a dietary intake of about 135 g prebiotic inulin-type fructans per d by the average adult male hunter-forager. These data reveal that man is well adapted to daily intakes of prebiotics well above those currently consumed in the modern diet.

  17. Prebiotics: application in bakery and pasta products.

    PubMed

    Padma Ishwarya, S; Prabhasankar, P

    2014-01-01

    The concept of functional foods has markedly moved toward gastrointestinal health. The prebiotic approach aims at achieving favorable milieu in the human gut by stimulating beneficial bacteria. Several food products act as substrates for the application of prebiotic substances and bakery products are one such category. The trend of increasing consumption of bakery products justifies the choice of using them as vehicles for delivering the prebiotic compounds. Apart from the health benefits, the prebiotic compounds also have nutritional and technological effects in the food matrix. In addition to increasing the fiber content, the candidate prebiotics also affect the rheology and final quality of bakery products. The prebiotic compounds are selected accordingly to confer desirable properties in the final product. The health advantages of prebiotics being well established, the technological advantages in bakery products such as bread and biscuits and extruded product such as pasta are discussed elaborately.

  18. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  19. Learning about Carbohydrates

    MedlinePlus

    ... What Happens in the Operating Room? Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates A A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  20. Learning about Carbohydrates

    MedlinePlus

    ... dientes Video: Getting an X-ray Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates Print A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  1. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems.

    PubMed

    Ricke, S C

    2015-06-01

    Fructooligosaccharide and inulin prebiotics are carbohydrate-based polymers derived from natural sources that can be utilized by certain gastrointestinal tract bacteria but not by the host animal. They are attractive as feed additives for nonconventional poultry production systems because they select for beneficial microorganisms that are thought to promote nutritional benefits to the bird and potentially limit foodborne pathogen establishment. There have been numerous studies conducted with prebiotic supplements to assess their impact in humans, animals, and conventionally raised poultry but only limited research has been conducted with birds grown under nonconventional production conditions. Much remains unknown about the specific mechanism(s) associated with their impact on the host as well as the gastrointestinal tract microflora. Utilization of several recently developed approaches such as microbiome and metabolomic analyses should offer more insight on how dietary prebiotic additives influence the development of the gastrointestinal tract microbiota and these subsequent changes correspond with alterations in a bird's physiology as it matures. As more detailed and precise studies are done with nonconventional poultry, it is likely that structurally distinct prebiotics will influence not only the gastrointestinal tract microbiota differently, but potentially interact directly and/or indirectly with the bird host in distinguishable patterns as well. These functions will be important to delineate if further applications are to be developed for specific prebiotics in nonconventional poultry production systems.

  2. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    Prebiotic fibers are non-digestible carbohydrates that promote the growth of beneficial bacteria in the gut. Prebiotic consumption may benefit obesity and associated co-morbidities by improving or normalizing the dysbiosis of the gut microbiota. We evaluated the dose response to a prebiotic diet on the gut microbiota, body composition and obesity associated risk factors in lean and genetically obese rats. Prebiotic fibers increased Firmicutes and decreased Bacteroidetes, a profile often associated with a leaner phenotype. Bifidobacteria and Lactobacillus numbers also increased. Changes in the gut microbiota correlated with energy intake, glucose, insulin, satiety hormones, and hepatic cholesterol and triglyceride accumulation. Here we provide a comprehensive analysis evaluating the results through the lens of the gut microbiota. Salient, new developments impacting the interpretation and significance of our data are discussed. We propose that prebiotic fibers have promise as a safe and cost-effective means of modulating the gut microbiota to promote improved host:bacterial interactions in obesity and insulin resistance. Human clinical trials should be undertaken to confirm these effects. PMID:22555633

  3. Probiotics and prebiotics in pediatrics.

    PubMed

    Thomas, Dan W; Greer, Frank R

    2010-12-01

    This clinical report reviews the currently known health benefits of probiotic and prebiotic products, including those added to commercially available infant formula and other food products for use in children. Probiotics are supplements or foods that contain viable microorganisms that cause alterations of the microflora of the host. Use of probiotics has been shown to be modestly effective in randomized clinical trials (RCTs) in (1) treating acute viral gastroenteritis in healthy children; and (2) preventing antibiotic-associated diarrhea in healthy children. There is some evidence that probiotics prevent necrotizing enterocolitis in very low birth weight infants (birth weight between 1000 and 1500 g), but more studies are needed. The results of RCTs in which probiotics were used to treat childhood Helicobacter pylori gastritis, irritable bowel syndrome, chronic ulcerative colitis, and infantile colic, as well as in preventing childhood atopy, although encouraging, are preliminary and require further confirmation. Probiotics have not been proven to be beneficial in treating or preventing human cancers or in treating children with Crohn disease. There are also safety concerns with the use of probiotics in infants and children who are immunocompromised, chronically debilitated, or seriously ill with indwelling medical devices. Prebiotics are supplements or foods that contain a nondigestible food ingredient that selectively stimulates the favorable growth and/or activity of indigenous probiotic bacteria. Human milk contains substantial quantities of prebiotics. There is a paucity of RCTs examining prebiotics in children, although there may be some long-term benefit of prebiotics for the prevention of atopic eczema and common infections in healthy infants. Confirmatory well-designed clinical research studies are necessary.

  4. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    PubMed

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients.

  5. Development of a bread delivery vehicle for dietary prebiotics to enhance food functionality targeted at those with metabolic syndrome

    PubMed Central

    Costabile, Adele; Walton, Gemma E; Tzortzis, George; Vulevic, Jelena; Charalampopoulos, Dimitris; Gibson, Glenn R

    2015-01-01

    Prebiotics are dietary carbohydrates that favourably modulate the gut microbiota. The aims of the present study were to develop a functional prebiotic bread using Bimuno®, (galactooligosaccharide (B-GOS) mixture), for modulation of the gut microbiota in vitro in individuals at risk of metabolic syndrome. A control bread, (no added prebiotic) and positive control bread (containing equivalent carbohydrate to B-GOS bread) were also developed. A 3-stage continuous in vitro colonic model was used to assess prebiotic functionality of the breads. Bacteria were quantified by fluorescence in situ hybridization and short chain fatty acids by gas chromatography. Ion-exchange chromatography was used to determine GOS concentration after bread production. Following B-GOS bread fermentation numbers of bifidobacteria and lactobacilli were significantly higher compared to controls. There was no significant degradation of B-GOS during bread manufacture, indicating GOS withstood the manufacturing process. Furthermore, based on previous research, increased bifidobacteria and butyrate levels could be of benefit to those with obesity related conditions. Our findings support utilization of prebiotic enriched bread for improving gastrointestinal health. PMID:26099034

  6. Development of a bread delivery vehicle for dietary prebiotics to enhance food functionality targeted at those with metabolic syndrome.

    PubMed

    Costabile, Adele; Walton, Gemma E; Tzortzis, George; Vulevic, Jelena; Charalampopoulos, Dimitris; Gibson, Glenn R

    2015-01-01

    Prebiotics are dietary carbohydrates that favourably modulate the gut microbiota. The aims of the present study were to develop a functional prebiotic bread using Bimuno®, (galactooligosaccharide (B-GOS) mixture), for modulation of the gut microbiota in vitro in individuals at risk of metabolic syndrome. A control bread, (no added prebiotic) and positive control bread (containing equivalent carbohydrate to B-GOS bread) were also developed. A 3-stage continuous in vitro colonic model was used to assess prebiotic functionality of the breads. Bacteria were quantified by fluorescence in situ hybridization and short chain fatty acids by gas chromatography. Ion-exchange chromatography was used to determine GOS concentration after bread production. Following B-GOS bread fermentation numbers of bifidobacteria and lactobacilli were significantly higher compared to controls. There was no significant degradation of B-GOS during bread manufacture, indicating GOS withstood the manufacturing process. Furthermore, based on previous research, increased bifidobacteria and butyrate levels could be of benefit to those with obesity related conditions. Our findings support utilization of prebiotic enriched bread for improving gastrointestinal health.

  7. Prebiotics in Companion and Livestock Animal Nutrition

    NASA Astrophysics Data System (ADS)

    Barry, Kathleen A.; Vester, Brittany M.; Fahey, George C.

    Prebiotic supplementation of animal diets began in an attempt to increase concentrations of beneficial intestinal microbiota. It was understood that prebiotics inhibited growth of intestinal pathogens and decreased concentrations of stool odor-causing metabolites. Since the use of prebiotics began, several countries have banned the use of antimicrobials in livestock animal feeds, and several more have placed restrictions on the quantity of antimicrobials that can be used. Prebiotic supplementation has become increasingly popular as the body of evidence supporting its use continues to grow. As this literature expands, the number of potential prebiotic substances has grown beyond those that are naturally occurring, such as those found in chicory and yeast products, to include a large number of synthetic or chemically/enzymatically manufactured prebiotics.

  8. Toward a Personalized Approach in Prebiotics Research

    PubMed Central

    Dey, Moul

    2017-01-01

    Recent characterization of the human microbiome and its influences on health have led to dramatic conceptual shifts in dietary bioactives research. Prebiotic foods that include many dietary fibers and resistant starches are perceived as beneficial for maintaining a healthy gut microbiota. This article brings forward some current perspectives in prebiotic research to discuss why reporting of individual variations in response to interventions will be important to discern suitability of prebiotics as a disease prevention tool. PMID:28134778

  9. Coacervates as prebiotic chemical reactors

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Swanson, Mercedes; Menger, Fredric M.

    2012-10-01

    Coacervates are colloidal systems that are comprised of two immiscible aqueous layers, the colloid-rich layer, so-called coacervate, and the colloid-poor layer, so-called equilibrium liquid. Although immiscible, the two phases are both water-rich. Coacervates are important for prebiotic chemistry, but also have various practical applications, notably as transport vehicles of personal care products and pharmaceuticals. Our objectives are to explore the potential of coacervates as prebiotic chemical reactors. Since the reaction medium in coacervates is water, this creates a challenge, since most organic reactants are not water-soluble. To overcome this challenge we are utilizing recent Green Chemistry examples of the organic reactions in water, such as the Passerini reaction. We have investigated this reaction in two coacervate systems, and report here our preliminary results.

  10. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  11. Was Ferrocyanide a Prebiotic Reagent?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    Hydrogen cyanide is the starting material for a diverse array of prebiotic syntheses, including those of amino acids and purines. Hydrogen cyanide also reacts with ferrous ions to give ferrocyanide, and so it is possible that ferrocyanide was common in the early ocean. This can only be true if the hydrogen cyanide concentration was high enough and the rate of reaction of cyanide with ferrous ions was fast enough. We show experimentally that the rate of formation of ferrocyanide is rapid even at low concentrations of hydrogen cyanide in the pH range 6-8, and therefore an equilibrium calculation is valid. The equilibrium concentrations of ferrocyanide are calculated as a function of hydrogen cyanide concentration, pH and temperature. The steady state concentration of hydrogen cyanide depends on the rate of synthesis by electric discharges and ultraviolet light and the rate of hydrolysis, which depends on pH and temperature. Our conclusions show that ferrocyanide was a major species in the prebiotic ocean only at the highest production rates of hydrogen cyanide in a strongly reducing atmosphere and at temperatures of 0 C or less, although small amounts would have been present at lower hydrogen cyanide production rates. The prebiotic application of ferrocyanide as a source of hydrated electrons, as a photochemical replication process, and in semi-permeable membranes is discussed.

  12. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation.

  13. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  14. Carbohydrate Counting and Diabetes

    MedlinePlus

    ... are the other main nutrients. Carbohydrates include sugars, starches, and fiber. Carbohydrate counting can help you control ... called starchy vegetables because they are high in starch. These vegetables have more carbohydrates per serving than ...

  15. Probiotics and prebiotics: role in clinical disease states.

    PubMed

    Chen, Chien-Chang; Walker, W Allan

    2005-01-01

    Parents of pediatric patients are seeking alternatives to conventional therapy in the prevention and treatment of gastrointestinal disease states because of therapeutic failures caused by the increased incidence of antibiotic resistance. One such alternative is the use of probiotics and prebiotics to stimulate health-promoting indigenous flora to affect pathogen colonization and expression of disease. Probiotics are live flora given in oral quantities that allow for colonization of the colon. Probiotics are given as functional foods or dietary supplements, and function to activate the mucosal immune system and prevent pathogen colonization and translocation by strengthening the mucosal barrier, interfering with pathogen colonization, and in some instances, producing secretory antibacterial substances. Prebiotics are nondigestible carbohydrates, principally oligosoccharides, that are fermented by colonic commensals, stimulating their proliferation and producing short-chain fatty acids. Both protective nutrients have been shown to reduce the incidence and severity of infantile diarrhea, particularly rotaviral gastroenteritis, prevent antibiotic-induced diarrhea, and prevent and treat intestinal food allergy. With additional multicenter clinical trial confirmations, these substances may become routine in the care of infants and young children.

  16. Health benefits of probiotics and prebiotics in women.

    PubMed

    de Vrese, Michael

    2009-03-01

    Among the numerous positive effects of probiotic microorganisms and prebiotic carbohydrates observed in clinical studies--the majority of which, however, does not fulfil the criteria of pharmaceutical verification--some are of specific relevance to female health. The present review addresses--besides some notes concerning the potential microbiota-hormone interactions--the first line with preventive and/or therapeutic applications of probiotic bacteria in order to maintain a balanced intestinal and urogenital flora, as well as in the case of irritable bowel syndrome, constipation (idiopathic slow-transit) and urogenital tract infections. Further aspects are the promotion of bone health and osteoporosis prevention brought about by inulin, oligofructose and galactooligosaccharides. Some further conditions, namely anorexia nervosa, the premenstrual syndrome as well as prevention or alleviation of climacteric and menopausal disorders, for which the use of probiotics is rather hypothetical or is largely studied by alternative medicine practising physicians, are addressed briefly.

  17. Imitating prebiotic homochirality on Earth.

    PubMed

    Breslow, Ronald; Levine, Mindy; Cheng, Zhan-Ling

    2010-02-01

    We show how the amino acids needed on prebiotic earth in their homochiral L form can be produced by a reaction of L-alpha-methyl amino acids-that have been identified in the Murchison meteorite-with alpha-keto acids under credible prebiotic conditions. When they are simply heated together they perform a process of decarboxylative transamination but with almost no chiral transfer, and that in the wrong direction, producing D-amino acids from the L-alpha-methyl amino acids. With copper ion a square planar complex with two of the reaction intermediates is formed, and now there is the desired L to L transformation, producing small enantioexcesses of the normal L-amino acids. We also show how these can be amplified, not by making more of the L form but by increasing its concentration in water solution. The process can start with a miniscule excess and in one step generate water solutions with L/D ratios in the over 90% region. Kinetic processes can exceed the results from equilibria. We have also examined such amplifications with ribonucleosides, and have shown that initial modest excesses of the D-nucleosides can be amplified to afford water solutions with D to L ratios in the high 90's. We have shown that the homochiral compound has two effects on the solubility of the racemate. On one hand it decreases the solubility of the racemate by its role in the solubility product, as a theoretical equation predicts. On the other hand, it increases the solubility of the racemate by changing the nature of the solvent, acting as a cosolvent with the water. This explains why the amplification, while large, is not as large as the simple theoretical equation predicts. Thus when credible examples are produced where small enantioexcesses of D-ribose are created under credible prebiotic conditions, the prerequisites for the RNA world will have been exemplified.

  18. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  19. Evaluation of the prebiotic potential of arabinoxylans from brewer's spent grain.

    PubMed

    Reis, Sofia F; Gullón, Beatriz; Gullón, Patricia; Ferreira, Susana; Maia, Cláudio J; Alonso, José L; Domingues, Fernanda C; Abu-Ghannam, Nissreen

    2014-11-01

    Arabinoxylans (AX) consumption has been related to the treatment and prevention of cardiovascular diseases, type II diabetes, colorectal cancer and obesity. The beneficial health effects are conferred through gut microbiota modulation, and therefore, they have been proposed as potential slowly fermentable prebiotic candidates. As the mechanisms are not yet well understood, the prebiotic potential of AX from brewer's spent grain (BSG) has been investigated. Two types of AX from BSG (AX1 and AX2) of different length and branching averages were fermented with human faecal inocula and compared to fermented cultures containing a commercial prebiotic (fructooligosaccharide (FOS)) and cultures with no added carbohydrate (control). Results demonstrated that the AX were extensively metabolised after 48 h of fermentation. The pH decreased along fermentation and the lowest value was achieved in AX1 cultures. The production of short chain fatty acids (SCFA) was higher in AX cultures than in cultures containing FOS and controls, with AX1 presenting the highest concentrations. The stimulatory effect of beneficial bacteria was higher in AX cultures, and AX2 presented the highest positive effect. Prebiotic potential of AX from BSG was confirmed by the production of SCFA and the modulation of gut microbiota, especially by the high increase in bifidobacteria populations.

  20. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology

    PubMed Central

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D.

    2013-01-01

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in “topping up your good bacteria” or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision—tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057

  1. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology.

    PubMed

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D

    2013-05-29

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.

  2. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics.

    PubMed

    Macfarlane, G T; Steed, H; Macfarlane, S

    2008-02-01

    Most studies involving prebiotic oligosaccharides have been carried out using inulin and its fructo-oligosaccharide (FOS) derivatives, together with various forms of galacto-oligosaccharides (GOS). Although many intestinal bacteria are able to grow on these carbohydrates, most investigations have demonstrated that the growth of bifidobacteria, and to a lesser degree lactobacilli, is particularly favoured. Because of their safety, stability, organoleptic properties, resistance to digestion in the upper bowel and fermentability in the colon, as well as their abilities to promote the growth of beneficial bacteria in the gut, these prebiotics are being increasingly incorporated into the Western diet. Inulin-derived oligosaccharides and GOS are mildly laxative, but can result in flatulence and osmotic diarrhoea if taken in large amounts. However, their effects on large bowel habit are relatively minor. Although the literature dealing with the health significance of prebiotics is not as extensive as that concerning probiotics, considerable evidence has accrued showing that consumption of GOS and FOS can have significant health benefits, particularly in relation to their putative anti-cancer properties, influence on mineral absorption, lipid metabolism, and anti-inflammatory and other immune effects such as atopic disease. In many instances, prebiotics seem to be more effective when used as part of a synbiotic combination.

  3. In vitro investigation into the potential prebiotic activity of honey oligosaccharides.

    PubMed

    Sanz, María Luz; Polemis, Nikolaos; Morales, Valle; Corzo, Nieves; Drakoularakou, Alexandra; Gibson, Glenn R; Rastall, Robert A

    2005-04-20

    The effect of honey oligosaccharides on the growth of fecal bacteria was studied using an in vitro fermentation system. Prior to treatment, glucose and fructose (31.73 and 21.41 g/100 g of product, respectively) present in honey, which would be digested in the upper gut, were removed to avoid any influence on bacterial populations in the fermentations. Nanofiltration, yeast (Saccharomyces cerevisiae) treatment, and adsorption onto activated charcoal were used to remove monosaccharides. Prebiotic (microbial fermentation) activities of the three honey oligosaccharide fractions and the honey sample were studied and compared with fructooligosaccharide (FOS), using 1% (w/v) fecal bacteria in an in vitro fermentation system (10 mg of carbohydrate, 1.0 mL of basal medium). A prebiotic index (PI) was calculated for each carbohydrate source. Honey oligosaccharides seem to present potential prebiotic activity (PI values between 3.38 and 4.24), increasing the populations of bifidobacteria and lactobacilli, although not to the levels of FOS (PI of 6.89).

  4. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.

    PubMed

    Scott, Karen P; Martin, Jennifer C; Duncan, Sylvia H; Flint, Harry J

    2014-01-01

    Dietary macronutrients affect the composition of the gut microbiota, and prebiotics are used to improve and maintain a healthy gut. The impact of prebiotics on dominant gut bacteria other than bifidobacteria, however, is under-researched. Here, we report carbohydrate utilisation patterns for representative butyrate-producing anaerobes, belonging to the Gram-positive Firmicutes families Lachnospiraceae and Ruminococcaceae, by comparison with selected Bacteroides and Bifidobacterium species. Growth assessments using anaerobic Hungate tubes and a new rapid microtitre plate assay were generally in good agreement. The Bacteroides strains tested showed some growth on basal medium with no added carbohydrates, utilising peptides in the growth medium. The butyrate-producing strains exhibited different growth profiles on the substrates, which included starch, inulin, fructooligosaccharides (FOS), galactooligosaccharides (GOS) and xylooligosaccharides (XOS). Eleven were able to grow on short-chain FOS, but this number decreased as the chain length of the fructan substrates increased. Long-chain inulin was utilised by Roseburia inulinivorans, but by none of the Bifidobacterium species examined here. XOS was a more selective growth substrate than FOS, with only six of the 11 Firmicutes strains able to use XOS for growth. These results illustrate the selectivity of different prebiotics and help to explain why some are butyrogenic.

  5. [Autochthonous microbiota, probiotics and prebiotics].

    PubMed

    Suárez, Juan Evaristo

    2015-02-07

    The autochthonous microbiota is the community of microorganisms that colonizes the skin and mucosal surfaces. The symbiosis is, generally, mutualistic but it can become parasitic due to immune response alterations. The skin microbiota includes bacteria (95%), lipophilic fungi and mites. In the digestive apparatus, each cavity presents its own microbiota, which reaches its target organ during the perinatal period, originating complex and stable communities (homeostasis). The vaginal microbiota varies with the endocrine activity, significantly increasing during the fertile and pregnancy periods, when lactobacilli are the most abundant organisms. Four are the main benefits of the autochthonous microbiota: i) delivery of essential nutrients, such as vitamins and some amino acids; ii) utilization of undigestible diet components, the colonic microbiota degrades complex glycans and fulfils almost 20% of the calories present in a normal diet; iii) development of the immune system: the continuous contact with the immune system maintains it alert and in good shape to repel pathogens efficaciously and iv) microbial antagonism, hinders colonization of our mucosal surfaces by alochthonous, potentially pathogenic, organisms. This works through three mechanisms: colonization interference, production of antimicrobials and co-aggregation with the potential pathogens. The microbiota can, sporadically, produce damages: opportunistic endogenous infections and generation of carcinogenic compounds. Probiotics are "live microorganisms that when administered in adequate amounts, confer a health benefit to the consumer". Prebiotics are undigestible glycans that enhance the growth or activity of the intestinal microbiota, thus generating a health benefit. Synbiotics are mixes of probiotics and prebiotics that exert a synergistic health effect.

  6. Prebiotics and gut microbiota in chickens.

    PubMed

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics.

  7. All about Carbohydrate Counting

    MedlinePlus

    Toolkit No. 14 All About Carbohydrate Counting What is carbohydrate counting? Carbohydrate counting is a way to plan your meals. It can help ... Diabetes Association, Inc. 2/14 Toolkit No. 14: All About Carbohydrate Counting continued The chart at the ...

  8. Carbohydrate and dietary fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate provides 50 to 60% of the calories consumed by the average American. Although relatively little carbohydrate is needed in the diet, carbohydrate spares protein and fat being metabolized for calories. The principal dietary carbohydrates are sugars and starches. Sugars (simple carbohydrat...

  9. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  10. Prebiotic synthesis of histidyl-histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Mills, T.; Oro, J.

    1990-01-01

    Histidyl-histidine (His-His) has been synthesized in a yield of up to 14.4% under plausible prebiotic conditions using histidine (His), cyanamide, and 4-amino-5-imidazole carboxamide. A trace amount of His trimer was also detected. Because the imidazole group of His is involved in a number of important enzymatic reactions, and His-His has been shown to catalyze the prebiotic synthesis of glycyl-glycine, we expect this work will stimulate further studies on the catalytic activities of simple His-containing peptides in prebiotic reactions.

  11. Mechanisms of Prebiotic Impact on Health

    NASA Astrophysics Data System (ADS)

    Steed, H.; Macfarlane, S.

    Prebiotics were originally defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activities of one or a limited number of bacteria in the colon, thereby improving host health (Gibson and Roberfroid, 1995). However, a more recent definition is that “A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host wellbeing and health” (Gibson et al., 2004). The principal concept associated with both of these definitions is that the prebiotic has a selective effect on the microbiota that results in an improvement in the health of the host. Common prebiotics in use include inulins, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), soya-oligosaccharides, xylo-oligosaccharides, pyrodextrins, isomalto-oligosaccharides and lactulose. The majority of studies carried out to date have focused on inulin, FOS and GOS (Macfarlane et al., 2008).

  12. Probiotics and prebiotics in the elderly

    PubMed Central

    Hamilton-Miller, J

    2004-01-01

    Probiotics (usually lactobacilli and bifidobacteria) and prebiotics (non-digestible oligosaccharides) have been shown to be useful in preventing certain disease conditions as well as possibly promoting specific aspects of health. In the present review, the evidence from clinical trials for benefits from probiotics and prebiotics to elderly populations is presented and discussed, specifically in respect of three common conditions found in the elderly. Both probiotics and prebiotics may be helpful in malnutrition, particularly in lactose intolerance and calcium absorption, and in constipation. Probiotics have been shown clearly to boost immunity in the elderly, but the clinical significance of this remains to be clarified. These results are encouraging, and further large scale studies seem justified to establish the place of probiotic and prebiotic supplements in elderly subjects. PMID:15299153

  13. Probiotics, prebiotics and colorectal cancer prevention.

    PubMed

    Ambalam, Padma; Raman, Maya; Purama, Ravi Kiran; Doble, Mukesh

    2016-02-01

    Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention.

  14. Prebiotics as immunostimulants in aquaculture: a review.

    PubMed

    Song, Seong Kyu; Beck, Bo Ram; Kim, Daniel; Park, John; Kim, Jungjoon; Kim, Hyun Duk; Ringø, Einar

    2014-09-01

    Prebiotics are indigestible fibers that increase beneficial gut commensal bacteria resulting in improvements of the host's health. The beneficial effects of prebiotics are due to the byproducts generated from their fermentation by gut commensal bacteria. In this review, the direct effects of prebiotics on the innate immune system of fish are discussed. Prebiotics, such as fructooligosaccharide, mannanoligosaccharide, inulin, or β-glucan, are called immunosaccharides. They directly enhance innate immune responses including: phagocytic activation, neutrophil activation, activation of the alternative complement system, increased lysozyme activity, and more. Immunosaccharides directly activate the innate immune system by interacting with pattern recognition receptors (PRR) expressed on innate immune cells. They can also associate with microbe associated molecular patterns (MAMPs) to activate innate immune cells. However, the underlying mechanisms involved in innate immune cell activation need to be further explored. Many studies have indicated that immunosaccharides are beneficial to both finfish and shellfish.

  15. Probiotics, prebiotics and synbiotics- a review.

    PubMed

    Pandey, Kavita R; Naik, Suresh R; Vakil, Babu V

    2015-12-01

    The health benefits imparted by probiotics and prebiotics as well as synbiotics have been the subject of extensive research in the past few decades. These food supplements termed as functional foods have been demonstrated to alter, modify and reinstate the pre-existing intestinal flora. They also facilitate smooth functions of the intestinal environment. Most commonly used probiotic strains are: Bifidobacterium, Lactobacilli, S. boulardii, B. coagulans. Prebiotics like FOS, GOS, XOS, Inulin; fructans are the most commonly used fibers which when used together with probiotics are termed synbiotics and are able to improve the viability of the probiotics. Present review focuses on composition and roles of Probiotics, Prebiotics and Synbiotics in human health. Furthermore, additional health benefits like immune-modulation, cancer prevention, inflammatory bowel disease etc. are also discussed. Graphical abstractPictorial summary of health benefits imparted by probiotics, prebiotics and synbiotics.

  16. Prebiotic capacity of inulin-type fructans.

    PubMed

    Kolida, Sofia; Gibson, Glenn R

    2007-11-01

    The human gut microbiota plays a significant role in human health through its ability to digest food ingredients and manufacture metabolites. This can be positive or negative for host welfare. Moreover, the microflora plays an active role in host defense whereby colonization resistance affords protection against pathogens. Prebiotics are nondigestible food ingredients that target beneficial components of the gut microflora (mainly colonic), particularly the bifidobacteria. In vitro and in vivo evidence has accumulated to confirm the prebiotic effects of inulin-derived fructans.

  17. Microbial degradation of complex carbohydrates in the gut

    PubMed Central

    Flint, Harry J.; Scott, Karen P.; Duncan, Sylvia H.; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host–derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs. PMID:22572875

  18. Microbial degradation of complex carbohydrates in the gut.

    PubMed

    Flint, Harry J; Scott, Karen P; Duncan, Sylvia H; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.

  19. Carbohydrates and Diabetes

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Carbohydrates and Diabetes KidsHealth > For Teens > Carbohydrates and Diabetes ... Los carbohidratos y la diabetes Carbs and Blood Sugar Keeping your blood sugar levels on track means ...

  20. Is Struvite a Prebiotic Mineral?

    PubMed Central

    Gull, Maheen; Pasek, Matthew A.

    2013-01-01

    The prebiotic relevance of mineral struvite, MgNH4PO4·6H2O, was studied experimentally as a phosphorylating reagent and, theoretically, to understand the geochemical requirements for its formation. The effectiveness of phosphorylation by the phosphate mineral, monetite, CaHPO4, was also studied to compare to the efficiency of struvite. The experiments focused on the phosphorylation reactions of the minerals with organic compounds, such as nucleosides, glycerol and choline chloride, and heat at 75 °C for about 7–8 days and showed up to 28% phosphorylation of glycerol. In contrast, the compositional requirements for the precipitation of struvite are high ammonium and phosphate concentrations, as well as a little Ca2+ dissolved in the water. Combined, these requirements suggest that it is not likely that struvite was present in excess on the early Earth to carry out phosphorylation reactions. The present study focuses on the thermodynamic aspects of struvite formation, complementing the results given by Orgel and Handschuh (1973), which were based on the kinetic effects. PMID:25369744

  1. Prebiotic Evolution of Nitrogen Compounds

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1999-01-01

    Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.

  2. Prebiotic Synthesis of Diaminopyrimidine and Thiocytosine

    NASA Technical Reports Server (NTRS)

    Robertson, Michael P.; Levy, Matthew; Miller, Stanley L.

    1996-01-01

    The reaction of guanidine hydrochloride with cyanoacetaldehyde gives high yields (40-85%) of 2,4-diaminopyrimidine under the concentrated conditions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyanoacetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate of synthesis and yield of diaminopyrimidine were investigated, as well as the hydrolysis of diaminopyrimidine to cytosine, isocytosine, and uracil. Thiourea also reacts with cyanoacetaldehyde to give 2-thiocytosine, but the pyrimidine yields are much lower than with guanidine hydrochloride or urea. Thiocytosine hydrolyzes to thiouracil and cytosine and then to uracil. This synthesis would have been a significant prebiotic source of 2-thiopyrimidines and 5-substituted derivatives of thiouracil, many of which occur in tRNA. The applicability of these results to the drying lagoon model of prebiotic synthesis was tested by dry-down experiments where dilute solutions of cyanoacetaldehyde, guanidine hydrochloride, and 0.5 M NaCl were evaporated over varying periods of time. The yields of diaminopyrimidine varied from 1 to 7%. These results show that drying lagoons and beaches may have been major sites of prebiotic syntheses.

  3. Probiotics and prebiotics--perspectives and challenges.

    PubMed

    Figueroa-González, Ivonne; Quijano, Guillermo; Ramírez, Gerardo; Cruz-Guerrero, Alma

    2011-06-01

    Owing to their health benefits, probiotics and prebiotics are nowadays widely used in yogurts and fermented milks, which are leader products of functional foods worldwide. The world market for functional foods has grown rapidly in the last three decades, with an estimated size in 2003 of ca US$ 33 billion, while the European market estimation exceeded US$ 2 billion in the same year. However, the production of probiotics and prebiotics at industrial scale faces several challenges, including the search for economical and abundant raw materials for prebiotic production, the low-cost production of probiotics and the improvement of probiotic viability after storage or during the manufacturing process of the functional food. In this review, functional foods based on probiotics and prebiotics are introduced as a key biotechnological field with tremendous potential for innovation. A concise state of the art addressing the fundamentals and challenges for the development of new probiotic- and prebiotic-based foods is presented, the niches for future research being clearly identified and discussed.

  4. Prebiotic effects of inulin and oligofructose.

    PubMed

    Kolida, S; Tuohy, K; Gibson, G R

    2002-05-01

    Prebiotics are non-digestible food ingredients that target certain components within the microbiota of the human large intestine. Efficient prebiotics need to have a specific fermentation therein and thereby have the ability to alter the faecal microflora composition towards a more 'beneficial' community structure. This should occur by the stimulation of benign or potentially health promoting genera but not the harmful groups. Because of their positive attributes bifidobacteria and lactobacilli are the most frequent target organisms. Both inulin and oligofructose have been demonstrated to be effective prebiotics. This has been shown through both in vitro and in vivo assessments in different laboratories. Because of their recognised prebiotic properties, principally the selective stimulation of colonic bifidobacteria, both inulin and oligofructose are increasingly used in new food product developments. Examples include drinks, yoghurts, biscuits and table spreads. Because of the recognised inhibitory effects that bifidobacteria can exert against gut pathogens, one of the most important aspects of prebiotic ingestion is fortification of the gut flora to resist acute infections.

  5. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    PubMed Central

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  6. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    PubMed

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.

  7. Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life.

    PubMed

    Borromei, Chiara; Cavazza, Antonella; Corradini, Claudio; Vatteroni, Claudia; Bazzini, Adelina; Ferrari, Raffaella; Merusi, Paolo

    2010-05-01

    Interest concerning functional food has been growing in recent years, and much attention has been focused on the choice of prebiotic fibers and probiotic microorganisms added to food products with the aim of improving health, producing synbiotic products. In the work reported here, an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection has been optimized and validated for application to the study of prebiotic effects in synbiotic fermented milk prepared by addition of probiotics. The proposed method permits the evaluation of fructooligosaccharides and inulooligosaccharides with degrees of polymerization of 6-7 and 4-7, respectively. Quantitative determination was performed on oligosaccharides, whose standards are not commercially available, by employing calibration curves built by adding a known amount of the fiber used as an ingredient to the matrix. The work provides results from a parallel study on simultaneous variations of prebiotics and probiotics during the shelf life of fermented milk samples. The main advantage over time-consuming, classic enzymatic methods, whose results are limited only to average fiber content, is the possibility of dosing each carbohydrate by performing a single HPAEC run. Validation in terms of detection and quantitation limits, linearity, precision, and recovery was carried out.

  8. Oligomannan Prebiotic Attenuates Immunological, Clinical and Behavioral Symptoms in Mouse Model of Inflammatory Bowel Disease

    PubMed Central

    Ferenczi, Szilamér; Szegi, Krisztián; Winkler, Zsuzsanna; Barna, Teréz; Kovács, Krisztina J.

    2016-01-01

    Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials. PMID:27658624

  9. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus.

    PubMed

    Khoroshkin, Matvei S; Leyn, Semen A; Van Sinderen, Douwe; Rodionov, Dmitry A

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics.

  10. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus

    PubMed Central

    Khoroshkin, Matvei S.; Leyn, Semen A.; Van Sinderen, Douwe; Rodionov, Dmitry A.

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics. PMID:26903998

  11. Prebiotically Important Molecules in Orion KL

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Chuang, Yo-Ling

    Many interstellar, complex organic molecules are known to be prebiotically important and have essential functions in terrestrial biochemistry. Observations of complex organic molecular species in molecular clouds can thus enable us to test the origin of the primitive organic material found in the Solar System. Interstellar pyrimidine and glycine, the building block of nucleic acid and the simplest amino acid, respectively, are key molecules for astrobiology and were both detected in meteorites and comets. Although the formation of prebiotic molecules in extraterrestrial environments and their contribution to prebiotic chemistry and the origin of life remains unsettled, the connection between interstellar organic chemistry, meteoritic pyrimidines and amino acids, and the emergence of life on the early Earth would be strengthened with the discovery of interstellar pyrimidine and glycine. We have therefore observed the Orion KL hot molecular core to search for interstellar pyrimidine and for the confirmation of interstellar glycine using the ALMA array. We will present some of the encouraging, positive results.

  12. Towards a more comprehensive concept for prebiotics.

    PubMed

    Bindels, Laure B; Delzenne, Nathalie M; Cani, Patrice D; Walter, Jens

    2015-05-01

    The essential role of the gut microbiota for health has generated tremendous interest in modulating its composition and metabolic function. One of these strategies is prebiotics, which typically refer to selectively fermented nondigestible food ingredients or substances that specifically support the growth and/or activity of health-promoting bacteria that colonize the gastrointestinal tract. In this Perspective, we argue that advances in our understanding of diet-microbiome-host interactions challenge important aspects of the current concept of prebiotics, and especially the requirement for effects to be 'selective' or 'specific'. We propose to revise this concept in an effort to shift the focus towards ecological and functional features of the microbiota more likely to be relevant for host physiology. This revision would provide a more rational basis for the identification of prebiotic compounds, and a framework by which the therapeutic potential of modulating the gut microbiota could be more fully materialized.

  13. Prebiotic properties of potato starch dextrins.

    PubMed

    Barczyńska, Renata; Śliżewska, Katarzyna; Libudzisz, Zdzisława; Kapuśniak, Kamila; Kapuśniak, Janusz

    2015-09-08

    The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion - they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells) counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains.

  14. Prebiotics and Probiotics and Oral Health

    NASA Astrophysics Data System (ADS)

    Meurman, J. H.

    The first part of this chapter describes the unique characteristics of the mouth with special emphasis on the oral microbiota. Next, the highly prevalent dental diseases are briefly described together with more rare but still important diseases and symptoms of the mouth. Prevention and treatment of oral and dental diseases are also discussed focusing on aspects considered important with respect to the potential application of prebiotics and probiotics. The second part of the chapter then concentrates on research data on prebiotics and probiotics in the oral health perspective, ending up with conclusions and visions for future research.

  15. Fructan Prebiotics Derived from Inulin

    NASA Astrophysics Data System (ADS)

    Bosscher, Douwina

    Inulin, as well as the shorter form oligofructose, is a nondigestible carbohydrate (fructan) that has been part of the daily food of mankind for centuries. Inulin-type fructans naturally occur in many edible plants as storage carbohydrates. They are present in leek, onion, garlic, wheat, chicory, artichoke, and banana. It is estimated that an average North American consumes about 1-4 g/day of inulin or oligofructose. In Western Europe, the average intake varies between 3 and 10 g/day. Occasionally, people can have higher intakes, e.g., after consuming a bowl of French onion soup, salsify dish, etc., and intakes can then exceed easily 10 g. This illustrates that via the normal diet some, and at certain times, all populations consume relatively high quantities of inulin-type fructans. It also follows that wheat, onion, and banana, and to a lesser extend garlic are the most important sources of inulin-type fructans in the diet. Although inulin-type fructans are nutritive substances and part of our daily diet, these compounds are currently not taken up in food composition tables.

  16. Prebiotic effects: metabolic and health benefits.

    PubMed

    Roberfroid, Marcel; Gibson, Glenn R; Hoyles, Lesley; McCartney, Anne L; Rastall, Robert; Rowland, Ian; Wolvers, Danielle; Watzl, Bernhard; Szajewska, Hania; Stahl, Bernd; Guarner, Francisco; Respondek, Frederique; Whelan, Kevin; Coxam, Veronique; Davicco, Marie-Jeanne; Léotoing, Laurent; Wittrant, Yohann; Delzenne, Nathalie M; Cani, Patrice D; Neyrinck, Audrey M; Meheust, Agnes

    2010-08-01

    The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where

  17. Influence of prebiotics on the human immune system (GALT).

    PubMed

    Bodera, Pawel

    2008-06-01

    Prebiotics have great potential to improve human health in specific intestinal disorders. The knowledge about the influence of prebiotics on the gut-associated lymphoid tissues (GALT) for the improvement of human health is still growing. This paper reviews the latest evidence for the immunity-enhancing effects of prebiotics. Prebiotics, include inulin, fructooligosaccharides, mannosoligosaccharides, and arabinogalactans, are a therapeutic nutritional preparation used for the gut function favoring growth of normal bacterial flora and impedes growth of pathogenic organisms. There is convincing preliminary data to suggest that the consumption of prebiotics can modulate immune parameters in GALT, secondary lymphoid tissues and peripheral circulation. There is increasing evidence that the newly described prebiotics and innovative means of administration can modulate various properties of the immune system, including those of the gut-associated lymphoid tissues (GALT). Authors of recently published patents showed new mechanisms for immuno-modulation, and the ultimate impact on immunological health of prebiotics.

  18. Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates.

    PubMed

    Niba, A T; Beal, J D; Kudi, A C; Brooks, P H

    2009-10-01

    The search for alternatives to in-feed antibiotics in animal nutrition has highlighted the role dietary modulation can play in improving gut health. Current antibiotic replacement strategies have involved the use of microbes beneficial to health (probiotics) or fermentable carbohydrates (prebiotics) or both (synbiotics). The present review recognises the contribution of fermented feeds and fermentable carbohydrates in improving the gut environment in non-ruminants. It proposes the screening of probiotic bacteria for the production of fermented feeds and supplementation of these feeds with fermentable carbohydrates prior to feeding animals. It is suggested that the term 'fermbiotics' should be used to describe this intervention strategy.

  19. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  20. Emergent Sources of Prebiotics: Seaweeds and Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2016-01-01

    In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen. PMID:26828501

  1. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  2. Emergent Sources of Prebiotics: Seaweeds and Microalgae.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2016-01-28

    In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen.

  3. An Introduction to the Avian Gut Microbiota and the Effects of Yeast-Based Prebiotic-Type Compounds as Potential Feed Additives.

    PubMed

    Roto, Stephanie M; Rubinelli, Peter M; Ricke, Steven C

    2015-01-01

    The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota.

  4. An Introduction to the Avian Gut Microbiota and the Effects of Yeast-Based Prebiotic-Type Compounds as Potential Feed Additives

    PubMed Central

    Roto, Stephanie M.; Rubinelli, Peter M.; Ricke, Steven C.

    2015-01-01

    The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota. PMID:26664957

  5. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability.

  6. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  7. Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health.

    PubMed

    Grizard, D; Barthomeuf, C

    1999-01-01

    Prebiotic agents are food ingredients that are potentially beneficial to the health of consumers. The main commercial prebiotic agents consist of oligosaccharides and dietary fibres (mainly inulin). They are essentially obtained by one of three processes: 1) the direct extraction of natural polysaccharides from plants; 2) the controlled hydrolysis of such natural polysaccharides; 3) enzymatic synthesis, using hydrolases and/or glycosyl transferases. Both of these enzyme types catalyse transglycosylation reactions, allowing synthesis of small molecular weight synthetic oligosaccharides from mono- and disaccharides. Presently, in Europe, inulin-type fructans, characterised by the presence of fructosyl units bound to the beta-2,1 position of sucrose, are considered as one of the carbohydrate prebiotic references. Prebiotics escape enzymatic digestion in the upper gastrointestinal tract and enter the caecum without change to their structure. None are excreted in the stools, indicating that they are fermented by colonic flora so as to give a mixture of short-chain fatty acids (acetate, propionate and butyrate), L-lactate, carbon dioxide and hydrogen. By stimulating bifidobacteria, they may have the following implications for health: 1) potential protective effects against colorectal cancer and infectious bowel diseases by inhibiting putrefactive bacteria (Clostridium perfringens ) and pathogen bacteria (Escherichia coli, Salmonella, Listeria and Shigella ), respectively; 2) improvement of glucid and lipid metabolisms; 3) fibre-like properties by decreasing the renal nitrogen excretion; 4) improvement in the bioavailability of essential minerals; and 5) low cariogenic factor. These potential beneficial effects have been largely studied in animals but have not really been proven in humans. The development of a second generation of oligosaccharides and the putative implication of a complex bacterial trophic chain in the intestinal prebiotic fermentation process are also

  8. Carbohydrates as allergens.

    PubMed

    Commins, Scott P

    2015-01-01

    Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.

  9. Computerized molecular modeling of carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  10. Psychobiological effects of carbohydrates.

    PubMed

    Spring, B; Chiodo, J; Harden, M; Bourgeois, M J; Mason, J D; Lutherer, L

    1989-05-01

    The authors studied whether the fatiguing effects of eating lunch are greater for carbohydrate-rich meals than for other meals, and related the time course of behavioral change to plasma glucose, insulin, and amino acids. On different occasions, in counterbalanced order, normal women (N = 7) fasted overnight, ate a standard breakfast, and at lunch either continued to fast or ate a high-carbohydrate, low-protein meal; a hedonically similar meal containing both carbohydrate and protein; or a high-protein, low-carbohydrate meal. Meals were isocaloric and equated for fat content. Only the carbohydrate meal significantly increased fatigue, which could not be attributed to hypoglycemia because plasma glucose remained elevated. Fatigue began approximately, when the carbohydrate meal elevated the plasma tryptophan ratio but ended even though the ratio remained elevated. Fatigue after a high-carbohydrate lunch could not be explained by reactive hypoglycemia or sweet taste, and could partially be explained by the hypothesis that fatigue parallels an elevation of the tryptophan ratio.

  11. Low-carbohydrate diets.

    PubMed

    Last, Allen R; Wilson, Stephen A

    2006-06-01

    Americans spend dollar 33 billion annually on weight loss products and services, and a large portion of this money is spent on low-carbohydrate diets. Because of their higher protein and fat content and lower fiber and carbohydrate content, concerns have been raised about the potential health consequences of low-carbohydrate diets. Published long-term data are lacking. Short-term studies comparing traditional low-fat diets with low-carbohydrate diets found lower triglyceride levels, higher high-density lipoprotein cholesterol levels, similar low-density lipoprotein cholesterol levels, and lower A1C levels in persons on low-carbohydrate diets. These diets induce greater weight loss at three and six months than traditional low-fat diets; however, by one year there is no significant difference in maintained weight loss. Weight loss is directly related to calorie content and the ability to maintain caloric restriction; the proportions of nutrients in the diet are irrelevant. Low-carbohydrate diets had lower dropout rates than low-fat diets in several studies, possibly because of the high protein content and low glycemic index, which can be appetite suppressing. Data indicate that low-carbohydrate diets are a safe, reasonable alternative to low-fat diets for weight loss. Additional studies are needed to investigate the long-term safety and effectiveness of these and other approaches to weight loss.

  12. Prebiotic Chemistry: Geochemical Context and Reaction Screening

    PubMed Central

    Cleaves, Henderson James

    2013-01-01

    The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed. PMID:25369745

  13. Probiotics and prebiotics in infectious gastroenteritis.

    PubMed

    Vandenplas, Yvan

    2016-02-01

    Acute gastroenteritis (AGE) is worldwide a common problem in infants and children. While AGE is still an important cause of morbidity and mortality in developing countries, it is mainly a problem with high socioeconomic impact in the rest of the world. Oral rehydration solutions (ORS) and rapid refeeding remain the cornerstone of the management. However, ORS does not decrease the duration of diarrhea. There is evidence that selected strains of probiotics decrease the duration of AGE with 24 h, both in ambulatory care and in hospitalized children, resulting also in a decrease of the duration of hospitalization. Synbiotics are equally effective as probiotics alone, but prebiotics are not effective. Both pro- and prebiotics have limited to no efficacy in the prevention of AGE. The administration of pre- and probiotics is considered to be safe, even in newborns. Only these pre-, pro and synbiotics that have been clinically tested can be recommended.

  14. Prebiotics from marine macroalgae for human and animal health applications.

    PubMed

    O'Sullivan, Laurie; Murphy, Brian; McLoughlin, Peter; Duggan, Patrick; Lawlor, Peadar G; Hughes, Helen; Gardiner, Gillian E

    2010-07-01

    The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date.

  15. Prebiotics: preferential substrates for specific germs?

    PubMed

    Roberfroid, M B

    2001-02-01

    A prebiotic is "a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or the activity of one or a limited number of bacteria in the colon." The premise is based on the hypothesis that the large gut in humans contains bacteria that are beneficial or detrimental to health. Although this generalization probably gives too simplistic a view of gut microbiology, it is a feasible working concept. Currently, food components that seem to exert the best prebiotic effects are inulin-type fructans. In pure culture, most species of bifidobacteria are adapted to the utilization of these nondigestible oligosaccharides but many other bacteria are also capable of metabolizing them. Clearly, these studies of pure bacteria are of limited use unless their results are supported by the results of studies using mixed cultures. Indeed, as many components of the gut microbiota as possible should be measured to indicate a true prebiotic effect. Simple stimulation of bifidobacteria is insufficient to demonstrate an effect; the effects on other gut microorganisms in vivo with human volunteers is necessary. Adjustment of the composition and activities of the colonic microflora so that health-promoting activities are optimized remains key in functional food development. New methods are being applied extensively to human gut microbiology and promise the degree of reliability required to detect subtle changes in colonic microflora composition and to correlate such changes with health benefits. This is a review of the present state of knowledge concerning prebiotics, with emphasis on the criteria used for classification, mechanisms of selective growth stimulation, and physiologic effects.

  16. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  17. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  18. Carbohydrates: functionality in foods.

    PubMed

    Chinachoti, P

    1995-04-01

    Many functional requirements are met by the use of simple and complex carbohydrates in food. Carbohydrates offer a wide range of rheological and other properties, including solubility, cryoprotection, sweetening effect, hygroscopicity, crystallization inhibition, flavor encapsulation, and coating ability. These properties are based on chemical structure and interactions with other molecules through hydrogen bonding, ionic effect, and the formation of complexes with lipids and proteins. The ability to understand these properties directly affects the development of food products and processes. Thus, the functionality of carbohydrates in foods integrates precise knowledge of chemical structure and behavior with practical applications in the development and preparation of foods.

  19. The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate?

    PubMed

    Steinert, R E; Sadaghian Sadabad, M; Harmsen, H J M; Weber, P

    2016-12-01

    Emerging evidence suggests that the gut microbiota has a critical role in both the maintenance of human health and the pathogenesis of many diseases. Modifying the colonic microbiota using functional foods has attracted significant research effort and product development. The pioneering concept of prebiotics, as introduced by Gibson and Roberfroid in the 1990s, emphasized the importance of diet in the modulation of the gut microbiota and its relationships to human health. Increasing knowledge of the intestinal microbiota now suggests a more comprehensive definition. This paper briefly reviews the basics of the prebiotic concept with a discussion of recent attempts to refine the concept to open the door for novel prebiotic food ingredients, such as polyphenols, minerals and vitamins.

  20. Distant Site Effects of Ingested Prebiotics

    PubMed Central

    Collins, Stephanie; Reid, Gregor

    2016-01-01

    The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption. PMID:27571098

  1. Cold prebiotic evolution, tunneling, chirality and exobiology

    NASA Astrophysics Data System (ADS)

    Goldanskii, Vitalii I.

    1996-07-01

    The extra-terrestrial scenario of the origin of life suggested by Svante Arrhenius (1) as the `panspermia' hypothesis was revived by the discovery of a low-temperature quantum limit of a chemical reaction rate caused by the molecular tunneling (2). Entropy factors play no role near absolute zero, and slow molecular tunneling can lead to the exothermic formation of quite complex molecules. Interstellar grains or particles of cometary tails could serve as possible cold seeds of life, with acetic acid, urea and products of their polycondensation as quasi-equilibrium intermediates. Very cold solid environment hinders racemization and stabilizes optical activity under conditions typical for outer space. Neither `advantage' factors can secure the evolutionary formation of chiral purity of initial prebiotic monomeric medium-even being temporary achieved it cannot be maintained at subsequent stages of prebiotic evolution because of counteraction of `enantioselective pressure'. Only bifurcational mechanism of the formation of prebiotic homochiral-monomeric and afterwards polymeric-medium and its subsequent transformation in `homochiral chemical automata' (`biological big bang'-passage from `stochastic' to `algorithmic' chemistry) is possible and can be realized. Extra-terrestrial (cold, solid phase) scenarios of the origin of life seem to be more promising from that point of view than terrestrial (warm) scenarios. Within a scheme of five main stages of prebiological evolution some problems important for further investigation are briefly discussed.

  2. Distant Site Effects of Ingested Prebiotics.

    PubMed

    Collins, Stephanie; Reid, Gregor

    2016-08-26

    The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.

  3. Human milk and related oligosaccharides as prebiotics.

    PubMed

    Barile, Daniela; Rastall, Robert A

    2013-04-01

    Human milk oligosaccharides (HMO) are believed to have a range of biological activities beyond providing nutrition to the infant. Principal among these is that they may act as prebiotics. Prebiotics are dietary ingredients, usually oligosaccharides that provide a health benefit to the host mediated by the modulation of the human gut microbiota. While it is clear that such oligosaccharides may have potential applications in infants and adults alike, this potential is limited by the difficulties in manufacturing HMO. Consequently functional alternatives such as galacto-oligosaccharides (GOS) are under investigation. GOS are produced enzymatically from lactose for commercial use in food applications--including addition to infant formulae--as similar to breast milk oligosaccharides, they encourage a gut bacteria population that promotes health and reduces the incidence of intestinal infections. New methods for separation and concentration of complex, breast milk-like oligosaccharides from bovine milk industrial streams that contain only low amounts of these valuable oligosaccharides are providing the opportunity to investigate other viable sources of specific oligosaccharides for use as prebiotics in supplements or food products.

  4. Application of prebiotics in infant foods.

    PubMed

    Veereman-Wauters, Gigi

    2005-04-01

    The rationale for supplementing an infant formula with prebiotics is to obtain a bifidogenic effect and the implied advantages of a 'breast-fed-like' flora. So far, the bifidogenic effect of oligofructose and inulin has been demonstrated in animals and in adults, of oligofructose in infants and toddlers and of a long-chain inulin (10 %) and galactooligosaccharide (90 %) mixture in term and preterm infants. The addition of prebiotics to infant formula softens stools but other putative effects remain to be demonstrated. Studies published post marketing show that infants fed a long-chain inulin/galactooligosaccharide mixture (0.8 g/dl) in formula grow normally and have no side-effects. The addition of the same mixture at a concentration of 0.8 g/dl to infant formula was therefore recognized as safe by the European Commission in 2001 but follow-up studies were recommended. It is thought that a bifidogenic effect is beneficial for the infant host. The rising incidence in allergy during the first year of life may justify the attempts to modulate the infant's flora. Comfort issues should not be confused with morbidity and are likely to be multifactorial. The functional effects of prebiotics on infant health need further study in controlled intervention trials.

  5. Prebiotics and probiotics: are they functional foods?

    PubMed

    Roberfroid, M B

    2000-06-01

    A probiotic is a viable microbial dietary supplement that beneficially affects the host through its effects in the intestinal tract. Probiotics are widely used to prepare fermented dairy products such as yogurt or freeze-dried cultures. In the future, they may also be found in fermented vegetables and meats. Several health-related effects associated with the intake of probiotics, including alleviation of lactose intolerance and immune enhancement, have been reported in human studies. Some evidence suggests a role for probiotics in reducing the risk of rotavirus-induced diarrhea and colon cancer. Prebiotics are nondigestible food ingredients that benefit the host by selectively stimulating the growth or activity of one or a limited number of bacteria in the colon. Work with prebiotics has been limited, and only studies involving the inulin-type fructans have generated sufficient data for thorough evaluation regarding their possible use as functional food ingredients. At present, claims about reduction of disease risk are only tentative and further research is needed. Among the claims are constipation relief, suppression of diarrhea, and reduction of the risks of osteoporosis, atherosclerotic cardiovascular disease associated with dyslipidemia and insulin resistance, obesity, and possibly type 2 diabetes. The combination of probiotics and prebiotics in a synbiotic has not been studied. This combination might improve the survival of the bacteria crossing the upper part of the gastrointestinal tract, thereby enhancing their effects in the large bowel. In addition, their effects might be additive or even synergistic.

  6. Carbohydrate Dehydration Demonstrations.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Discusses the impact of various factors on the "charring reaction" of a carbohydrate with concentrated sulfuric acid including the type of sugar, the degree of fineness of the sugar crystals, and the amount of water added. (JRH)

  7. Carbohydrate Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally ...

  8. Carbohydrates and Depression.

    ERIC Educational Resources Information Center

    Wurtman, Richard J.; Wurtman, Judith J.

    1989-01-01

    Describes the symptoms, such as appetite change and mood fluctuation, basic mechanisms, and some treatments of Seasonal Affective Disorder (SAD), Carbohydrate-Craving Obesity (CCO) and Premenstrual Syndrome (PMS). Provides several tables and diagrams, and three reading references. (YP)

  9. Digestion and Absorption of Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are the major dietary sources of energy for humans. While most dietary carbohydrates are derived from multiple botanical sources, lactose and trehalose are the only animal-derived carbohydrates. Digestion of starch, the carbohydrate most abundantly consumed by humans, depends on the c...

  10. Diarrhea caused by carbohydrate malabsorption.

    PubMed

    Hammer, Heinz F; Hammer, Johann

    2012-09-01

    This article will focus on the role of the colon in the pathogenesis of diarrhea in carbohydrate malabsorption or physiologically incomplete absorption of carbohydrates, and on the most common manifestation of carbohydrate malabsorption, lactose malabsorption. In addition, incomplete fructose absorption, the role of carbohydrate malabsorption in other malabsorptive diseases, and congenital defects that lead to malabsorption will be covered. The article concludes with a section on diagnostic tools to evaluate carbohydrate malabsorption.

  11. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  12. Inulin-type prebiotics: a review. (Part 2).

    PubMed

    Kelly, Greg

    2009-03-01

    This is part 2 of a two-part review of inulin-type prebiotics. This article discusses the clinical research on inulin-type prebiotics, including effects on infant nutrition, gastrointestinal health, colon cancer prevention, blood sugar and lipid metabolism, bone mineralization, fatty liver disease, obesity, and immunity. Gastrointestinal side effects and dosage recommendations are also considered.

  13. Functional petit-suisse cheese: measure of the prebiotic effect.

    PubMed

    Cardarelli, Haíssa R; Saad, Susana M I; Gibson, Glenn R; Vulevic, Jelena

    2007-01-01

    Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin, oligofructose, honey) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using sterile, stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli, were achieved with addition of prebiotics to a probiotic cheese (made using starter+probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use.

  14. Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation.

    PubMed

    Hutsko, S L; Meizlisch, K; Wick, M; Lilburn, M S

    2016-05-01

    Alternative and adjunctive approaches to decreasing the use of dietary antibiotics are becoming popular areas of study. Supplemental probiotics (commensal microbes) and prebiotics (indigestible complex carbohydrates) are 2 dietary approaches to facilitating the intestinal colonization of beneficial bacteria to compete with potential pathogens, thus creating a healthy mucosal environment. The intestinal mucosa is composed of mucin glycoproteins, which play a key role in preventing the attachment of pathogenic bacteria. At hatch, the neonatal turkey intestine is relatively aseptic and vulnderable to bacterial colonization by both commensal and pathogenic microbes. In the current study, we determined the transcription of MUC2, the primary mucin protein produced by goblet cells within the small intestine, and we also measured intestinal morphology immediately post-hatch through d 11. Poults were fed a conventional starter diet, the starter diet supplemented with one of 2 commercial probiotics (A, B), or a commercial mannan oligosaccharide. MUC2 transcription increased from d zero to d 4 post-hatch (P< 0.05), but there was no effect of probiotic or prebiotic supplementation. Villus height and villus area both increased with Probiotic B and mannan oligosaccharide supplementation (P<0.05) and there was a significant d X treatment interaction effect for crypt depth (P=0.007). These results suggest that probiotic and prebiotic supplementation can positively alter the intestinal microenvironment.

  15. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability.

    PubMed

    Avila-Reyes, Sandra V; Garcia-Suarez, Francisco J; Jiménez, María Teresa; San Martín-Gonzalez, María F; Bello-Perez, Luis A

    2014-02-15

    Protection of probiotics by substances considered as prebiotics can be an alternative to increase their viability in the large intestine. The objective of this study was to use two wall materials (native rice starch and inulin) without bonding agent to protect Lactobacillus rhamnosus during spray-drying and determine the viability of the microorganism under two storage conditions. For spray-drying conditions tested in this work the product yield with native rice starch (NRS) ranged between 65% and 74% whereas for inulin (IN) it ranged between 43% and 54%. In general, IN solutions exhibited higher outlet temperature than NRS dispersions. Capsules of IN had smaller particle size than those of NRS. Due to the higher hydrophilic nature of IN capsules as compared to NRS, IN capsules exhibited higher water activity than NRS capsules. Confocal microscopy showed marked differences between both wall materials, which could in turn cause differences in the release profile of encapsulated microorganisms. Agglomerates of NRS provided better protection to the microorganisms as evidenced by the lower reduction in viability when compared to IN, and this effect was corroborated by the stability study. It is possible to protect probiotics using both colloids, but differences in the viability and stability during storage were determined. The use of IN could prove beneficial in the encapsulation of probiotic strains since this carbohydrate is not hydrolyzed by human digestive enzymes and may act as prebiotic.

  16. A Prebiotic Formula Improves the Gastrointestinal Bacterial Flora in Toddlers

    PubMed Central

    Chen, Ya-Ling; Liao, Fang-Hsuean

    2016-01-01

    We aimed to investigate the effect of enriched 3-prebiotic formula (including inulin, fructooligosaccharides, and galactooligosaccharides) on toddler gut health by measuring fecal microbiota. Our results revealed that the consumption of 3-prebiotic formula three times per day giving total intake of 1.8 g prebiotic ingredients significantly showed the increased number of probiotic Bifidobacterium spp. colonies and the reduced populations of both C. perfringens and total anaerobic bacteria on the fecal bacterial flora in toddlers at 18~36 months. In addition, total organic acids in the fecal samples significantly increased which improves the utilization of bifidus under acidic conditions after consumption of the 3-prebiotic formula. Therefore, using the formula enriched with prebiotic may maintain gut health in toddlers. PMID:27403155

  17. Developing a prebiotic yogurt enriched by red bean powder: Microbiological, physi-cochemical and sensory aspect

    NASA Astrophysics Data System (ADS)

    Setiyoningrum, Fitri; Priadi, Gunawan; Afiati, Fifi

    2017-01-01

    Red bean is widely known as a prebiotic, but addition of it into yogurt is rare. The aim of this study was to evaluate the effect of red bean powder addition on microbiological, physicochemical, and sensory of yogurt. Skim milk also added into yogurt formula to optimize the quality of yogurt. The treatment of concentrations, either red bean and skim milk, did not effect on the viability of lactic acid bacteria of yogurt (8.35 - 9.03 log cfu/ml) and the crude fiber content (0.04 - 0.08%). The increasing of red bean concentration induced the increase of protein content significantly. The increasing of level concentration, either red bean or skim milk, induced the increasing of carbohydrate content. Opposite phenomenon was occurred on the moisture content. Based on the sensory test result, the addition of 3% of skim milk and 2%of red bean into yogurt still accepted by panelist.

  18. Prebiotics and resistance to gastrointestinal infections.

    PubMed

    Gibson, G R; McCartney, A L; Rastall, R A

    2005-04-01

    Acute gut disorder is a cause for significant medicinal and economic concern. Certain individual pathogens of the gut, often transmitted in food or water, have the ability to cause severe discomfort. There is a need to manage such conditions more effectively. The route of reducing the risk of intestinal infections through diet remains largely unexplored. Antibiotics are effective at inhibiting pathogens; however, these should not be prescribed in the absence of disease and therefore cannot be used prophylactically. Moreover, their indiscriminate use has reduced effectiveness. Evidence has accumulated to suggest that some of the health-promoting bacteria in the gut (probiotics) can elicit a multiplicity of inhibitory effects against pathogens. Hence, an increase in their numbers should prove effective at repressing pathogen colonisation if/when infectious agents enter the gut. As such, fortification of indigenous bifidobacteria/lactobacilli by using prebiotics should improve protection. There are a number of potential mechanisms for lactic acid bacteria to reduce intestinal infections. Firstly, metabolic endproducts such as acids excreted by these micro-organisms may lower the gut pH to levels below those at which pathogens are able to effectively compete. Also, many lactobacilli and bifidobacteria species are able to excrete natural antibiotics, which can have a broad spectrum of activity. Other mechanisms include an improved immune stimulation, competition for nutrients and blocking of pathogen adhesion sites in the gut. Many intestinal pathogens like type 1 fimbriated Escherichia coli, salmonellae and campylobacters utilise oligosaccharide receptor sites in the gut. Once established, they can then cause gastroenteritis through invasive and/or toxin forming properties. One extrapolation of the prebiotic concept is to simulate such receptor sites in the gut lumen. Hence, the pathogen is 'decoyed' into not binding at the host mucosal interface. The combined effects

  19. Cold prebiotic evolution, tunneling, chirality and exobiology

    SciTech Connect

    Goldanskii, V.I.

    1996-07-01

    The extra-terrestrial scenario of the origin of life suggested by Svante Arrhenius (1) as the {open_quote}panspermia{close_quote} hypothesis was revived by the discovery of a low-temperature quantum limit of a chemical reaction rate caused by the molecular tunneling (2). Entropy factors play no role near absolute zero, and slow molecular tunneling can lead to the exothermic formation of quite complex molecules. Interstellar grains or particles of cometary tails could serve as possible cold seeds of life, with acetic acid, urea and products of their polycondensation as quasi-equilibrium intermediates. Very cold solid environment hinders racemization and stabilizes optical activity under conditions typical for outer space. Neither {open_quote}advantage{close_quote} factors can secure the evolutionary formation of chiral purity of initial prebiotic monomeric medium{emdash}even being temporary achieved it cannot be maintained at subsequent stages of prebiotic evolution because of counteraction of {open_quote}enantioselective pressure{close_quote}. Only bifurcational mechanism of the formation of prebiotic homochiral{emdash}monomeric and afterwards polymeric{emdash}medium and its subsequent transformation in {open_quote}homochiral chemical automata{close_quote} ({open_quote}biological big bang{close_quote}{emdash}passage from {open_quote}stochastic{close_quote} to {open_quote}algorithmic{close_quote} chemistry) is possible and can be realized. Extra-terrestrial (cold, solid phase) scenarios of the origin of life seem to be more promising from that point of view than terrestrial (warm) scenarios. Within a scheme of five main stages of prebiological evolution some problems important for further investigation are briefly discussed. {copyright} {ital 1996 American Institute of Physics.}

  20. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    PubMed Central

    2011-01-01

    Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources. Furthermore

  1. Prebiotic chemistry and nucleic acid replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Lohrmann, R.

    1974-01-01

    Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.

  2. Initialization of metabolism in prebiotic petroleum

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    The theoretical and bibliographical work on the geochemical origin of life, which I present here, it works on the assumption that: "The class of more complex molecules of life that can have a geochemical and abiotic origin is the class of fatty acid with long aliphatic chain". This idea comes from the controversy over the abiotic oil industry, and the first measurements of abiotic oil at mid-ocean ridges (Charlou J.L. et al. 2002, Proskurowski G. et al. 2008). To go further and propose a comprehensive experimentation on the origin of life, I propose in this article the idea that the prebiotic soup or prebiotic petroleum would stem from the diagenesis of the gas clathrates/sediments mixture. Gas, H2S H2 N2 CH4 CO2, are produced at mid-ocean ridges, and at large-scale at the seafloor, by serpentinization. Sediments contain hydrogenophosphates as a source of phosphate and minerals to the surface catalysis. Extreme conditions experienced by some prokaryotes and pressures and temperatures of submarine oilfields of fossil petroleum are close. The hydrostatic pressure is around 1.5 kbar and the temperature is below 150 °C. This experiment I propose is quite feasible today since these conditions are used: In research and exploration of fossil petroleum; In the field of organic chemistry called "green chemistry" and where temperatures remain low and the pressure can reach 10 kbar; to study the biology of prokaryotes living in the fossil petroleum of industrial interest, these studies are quite comparable to experiment with prebiotic oil; Finally, this experiment can be based on research on abiotic CH4 on Mars and abiotic hydrocarbons on Titan. The next step in the theoretical research of the origin of life is the abiotic synthesis of liposomes. Abiotic synthesis liposomes just requires synthesis of glycerol and ethanolamine (or serine) esterifying the phosphate and fatty acid. The state of research on the abiotic synthesis of these molecules shows that synthesis of

  3. Prebiotic NH3 Formation: Insights from Simulations.

    PubMed

    Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco

    2016-02-15

    Simulations of prebiotic NH₃ synthesis from NO₃⁻ and NO₂⁻ on pyrite surfaces under hydrothermal conditions are reported. Ab initio metadynamics calculations have successfully explored the full reaction path which explains earlier experimental observations. We have found that the reaction mechanism can be constructed from stepwise single atom transfers which are compatible with the expected reaction time scales. The roles of the hot-pressurized water and of the pyrite surfaces have been addressed. The mechanistic picture that emerged from the simulations strengthens the theory of chemoautotrophic origin of life by providing plausible reaction pathways for the formation of ammonia within the iron-sulfur-world scenario.

  4. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.

    PubMed

    van Zanten, Gabriella C; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4-7) and the alkaline (pH 6-11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5-13.9-fold or decreasing 1.5-7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism.

  5. Carbohydrates, pollinators, and cycads

    PubMed Central

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  6. Carbohydrates, pollinators, and cycads.

    PubMed

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations.

  7. Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy.

    PubMed

    Bongaerts, Ger; Severijnen, René; Timmerman, Harro

    2005-01-01

    In order to reduce ammonia production by urease-positive bacteria Solga recently hypothesised (S.F. Solga, Probiotics can treat hepatic encephalopathy, Medical Hypotheses 2003; 61: 307-13), that probiotics are new therapeutics for hepatic encephalopathy (HE), and that they may replace antibiotics and lactulose. This influenced our view of the effect of antibiotics, prebiotics, e.g., lactulose, and probiotics on intestinal bacteria in the treatment of HE. Intestinal ammonia arises from aminoacids after bacterial de-amination and not from urea making urease-positive bacteria irrelevant. Antibiotics are not preferred in the treatment of HE, since ammonia-producing antibiotic-resistant bacteria may survive and replace ammonia-producing antibiotic-susceptible bacteria. Intestinal prebiotics are carbohydrate-like compounds, such as lactulose and resistant starch, that beneficially affects host's health in a different manner than normal food. In the small bowel prebiotics are not absorbed and digested, but are fermented in the colon by colonic bacteria. Fermentation of prebiotics yields lactic, acetic and butyric acids, as well as gas especially hydrogen (H2). The massive H2 volumes cause rapid intestinal hurry and thus massive amounts of colonic bacteria, not only urease-positive bacteria, but also deaminating bacteria, are removed and intestinal uptake of toxic bacterial metabolites, e.g., ammonia, reduced. As living non-pathogenic micro-organisms, probiotics beneficially affect the host's health by fermenting non-absorbed sugars, especially in the small bowel. Thus, they reduce the substrate of the other bacteria, and simultaneously they create a surplus of fermentation products which may affect the non-probiotic flora. Regarding the fermentation products (lactic acid, ethanol, acetic acid and CO2) five groups of probiotic micro-organisms are known. It is argued that probiotic, CO2-producing (facultatively) heterolactic lactobacilli, i.e., lactobacilli, that produce

  8. Selection of Prebiotic Molecules in Amphiphilic Environments

    PubMed Central

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J.

    2017-01-01

    A basic problem in all postulated pathways of prebiotic chemistry is the low concentration which generally is expected for interesting reactants in fluid environments. Even though compounds, like nucleobases, sugars or peptides, principally may form spontaneously under environmental conditions, they will always be rapidly diluted in an aqueous environment. In addition, any such reaction leads to side products which often exceed the desired compound and generally hamper the first steps of a subsequent molecular evolution. Therefore, a mechanism of selection and accumulation of relevant prebiotic compounds seems to be crucial for molecular evolution. A very efficient environment for selection and accumulation can be found in the fluid continuum circulating in tectonic fault zones. Vesicles which form spontaneously at a depth of approximately 1 km present a selective trap for amphiphilic molecules, especially for peptides composed of hydrophilic and hydrophobic amino acids in a suitable sequence. The accumulation effect is shown in a numeric simulation on a simplified model. Further, possible mechanisms of a molecular evolution in vesicle membranes are discussed. Altogether, the proposed scenario can be seen as an ideal environment for constant, undisturbed molecular evolution in and on cell-like compartments. PMID:28067845

  9. Is formamide a geochemically plausible prebiotic solvent?

    PubMed

    Bada, Jeffrey L; Chalmers, John H; Cleaves, H James

    2016-07-27

    From a geochemical perspective, significant amounts of pure formamide (HCONH2) would have likely been rare on the early Earth. There may have been mixed formamide-water solutions, but even in the presence of catalyst, solutions with >20 weight% water in formamide would not have produced significant amounts of prebiotic compounds. It might be feasible to produce relatively pure formamide by a rare occurrence of freezing formamide/water mixtures at temperatures lower than formamide's freezing point (2.55 °C) but greater than the freezing point of water. Because of the high density of formamide ice it would have sunk and accumulated at the bottom of the solution. If the remaining water froze on the surface of this ice, and was then removed by a sublimation-ablation process, a small amount of pure formamide ice might have been produced. In addition a recent report suggested that ∼85 weight% formamide could be prepared by a geochemical type of fractional distillation process, offering another possible route for prebiotic formamide production.

  10. The developing intestinal microbiome: probiotics and prebiotics.

    PubMed

    Neu, Josef

    2014-01-01

    The microbes in the human intestinal tract interact with the host to form a 'superorganism'. The functional aspects of the host microbe interactions are being increasingly scrutinized and it is becoming evident that this interaction in early life is critical for development of the immune system and metabolic function and aberrations may result in life-long health consequences. Evidence is suggesting that such interactions occur even before birth, where the microbes may be either beneficial or harmful, and possibly even triggering preterm birth. Mode of delivery, use of antibiotics, and other perturbations may have life-long consequences in terms of health and disease. Manipulating the microbiota by use of pro- and prebiotics may offer a means for maintenance of 'healthy' host microbe interactions, but over-exuberance in their use also has the potential to cause harm. Considerable controversy exists concerning the routine use of probiotics in the prevention of necrotizing enterocolitis. This chapter will provide a brief overview of the developing intestinal microbiome and discuss the use of pro- and prebiotics in preterm infants.

  11. How to Manipulate the Microbiota: Prebiotics.

    PubMed

    Louis, Petra; Flint, Harry J; Michel, Catherine

    2016-01-01

    During the last century, human nutrition has evolved from the definition of our nutritional needs and the identification of ways to meet them, to the identification of food components that can optimise our physiological and psychological functions. This development, which aims to ensure the welfare, health and reduced susceptibility to disease during life, gave birth to the concept of "functional foods". In this context, there is an increasing interest in the physiological effects induced by the dense and diverse microbiota which inhabits the human colon and whose development depends on the fermentation of undigested food residues. Thus, much research aims at identifying ways to guide these impacts in order to benefit the health of the host. It is in this context that the concept of "prebiotics" was developed in the 1990s. Since then, prebiotics have stimulated extensive work in order to clarify their definition, their nature and their physiological properties in accordance with the evolution of knowledge on the intestinal microbiota. However many questions remain open about their specificities, their mechanism(s) of action and therefore the relevance of their current categorisation.

  12. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.

    PubMed

    de la Fuente, Jesus M; Penadés, Soledad

    2004-01-01

    Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.

  13. Dietary modulation of the human gut microflora using prebiotics.

    PubMed

    Gibson, G R

    1998-10-01

    The human colonic flora has both beneficial and pathogenic potentials with respect to host health. There is now much interest in manipulation of the microbiota composition in order to improve the potentially beneficial aspects. The prebiotic approach dictates that non-viable food components are specifically fermented in the colon by indigenous bacteria thought to be of positive value, e.g. bifidobacteria, lactobacilli. Any food ingredient that enters the large intestine is a candidate prebiotic. However, to be effective, selectivity of the fermentation is essential. Most current attention and success has been derived using non-digestible oligosaccharides. Types primarily being looked at include those which contain fructose, xylose, soya, galactose, glucose and mannose. In particular, fructose-containing oligosaccharides, which occur naturally in a variety of plants such as onion, asparagus, chicory, banana and artichoke, fulfil the prebiotic criteria. Various data have shown that fructo-oligosaccharides (FOS) are specifically fermented by bifidobacteria. During controlled feeding studies, ingestion of these prebiotics causes bifidobacteria to become numerically dominant in faeces. Recent studies have indicated that a FOS dose of 4 g/d is prebiotic. To exploit this concept more fully, there is a need for assessments of (a) improved determination of the gut microbiota composition and activity; (b) the use of molecular methodologies to assess accurately prebiotic identities and develop efficient bacterial probing strategies; (c) the prebiotic potential of raw and processed foods; and (d) the health consequences of dietary modulation.

  14. A Critical Look at Prebiotics Within the Dietary Fiber Concept.

    PubMed

    Verspreet, Joran; Damen, Bram; Broekaert, Willem F; Verbeke, Kristin; Delcour, Jan A; Courtin, Christophe M

    2016-01-01

    This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet.

  15. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  16. The International Scientific Conference on Probiotics and Prebiotics.

    PubMed

    Madsen, Karen

    2011-10-01

    The 5th International Scientific Conference on Probiotics and Prebiotics was held in the Doubletree Hotel in Kosice, Slovakia, and highlighted current advances in the research and use of probiotics and prebiotics in both animal and human health. The conference attracted academic and industry representatives from over 35 countries and facilitated networking between research scientists and industry. A poster session was on display throughout the entire meeting. Over the course of the 3-day symposium, 12 sessions addressed issues related to the use of probiotics and prebiotics in the prevention and treatment of chronic and infectious diseases, their effects on host immune function and how they may modulate existing gut microbes.

  17. Lentil (Lens culinaris L.): A prebiotic carbohydrate-rich whole food legume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying l...

  18. Carbohydrates for training and competition.

    PubMed

    Burke, Louise M; Hawley, John A; Wong, Stephen H S; Jeukendrup, Asker E

    2011-01-01

    An athlete's carbohydrate intake can be judged by whether total daily intake and the timing of consumption in relation to exercise maintain adequate carbohydrate substrate for the muscle and central nervous system ("high carbohydrate availability") or whether carbohydrate fuel sources are limiting for the daily exercise programme ("low carbohydrate availability"). Carbohydrate availability is increased by consuming carbohydrate in the hours or days prior to the session, intake during exercise, and refuelling during recovery between sessions. This is important for the competition setting or for high-intensity training where optimal performance is desired. Carbohydrate intake during exercise should be scaled according to the characteristics of the event. During sustained high-intensity sports lasting ~1 h, small amounts of carbohydrate, including even mouth-rinsing, enhance performance via central nervous system effects. While 30-60 g · h(-1) is an appropriate target for sports of longer duration, events >2.5 h may benefit from higher intakes of up to 90 g · h(-1). Products containing special blends of different carbohydrates may maximize absorption of carbohydrate at such high rates. In real life, athletes undertake training sessions with varying carbohydrate availability. Whether implementing additional "train-low" strategies to increase the training adaptation leads to enhanced performance in well-trained individuals is unclear.

  19. Prebiotic chemistry: chemical evolution of organics on the primitive Earth under simulated prebiotic conditions.

    PubMed

    Dondi, Daniele; Merli, Daniele; Pretali, Luca; Fagnoni, Maurizio; Albini, Angelo; Serpone, Nick

    2007-11-01

    A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.

  20. Specific Carbohydrate Diet: Does It Work?

    MedlinePlus

    ... Specific Carbohydrate Diet (SCD) Go Back The Specific Carbohydrate Diet (SCD) Email Print + Share There is no ... diet that has received attention is the Specific Carbohydrate Diet. This diet limits poorly digestible carbohydrates to ...

  1. Stability of Lactobacillus rhamnosus GG in prebiotic edible films.

    PubMed

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D

    2014-09-15

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG.

  2. Probiotics and prebiotics: prospects for public health and nutritional recommendations.

    PubMed

    Sanders, Mary Ellen; Lenoir-Wijnkoop, Irene; Salminen, Seppo; Merenstein, Daniel J; Gibson, Glenn R; Petschow, Bryon W; Nieuwdorp, Max; Tancredi, Daniel J; Cifelli, Christopher J; Jacques, Paul; Pot, Bruno

    2014-02-01

    Probiotics and prebiotics are useful interventions for improving human health through direct or indirect effects on the colonizing microbiota. However, translation of these research findings into nutritional recommendations and public health policy endorsements has not been achieved in a manner consistent with the strength of the evidence. More progress has been made with clinical recommendations. Conclusions include that beneficial cultures, including probiotics and live cultures in fermented foods, can contribute towards the health of the general population; prebiotics, in part due to their function as a special type of soluble fiber, can contribute to the health of the general population; and a number of challenges must be addressed in order to fully realize probiotic and prebiotic benefits, including the need for greater awareness of the accumulated evidence on probiotics and prebiotics among policy makers, strategies to cope with regulatory roadblocks to research, and high-quality human trials that address outstanding research questions in the field.

  3. Stability of Lactobacillus rhamnosus GG in prebiotic edible films

    PubMed Central

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D.

    2014-01-01

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillusrhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  4. A plausibly prebiotic synthesis of phosphonic acids.

    PubMed

    de Graaf, R M; Visscher, J; Schwartz, A W

    1995-11-30

    The insolubility of calcium phosphate in water is a significant stumbling block in the chemistry required for the origin of life. The discovery of alkyl phosphonic acids in the Murchison meteorite suggests the possibility of delivery of these water-soluble, phosphorus-containing molecules by meteorites or comets to the early Earth. This could have provided a supply of organic phosphorus for the earliest stages of chemical evolution; although probably not components of early genetic systems, phosphonic acids may have been precursors to the first nucleic acids. Here we report the synthesis of several phosphonic acids, including the most abundant found in the Murchison meteorite, by ultraviolet irradiation of orthophosphorous acid in the presence of formaldehyde, primary alcohols, or acetone. We argue that similar reactions might explain the presence of phosphonic acids in Murchison, and could also have occurred on the prebiotic Earth.

  5. Prebiotics and probiotics - the importance of branding.

    PubMed

    Crittenden, Ross

    2012-01-01

    The costs of developing a probiotic or prebiotic ingredient have always been substantial. Ingredient characterization, evaluation of technological and physiological properties, and demonstrations of safety and clinical efficacy require expensive research. The demanding regulatory requirements imposed by EFSA raise the bar even higher so that the costs of acquiring the necessary clinical evidence to support labeling of these food ingredients is approaching that of pharmaceuticals. In order to justify investment in such expensive clinical development, companies require certainty that they can gain a return on investment. Patenting can provide some protection but is not always possible to patent ingredients, and the period of protection is limited. All ingredients eventually face the prospect of commoditization once patents expire. Branding strategies offer one means of maintaining adequate product differentiation to protect market share and margins over the long term.

  6. Prebiotic syntheses of purines and pyrimidines

    NASA Technical Reports Server (NTRS)

    Basile, B.; Oro, J.; Lazcano, A.

    1984-01-01

    The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.

  7. Probiotics, prebiotics, and microencapsulation: A review.

    PubMed

    Sarao, Loveleen Kaur; Arora, M

    2017-01-22

    The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.

  8. Prebiotics, Fermentable Dietary Fiber, and Health Claims.

    PubMed

    Delcour, Jan A; Aman, Per; Courtin, Christophe M; Hamaker, Bruce R; Verbeke, Kristin

    2016-01-01

    Since the 1970s, the positive effects of dietary fiber on health have increasingly been recognized. The collective term "dietary fiber" groups structures that have different physiologic effects. Since 1995, some dietary fibers have been denoted as prebiotics, implying a beneficial physiologic effect related to increasing numbers or activity of the gastrointestinal microbiota. Given the complex composition of the microbiota, the demonstration of such beneficial effects is difficult. In contrast, an exploration of the metabolites of dietary fiber formed as a result of its fermentation in the colon offers better perspectives for providing mechanistic links between fiber intake and health benefits. Positive outcomes of such studies hold the promise that claims describing specific health benefits can be granted. This would help bridge the "fiber gap"-that is, the considerable difference between recommended and actual fiber intakes by the average consumer.

  9. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.

  10. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  11. Atmospheric aerosols as prebiotic chemical reactors

    PubMed Central

    Dobson, Christopher M.; Ellison, G. Barney; Tuck, Adrian F.; Vaida, Veronica

    2000-01-01

    Aerosol particles in the atmosphere have recently been found to contain a large number of chemical elements and a high content of organic material. The latter property is explicable by an inverted micelle model. The aerosol sizes with significant atmospheric lifetimes are the same as those of single-celled organisms, and they are predicted by the interplay of aerodynamic drag, surface tension, and gravity. We propose that large populations of such aerosols could have afforded an environment, by means of their ability to concentrate molecules in a wide variety of physical conditions, for key chemical transformations in the prebiotic world. We also suggest that aerosols could have been precursors to life, since it is generally agreed that the common ancestor of terrestrial life was a single-celled organism. The early steps in some of these initial transformations should be accessible to experimental investigation. PMID:11035775

  12. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform

    PubMed Central

    Park, Si Hong; Lee, Sang In; Ricke, Steven C.

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104

  13. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform.

    PubMed

    Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.

  14. Inulin-type prebiotics--a review: part 1.

    PubMed

    Kelly, Greg

    2008-12-01

    This article is part 1 of a two-part review of inulin-type prebiotics. Prebiotics are a category of nutritional compounds grouped together by the ability to promote the growth of specific beneficial (probiotic) gut bacteria. Inulin-type prebiotics contain fructans of the inulin-type. Fructans are a category of nutritional compounds that encompasses naturally occurring plant oligo- and polysaccharides in which one or more fructosyl-fructose linkages comprise the majority of glycosidic bonds. To be inulin-type a fructan must have beta (2(1) fructosyl-fructose glycosidic bonds, which gives inulin its unique structural and physiological properties, allowing it to resist enzymatic hydrolysis by human salivary and small intestinal digestive enzymes. Inulin-type prebiotics include fructooligosaccharides (FOS), oligofructose, and inulin - terms that have been used inconsistently in both the scientific literature and in food applications. Commercially available inulin-type prebiotics can be extracted from food (typically chicory root) or synthesized from a more fundamental molecule (typically sucrose). Depending on the starting source and degree of processing, inulin-type prebiotics can be produced with very different chemical compositions. Some inulin-type prebiotics are relatively high in free sugars (the monosaccharides fructose and glucose and the disaccharide sucrose), while others have most or all free sugars removed. Processing can also result in mixes consisting exclusively of inulin-type oligosaccharides, polysaccharides, or both. Because inulin, oligofructose, and FOS resist enzymatic digestion in the upper gastrointestinal tract, they reach the colon virtually intact where they undergo bacterial fermentation. All inulin-type prebiotics are bifidogenic - stimulating the growth of Bifidobacteria species. The effects they have on other gut organisms are less consistent. A minimal dose of inulin-type prebiotic appears to be needed to produce a bifidogenic effect

  15. Carbohydrates as Fat Replacers.

    PubMed

    Peng, Xingyun; Yao, Yuan

    2017-02-28

    The overconsumption of dietary fat contributes to various chronic diseases, which encourages attempts to develop and consume low-fat foods. Simple fat reduction causes quality losses that impede the acceptance of foods. Fat replacers are utilized to minimize the quality deterioration after fat reduction or removal to achieve low-calorie, low-fat claims. In this review, the forms of fats and their functions in contributing to food textural and sensory qualities are discussed in various food systems. The connections between fat reduction and quality loss are described in order to clarify the rationales of fat replacement. Carbohydrate fat replacers usually have low calorie density and provide gelling, thickening, stabilizing, and other texture-modifying properties. In this review, carbohydrates, including starches, maltodextrins, polydextrose, gums, and fibers, are discussed with regard to their interactions with other components in foods as well as their performances as fat replacers in various systems.

  16. Endogenous Synthesis of Prebiotic Organic Molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1996-01-01

    The necessary condition for the synthesis of organic compounds on the primitive earth is the presence of reducing conditions. This means an atmosphere of CH4, CO, or CO2 + H2. The atmospheric nitrogen can be N2 with a trace of NH3, but NH4(+) is needed in the ocean at least for amino acid synthesis. Many attempts have been made to use CO2 + H2O atmospheres for prebiotic synthesis, but these give at best extremely low yields of organic compounds, except in the presence of H2. Even strong reducing agents such as FeS + H2S or the mineral assemblages of the submarine vents fail to give significant yields of organic compounds with CO2. There appears to be a high kinetic barrier to the non-biological reduction of CO2 at low temperatures using geological reducing agents. The most abundant source of energy for prebiotic synthesis is ultraviolet light followed by electric discharges, with electric discharges being more efficient, although it is not clear which was the important energy source. Photochemical process would also make significant contributions. In an atmosphere Of CO2, N2, and H2O with no H2, the production rates of HCN and H2CO would be very low, 0.001 or less than that of a relatively reducing atmosphere. The concentration of organic compounds under these non-reducing conditions would be so low that there is doubt whether the concentration mechanism would be adequate for further steps toward the origin of life. A number of workers have calculated the influx of comets and meteorites on the primitive earth as a source of organic compounds. We conclude that while some organic material was added to the earth from comets and meteorites the amount available from these sources at a given time was at best only a few percent of that from earth bases syntheses under reducing conditions.

  17. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  18. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  19. Carbohydrate post-glycosylational modifications

    PubMed Central

    Yu, Hai; Chen, Xi

    2008-01-01

    Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological information that can be controlled by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combine with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented. PMID:17340000

  20. European market developments in prebiotic- and probiotic-containing foodstuffs.

    PubMed

    Young, J

    1998-10-01

    A growing number of food manufacturers in western Europe are beginning to explore the commercial opportunities for foodstuffs containing health-promoting microbial food supplements (probiotics) and health-promoting non-digestible food ingredients (prebiotics). A prebiotic is considered to affect the host beneficially by selectively stimulating the growth and/or activity of one or a limited number of naturally present or introduced bacterial species in the colon, also leading to a claimed improvement in host health. Increasingly, probiotics and prebiotics are used in combination, this being termed a synbiotic (Gibson & Roberfroid, 1995). Throughout European history, fermented milk products in particular have been considered beneficial to health, but only in recent years has there been scientific support for these beliefs. Issues considered important to the continuing development of this growing market are proof of safety, proof of efficacy, consumer education, market positioning, price and appropriate health claims strategies. Until recently, much of the innovation in the use of probiotics and prebiotics has been in the dairy cabinet, with an ever-growing number and range of 'health-promoting' yoghurts and yoghurt-type fermented milk being made available to the European consumer, a market which is currently estimated to be worth in excess of $US2 billion per annum (Hilliam et al. 1997). However, prebiotics are beginning to find increasing application outside the dairy sector, particularly in baked goods. A key driver behind the broadening application of prebiotics has been the pro-active stance taken by key prebiotic suppliers such as Beghin-Say, Orafti and Cosucra. To date, market activity in probiotic- and prebiotic-containing foods has centred around three health propositions, namely improving general gut health, lowering blood cholesterol and improving the body's natural defences.

  1. The impact of probiotics and prebiotics on the immune system.

    PubMed

    Klaenhammer, Todd R; Kleerebezem, Michiel; Kopp, Matthias Volkmar; Rescigno, Maria

    2012-10-01

    Probiotics and prebiotics are increasingly being added to foodstuffs with claims of health benefits. Probiotics are live microorganisms that are thought to have beneficial effects on the host, whereas prebiotics are ingredients that stimulate the growth and/or function of beneficial intestinal microorganisms. But can these products directly modulate immune function and influence inflammatory diseases? Here, Nature Reviews Immunology asks four experts to discuss these issues and provide their thoughts on the future application of probiotics as a disease therapy.

  2. Probiotics and prebiotics associated with aquaculture: A review.

    PubMed

    Akhter, Najeeb; Wu, Bin; Memon, Aamir Mahmood; Mohsin, Muhammad

    2015-08-01

    There is a rapidly growing literature, indicating success of probiotics and prebiotics in immunomodulation, namely the stimulation of innate, cellular and humoral immune response. Probiotics are considered to be living microorganisms administered orally and lead to health benefits. These Probiotics are microorganisms in sufficient amount to alter the microflora (by implantation or colonization) in specific host's compartment exerting beneficial health effects at this host. Nevertheless, Prebiotics are indigestible fiber which enhances beneficial commensally gut bacteria resulting in improved health of the host. The beneficial effects of prebiotics are due to by-products derived from the fermentation of intestinal commensal bacteria. Among the many health benefits attributed to probiotics and prebiotics, the modulation of the immune system is one of the most anticipated benefits and their ability to stimulate systemic and local immunity, deserves attention. They directly enhance the innate immune response, including the activation of phagocytosis, activation of neutrophils, activation of the alternative complement system, an increase in lysozyme activity, and so on. Prebiotics acting as immunosaccharides directly impact on the innate immune system of fish and shellfish. Therefore, both probiotics and prebiotics influence the immunomodulatory activity boosting up the health benefits in aquatic animals.

  3. Catalytic Interactions and Molecular Docking of Bile Salt Hydrolase (BSH) from L. plantarum RYPR1 and Its Prebiotic Utilization

    PubMed Central

    Yadav, Ruby; Singh, Puneet K.; Puniya, Anil K.; Shukla, Pratyoosh

    2017-01-01

    Prebiotics are the non-digestible carbohydrate, which passes through the small intestine into unmetabolized form, reaches the large intestine and undergoes fermentation by the colonic bacteria thus; prebiotics stimulate the growth of probiotic bacteria. Further, bile salt hydrolase (BSH) is an enzyme that catalyses the deconjugation of bile salt, so it has enormous potential toward utilizing such capability of Lactobacillus plantarum RYPR1 toward detoxifying through BSH enzyme activity. In the present study, six isolates of Lactobacillus were evaluated for the co-aggregation assay and the isolate Lactobacillus plantarum RYPR1 was further selected for studies of prebiotic utilization, catalytic interactions and molecular docking. The prebiotic utilization ability was assessed by using commercially available prebiotics lactulose, inulin, xylitol, raffinose, and oligofructose P95. The results obtained revealed that RYPR1 is able to utilize these probiotics, maximum with lactulose by showing an increase in viable cell count (7.33 ± 0.02 to 8.18 ± 0.08). In addition, the molecular docking of BSH from Lactobacillus plantarum RYPR1 was performed which revealed the binding energy –4.42 and 7.03 KJ/mol. This proves a considerably good interactions among BSH and its substrates like Taurocholic acid (–4.42 KJ/mol) and Glycocholic acid (–7.03 KJ/mol). These results from this study establishes that Lactobacillus plantarum RYPR1 possesses good probiotic effects so it could be used for such applications. Further, molecular dynamics simulations were used to analyze the dynamic stability of the of modeled protein to stabilize it for further protein ligand docking and it was observed that residues Asn12, Ile8, and Leu6 were interacting among BSH and its substrates, i.e., Taurocholic acid and Lys88 and Asp126 were interacting with Glycocholic acid. These residues were interacting when the docking was carried out with stabilized BSH protein structure, thus, these residues may

  4. Catalytic Interactions and Molecular Docking of Bile Salt Hydrolase (BSH) from L. plantarum RYPR1 and Its Prebiotic Utilization.

    PubMed

    Yadav, Ruby; Singh, Puneet K; Puniya, Anil K; Shukla, Pratyoosh

    2016-01-01

    Prebiotics are the non-digestible carbohydrate, which passes through the small intestine into unmetabolized form, reaches the large intestine and undergoes fermentation by the colonic bacteria thus; prebiotics stimulate the growth of probiotic bacteria. Further, bile salt hydrolase (BSH) is an enzyme that catalyses the deconjugation of bile salt, so it has enormous potential toward utilizing such capability of Lactobacillus plantarum RYPR1 toward detoxifying through BSH enzyme activity. In the present study, six isolates of Lactobacillus were evaluated for the co-aggregation assay and the isolate Lactobacillus plantarum RYPR1 was further selected for studies of prebiotic utilization, catalytic interactions and molecular docking. The prebiotic utilization ability was assessed by using commercially available prebiotics lactulose, inulin, xylitol, raffinose, and oligofructose P95. The results obtained revealed that RYPR1 is able to utilize these probiotics, maximum with lactulose by showing an increase in viable cell count (7.33 ± 0.02 to 8.18 ± 0.08). In addition, the molecular docking of BSH from Lactobacillus plantarum RYPR1 was performed which revealed the binding energy -4.42 and 7.03 KJ/mol. This proves a considerably good interactions among BSH and its substrates like Taurocholic acid (-4.42 KJ/mol) and Glycocholic acid (-7.03 KJ/mol). These results from this study establishes that Lactobacillus plantarum RYPR1 possesses good probiotic effects so it could be used for such applications. Further, molecular dynamics simulations were used to analyze the dynamic stability of the of modeled protein to stabilize it for further protein ligand docking and it was observed that residues Asn12, Ile8, and Leu6 were interacting among BSH and its substrates, i.e., Taurocholic acid and Lys88 and Asp126 were interacting with Glycocholic acid. These residues were interacting when the docking was carried out with stabilized BSH protein structure, thus, these residues may have a

  5. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  6. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer.

  7. Noncaloric Benefits of Carbohydrates.

    PubMed

    Reddy, B Ravinder

    2015-01-01

    Noncaloric benefits of carbohydrates are due to the presence of dietary fibers, which are a heterogeneous group of natural food sources and form an important component of a healthy diet. They differ in physiochemical properties such as solubility, fermentability and viscosity. They have a wide range of physiological effects resulting in gastrointestinal and systemic benefits. These include appetite, satiety, bowel transit time and function, production of short-chain fatty acids and certain vitamins, and effects on gut microbiota, immunity and inflammation, as well as mineral absorption. They also help to control the glycemic status and serum lipid levels, resulting in reduced incidence rates of atherosclerosis, hypertension, stroke and cardiovascular diseases.

  8. Prebiotic effects of bovine lactoferrin on specific probiotic bacteria.

    PubMed

    Chen, Po-Wen; Liu, Zhen-Shu; Kuo, Tai-Chen; Hsieh, Min-Chi; Li, Zhe-Wei

    2017-04-01

    Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.

  9. Drivers of liking for yogurt drinks with prebiotics and probiotics.

    PubMed

    Allgeyer, L C; Miller, M J; Lee, S-Y

    2010-05-01

    Several studies have addressed the sensory properties of yogurt. However, as the market for yogurt continues to expand and new varieties of yogurt with novel ingredients emerge, additional sensory tests are needed to ensure the quality of the products. Three selected prebiotics, soluble corn fiber, polydextrose, and chicory inulin, were each added at an excellent source of fiber (5 g fiber/serving) or a good fiber source (2.5 g fiber/serving) levels into a yogurt drink base. Three additional yogurt drinks contained 5 g of each of the separate prebiotics along with a mixture of probiotics (Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus LA-5). A control sample with no prebiotics or probiotics was also included in the experimental design. Yogurt drinks were evaluated by 110 consumers for overall acceptance, acceptance of aroma, appearance, taste, and texture, and purchase intent. Demographic information pertaining to consumer knowledge of prebiotics and probiotics was collected. Consumer data were correlated with previously obtained descriptive analysis data to identify drivers of liking. Data were analyzed by analysis of variance (ANOVA), Fisher's least significant difference (LSD), cluster analysis, internal preference mapping, and external preference mapping. Total variance explained by the internal and external preference maps were 32.2% and 64.6%, respectively, which showed higher levels of the prebiotics with probiotics drove consumer liking compared to lower levels without probiotics. In terms of ingredients added, chicory inulin and polydextrose were preferred over soluble corn fiber. Yogurt drinks with these prebiotics included and probiotics were characterized by a medium level of sweetness and high viscosity. Development of new prebiotic and probiotic containing drinkable yogurts should strive for a medium level of sweetness and high viscosity for maximum consumer acceptance.

  10. Clustered Carbohydrates in Synthetic Vaccines†

    PubMed Central

    Peri, Francesco

    2013-01-01

    Are there general rules to achieve efficient immunization against carbohydrate antigens? Thanks to technological advances in glycobiology and glycochemistry we entered in a new era in which the rational design of carbohydrate vaccines has become an achievable goal. Aim of this Tutorial Review is to present the most recent achievements in the field of semi and fully synthetic carbohydrate vaccines against viruses, bacteria and cancer. It is also pointed out that the understanding of the chemical and biochemical processes related to immunization allows the modern chemist to rationally design carbohydrate vaccines with improved efficiency. PMID:23250562

  11. Issues in Nutrition: Carbohydrates.

    PubMed

    Thompson, Margaret E; Noel, Mary Barth

    2017-01-01

    Carbohydrates include sugars, starches, and dietary fibers. Resistant starches resemble fiber in their behavior in the intestinal tract, and may have positive effects on blood glucose levels and the gut microbiome. Fibers are classified as soluble and insoluble, but most fiber-containing foods contain a mixture of soluble and insoluble fiber. Soluble fiber has been shown to lower low-density lipoprotein cholesterol levels. Many artificial sweeteners and other sugar substitutes are available. Most natural sources of sweeteners also are energy sources. Many artificial sweeteners contain no kilocalories in the amounts typically used. Sugar alcohols may have a laxative effect when consumed in large amounts. Glycemic index and glycemic load are measurements that help quantify serum glucose response after ingestion of particular foods. These measurements may be affected by the combination of foods consumed in a given meal, and the glycemic index may vary among individuals eating the same meal. Eating foods with a low glycemic index may help prevent development of type 2 diabetes. There is no definitive evidence to recommend low-carbohydrate diets over low-fat diets for long-term weight loss; they are equally effective.

  12. Carbohydrate Elimination or Adaptation Diet for Symptoms of Intestinal Discomfort in IBD: Rationales for “Gibsons' Conundrum”

    PubMed Central

    Fung, Q. Manyan; Szilagyi, Andrew

    2012-01-01

    Therapeutic use of carbohydrates in inflammatory bowel diseases (IBDs) is discussed from two theoretical, apparent diametrically opposite perspectives: regular ingestion of prebiotics or withdrawal of virtually all carbohydrate components. Pathogenesis of IBD is discussed connecting microbial flora, host immunity, and genetic interactions. The best studied genetic example, NOD2 in Crohn's disease, is highlighted as a model which encompasses these interactions and has been shown to depend on butyrate for normal function. The role of these opposing concepts in management of irritable bowel syndrome (IBS) is contrasted with what is known in IBD. The conclusion reached is that, while both approaches may alleviate symptoms in both IBS and IBD, there is insufficient data yet to determine whether both approaches lead to equivalent bacterial effects in mollifying the immune system. This is particularly relevant in IBD. As such, caution is urged to use long-term carbohydrate withdrawal in IBD in remission to control IBS-like symptoms. PMID:22518336

  13. Identification of a Low Digestibility δ-Conglutin in Yellow Lupin (Lupinus luteus L.) Seed Meal for Atlantic Salmon (Salmo salar L.) by Coupling 2D-PAGE and Mass Spectrometry

    PubMed Central

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  14. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    ERIC Educational Resources Information Center

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  15. Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

    PubMed Central

    Vyas, Usha; Ranganathan, Natarajan

    2012-01-01

    The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical) studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management. PMID:23049548

  16. Prebiotic syntheses of purines and pyrimidines.

    PubMed

    Basile, B; Lazcano, A; Oró, J

    1984-01-01

    The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-di-substituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10(-2) to 10(-3) M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.

  17. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    PubMed

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  18. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique.

    PubMed

    Maathuis, Annet J H; van den Heuvel, Ellen G; Schoterman, Margriet H C; Venema, Koen

    2012-07-01

    Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains.

  19. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells.

    PubMed

    Burns, Anthony J; Rowland, Ian R

    2004-07-13

    Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

  20. Stereochemical Control in Carbohydrate Chemistry

    ERIC Educational Resources Information Center

    Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.

    2008-01-01

    Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…

  1. Novel probiotics and prebiotics: road to the market.

    PubMed

    Kumar, Himanshu; Salminen, Seppo; Verhagen, Hans; Rowland, Ian; Heimbach, Jim; Bañares, Silvia; Young, Tony; Nomoto, Koji; Lalonde, Mélanie

    2015-04-01

    Novel probiotics and prebiotics designed to manipulate the gut microbiota for improving health outcomes are in demand as the importance of the gut microbiota in human health is revealed. The regulations governing introduction of novel probiotics and prebiotics vary by geographical region. Novel foods and foods with health claims fall under specific regulations in several countries. The paper reviews the main requirements of the regulations in the EU, USA, Canada and Japan. We propose a number of areas that need to be addressed in any safety assessment of novel probiotics and prebiotics. These include publication of the genomic sequence, antibiotic resistance profiling, selection of appropriate in vivo model, toxicological studies (including toxin production) and definition of target population.

  2. Microbial-gut interactions in health and disease. Prebiotics.

    PubMed

    Manning, Thea Scantlebury; Gibson, Glenn R

    2004-04-01

    In nutritional sciences there is much interest in dietary modulation of the human gut. The gastrointestinal tract, particularly the colon, is very heavily populated with bacteria. Most bacteria are benign; however, certain gut species are pathogenic and may be involved in the onset of acute and chronic disorders. Bifidobacteria and lactobacilli are thought to be beneficial and are common targets for dietary intervention. Prebiotic is a non-viable food ingredient selectively metabolized by beneficial intestinal bacteria. Dietary modulation of the gut microflora by prebiotics is designed to improve health by stimulating numbers and/or activities of the bifidobacteria and lactobacilli. Having an 'optimal' gut microflora can increase resistance to pathogenic bacteria, lower blood ammonia, increase stimulation of the immune response and reduce the risk of cancer. This chapter examines how prebiotics are being applied to the improvement of human health and reviews the scientific evidence behind their use.

  3. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    PubMed

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-01-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs.

  4. Synthesis of long prebiotic oligomers on mineral surfaces.

    PubMed

    Ferris, J P; Hill, A R; Liu, R; Orgel, L E

    1996-05-02

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers--both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino acids) induces the formation of oligomers up to 55 monomers long. These are formed by successive 'feedings' with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  5. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  6. Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source.

    PubMed

    Landi, Nicola; Pacifico, Severina; Piccolella, Simona; Di Giuseppe, Antonella M A; Mezzacapo, Maria C; Ragucci, Sara; Iannuzzi, Federica; Zarrelli, Armando; Di Maro, Antimo

    2015-09-01

    In order to promote 'Valle Agricola' lentil, an autochthonous lentil of the Campania Region, a thorough investigation of its biochemical and nutritional properties has been carried out. The macronutrient content (proteins, carbohydrates and lipids), free and total amino acids, and unsaturated fatty acids were determined. The antioxidant capability of raw 'Valle Agricola' lentils, as well as of boiled ones, was estimated in terms of their total phenol content (TPC), ORAC value, and free radical scavenging capacities using DPPH and ABTS assays. The data obtained evidenced that the boiling process slightly decreased Valle Agricola lentil's antioxidant power. Furthermore, when trypsin and chymotrypsin inhibitory activities were measured, a large decrease of the levels of anti-nutritional factors was estimated. In order to have a phytochemical overview of this autochthonous lentil seed, LC-ESI-MS/MS analysis was applied to raw and boiled lentil extracts. Flavonol glycosides and free flavanols, as well as typical seed prebiotic saccharides, were the most representative constituents.

  7. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  8. Abuse potential of carbohydrates for overweight carbohydrate cravers

    PubMed Central

    Spring, Bonnie; Schneider, Kristin; Smith, Malaina; Kendzor, Darla; Appelhans, Bradley; Hedeker, Donald; Pagoto, Sherry

    2010-01-01

    Rationale The long-rejected construct of food addiction is undergoing re-examination. Objectives . To evaluate whether a novel carbohydrate food shows abuse potential for rigorously defined carbohydrate cravers, as evidenced by selective self-administration and mood enhancement during double-blind discrimination testing. Methods Discrete trials choice testing was performed with 61 overweight (BMI m=27.64, SD=2.59) women (ages 18–45; 19.70% African American) whose diet records showed >4 weekly afternoon/evening emotional eating episodes confined to snacks with carbohydrate:protein ≥ 6:1. After being induced into a sad mood, participants were exposed, double-blind and in counterbalanced order, to taste-matched carbohydrate and protein beverages. They were asked to choose and self-administer the drink that made them feel better. Results Women overwhelmingly chose the carbohydrate beverage, even though blinded. Mixed-effects regression modeling, controlling for beverage order, revealed greater liking and greater reduction in dysphoria following the carbohydrate beverage compared to the protein beverage, but no differential effect on vigor. Conclusion For women who crave them, carbohydrates appear to display abuse potential, plausibly contributing to overconsumption and overweight. PMID:18273603

  9. Proton impact charge transfer on hydantoin - Prebiotic implications

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, Marie-Christine

    2016-11-01

    Formation and destruction of prebiotic compounds in astrophysical environments is a major issue in reactions concerning the origin of life. Detection of hydantoin in laboratory irradiation of interstellar ice analogues has confirmed evidence of this prebiotic compound and its stability to UV radiation or collisions may be crucial. Considering the different astrophysical environments, we have investigated theoretically proton-induced collisions with hydantoin in a wide energy range, from eV in the interstellar medium, up to keV for processes involving solar wind or supernovae shock-waves protons. Results are compared to previous investigations and qualitative trends on damage under spatial radiations are suggested.

  10. Reduction of thionucleosides - A prebiotic pathway to deoxyribonucleosides

    NASA Technical Reports Server (NTRS)

    Patel, A. D.; Schrier, W. H.; Hrncir, M. A.; Nagyvary, J. J.

    1981-01-01

    A mechanism is proposed for the prebiotic synthesis of deoxyribonucleotides and possible nucleic acid analogs from ribonucleotides by a pathway involving 2'-thio-2'-deoxyribonucleosides. The mechanism is supported by laboratory experiments in which 2'-thio-2'-deoxycytidine was synthesized from anhydro arabinosyl cytosine in dithiophosphate and CS2. The subsequent reduction of the thio-analogs has been achieved with ferrous ion, and photochemically. It is noted that the proposed pathway for prebiotic deoxyribonucleotide synthesis is in harmony with the Principle of Continuity, as both the proposed and present pathways rely on the reduction of a 2' functional group.

  11. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  12. [Prebiotic phosphate: a problem insoluble in water ? ].

    PubMed

    Morchio, Renzo; Traverso, Silvano

    2005-01-01

    It is well-known that in water phosphate readily reacts with calcium, precipitating as insoluble apatite. How phosphorus could have been available for prebiotic reactions is still an open problem. We suggest that phosphorus-containing compounds might have accumulated in a hydrophobic medium, since the absence of calcium ions would have prevented them from precipitating as apatite. Hydrophobic compounds may have been synthesized on the early Earth through the polymerization of methane or through Fischer-Tropsch-type reactions. Moreover, hydrophobic compounds would have been delivered to the early Earth by extraterrestrial infall. In previous articles (Morchio and Traverso [1999], Morchio et al. [2001]) we suggested that such hydrophobic material would have formed a hydrophobic layer on the surface of the sea, which would have provided an environment thermodynamically more suitable than water for the concentration and polymerization of organic molecules fundamental to life, particularly amino acids and (pyrimidine) bases. It may be hypothesized that elemental phosphorus or phosphorus-containing compounds (such as phosphite) deriving from volcanic eruptions would have ended up raining down into the hydrophobic layer, accumulating due to the absence of calcium ions, in an environment protected against hydrolysis. Phosphorus-containing compounds might have interacted with hydrophobic molecules in the layer giving rise to polymers. In particular, phosphite might have reacted with the hydrophobic amino acids, giving rise to phosphoamino acids, which, in turn, might have interacted with pyrimidine bases (relatively abundant in the layer) giving rise to peptides and oligonucleotide-like polymers. Indeed, it has been experimentally shown (Zhou et al. [1996]) that, in an anhydrous organic medium (pyridine), dialkilphosphite reacts with amino acids to form phosphoamino acids, which interact with pyrimidine nucleosides to give nucleotides, short oligonucleotides and phosphoryl

  13. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  14. Prebiotic chemical evolution in the astrophysical context.

    PubMed

    Ziurys, L M; Adande, G R; Edwards, J L; Schmidt, D R; Halfen, D T; Woolf, N J

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.

  15. Rooting Prebiotic Chirality in Spinomeric Chemistry?

    NASA Astrophysics Data System (ADS)

    Popa, Radu; Cimpoiašu, Vily Marius; Scorei, Romulus Ion

    2009-10-01

    Spinomeric chemistry is a domain of physical chemistry that explores the role of spin-isomery in chemical reactivity. In large magnetic fields (B), chemical structures with three adjacent nuclear spins (such as H217O, H233O,-NH2 and 13CH2) form complex spinomers. Known departure from a 1:1 ratio between various types of spinomers opens interesting research avenues in their potential role in asymmetric hydration processes. Recent time domain 1H nuclear magnetic resonance (TD-1HNMR) findings revealed the existence of small, yet consistent, H217O-controlled enantio-different proton exchange reactivity in sugars. The mechanisms behind this effect are unclear and may involve spinomer/enantiocenter (e.g. H217O/*C) interactions or spinomer/spinomer (e.g. H217O-NH2) interactions. We developed an experimental model that allows for the verification and study of such effects. We used TD-1HNMR at 0.589T to study and compare proton exchange enantio-differences in asparagine (Asn) and mandelic acid in response to titration with at constant pH. Unlike Asn, mandelic acid has no complex spinomer group (such as -NH2) in its chiral center. We report finding enantio-differences regarding ΔpK and 1/T2(0) correlated with H217/O, and linear changes in ΔM2 indicating differences in the affinity of enantiomers for H217O surface hydration. These results stress the importance of H217O-based spinomeric chemistry in chiral reactivity and open windows toward a novel interpretation of the origin of prebiotic chiral reactivity in the presence of moderately large B (such as on magnetic mineral surfaces or on satellites of gaseous giants), as well as toward abiotic isotopic fractionation of H217O in the presence of chiral organic molecules.

  16. Prebiotic Chemical Evolution in the Astrophysical Context

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Adande, G. R.; Edwards, J. L.; Schmidt, D. R.; Halfen, D. T.; Woolf, N. J.

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO+, and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.

  17. Decarbonylation and dehydrogenation of carbohydrates

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.

  18. Probiotics and prebiotics in animal feeding for safe food production.

    PubMed

    Gaggìa, Francesca; Mattarelli, Paola; Biavati, Bruno

    2010-07-31

    Recent outbreaks of food-borne diseases highlight the need for reducing bacterial pathogens in foods of animal origin. Animal enteric pathogens are a direct source for food contamination. The ban of antibiotics as growth promoters (AGPs) has been a challenge for animal nutrition increasing the need to find alternative methods to control and prevent pathogenic bacterial colonization. The modulation of the gut microbiota with new feed additives, such as probiotics and prebiotics, towards host-protecting functions to support animal health, is a topical issue in animal breeding and creates fascinating possibilities. Although the knowledge on the effects of such feed additives has increased, essential information concerning their impact on the host are, to date, incomplete. For the future, the most important target, within probiotic and prebiotic research, is a demonstrated health-promoting benefit supported by knowledge on the mechanistic actions. Genomic-based knowledge on the composition and functions of the gut microbiota, as well as its deviations, will advance the selection of new and specific probiotics. Potential combinations of suitable probiotics and prebiotics may prove to be the next step to reduce the risk of intestinal diseases and remove specific microbial disorders. In this review we discuss the current knowledge on the contribution of the gut microbiota to host well-being. Moreover, we review available information on probiotics and prebiotics and their application in animal feeding.

  19. Complex prebiotic chemistry within a simple impacting icy mixture

    NASA Astrophysics Data System (ADS)

    Goldman, Nir

    2013-06-01

    We present results of prebiotic molecule synthesis in shock compressed mixtures of simple ices from quantum molecular dynamics (MD) simulations. Given the likelihood of a CO2-rich primitive atmosphere, it is possible that impact processes of comets or other icy bodies were partially responsible for the creation of prebiotic chemical compounds on early Earth. We have conducted simulations of the chemical reactivity within an oxidized astrophysical icy mixture to close to equilibrium using a density functional tight binding (DFTB) approach. We observe that moderate shock pressures and temperatures (35 GPa and 2800 K) produce a number of functionalized polycyclic aromatic hydrocarbons (PAHs), which remain intact upon expansion and cooling to lower conditions. At higher shock pressures and temperatures (48-62 GPa, 3700-4700 K), we observe the synthesis of a variety of short-lived, exotic C--C and C--N bonded oligomers which decompose upon expansion and cooling to form precursors to amino acids and other prebiotic compounds, such as long chain alkanes, HCN, CH4 and formaldehyde. Our results provide a mechanism for shock synthesis of prebiotic molecules at realistic impact conditions that is independent of external features such as the presence of a catalyst, illuminating UV radiation, or pre-existing conditions on a planet. This work was performed at LLNL under Contract DE-AC52-07NA27344, and was funded by the NASA Astrobiology program.

  20. The effect of prebiotics on adherence of probiotics.

    PubMed

    Kadlec, Robert; Jakubec, Martin

    2014-01-01

    Prebiotics are generally considered to promote the function or viability of probiotics via their fermentation, but their effect on the adherence of probiotics is still unclear. In this study, we examined the effect of 4 commercially available prebiotics [Orafti GR, Orafti P95, and Orafti Synergy (Beneo GmbH, Mannheim, Germany), and Vivinal (Friesland Foods Domo, Amersfoort, the Netherlands)] and 3 simple saccharides (glucose, galactose, and lactose) on the adherence of 5 probiotic type strains, 2 lactococci starter cultures, and 5 potential dairy probiotic strains from the Culture Collection of Dairy Microorganisms (Tábor, Czech Republic). Adherence was tested in microtiter plates on the following types of substrate: polystyrene alone and polystyrene coated with either porcine mucus or cocultures of the human colon cell lines Caco2 and HT29-MXT (1:9 ratio of HT29-MXT:Caco2). Adherence was evaluated as a change in fluorescence in the well of a microtiter plate. The most commonly observed effect (with a few exceptions) of prebiotics was decreased adherence of the tested strains observed on all types of substrate. The tested saccharides, which are part of the residual compounds of the used prebiotics, had a very similar effect-eliciting a decrease in adherence ability in the majority of the probiotic strains.

  1. Effects of prebiotics on mineral absorption: mechanisms of action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is extensive evidence in experimental animals that prebiotics, such as inulin-type fructans, can increase the absorption of a variety of minerals, including calcium, magnesium, iron, and zinc, and that they may act through several possible mechanisms. The purpose of this review is to discuss t...

  2. Proton-Induced Collisions on Potential Prebiotic Species

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, Marie-Christine

    2016-11-01

    With regard to the fascinating question of the origin of life, special interest has been devoted to potential prebiotic molecules which could drive the emergence of life. In the widely discussed hypothesis of a possible exogen apparition of life, the transport of those prebiotic species and their survival under spatial conditions is of strong interest. In particular their stability under solar radiation or in collisions with bare nucleus has to be considered. In that sense, taking account of the abundance of protons in ionized clouds of the interstellar medium, we have developed a detailed theoretical study of the charge transfer collision dynamics induced by impact of protons on a series of possible prebiotic compounds. Three main types of molecules have been considered: first of all the DNA and RNA building blocks with on a one hand the nucleobases uracil and thymine, and on the other hand the 2-deoxy-D-ribose sugar skeleton in its furanose and pyranose forms. The study has been extended to the 2-aminooxazole suggested to be a possible precursor of RNA nucleotides. The theoretical treatment involves ab-initio quantum chemistry molecular calculations followed by a semiclassical collision dynamics. Some qualitative trends may be suggested for the proton-induced damage of such prebiotic species.

  3. Dust in the Universe: implications for terrestrial prebiotic chemistry.

    PubMed

    Basiuk, V A; Navarro-Gonzalez, R

    1995-10-01

    In the present review we analyze the available literature on the distribution of dust in the Universe, methods of its observation and determination of the chemical composition, and the roles for terrestrial prebiotic chemistry. The most plausible natural sources of dust on the Earth in the prebiotic era are sedimentation of interplanetary dust, meteoritic and cometary impacts, volcanic eruptions, and soil microparticulates; the interplanetary medium being among the most powerful supplier of the dust matter. Two fundamental roles of dust particles for the origins of life are considered: (1) catalytic formation of prebiotic compounds; and (2) delivery of organic matter to the Earth by space dust particles. Due to the fact that there is only approximate information on the chemical composition and properties of interstellar, circumstellar, and major part of interplanetary dust, even the simulating experiments are difficult to perform. Until these gaps are filled, it seems reasonable to focus efforts of the scientists dealing with dust-driven catalytic formation of prebiotically important compounds on the volcanic and meteoritic/cometary impact environments.

  4. Prebiotic Organic Matter from the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    The origins of life on Earth must have begun with simple organic compounds. A plausible source of such prebiotic molecules was the interstellar medium (ISM). Of the over 160 molecules that have been identified in interstellar gas, about half have been discovered in one source, Sagittarius B2(N), located in the Galactic Center. This giant molecular cloud is also home to many large organic species observed in the ISM. How complex these species can become is unknown. In order to accurately establish an inventory of potentially, prebiotic organic molecules, we completed a continuous spectral-line survey of Sgr B2(N) at the confusion limit using the Arizona Radio Observatory facilities: the Kitt Peak 12 m and the Submillimeter Telescope. The survey covers the 1, 2, and 3 mm atmospheric windows in the range 68 - 280 GHz, and about 15,000 individual spectral lines have been observed. Seventy-four molecules have been identified in the data, including several potential prebiotic species, such as glycolaldehyde, acetamide, and methyl isocyanate. These molecules are relatively abundant in Sgr B2(N), with fractional abundances of f ~ 10-10 - 10-12 relative to H2. Current results of this survey will be presented, along with its implications for interstellar organic chemistry and prebiotic synthesis. A comparison with organics found in comets and meteorites will also be discussed.

  5. Effect of Probiotics/Prebiotics on Cattle Health and Productivity.

    PubMed

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal.

  6. The immune-enhancing effects of dietary fibres and prebiotics.

    PubMed

    Schley, P D; Field, C J

    2002-05-01

    The gastrointestinal tract is subjected to enormous and continual foreign antigenic stimuli from food and microbes. This organ must integrate complex interactions among diet, external pathogens, and local immunological and non-immunological processes. It is critical that protective immune responses are made to potential pathogens, while hypersensitivity reactions to dietary antigens are minimised. There is increasing evidence that fermentable dietary fibres and the newly described prebiotics can modulate various properties of the immune system, including those of the gut-associated lymphoid tissues (GALT). This paper reviews evidence for the immune-enhancing effects of dietary fibres. Changes in the intestinal microflora that occur with the consumption of prebiotic fibres may potentially mediate immune changes via: the direct contact of lactic acid bacteria or bacterial products (cell wall or cytoplasmic components) with immune cells in the intestine; the production of short-chain fatty acids from fibre fermentation; or by changes in mucin production. Although further work is needed to better define the changes, mechanisms for immunomodulation, and the ultimate impact on immune health, there is convincing preliminary data to suggest that the consumption of prebiotics can modulate immune parameters in GALT, secondary lymphoid tissues and peripheral circulation. Future protocols on the physiological impact of consuming prebiotics should be designed to include assessments of the gut microflora, gut physiology and the function and composition of the various regions of GALT.

  7. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?

    PubMed Central

    Sheridan, Paul O; Bindels, Laure B; Saulnier, Delphine M; Reid, Gregor; Nova, Esther; Holmgren, Kerstin; O'Toole, Paul W; Bunn, James; Delzenne, Nathalie; Scott, Karen P

    2014-01-01

    It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:   (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline “healthy” gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches

  8. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?

    PubMed

    Sheridan, Paul O; Bindels, Laure B; Saulnier, Delphine M; Reid, Gregor; Nova, Esther; Holmgren, Kerstin; O'Toole, Paul W; Bunn, James; Delzenne, Nathalie; Scott, Karen P

    2014-01-01

    It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:   (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline "healthy" gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that

  9. Carbohydrates and Diabetes (For Parents)

    MedlinePlus

    ... than others. Whole-grain foods, vegetables, candy, and soda all have carbohydrates. But fruits, vegetables, and whole- ... generally healthier than sugary foods like candy and soda because they provide fiber , vitamins, and other nutrients. ...

  10. Carbohydrates and Diabetes (For Parents)

    MedlinePlus

    ... two main forms of carbohydrates are sugars and starches. Types of sugars include fructose (sugar found in ... sugar found in milk and yogurt). Types of starches include vegetables like potatoes, corn, and peas; grains, ...

  11. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.

    PubMed

    Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G

    2015-06-04

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  12. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Lammerts van Bueren, Alicia; Mulder, Marieke; Leeuwen, Sander van; Dijkhuizen, Lubbert

    2017-01-01

    Galactooligosaccharides (GOS) are prebiotic carbohydrates that impart changes in the gut bacterial composition of formula-fed infants to more closely resemble that of breast-fed infants. Consuming human milk oligosaccharides (HMOs) provides specific bacterial strains with an advantage for colonizing the infant intestine. These same effects are seen in infants after GOS consumption, however GOS are very complex mixtures and the underlying molecular mechanisms of how GOS mimic HMOs are relatively unknown. Here we studied the effects of GOS utilization on a prominent gut symbiont, Bacteroides thetaiotaomicron, which has been previously shown to consume HMOs via mucin O-glycan degradation pathways. We show that several pathways for targeting O-mucin glycans are activated in B. thetaiotaomicron by GOS, as well as the galactan utilization sytem. Characterization of the endo-galactanase from this system identified activity on various longer GOS substrates while a subset of GOS compounds were identified as potential activators of mucin glycan metabolism in B. thetaiotaomicron. Our results show that GOS functions as an inducer of mucin-glycan pathways while providing a nutrient source in the form of β-(1 → 4)-galactan. These metabolic features of GOS mixtures may serve to explain the beneficial effects that are seen for GOS supplemented infant formula. PMID:28091546

  13. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics.

    PubMed

    Macfarlane, George T; Macfarlane, Sandra

    2011-11-01

    The human large intestine harbors a complex microbiota containing many hundreds of different bacterial species. Although structure/function relationships between different components of the microbiota are unclear, this complex multicellular entity plays an important role in maintaining homeostasis in the body. Many of the physiologic properties of the microbiota can be attributed to fermentation and the production of short-chain fatty acids (SCFAs), particularly acetate, propionate, and butyrate. In healthy people, fermentation processes are largely controlled by the amounts and different types of substrate, particularly complex carbohydrates that are accessible to bacteria in the colonic ecosystem. However, other factors impact on bacterial metabolism in the large gut, including large bowel transit time, the availability of inorganic terminal electron acceptors, such as nitrate and sulfate, and gut pH. They all affect the types and levels of SCFA that can be formed by the microbiota. This is important because to a large extent, acetate, propionate, and butyrate have varying physiologic effects in different body tissues. Prebiotics such as galactooligosaccharides together with inulins and their fructooligosaccharide derivatives have been shown to modify the species composition of the colonic microbiota, and in various degrees, to manifest several health-promoting properties related to enhanced mineral absorption, laxation, potential anticancer properties, lipid metabolism, and anti-inflammatory and other immune effects, including atopic disease. Many of these phenomena can be linked to their digestion and SCFA production by bacteria in the large gut.

  14. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    NASA Astrophysics Data System (ADS)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  15. Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics.

    PubMed

    Neyrinck, Audrey M; Pachikian, Barbara; Taminiau, Bernard; Daube, Georges; Frédérick, Raphaël; Cani, Patrice D; Bindels, Laure B; Delzenne, Nathalie M

    2016-01-01

    Inulin-type fructans (ITF) are known for their capacity to modulate gut microbiota, energy metabolism and to improve glycemia in several animal models of obesity, and in humans. The potential contribution of ITF as modulators of sugar digestion by host enzymes has not been evaluated yet. A sucrose challenge has been performed on naive mice fed a standard diet supplemented with or without native chicory inulin (Fibruline 5%) for 3 weeks. The area under the curve of glycemia as well as sucrase activity in the small intestine were lowered after inulin treatment. Pyrosequencing of the 16S rRNA gene confirmed important changes in gut microbiota (mostly in favor of Blautia genus) due to inulin extract supplementation. Interestingly, the suppressive effect of inulin extract on postprandial glycemia also occurred when inulin was directly added to the sucrose solution, suggesting that the effect on sucrose digestion did not require chronic inulin administration. In vitro tests confirmed a direct inhibition of sucrase enzyme by the inulin extract, thereby suggesting that native chicory inulin, in addition to its well-known prebiotic effect, is also able to decrease the digestibility of carbohydrates, a phenomenon that can contribute in the control of post prandial glycemia. We may not exclude that the sucrose escaping the digestion could also contribute to the changes in the gut microbiota after a chronic treatment with inulin.

  16. Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics

    PubMed Central

    Neyrinck, Audrey M.; Pachikian, Barbara; Taminiau, Bernard; Daube, Georges; Frédérick, Raphaël; Cani, Patrice D.; Bindels, Laure B.; Delzenne, Nathalie M.

    2016-01-01

    Inulin-type fructans (ITF) are known for their capacity to modulate gut microbiota, energy metabolism and to improve glycemia in several animal models of obesity, and in humans. The potential contribution of ITF as modulators of sugar digestion by host enzymes has not been evaluated yet. A sucrose challenge has been performed on naive mice fed a standard diet supplemented with or without native chicory inulin (Fibruline 5%) for 3 weeks. The area under the curve of glycemia as well as sucrase activity in the small intestine were lowered after inulin treatment. Pyrosequencing of the 16S rRNA gene confirmed important changes in gut microbiota (mostly in favor of Blautia genus) due to inulin extract supplementation. Interestingly, the suppressive effect of inulin extract on postprandial glycemia also occurred when inulin was directly added to the sucrose solution, suggesting that the effect on sucrose digestion did not require chronic inulin administration. In vitro tests confirmed a direct inhibition of sucrase enzyme by the inulin extract, thereby suggesting that native chicory inulin, in addition to its well-known prebiotic effect, is also able to decrease the digestibility of carbohydrates, a phenomenon that can contribute in the control of post prandial glycemia. We may not exclude that the sucrose escaping the digestion could also contribute to the changes in the gut microbiota after a chronic treatment with inulin. PMID:27532866

  17. The effects of coarse ground corn, whole sorghum, and a prebiotic on growth performance, nutrient digestibility, and cecal microbial populations in broilers fed diets with and without corn distillers dried grains with solubles.

    PubMed

    Jacobs, China; Parsons, Carl M

    2013-09-01

    Two experiments were conducted from 0 to 21 d of age and evaluated diets containing combinations of fine or coarse ground corn (557 or 1,387 μm, respectively), whole sorghum, 15% corn distillers dried grains with solubles (DDGS), or a prebiotic-type product containing yeast cell wall, lactose, citric acid, and other fermentable carbohydrates. In experiment 1, feed efficiency was decreased (P < 0.001) after the first week of age for broilers fed diets containing whole sorghum, whereas broilers receiving diets with 15% DDGS had increased feed efficiency (P < 0.03) compared with those receiving no DDGS. In the second experiment, BW gain was increased (P < 0.03) after the first week of age for broilers fed diets containing the prebiotic and DDGS compared with their respective controls. In experiment 1, the diet containing sorghum yielded the highest AMEn value (P < 0.03). In experiment 2, diets containing the combination of the prebiotic + DDGS yielded higher AMEn values (P < 0.004) at 7 and 21 d compared with diets containing no combination. The effects of diet on amino acid digestibility were generally small and inconsistent in both experiments. In experiment 1, broilers fed the coarse corn or whole sorghum diets had increased (P < 0.0001) relative gizzard weights compared with broilers fed the fine corn diet. Also, diets containing DDGS yielded increased relative gizzard weights (P < 0.05) compared with diets containing no DDGS. In experiment 2, there was a decrease (P < 0.03) in cecal Escherichia coli when the combination of the coarse ground corn, prebiotic, and DDGS was fed in comparison with broilers receiving no prebiotic or DDGS. These results indicate that diets containing coarsely ground corn or whole sorghum in combination with DDGS can be fed to broilers with no long-term adverse effects on growth performance and nutrient digestibility and that these ingredients can have beneficial effects on AMEn, gizzard size, and cecal microflora in some instances.

  18. The significance of Mg in prebiotic geochemistry

    PubMed Central

    Holm, N G

    2012-01-01

    Magnesium plays a special role in biochemistry because of its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg2+ can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the folding of molecules like RNA. This property of Mg2+ also helps the stabilization of diphosphate and triphosphate groups of nucleotides, as well as promoting the condensation of orthophosphate to oligophosphates, like pyrophosphate and trimetaphosphate. Borates, on the other hand, are known to promote the formation of nucleobases and carbohydrates, ribose in particular, which is yet another constituent of nucleotides. The oldest borate minerals that we find on Earth today are magnesium borates. Dissolved borate stabilizes pentose sugars by forming complexes with cis-hydroxyl groups. In the furanose form of ribose, the preferential binding occurs to the 2 and 3 carbon, leaving the 5 carbon free for phosphorylation. The central role of Mg2+ in the function of ribozymes and its ‘archaic’ position in ribosomes, and the fact that magnesium generally has coordination properties different from other cations, suggests that the inorganic chemistry of magnesium had a key position in the first chemical processes leading to the origin and early evolution of life. PMID:22429303

  19. Cancer Vaccines and Carbohydrate Epitopes

    PubMed Central

    Heimburg-Molinaro, Jamie; Lum, Michelle; Vijay, Geraldine; Jain, Miten; Almogren, Adel; Rittenhouse-Olson, Kate

    2011-01-01

    Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related LewisY, Sialyl LewisX and Sialyl LewisA, and LewisX, (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described. PMID:21964054

  20. Carbohydrate chemistry in drug discovery.

    PubMed

    Galan, M Carmen; Benito-Alifonso, David; Watt, Gregory M

    2011-05-21

    The multitude of roles that carbohydrates and their glyco-conjugates play in biological processes has stimulated great interest in determining the nature of their interactions in both normal and diseased states. Manipulating such interactions will provide leads for drug discovery. Of the major classes of biomolecule, carbohydrates are the most structurally diverse. This hetereogeneity makes isolation of pure samples, and in sufficient amounts, from biological sources extremely difficult. Chemical synthesis offers the advantage of producing pure and structurally defined oligosaccharides for biological investigations. Although the complex nature of carbohydrates means that this is challenging, recent advances in the field have facilitated access to these molecules. The synthesis and isolation of oligosaccharides combined with progress in glycoarray technology have aided the identification of new carbohydrate-binding drug targets. This review aims to provide an overview of the latest advancements in carbohydrate chemistry and the role of these complex molecules in drug discovery, focusing particularly on synthetic methodologies, glycosaminoglycans, glycoprotein synthesis and vaccine development over the last few years.

  1. Prebiotics and probiotics: some thoughts on demonstration of efficacy within the regulatory sphere.

    PubMed

    Brooks, Stephen P J; Kalmokoff, Martin L

    2012-01-01

    Probiotics and prebiotics present regulators with challenges because they require a demonstrated positive health outcome and proof that the prebiotic or probiotic is the agent of action once safety aspects have been satisfied. Thus, probiotic and prebiotic definitions are important because they will set the criteria by which these materials will be judged within the regulatory sphere. Use of the terms probiotic and prebiotic are, themselves, considered health claims in some jurisdictions, so that both product health claims and product content labeling may be regulated. Currently accepted definitions of prebiotic and probiotic make it easier to draw a straight line between ingestion and health outcome for probiotics but much more difficult for prebiotics, where a health outcome must be linked to changes in specific bacterial species within the gut microbial community. These challenges highlight the difficulties facing regulatory bodies and the scientific community when emerging science is turned into consumable product.

  2. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans.

    PubMed

    Sulek, Karolina; Vigsnaes, Louise Kristine; Schmidt, Line Rieck; Holck, Jesper; Frandsen, Henrik Lauritz; Smedsgaard, Jørn; Skov, Thomas Hjort; Meyer, Anne S; Licht, Tine Rask

    2014-08-01

    Prebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the significance of the size of the oligosaccharides remains largely unstudied. By in vitro fermentations in human fecal microbial communities (derived from six different individuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA) sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were included as reference. The changes in bacterial communities and the metabolites produced in response to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79 fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LC-MS analysis suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide structures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine. Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid, indicating that lactobacilli contribute to release of such health-promoting substances from plant structures. Additionally, the combination of qPCR and LC-MS revealed a number of other putative interactions between intestinal microbes and the oligosaccharides, which contributes to the understanding of the mechanisms behind prebiotic impact on human health.

  3. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  4. Shock-Synthesis of Prebiotic Compounds in Impacting Simple Ices

    NASA Astrophysics Data System (ADS)

    Goldman, N.

    2013-12-01

    How and when prebiotic organic material such as amino acids appeared on the primitive planet has been debated without resolution in the open literature for close to 60 years. Earlier studies have shown that the synthesis of life-building molecules such as amino acids, polypeptides, and DNA and RNA nucleobases is much more likely in a reducing environment, e.g., rich in H2 and CH4. However, the current viewpoint is that the composition of early Earth's atmosphere was more oxidizing, consisting mainly of CO2, with significantly lesser amounts of N2, H2S, HCl, and water vapor. The possibility exists that both prebiotic raw materials and the requisite energy for their synthesis may have been delivered to the Earth simultaneously by a comet impact. Cometary ices are predominantly water, containing many small molecules important to prebiotic aqueous chemistry, e.g., NH3, CH3OH, and an impact can provide an abundant supply of energy to drive chemical reactivity. The flux of organic matter to Earth via comets and asteroids during periods of heavy bombardment may have been as high as 1013 kg/yr, delivering up to several orders of magnitude greater mass of organics than what likely pre-existed on the planet. We have conducted simulations of the chemical reactivity within impacting icy materials to close to equilibrium using quantum molecular dynamics (MD) simulations. Here, we have simulated the thermodynamic conditions of the entire impacting event, including shock compression due to impact with the planetary surface, followed by expansion due to the rarefaction wave passing through the material, and cooling and equilibration to conditions extant on the planet. Our simulations show that shock compression induces the formation of extended C-C and C-N bonded networks, which break apart to form prebiotic material upon expansion and cooling. Impacts with peak thermodynamic conditions of 36 GPa (1 GPa = 10 kbar) and 2800 K yielded functionalized aromatic hydrocarbons upon

  5. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2002-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in star-forming molecular cloud cores, while the laboratory work is focused on the complex species that characterize the prebiotic chemistry of carbon. We outline below our results over the past two years acquired, in part, with Exobiology support.

  6. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2003-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in the circumstellar environment of forming stars and planetary systems, while the laboratory work is focused on the complex species that characterize the pre-biotic chemistry of carbon. We outline below our results over the past year acquired, in part, with Exobiology support.

  7. Production of functional probiotic, prebiotic, and synbiotic ice creams.

    PubMed

    Di Criscio, T; Fratianni, A; Mignogna, R; Cinquanta, L; Coppola, R; Sorrentino, E; Panfili, G

    2010-10-01

    In this work, 3 types of ice cream were produced: a probiotic ice cream produced by adding potentially probiotic microorganisms such as Lactobacillus casei and Lactobacillus rhamnosus; a prebiotic ice cream produced by adding inulin, a prebiotic substrate; and a synbiotic ice cream produced by adding probiotic microorganisms and inulin in combination. In addition to microbial counts, pH, acidity, and physical and functional properties of the ice creams were evaluated. The experimental ice creams preserved the probiotic bacteria and had counts of viable lactic acid bacteria after frozen storage that met the minimum required to achieve probiotic effects. Moreover, most of the ice creams showed good nutritional and sensory properties, with the best results obtained with Lb. casei and 2.5% inulin.

  8. Prebiotic organic syntheses and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.; Desmarais, D.; Mack, R.; Miller, S. L.; Strathearn, G. E.

    1983-01-01

    The outline of a modern paradigm for the origins of life on earth was first formulated by Oparin (1924). According to the considered hypothesis, living organisms arose naturally on the primitive earth through a lengthy process of chemical evolution of organic matter which began in the atmosphere and culminated in the primordial seas. Details regarding the chemical evolution paradigm are discussed, and chemical evolutionary processes formulated by principal contributors are reviewed in a historical context. Attention is given to the Oparin model of the prebiotic earth, the Urey model, the Rubey model, a multistage model for early atmospheric evolution, and other variations on the theme of prebiotic atmospheres. Evidence in support of the chemical evolution paradigm is considered along with modern models regarding the accretion of earth and the formation of its core, and problems and prospects for future studies.

  9. Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children.

    PubMed

    Foolad, N; Armstrong, A W

    2014-06-01

    The purpose of this review was to identify whether supplementation with prebiotics and/or probiotics help prevent the development or reduce the severity of atopic dermatitis in children less than three years of age. Since 1997, immunostimulatory supplements, such as prebiotics and probiotics, have been investigated. Various supplementations include probiotics (single strain or mix), probiotics with formula, probiotics mix with prebiotics, and prebiotics. In this narrative review, we examined 13 key articles on prebiotics and/or probiotics, and their effects on infant atopic dermatitis. Among the selected studies, a total of 3,023 participants received supplements or placebo. Eight out of the 13 (61.5%) studies reported a significant effect on the prevention of atopic dermatitis after supplementation with probiotics and/or prebiotics. Five out of the 13 (38.5%) studies indicated significant reduction in the severity of atopic dermatitis after supplementation. Based on the available studies, supplementation with certain probiotics (Lactobacillus rhamnosus GG) appears to be an effective approach for the prevention and reduction in severity of atopic dermatitis. A mix of specific probiotic strains prevented atopic dermatitis among infants. Based on studies with prebiotics, there was a long-term reduction in the incidence of atopic dermatitis. Supplementation with prebiotics and probiotics appears useful for the reduction in the severity of atopic dermatitis. Additional interventional studies exploring prebiotics and probiotics are imperative before recommendations can be made.

  10. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health.

    PubMed

    Rastall, Robert A; Gibson, Glenn R

    2015-04-01

    Prebiotics are non-digestible food ingredients that have a specific stimulatory effect upon selected populations of gut bacteria. The usual target microorganisms for prebiotic approaches are bifidobacteria. Numerous human feeding studies have shown the prebiotic influences that galactans and fructans can exert. Other candidate prebiotics are under investigation. The field is now moving towards identifying the health aspect associated with their use. Many avenues of gut related health are being researched, including reduction of diarrhoea, immune stimulation, and improved mineral bioavailability. Most current emphasis appears to be towards various parameters associated with metabolic syndrome. These include markers of insulin resistance, appetite, satiety, blood lipids and inflammatory status.

  11. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals.

    PubMed

    Brownawell, Amy M; Caers, Wim; Gibson, Glenn R; Kendall, Cyril W C; Lewis, Kara D; Ringel, Yehuda; Slavin, Joanne L

    2012-05-01

    First defined in the mid-1990s, prebiotics, which alter the composition and activity of gastrointestinal (GI) microbiota to improve health and well-being, have generated scientific and consumer interest and regulatory debate. The Life Sciences Research Organization, Inc. (LSRO) held a workshop, Prebiotics and the Health Benefits of Fiber: Future Research and Goals, in February 2011 to assess the current state of the science and the international regulatory environment for prebiotics, identify research gaps, and create a strategy for future research. A developing body of evidence supports a role for prebiotics in reducing the risk and severity of GI infection and inflammation, including diarrhea, inflammatory bowel disease, and ulcerative colitis as well as bowel function disorders, including irritable bowel syndrome. Prebiotics also increase the bioavailability and uptake of minerals and data suggest that they reduce the risk of obesity by promoting satiety and weight loss. Additional research is needed to define the relationship between the consumption of different prebiotics and improvement of human health. New information derived from the characterization of the composition and function of different prebiotics as well as the interactions among and between gut microbiota and the human host would improve our understanding of the effects of prebiotics on health and disease and could assist in surmounting regulatory issues related to prebiotic use.

  12. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  13. Evaluating experimental artifacts in hydrothermal prebiotic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Smirnov, Alexander; Schoonen, Martin A A.

    2003-01-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  14. Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.

    2011-01-01

    A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative

  15. Evaluating experimental artifacts in hydrothermal prebiotic synthesis experiments.

    PubMed

    Smirnov, Alexander; Schoonen, Martin A A

    2003-04-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  16. New carbohydrate-based materials

    SciTech Connect

    Callstrom, M.R.

    1992-07-01

    We have prepared a series of new carbohydrate-based materials based on the use of carbohydrates as a template for the introduction of functionality to polymeric materials with complete regio- and stereochemical control. The synthesis of these new materials by the use of chemical and enzymatic methods allows for the rational design of new materials based on the properties of the monomeric subunit. These materials have potential applications that range from their use in enhanced oil recovery to biodegradable plastics to biological applications including targeted drug delivery and enzyme stabilization.

  17. Challenges with nonfiber carbohydrate methods.

    PubMed

    Hall, M B

    2003-12-01

    Nonfiber carbohydrates (NFC) encompass a compositionally and nutritionally diverse group exclusive of those carbohydrates found in NDF. Their content in feeds has often been described as a single value estimated by difference as 100% of dry matter minus the percentages of CP, NDF (adjusted for CP in NDF), ether extract, and ash. A calculated value was used because of difficulties with assays for individual NFC, but it does not differentiate among nutritionally distinct NFC. Errors in NFC estimation can arise from not accounting for CP in NDF and when multipliers other than 6.25 are appropriate to estimate CP. Analyses that begin to distinguish among NFC are those for starch, soluble fiber (non-NDF, nonstarch polysaccharides), and low molecular weight carbohydrates (mono- and oligosaccharides). Many starch analyses quantify alpha-glucans through specific hydrolysis of alpha-(1 --> 4) and alpha-(1 --> 6) linkages in the glucan, and measurement of released glucose. Incomplete gelatinization and hydrolysis will lead to underestimation of starch content. Starch values are inflated by enzyme preparations that hydrolyze carbohydrates other than alpha-glucan, measurement of all released monosaccharides without specificity for glucose, and failure to exclude free glucose present in the unhydrolyzed sample. Soluble fiber analyses err in a fashion similar to NFC if estimation of CP requires multipliers other than 6.25, or if contaminants such as CP and starch have not been properly accounted. Depolymerization and incomplete precipitation can also decrease soluble fiber estimates. The low molecular weight carbohydrates have been defined as carbohydrates soluble in 78 to 80% ethanol, which separates them from polysaccharides. They can be measured in extracts using broad-spectrum colorimetric assays (phenol-sulfuric acid assay or reducing sugar analysis of acid hydrolyzed samples) or chromatographic methods. Limitations of the colorimetric assays include lack of differentiation

  18. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome.

    PubMed

    Staudacher, Heidi M; Lomer, Miranda C E; Anderson, Jacqueline L; Barrett, Jacqueline S; Muir, Jane G; Irving, Peter M; Whelan, Kevin

    2012-08-01

    Preliminary studies indicate that dietary restriction of fermentable short-chain carbohydrates improves symptoms in irritable bowel syndrome (IBS). Prebiotic fructo-oligosaccharides and galacto-oligosaccharides stimulate colonic bifidobacteria. However, the effect of restricting fermentable short-chain carbohydrates on the gastrointestinal (GI) microbiota has never been examined. This randomized controlled trial aimed to investigate the effects of fermentable carbohydrate restriction on luminal microbiota, SCFA, and GI symptoms in patients with IBS. Patients with IBS were randomized to the intervention diet or habitual diet for 4 wk. The incidence and severity of symptoms and stool output were recorded for 7 d at baseline and follow-up. A stool sample was collected and analyzed for bacterial groups using fluorescent in situ hybridization. Of 41 patients randomized, 6 were withdrawn. At follow-up, there was lower intake of total short-chain fermentable carbohydrates in the intervention group compared with controls (P = 0.001). The total luminal bacteria at follow-up did not differ between groups; however, there were lower concentrations (P < 0.001) and proportions (P < 0.001) of bifidobacteria in the intervention group compared with controls when adjusted for baseline. In the intention-to-treat analysis, more patients in the intervention group reported adequate control of symptoms (13/19, 68%) compared with controls (5/22, 23%; P = 0.005). This randomized controlled trial demonstrated a reduction in concentration and proportion of luminal bifidobacteria after 4 wk of fermentable carbohydrate restriction. Although the intervention was effective in managing IBS symptoms, the implications of its effect on the GI microbiota are still to be determined.

  19. Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae)

    PubMed Central

    dos Santos, Raquel; Vergauwen, Rudy; Pacolet, Pieter; Lescrinier, Eveline; Van den Ende, Wim

    2013-01-01

    Background and Aims There is a great need to search for natural compounds with superior prebiotic, antioxidant and immunostimulatory properties for use in (food) applications. Raffinose family oligosaccharides (RFOs) show such properties. Moreover, they contribute to stress tolerance in plants, acting as putative membrane stabilizers, antioxidants and signalling agents. Methods A large-scale soluble carbohydrate screening was performed within the plant kingdom. An unknown compound accumulated to a high extent in early-spring red deadnettle (Lamium purpureum) but not in other RFO plants. The compound was purified and its structure was unravelled with NMR. Organs and organ parts of red deadnettle were carefully dissected and analysed for soluble sugars. Phloem sap content was analysed by a common EDTA-based method. Key Results Early-spring red deadnettle stems and roots accumulate high concentrations of the reducing trisaccharide manninotriose (Galα1,6Galα1,6Glc), a derivative of the non-reducing RFO stachyose (Galα1,6Galα1,6Glcα1,2βFru). Detailed soluble carbohydrate analyses on dissected stem and leaf sections, together with phloem sap analyses, strongly suggest that stachyose is the main transport compound, but extensive hydrolysis of stachyose to manninotriose seems to occur along the transport path. Based on the specificities of the observed carbohydrate dynamics, the putative physiological roles of manninotriose in red deadnettle are discussed. Conclusions It is demonstrated for the first time that manninotriose is a novel and important player in the RFO metabolism of red dead deadnettle. It is proposed that manninotriose represents a temporary storage carbohydrate in early-spring deadnettle, at the same time perhaps functioning as a membrane protector and/or as an antioxidant in the vicinity of membranes, as recently suggested for other RFOs and fructans. This novel finding urges further research on this peculiar carbohydrate on a broader array of RFO

  20. Substrate-directed formation of small biocatalysts under prebiotic conditions.

    PubMed

    Kochavi, E; Bar-Nun, A; Fleminger, G

    1997-10-01

    One of the most debated issues concerning the origin of life, is how enzymes which are essential for existence of any living organism, evolved. It is clear that, regardless of the exact mechanism, the process should have been specific and reproducible, involving interactions between different molecules. We propose that substrate templating played a crucial role in maintaining reproducible and specific formation of prebiotic catalysts. This work demonstrates experimentally, for the first time, substrate-directed formation of an oligopeptide that possesses a specific catalytic activity toward the substrate on which it was formed. In our experiments we used the substrate O-nitrophenol-beta-D-galactopyranoside (ONPG) as a molecular template for the synthesis of a specific catalyst that is capable of cleaving the same substrate. This was achieved by incubation of the substrate with free amino acids and a condensing agent (dicyandiamide) at elevated temperatures. A linear increase with time of the reaction rate (d[product]/d2t), pointed to an acceleration regime, where the substrate generates the formation of the catalyst. The purified catalyst, produced by a substrate-directed mechanism, was analyzed, and identified as Cys2-Fe+2. The mechanism of substrate-directed formation of prebiotic catalysts provides a solution to both the specificity and the reproducibility requirements from any prebiotic system which should evolve into the biological world.

  1. Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and Disease.

    PubMed

    Patcharatrakul, Tanisa; Gonlachanvit, Sutep

    2016-04-01

    There is growing evidence for the role of several natural products as either useful agents or adjuncts in the management of functional GI disorders (FGIDs). In this review, we examine the medical evidence for three such compounds: chili, a culinary spice; curcumin, another spice and active derivative of a root bark; and prebiotics, which are nondigestible food products. Chili may affect the pathogenesis of abdominal pain especially in functional dyspepsia and cause other symptoms. It may have a therapeutic role in FGIDs through desensitization of transient receptor potential vanilloid-1 receptor. Curcumin, the active ingredient of turmeric rhizome, has been shown in several preclinical studies and uncontrolled clinical trials as having effects on gut inflammation, gut permeability and the brain-gut axis, especially in FGIDs. Prebiotics, the non-digestible food ingredients in dietary fiber, may serve as nutrients and selectively stimulate the growth and/or activity of certain colonic bacteria. The net effect of this change on colonic microbiota may lead to the production of acidic metabolites and other compounds that help to reduce the production of toxins and suppress the growth of harmful or disease-causing enteric pathogens. Although some clinical benefit in IBS has been shown, high dose intake of prebiotics may cause more bloating from bacterial fermentation.

  2. Probiotics, prebiotics, and the host microbiome: the science of translation.

    PubMed

    Petschow, Bryon; Doré, Joël; Hibberd, Patricia; Dinan, Timothy; Reid, Gregor; Blaser, Martin; Cani, Patrice D; Degnan, Fred H; Foster, Jane; Gibson, Glenn; Hutton, John; Klaenhammer, Todd R; Ley, Ruth; Nieuwdorp, Max; Pot, Bruno; Relman, David; Serazin, Andrew; Sanders, Mary Ellen

    2013-12-01

    Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions.

  3. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease.

    PubMed

    Orel, Rok; Kamhi Trop, Tina

    2014-09-07

    It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn's disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment.

  4. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease

    PubMed Central

    Orel, Rok; Kamhi Trop, Tina

    2014-01-01

    It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn’s disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment. PMID:25206258

  5. Management of metabolic syndrome through probiotic and prebiotic interventions

    PubMed Central

    Mallappa, Rashmi H.; Rokana, Namita; Duary, Raj Kumar; Panwar, Harsh; Batish, Virender Kumar; Grover, Sunita

    2012-01-01

    Metabolic syndrome is a complex disorder caused by a cluster of interrelated factors that increases the risk of cardiovascular diseases and type 2 diabetes. Obesity is the main precursor for metabolic syndrome that can be targeted in developing various therapies. With this view, several physical, psychological, pharmaceutical and dietary therapies have been proposed for the management of obesity. However, dietary strategies found more appropriate without any adverse health effects. Application of probiotics and prebiotics as biotherapeutics is the new emerging area in developing dietary strategies and many people are interested in learning the facts behind these health claims. Recent studies established the role of probiotics and prebiotics in weight management with possible mechanisms of improved microbial balance, decreased food intake, decreased abdominal adiposity and increased mucosal integrity with decreased inflammatory tone. Hence, the above “Pharmaco-nutritional” approach has been selected and extensively reviewed to gain thorough knowledge on putative mechanisms of probiotic and prebiotic action in order to develop dietary strategies for the management of metabolic syndrome. PMID:22276249

  6. Polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David; Shalloway, David

    2016-10-01

    Hydrogen cyanide (HCN), a key reagent in prebiotic chemistry, is being generated in large amounts in the atmosphere of Titan. Contradictions between Cassini-Huygens measurements of the atmosphere and the surface of Titan, suggest that HCN is undergoing reaction chemistry, despite the frigid temperatures of 90-94 K. We will discuss computational results [1] investigating polyimine as one potential explanation for this observation. Polyimine is a polymer identified as the major component of polymerized HCN in laboratory experiments. It is flexible, which aids low temperature mobility, and it is able to form intermolecular and intramolecular =N-H...N hydrogen bonds, allowing for different polymorphs. Polymorphs have been predicted and explored by density functional theory coupled with a structure-searching algorithm. We have calculated the thermodynamics of polymerization, and show that polyimine is capable of absorbing light in a window of relative transparency in Titan's atmosphere. Light absorption and the possible catalytic functions of polyimine are suggestive of it driving photochemistry on the surface, with potential prebiotic implications.References:[1] M. Rahm, J. I. Lunine, D. Usher, D. Shalloway, "Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan", PNAS, early view. doi: 10.1073/pnas.1606634113

  7. Impact of prebiotics and probiotics on skin health.

    PubMed

    Al-Ghazzewi, F H; Tester, R F

    2014-06-01

    This review discusses the role of pre- and probiotics with respect to improving skin health by modulating the cutaneous microbiota. The skin ecosystem is a complex environment covered with a diverse microbiota community. These are classified as either transient or resident, where some are considered as beneficial, some essentially neutral and others pathogenic or at least have the capacity to be pathogenic. Colonisation varies between different parts of the body due to different environmental factors. Pre- and probiotic beneficial effects can be delivered topically or systemically (by ingestion). The pre- and probiotics have the capacity to optimise, maintain and restore the microbiota of the skin in different ways. Topical applications of probiotic bacteria have a direct effect at the site of application by enhancing the skin natural defence barriers. Probiotics as well as resident bacteria can produce antimicrobial peptides that benefit cutaneous immune responses and eliminate pathogens. In cosmetic formulations, prebiotics can be applied to the skin microbiota directly and increase selectively the activity and growth of beneficial 'normal' skin microbiota. Little is known about the efficacy of topically applied prebiotics. Nutritional products containing prebiotics and/or probiotics have a positive effect on skin by modulating the immune system and by providing therapeutic benefits for atopic diseases. This review underlines the potential use of pre- and probiotics for skin health.

  8. Carbohydrates - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: https://medlineplus.gov/languages/carbohydrates.html Other topics A-Z A B ...

  9. Carbohydrates as enantioinduction components in stereoselective catalysis

    PubMed Central

    Henderson, Alexander S.

    2016-01-01

    Carbohydrate derivatives are readily available chiral molecules, yet they are infrequently employed as enantioinduction components in stereoselective catalysis. In this review, synthetic approaches to carbohydrate-based ligands and catalysts are outlined, along with example applications in enantioselective catalysis. A wide range of carbohydrate-based functionality is covered, and key trends and future opportunities are identified. PMID:27064817

  10. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly

    PubMed Central

    Liu, Yue; Gibson, Glenn R.; Walton, Gemma E.

    2016-01-01

    The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters. PMID:27612304

  11. Effects of dietary Aspergillus meal prebiotic on turkey poults production parameters and bone qualities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of dietary Aspergillus meal (AM), a prebiotic on performance and bone parameters of neonatal turkey poults. Prebiotics are nondigestible food ingredients that beneficially affect the host and have been shown to stimulate calcium and magnesium a...

  12. Effect of prebiotic supplementation and calcium intake on body mass index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to assess the effects of a prebiotic supplement and usual calcium intake on body composition changes during pubertal growth. We measured anthropometry and body fat with dual-energy X-ray absorptionmetry in 97 young adolescents who were randomized to receive either a daily prebiotic...

  13. Disorders of carbohydrate digestion and absorption.

    PubMed

    Heitlinger, L A; Lebenthal, E

    1988-04-01

    The carbohydrate malabsorptive syndromes are frequently seen by pediatricians. The congenital deficiency states are quite rare, but adult type hypolactasia and lactose intolerance following rotavirus infection are recognized with increasing frequency by primary care physicians. Therapy for these disorders involves identification of the offending carbohydrate, removal of the carbohydrate from the diet, and exclusion of other entities that may result in carbohydrate malabsorption but not respond to its removal from the diet. Prognosis for both the primary and secondary carbohydrate malabsorption syndromes is excellent. Compliance with diets for those pediatric patients who will require lifelong therapy remains problematic.

  14. Carbohydrates in peptide and protein design.

    PubMed

    Jensen, Knud J; Brask, Jesper

    2005-01-01

    Monosaccharides and amino acids are fundamental building blocks in the assembly of nature's polymers. They have different structural aspects and, to a significant extent, different functional groups. Oligomerization gives rise to oligosaccharides and peptides, respectively. While carbohydrates and peptides can be found conjoined in nature, e.g., in glycopeptides, the aim of this review is the radical redesign of peptide structures using carbohydrates, particularly monosaccharides and cyclic oligosaccharides, to produce novel peptides, peptidomimetics, and abiotic proteins. These hybrid molecules, chimeras, have properties arising largely from the combination of structural characteristics of carbohydrates with the functional group diversity of peptides. This field includes de novo designed synthetic glycopeptides, sugar (carbohydrate) amino acids, carbohydrate scaffolds for nonpeptidal peptidomimetics of cyclic peptides, cyclodextrin functionalized peptides, and carboproteins, i.e., carbohydrate-based proteinmimetics. These successful applications demonstrate the general utility of carbohydrates in peptide and protein architecture.

  15. The role of probiotics and prebiotics in inducing gut immunity.

    PubMed

    Vieira, Angélica T; Teixeira, Mauro M; Martins, Flaviano S

    2013-12-12

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.

  16. Prebiotic effect of Agave fourcroydes fructans: an animal model.

    PubMed

    García-Curbelo, Yanelys; Bocourt, Ramón; Savón, Lourdes L; García-Vieyra, Maria Isabel; López, Mercedes G

    2015-09-01

    The use of prebiotics such as fructans has increased in human and animal nutrition because of their productive performance and health benefits. Agave fourcroydes has shown high concentrations of fructans in their stems; however, there is no information on new products derived from this plant that might enhance its added value. Therefore, we evaluated the prebiotic effect of Agave fourcroydes fructans in an animal model. Male mice (C57BL/6J) were fed on parallel form with a standard diet or diets supplemented with 10% of fructans from Cichorium intybus (Raftilose P95) and Agave fourcroydes from Cuba for 35 days. The body weight, food intake, blood glucose, triglycerides and cholesterol, gastrointestinal organ weights, fermentation indicators in cecal and colon contents and mineral content in femurs were determined. The body weight and food intake of mice were not significantly modified by any treatment. However, serum glucose, cholesterol and triglycerides decreased (P < 0.01) in the fructans groups with respect to the standard diet group; this decrement was higher in the A. fourcroydes group with respect to the Raftilose P95 group. Mice groups supplemented with fructans exhibited increased (P < 0.01) total and wall cecal and colon weights. The fermentation indicators, short-chain fatty acids (SCFAs) and pH decreased (P < 0.001) in the groups that consumed fructans in their diets with respect to the standard diet. The diets supplemented with fructans also increased the mineral concentrations of calcium (P < 0.01) and magnesium (P < 0.05) in the right femurs. In conclusion, the inclusion of fructans from Agave fourcroydes in the mice diet induced a prebiotic response, similar to or greater than the commercial product (Raftilose P95) and this constitutes a promising alternative with potential use not only in animal but also in human diets.

  17. Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling

    NASA Technical Reports Server (NTRS)

    Degani, CH.; Kawatsuji, M.; Halmann, M.

    1975-01-01

    It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).

  18. Reactions of aminomalononitrile with electrophiles. [simulating prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Thanassi, J. W.

    1975-01-01

    Aminomalononitrile (HCN trimer) reacts with electrophiles such as aldehydes and acrylonitrile under very mild conditions of temperature and pH to produce intermediates which, after acid hydrolysis, yield amino acids. The following amino acids have been identified and quantitated: glycine, D,L-erythro- and D,L-threo-beta-hydroxyaspartic acids, D,L glutamic acid, and D,L-threonine and allo-threonine. The mechanism of their formation and the possible significance of these reactions in prebiotic syntheses are discussed.

  19. Formation of the imidazolides of dinucleotides under potentially prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.

    1978-01-01

    Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.

  20. Carbohydrates blended with polydextrose lower gas production and short-chain fatty acid production in an in vitro system.

    PubMed

    Vester Boler, Brittany M; Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Middelbos, Ingmar S; Murphy, Michael R; Swanson, Kelly S; Fahey, George C

    2009-09-01

    Maximizing health benefits of prebiotics, while limiting negative side effects, is of importance to the food industry. This study examined several oligosaccharides and their blends in an in vitro fermentation model. Substrates included medium- and long-chain fructooligosaccharides (FOS), oligofructose-enriched inulin, galactooligosaccharide, polydextrose (POL), and 50:50 substrate blends. Substrates and blends were fermented in vitro using human fecal inoculum, and fermentation characteristics were quantified at 0, 4, 8, and 12 hours. We hypothesized that mixtures of short- and long-chain oligosaccharides would generate less gas than do short-chain oligosaccharides and modulate gut microflora to a greater extent than do long-chain oligosaccharides. Carbohydrates blended with POL had decreased (P < .01) total gas volume and H(2) produced after 4, 8, and 12 hours of fermentation compared with individual carbohydrates. Mixing of 2 oligofructose-enriched inulin products led to less (P < .05) gas produced and a slower (P < .05) rate of production. When mixed with POL, all carbohydrates tested in the present study produced less total short-chain fatty acids (P < .04) and butyrate (P < .0001) after 12 hours of in vitro fermentation, compared with individual carbohydrates. The bifidogenic effect of medium-chain FOS and oligofructose-enriched inulin after 12 hours of in vitro fermentation was lower (P < .05) when mixed with POL. Mixing the pure carbohydrates with galactooligosaccharide increased (P < .05) bifidobacteria counts measured after 12 hours of in vitro fermentation, except when mixed with medium-chain FOS. In general, when mixed with POL, all carbohydrates had lower gas production, gas production rates, butyrate and total short-chain fatty acid production, and bifidobacteria counts than when fermented alone for 12 hours.

  1. A systematic study of chemogenomics of carbohydrates.

    PubMed

    Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie

    2014-03-04

    Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.

  2. Prebiotic formation of polyamino acids in molten urea

    NASA Astrophysics Data System (ADS)

    Mita, H.; Nomoto, S.; Terasaki, M.; Shimoyama, A.; Yamamoto, Y.

    2005-04-01

    It is important for research into the origins of life to elucidate polyamino acid formation under prebiotic conditions. Only a limited set of amino acids has been reported to polymerize thermally. In this paper we demonstrate a novel thermal polymerization mechanism in a molten urea of alkylamino acids (i.e. glycine, alanine, β-alanine, α-aminobutyric acid, valine, norvaline, leucine and norleucine), which had been thought to be incapable of undergoing thermal polymerization. Also, aspartic acid was found to polymerize in molten urea at a lower temperature than that at which aspartic acid alone had previously been thermally polymerized. Individual oligomers produced in heating experiments on urea-amino acid mixtures were analysed using a liquid chromatograph mass spectrometer. Major products in the reaction mixture were three different types of polyamino acid derivatives: N-carbamoylpolyamino acids, polyamino acids containing a hydantoin ring at the N-terminal position and unidentified derivatives with molecular weights that were greater by 78 than those of the corresponding peptide forms. The polymerization reaction occurred by taking advantage of the high polarity of molten urea as well as its dehydrating ability. Under the presumed prebiotic conditions employed here, many types of amino acids were thus revealed to undergo thermal polymerization.

  3. Sunlight-Driven, Water-Mediated Generation of Prebiotic Complexity

    NASA Astrophysics Data System (ADS)

    Rapf, R.; Griffith, E. C.; Perkins, R. J.; Vaida, V.

    2014-12-01

    Formation of chemically complex biomolecules from simple, organic molecules under prebiotic conditions is both a thermodynamic and kinetic challenge. Synthesis of such molecules and their subsequent self-assembly into ordered structures requires a favorable source of energy as well as a favorable entropic environment. Our approach couples two such auspicious conditions, using sunlight as the energetic driver and air-water interfaces as the reaction medium. The Sun provides a large, prebiotically relevant source of energy to fuel synthetic photochemistry. Air-water interfaces are widely prevalent on oceans, lakes, and atmospheric aerosols and provide unique reaction environments that ameliorate some of the thermodynamic challenges of the aqueous bulk. Using these experimental principles, we demonstrate the ability to generate chemical complexity via in situ observation of non-enzymatic peptide bond synthesis at the surface of water. Additionally, we will discuss the photochemical formation of a double-tailed membrane component in aqueous solution, which subsequently self-assembles into ordered, three-dimensional structures.

  4. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  5. Radioactivity as a significant energy source in prebiotic synthesis.

    PubMed

    Garzón, L; Garzón, M L

    2001-01-01

    Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.

  6. [Probiotics and prebiotics as a bioactive component of functional food].

    PubMed

    Kapka-Skrzypczak, Lucyna; Niedźwiecka, Joanna; Wojtyła, Andrzej; Kruszewski, Marcin

    2012-01-01

    The results of food science investigations have confirmed the relationship between the type of eaten food and health. Simultaneously, consumers are paying more and more attention to the kind of food they eat, as their awareness concerning the influence of proper food on health is increasing. On that base the conception of functional food has been created. This kind of food, besides being a source of essential macro- and micronutrients, exerts an additional positive influence on health. Probiotics and prebiotics containing products are a good example of functional food. These products provide not only essential nutrients but also microorganisms and polysaccharides, which are indigestible in the human alimentary tract, but exert a positive effect on human health. It may be a therapeutic or prophylactic effect due to specific affliction or may improve health in general. The paper - based on available literature - shows a positive influence of probiotics and prebiotics on human health, especially in the immunomodulation effect, an advantageous effect on the digestive system, antitumor activity and a possible therapeutic and prophylactic effect on cardiovascular diseases and obesity.

  7. Role of Cosmic Dust Analogues in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Strazzulla, G.; Baratta, G. A.; Saladino, R.; di Mauro, E.

    Dust grains could have played an important role in driving the formation of complex molecular compounds relevant for the prebiotic chemistry occurred in the early Earth. Dust and molecular compounds present in space experienced very different environments, with temperatures ranging from few to thousands of Kelvins, and with very harsh conditions due to particle and UV irradiations. Astronomical observations of the interstellar medium, coupled with direct in-situ investigations of solar system bodies performed by space missions and laboratory analyses of extraterrestrial material have shown the presence of large amount of organic molecules. The detection of more than one hundred molecules demonstrates that chemical reactions can proceed successfully in space. However, due to low efficiency, formation of complex molecules in gas phase is not feasible, then an active chemistry has been suggested to take place at cryogenic temperatures (~10 K) on cosmic dust grains acting as catalysts. We will present laboratory results on catalytic effects of Cosmic Dust Analogues (CDAs) with olivine composition, in the synthesis of organic molecules under different physical conditions by using formamide (NH2COH). We will show the important role of CDAs in prebiotic chemistry experiments simulating processes occurring in astronomical environments relevant for the origin of life in the Solar System.

  8. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE PAGES

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  9. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    SciTech Connect

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  10. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    SciTech Connect

    Koziol, Lucas; Goldman, Nir E-mail: ngoldman@llnl.gov

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  11. Prebiotic Hydrocarbon Synthesis in Impacting Reduced Astrophysical Icy Mixtures

    NASA Astrophysics Data System (ADS)

    Koziol, Lucas; Goldman, Nir

    2015-04-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  12. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Koziol, Lucas

    2015-06-01

    We present results of prebiotic organic synthesis in shock compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium time-scales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impact on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon and nitrogen bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding for hydrocarbon impact synthesis on early Earth and its role in producing life building molecules from simple starting materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Prebiotic Factors Influencing the Activity of a Ligase Ribozyme.

    PubMed

    Anella, Fabrizio; Danelon, Christophe

    2017-04-06

    An RNA-lipid origin of life scenario provides a plausible route for compartmentalized replication of an informational polymer and subsequent division of the container. However, a full narrative to form such RNA protocells implies that catalytic RNA molecules, called ribozymes, can operate in the presence of self-assembled vesicles composed of prebiotically relevant constituents, such as fatty acids. Hereby, we subjected a newly engineered truncated variant of the L1 ligase ribozyme, named tL1, to various environmental conditions that may have prevailed on the early Earth with the objective to find a set of control parameters enabling both tL1-catalyzed ligation and formation of stable myristoleic acid (MA) vesicles. The separate and concurrent effects of temperature, concentrations of Mg(2+), MA, polyethylene glycol and various solutes were investigated. The most favorable condition tested consists of 100 mM NaCl, 1 mM Mg(2+), 5 mM MA, and 4 °C temperature, whereas the addition of Mg(2+)-chelating solutes, such as citrate, tRNAs, aspartic acid, and nucleoside triphosphates severely inhibits the reaction. These results further solidify the RNA-lipid world hypothesis and stress the importance of using a systems chemistry approach whereby a wide range of prebiotic factors interfacing with ribozymes are considered.

  14. Current status of the prebiotic synthesis of small molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1986-01-01

    Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.

  15. Understanding Organics in Meteorites and the Pre-Biotic Environment

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    2003-01-01

    (1) Refinement of the analytic capabilities of our experiment via characterization of molecule-specific response and the effects upon analysis of the type of sample under investigation; (2) Measurement of polycyclic aromatic hydrocarbons (PAHs) with high sensitivity and spatial resolution within extraterrestrial samples; (3) Investigation of the interstellar reactions of PAHs via the analysis of species formed in systems modeling dust grains and ices; (4) Investigations into the potential role of PAHs in prebiotic and early biotic chemistry via photoreactions of PAHs under simulated prebiotic Earth conditions. To meet these objectives, we use microprobe laser-desorption, laser-ionization mass spectrometry (MuL(exp 2)MS), which is a sensitive, selective, and spatially resolved technique for detection of aromatic compounds. Appendix A presents a description of the MuL(exp 2)MS technique. The initial grant proposal was for a three-year funding period, while the award was given for a one-year interim period. Because of this change in time period, emphasis was shifted from the first research goal, which was more development-oriented, in order to focus more on the other analysis-oriented goals. The progress made on each of the four research areas is given below.

  16. Influence of prebiotics, probiotics and protein ingredients on mycotoxin bioaccessibility.

    PubMed

    Ferrer, M; Manyes, L; Mañes, J; Meca, G

    2015-03-01

    The aim of this study was to investigate the influence of prebiotic compounds (cellulose and inulin), food ingredients (milk whey, β-lactoglobulin and calcium caseinate) and several probiotic microorganisms on the bioaccessibility of beauvericin (BEA), enniatins (ENs A, A1, B, B1), deoxynivalenol (DON) and zearalenone (ZEA) present in wheat crispy bread produced with wheat flour previously fermented with F. tricinctum, F. culmorum and G. zeae. The bioaccessibility of mycotoxins was determined by a dynamic simulated gastrointestinal digestion system, imitating the human digestive physiological conditions of the gastrointestinal tract. Mycotoxins were determined in the simulated intestinal fluids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EN bioaccessibility ranged from 15.1 to 30.6%, whereas the values evidenced for BEA ranged from 12 to 19%. DON showed bioaccessibility data ranging from 0.8 to 5.6% whereas for ZEA the data evidenced ranged from 26 to 44%. The bioaccessibility reduction evidenced using probiotic microorganisms for the mycotoxins studied ranged from 21 to 27.1% for ENs, from 29 to 39.7% for DON, from 41 to 57% for ZEA and from 6.6 to 10.5% for BEA. The addition of prebiotic and bioactive microorganisms decreased the bioaccessibility of mycotoxins, with a concentration-dependent behavior, thus being a potential strategy for reducing human exposure to these minor mycotoxins.

  17. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2014-04-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of ~1 eV (~104 K) are enough to accelerate ions to sufficient energies that exceed the activation energies required for the formation of formaldehyde, ammonia, hydrogen cyanide and the amino acid glycine.

  18. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  19. Probiotics and prebiotics and health in ageing populations.

    PubMed

    Duncan, Sylvia H; Flint, Harry J

    2013-05-01

    In healthy adults microbial communities that colonise different regions of the human colon contribute nutrients and energy to the host via the fermentation of non-digestible dietary components in the large intestine. A delicate balance of microbial species is required to maintain healthy metabolism and immune function. Disturbance in this microbial balance can have negative consequences for health resulting in elevated inflammation and infection, that are contributory factors in diabetes and cancer. There is a growing awareness that the microbial balance in the colon may become increasingly perturbed with aging and therefore hasten the onset of certain diseases. Societal and dietary factors influence microbial community composition both in the short and long term in the elderly (>65 years old) whilst immunosenescence may also be linked to a perturbed distal gut microbiota and frailty in the elderly. Significant progress has been made in defining some of the dominant members of the microbial community in the healthy large intestine and in identifying their roles in metabolism. There is therefore an urgent need for better awareness of the impact of diet, prebiotic and probiotic strategies in driving human colonic microbial composition in order to understand the possibilities for maintaining healthy gut function and well-being in an increasingly elderly population. Here we review gut microbial changes associated with aging and how diet, prebiotics and probiotics may modulate the gut microbiota to maintain health in the elderly.

  20. Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics.

    PubMed

    Serban, Daniela Elena

    2014-04-10

    Cancers of the gastrointestinal (GI) tract continue to represent a major health problem, despite progress in therapy. Gut microbiota is a key element related to the genesis of GI cancers, countless papers addressing this burning issue across the world. We provide an updated knowledge of the involvement of gut microbiota in GI tumorigenesis, including its underlying mechanisms. We present also a comprehensive review of the evidence from animal and clinical studies using probiotics and/or prebiotics in the prevention and/or therapy of GI tumours, of GI cancer therapy-related toxicity and of post-operative complications. We summarize the anticarcinogenic mechanisms of these biotherapeutics from in vitro, animal and clinical interventions. More research is required to reveal the interactions of microflora with genetic, epigenetic and immunologic factors, diet and age, before any firm conclusion be drawn. Well-designed, randomized, double blind, placebo-controlled human studies using probiotics and/or prebiotics, with adequate follow-up are necessary in order to formulate directions for prevention and therapy.

  1. From Astrochemistry to prebiotic chemistry? An hypothetical approach toward Astrobiology

    NASA Astrophysics Data System (ADS)

    Le Sergeant d'Hendecourt, L.; Danger, G.

    2012-12-01

    We present in this paper a general perspective about the evolution of molecular complexity, as observed from an astrophysicist point of view and its possible relation to the problem of the origin of life on Earth. Based on the cosmic abundances of the elements and the molecular composition of our life, we propose that life cannot really be based on other elements. We discuss where the necessary molecular complexity is built-up in astrophysical environments, actually within inter/circumstellar solid state materials known as ``grains''. Considerations based on non-directed laboratory experiments, that must be further extended in the prebiotic domain, lead to the hypothesis that if the chemistry at the origin of life may indeed be a rather universal and deterministic phenomenon, once molecular complexity is installed, the chemical evolution that generated the first prebiotic reactions that involve autoreplication must be treated in a systemic approach because of the strong contingency imposed by the complex local environment(s) and associated processes in which these chemical systems have evolved.

  2. A comparative study of prebiotic and present day translational models

    NASA Technical Reports Server (NTRS)

    Rein, R.; Raghunathan, G.; Mcdonald, J.; Shibata, M.; Srinivasan, S.

    1986-01-01

    It is generally recognized that the understanding of the molecular basis of primitive translation is a fundamental step in developing a theory of the origin of life. However, even in modern molecular biology, the mechanism for the decoding of messenger RNA triplet codons into an amino acid sequence of a protein on the ribosome is understood incompletely. Most of the proposed models for prebiotic translation lack, not only experimental support, but also a careful theoretical scrutiny of their compatibility with well understood stereochemical and energetic principles of nucleic acid structure, molecular recognition principles, and the chemistry of peptide bond formation. Present studies are concerned with comparative structural modelling and mechanistic simulation of the decoding apparatus ranging from those proposed for prebiotic conditions to the ones involved in modern biology. Any primitive decoding machinery based on nucleic acids and proteins, and most likely the modern day system, has to satisfy certain geometrical constraints. The charged amino acyl and the peptidyl termini of successive adaptors have to be adjacent in space in order to satisfy the stereochemical requirements for amide bond formation. Simultaneously, the same adaptors have to recognize successive codons on the messenger. This translational complex has to be realized by components that obey nucleic acid conformational principles, stabilities, and specificities. This generalized condition greatly restricts the number of acceptable adaptor structures.

  3. Spatial Models of Prebiotic Evolution: Soup Before Pizza?

    NASA Astrophysics Data System (ADS)

    Scheuring, István; Czárán, Tamás; Szabó, Péter; Károlyi, György; Toroczkai, Zoltán

    2003-10-01

    The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality (speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows (`soup') and surface dynamics (`pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

  4. Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    PubMed Central

    Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques

    2012-01-01

    The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440

  5. Carbohydrates

    MedlinePlus

    ... found in certain vegetables, such as potatoes, beans, peas, and corn. They are also found in breads, ... Foods high in fiber include fruits, vegetables, beans, peas, nuts, seeds, and whole-grain foods (such as ...

  6. Application of Probiotic, Prebiotic and Synbiotic for the Control of Streptococcosis in Tilapia Oreochromis niloticus.

    PubMed

    Widanarni; Tanbiyaskur

    2015-02-01

    One of the fish diseases that is becoming the main problem in tilapia culture is streptococcosis caused by Streptococcus agalactiae. Application of probiotic, prebiotic and synbiotic are expected to be an alternative for controlling the disease. The purpose of this study was to examine the effectiveness of the administration of probiotic, prebiotic and synbiotic through artificial feed to control streptococcosis in tilapia. This study consisted of five treatments with three replications, namely positive control, negative control; 1% probiotic treatment; 2% prebiotic treatment and synbiotic treatment (1% probiotic and 2% prebiotic). Results showed that fish survival rate before the challenge test for all treatments was between 95 and 100%. Growth and feed conversion ratios in probiotic, prebiotic and synbiotic treatments were better than that of the controls. After the challenge test, the fish survival rate in probiotic, prebiotic and synbiotic treatments were 74.08, 74.08 and 85.19%, respectively; whereas, in the positive control it was only 18.52%. Results showed that S. agalactiae bacteria could be found in the brain, kidney, liver and eyes. The number of S. agalactiae bacteria and the damage level of various target organs in probiotic, prebiotic and synbiotic treatments were lower than that of positive control.

  7. Surface characterization of carbohydrate microarrays.

    PubMed

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  8. Benefits and hazards of dietary carbohydrate.

    PubMed

    Connor, William E; Duell, P Barton; Connor, Sonja L

    2005-11-01

    Since the dawn of civilization, carbohydrate has comprised the largest source of energy in the diet for most populations. The source of the carbohydrate has been from plants in the form of complex carbohydrate high in fiber. Only in affluent cultures has sugar contributed so much of the total energy. When carbohydrate is consumed as a major component of a plant-based diet, a high-carbohydrate, low-fat diet is associated with low plasma levels of total and low-density lipoprotein cholesterol, less coronary heart disease, less diabetes, and less obesity. Very low-carbohydrate (ketogenic) diets may provide short-term solutions but do not lead to a long-term solution for most people.

  9. Applications of synthetic carbohydrates to chemical biology.

    PubMed

    Lepenies, Bernd; Yin, Jian; Seeberger, Peter H

    2010-06-01

    Access to synthetic carbohydrates is an urgent need for the development of carbohydrate-based drugs, vaccines, adjuvants as well as novel drug delivery systems. Besides traditional synthesis in solution, synthetic carbohydrates have been generated by chemoenzymatic methods as well as automated solid-phase synthesis. Synthetic oligosaccharides have proven to be useful for identifying ligands of carbohydrate-binding proteins such as C-type lectins and siglecs using glycan arrays. Furthermore, glyconanoparticles and glycodendrimers have been used for specific targeting of lectins of the immune system such as selectins, DC-SIGN, and CD22. This review focuses on how diverse carbohydrate structures can be synthetically derived and highlights the benefit of synthetic carbohydrates for glycobiology.

  10. New fabrication and applications of carbohydrate arrays.

    PubMed

    Huang, Gangliang; Chen, Xin; Xiao, Feng

    2014-01-01

    Carbohydrate arrays are used as high-throughput screening platforms to study the carbohydrate-mediated recognition events for glycobiology. The polysaccharide arrays are easy to fabricate by non-covalently or covalently immobilizing polysaccharides onto array surfaces because polysaccharides have hydrophobic interactions. Oligosaccharides must be derived and covalently or non-covalently immobilized onto array surfaces to fabricate oligosaccharide arrays because they have hydrophilic interactions. At the moment, carbohydrate arrays are mainly used to study the carbohydrate-protein interactions and carbohydrate-binding lectins or antibodies, which are possible to be applied to clinics and diagnoses. This review mainly summed up the new fabrication strategies of carbohydrate arrays and their applications in recent four years.

  11. Dietary Plans for Carbohydrate Loading

    DTIC Science & Technology

    1989-11-01

    NUTS - CASHEWS -OIL ROASTED 6.00 TBSPS 48.8 GMS Nutrient Values Kcalories 4071 Kcal Carbohydrate 574.3 Gm Protein 168.1 Gm Fat 125.4 Gm Protein: 16...ENR 2.00 ITEMS 28.00 Gm (5%) ORANGE JUICE-CAN 1.00 CUP 24.50 Gm (4%) SOUP-VEGETABLE-CAN-LOW SOD 1.50 CUPS 21.60 Gm (4%) NUTS - CASHEWS -OIL ROASTED 6.00...LOW SOD 8 POUNDS 4 KILOS Beverages FRUIT PUNCH DRINK-CAN 5 POUNDS 2 KILOS (3 QUARTS) Nuts & Seeds NUTS - CASHEWS -OIL ROASTED 1 POUND 488 GRAMS Fats & Oils

  12. In vitro fermentation characteristics of whole grain wheat flakes and the effect of toasting on prebiotic potential.

    PubMed

    Connolly, Michael L; Lovegrove, Julie A; Tuohy, Kieran M

    2012-01-01

    Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.

  13. Prebiotic Effects of Poly-Gamma-Glutamate on Bacterial Flora in Murine Gut.

    PubMed

    Jin, Hee-Eun; Choi, Jae-Chul; Lim, Yong Taik; Sung, Moon-Hee

    2017-02-28

    Prebiotics improve the growth or activities of specific microbial genera and species in the gut microbiota in order to confer health benefits to the host. In this study, we investigated the effect of poly-gamma-glutamate (γ-PGA) as a prebiotic on the gut microbiota of mice and the organ distributions of γ-PGA in mice. Pyrosequencing analysis for 16S rRNA genes of bacteria indicated that oral administration of γ-PGA increased the abundance of Lactobacillales while reducing the abundance of Clostridiales in murine guts. It is suggested that oral administration of γ-PGA can be helpful for modulating the gut microbiota as a prebiotic.

  14. Digestion of carbohydrates in the pig.

    PubMed

    Drochner, W

    1993-01-01

    A review of carbohydrate digestion in the pig is given. The cascade of digestion in the mouth, stomach, small and large intestine is described. Principles of enzymatic and fermentative digestion according to new results with fistulated animals are discussed. The efficacy and quality of fermentation in the large intestine depending on level and quality of carbohydrates in the diet are demonstrated. Some aspects of energetical efficacy of hindgut digestion are discussed. Dietetic effects of carbohydrates are described.

  15. Regioselective azidotrimethylsilylation of carbohydrates and applications thereof.

    PubMed

    L, Mallikharjuna Rao; Yousuf, Syed Khalid; Mukherjee, Debaraj; Taneja, Subhash Chandra

    2012-12-07

    Azidotrimethylsilylation of carbohydrates (monosaccharides and disaccharides) has been achieved in high yields under Mitsunobu conditions. The azidation of carbohydrates is effected at 0 °C essentially only at the primary alcoholic position in mono, di- and triols in protected/unprotected glycosides, whereas the remaining secondary hydroxyl groups got silylated. Surprisingly, no azidation of the secondary hydroxyls was observed in all the carbohydrate substrates. Applications of the methodology for the synthesis of amino sugars, triazoles and azasugars are reported.

  16. Regioselective monodeprotection of peracetylated carbohydrates.

    PubMed

    Filice, Marco; Guisan, Jose M; Terreni, Marco; Palomo, Jose M

    2012-10-01

    This protocol describes the regioselective deprotection of single hydroxyls in peracetylated monosaccharides and disaccharides by enzymatic or chemoenzymatic strategies. The introduction of a one-pot enzymatic step by using immobilized biocatalysts obviates the requirement to carry out tedious workups and time-consuming purifications. By using this straightforward protocol, different per-O-acetylated glycopyranosides (mono- or disaccharides, 1-substituted or glycals) can be transformed into a whole set of differentially monodeprotected 1-alcohols, 3-alcohols, 4-alcohols and 6-alcohols in high yields. These tailor-made glycosyl acceptors can then be used for stereoselective glycosylation for oligosaccharide and glycoderivative synthesis. They have been successfully used as building blocks to synthesize tailor-made di- and trisaccharides involved in the structure of lacto-N-neo-tetraose and precursors of the tumor-associated carbohydrate antigen T and the antitumoral drug peracetylated β-naphtyl-lactosamine. We are able to prepare a purified monoprotected carbohydrate in between 1 and 4 d. With this protocol, the small library of monodeprotected products can be synthesized in 1-2 weeks.

  17. Prebiotic Polymer Synthesis and the Origin of Glycolytic Metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Our research resulted in several discoveries which contributed to understanding the origin and operation of life. (1) Most importantly, we discovered a new pathway of prebiotic amino acid synthesis in which formaldehyde and glycolaldehyde (formose reaction substrates) react with ammonia to give alanine and homoserine in the presence of thiol catalysts. The thiol-dependent synthesis of amino acids undoubtedly occurs via amino acid thioester intermediates capable of forming peptides. This 'one-pot' reaction system operates under mild aqueous conditions, and like modern amino acid biosynthesis, uses sugar intermediates which are converted to amino acids by energy-yielding redox disproportionation. Preliminary evidence suggests that this type of process can be "evolved" by a serial transfer methods that lead to enrichment of autocatalytic molecules. (2) We established that prebiotic peptide polymers can be made by condensation of amino acid thioesters (homocysteine thiolactone and S-(N-beta-orotidyl- diaminopropionic acid) ethanethiol), and that prebiotic polydisulfide polymers can be generated by oxidation of dithiols with iron(III) in minerals. (3) In our analysis of metabolism we discovered the primary energy source of biosynthesis -- chemical energy made available by the redox disproportionation of substrate carbon groups. We concluded that the energy and reactivity of sugars make them the optimal substrate for the origin and operation of terrestrial (or extraterrestrial) life. (4) Since it is likely that the use of optimal sugar substrates in biosynthesis sets the average oxidation number of functional biocarbon throughout the Universe near 0.0 (the reduction level of formaldehyde), we proposed that a line(s) in the microwave spectrum of formaldehyde could be rationally selected as a frequency for interstellar communication that symbolizes life. (5) Finally, in preparation for the analysis of Martian meteorite samples, we upgraded our HPLC system to one femtomole

  18. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.

    PubMed

    Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen

    2016-04-01

    Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs.

  19. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M)

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.

  20. Effect of prebiotics on the human gut microbiota of elderly persons.

    PubMed

    Toward, Ruth; Montandon, Samantha; Walton, Gemma; Gibson, Glenn R

    2012-01-01

    The colonic microbiota undergoes certain age related changes that may affect health. For example, above the age of 55-65 y, populations of bifidobacteria are known to decrease markedly. Bifidobacteria are known inhibitors of pathogenic microbes and a decrease in their activities may increase susceptibility to infections. There is therefore interest in trying to reverse their decline in aged persons. As the gut microbiota responds to dietary intervention, both probiotics and prebiotics have been tested in this regard. Probiotics are live microbes in the diet, whereas prebiotics are fermentable ingredients that specifically target components of the indigenous microbiota seen to be beneficial. We have published a recent paper demonstrating that prebiotic galactooligosaccharides can exert power effects upon bifidobacteria in the gut flora of elderly persons (both in vivo and in vitro). This addendum summarizes research that led up to this study and discusses the possible impact of prebiotics in impacting upon the gut health of aged persons.

  1. Catalytically Increased Prebiotic Peptide Formation: Ditryptophan, Dilysine, and Diserine

    NASA Astrophysics Data System (ADS)

    Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M.

    2005-10-01

    “Mutual” amino acid catalysis of glycine on the formation of ditryptophan, dilysine, and diserine in the prebiotically relevant Salt-Induced Peptide Formation (SIPF) Reaction was investigated varying the starting concentration and chirality of the educt amino acid, and analyzing the increase of yield resulting from this catalytic effect. Our results show the possibility of an amplified diverse pool of peptides being available for chemical evolution of larger peptides and proteins using also these more complicated amino acids for the evolution of more complex functions in future biochemical cycles and thus for the emergence of life. Catalytic effects are especially high in the case of serine, the most basic amino acid of the three, but are also significant for the other two examples investigated in the present work. Besides that, especially for serine, but also in the case of tryptophan, differences in catalytic yield increase according to the chiral form of the amino acid used could be observed.

  2. Stereoselective Syntheses of Pentose Sugars Under Realistic Prebiotic Conditions

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Weber, Arthur L.

    2010-02-01

    Glycolaldehyde and dl-glyceraldehyde reacted in a water-buffered solution under mildly acidic conditions and in the presence of chiral dipeptide catalysts produced pentose sugars whose configuration is affected by the chirality of the catalyst. The chiral effect was found to vary between catalysts and to be largest for di-valine. Lyxose, arabinose, ribose and xylose are formed in different amounts, whose relative proportions do not change significantly with the varying of conditions. With LL-peptide catalysts, ribose was the only pentose sugar to have a significant D-enantiomeric excess ( ee) (≤44%), lyxose displayed an L- ee of ≤66%, arabinose a smaller L- ee of ≤8%, and xylose was about racemic. These data expand our previous findings for tetrose sugars and further substantiate the suggestion that interactions between simple molecules of prebiotic relevance on the early Earth might have included the transfer of chiral asymmetry and advanced molecular evolution.

  3. Prebiotic materials from on and off the early Earth

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2006-01-01

    One of the great puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in compounds made mostly of carbon, the kind of which we are currently composed. Where did these organic molecules come from? In this talk I will review proposed contributions to pre-biotic organic chemistry from both terrestrial processes (i.e., hydrothermal vents, Miller-Urey syntheses) and also from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, and there is a growing consensus among scientists that molecules from space played an important role in making the Earth habitable, and perhaps even provided specific compounds that were directly related to the origin of life.

  4. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    1981-01-01

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  5. An update on probiotics, prebiotics and symbiotics in clinical nutrition.

    PubMed

    Olveira, Gabriel; González-Molero, Inmaculada

    2016-11-01

    The concept of prebiotics, probiotics, and symbiotics and their use in different situations of daily clinical practice related to clinical nutrition is reviewed, as well as their role in the treatment/prevention of diarrhea (acute, induced by antibiotics, secondary to radiotherapy), inflammatory bowel disease (ulcerative colitis and pouchitis), in colonic health (constipation, irritable bowel), in liver disease (steatosis and minimum encephalopathy), and in intensive care, surgical, and liver transplantation. While their effectiveness for preventing antibiotic-induced diarrhea and pouchitis in ulcerative colitis appears to be shown, additional studies are needed to establish recommendations in most clinical settings. The risk of infection associated to use of probiotics is relatively low; however, there are selected groups of patients in whom they should be used with caution (as jejunum infusion).

  6. [Use of probiotics and prebiotics in infant formulas].

    PubMed

    Martínez Suárez, Venancio

    2015-02-07

    Currently there are insufficient data to recommend routine supplementation of infant formula with probiotics and/or prebiotics. However, administration of either food components in isolation or in combination early or follow-on or toddler infant formulas has been associated with clinical benefit beyond the first months of life. Thus, among them, a reduced risk of gastrointestinal infections and their treatment, control of atopy manifestations, decreased antibiotic use and a lower frequency of colic or irritability can be included. Furthermore, different studies have shown no harmful consequences of its consumption. From a review of the most relevant studies, this paper aims to provide a quick overview of the main clinical issues this topic brings up today.

  7. Use of probiotics and prebiotics in infant feeding.

    PubMed

    Bertelsen, Randi J; Jensen, Elizabeth T; Ringel-Kulka, Tamar

    2016-02-01

    Gut colonization by beneficial bacteria in early life is necessary for establishing the gut mucosal barrier, maturation of the immune system and preventing infections with enteric pathogens. Mode of delivery, prematurity, breastfeeding, and use of antibiotics are some of many factors that have been described to influence early life colonization. Dysbiosis, the absence of normal colonization, is associated with many disease conditions. Pre- and probiotics are commonly used as supplementation in infant formula, such as prebiotic oligosaccharides for stimulation of Bifidobacterium growth aiming to mimic the high levels of these commensal bacteria in the gut of breastfed infants. Studies suggest that probiotic supplementation may be beneficial in prevention and management of disease (e.g., reducing the risk of necrotizing enterocolitis in preterm infants and treatment of acute gastroenteritis in children). Although these studies show promising beneficial effects, the long-term risks or health benefits of pre- and probiotic supplementation are not clear.

  8. Using probiotics and prebiotics to improve gut health.

    PubMed

    Tuohy, Kieran M; Probert, Hollie M; Smejkal, Chris W; Gibson, Glann R

    2003-08-01

    Recent molecular-based investigations have confirmed the species diversity and metabolic complexity of the human gut microbiota. It is also increasingly clear that the human gut microbiota plays a crucial role in host health, both as a source of infection and environmental insult and, conversely, in protection against disease and maintenance of gut function. Although little is known about the health impact of the dominant groups of gut bacteria it is generally accepted that bifidobacteria and lactobacilli are important components of what might be termed the beneficial gut microbiota. The microbiota management tools of probiotics, prebiotics and synbiotics have been developed and, indeed, commercialized over the past few decades with the expressed purpose of increasing numbers of bifidobacteria and/or lactobacilli within the gastrointestinal tract.

  9. Metabolic diseases and pro- and prebiotics: Mechanistic insights.

    PubMed

    Nakamura, Yukiko K; Omaye, Stanley T

    2012-06-19

    Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual's behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases.

  10. Metabolic diseases and pro- and prebiotics: Mechanistic insights

    PubMed Central

    2012-01-01

    Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual’s behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases. PMID:22713169

  11. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth

    PubMed Central

    Fiore, Michele; Strazewski, Peter

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635

  12. Probiotics, prebiotics and the gastrointestinal tract in health and disease.

    PubMed

    Vitetta, Luis; Briskey, David; Alford, Hollie; Hall, Sean; Coulson, Samantha

    2014-06-01

    The microbiome located in the human gastrointestinal tract (GIT) comprises the largest community (diverse and dense) of bacteria, and in conjunction with a conducive internal milieu, promotes the development of regulated pro- and anti-inflammatory signals within the GIT that promotes immunological and metabolic tolerance. In addition, host-microbial interactions govern GIT inflammation and provide cues for upholding metabolic regulation in both the host and microbes. Failure to regulate inflammatory responses can increase the risk of developing inflammatory conditions in the GIT. Here, we review clinical studies regarding the efficacy of probiotics/prebiotics and the role they may have in restoring host metabolic homeostasis by rescuing the inflammatory response. The clinical studies reviewed included functional constipation, antibiotic-associated diarrhoea, Clostridium difficile diarrhoea, infectious diarrhoea/gastroenteritis, irritable bowel syndrome, inflammatory bowel diseases and necrotizing enterocolitis. We have demonstrated that there was an overall reduction in risk when probiotics were administered over placebo in the majority of GIT inflammatory conditions. The effect size of a cumulative reduction in relative risk for the GIT conditions/diseases investigated was 0.65 (0.61-0.70) (z = 13.3); p < 0.0001 that is an average reduction in risk of 35 % in favour of probiotics. We also progress a hypothesis that the GIT comprises numerous micro-axes (e.g. mucus secretion, Th1/Th2 balance) that are in operational homeostasis; hence probiotics and prebiotics may have a significant pharmacobiotic regulatory role in maintaining host GIT homeostasis in disease states partially through reactive oxygen species signalling.

  13. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials.

    PubMed

    Kellow, Nicole J; Coughlan, Melinda T; Reid, Christopher M

    2014-04-14

    Complex relationships exist between the gut microflora and their human hosts. Emerging evidence suggests that bacterial dysbiosis within the colon may be involved in the pathogenesis of the metabolic syndrome, type 2 diabetes and CVD. The use of dietary prebiotic supplements to restore an optimal balance of intestinal flora may positively affect host metabolism, representing a potential treatment strategy for individuals with cardiometabolic disorders. The present review aimed to examine the current evidence supporting that dietary prebiotic supplementation in adults has beneficial effects on biochemical parameters associated with the development of metabolic abnormalities including obesity, glucose intolerance, dyslipidaemia, hepatic steatosis and low-grade chronic inflammation. Between January 2000 and September 2013, eight computer databases were searched for randomised controlled trials published in English. Human trials were included if at least one group received a dietary prebiotic intervention. In the present review, twenty-six randomised controlled trials involving 831 participants were included. Evidence indicated that dietary prebiotic supplementation increased self-reported feelings of satiety in healthy adults (standardised mean difference -0.57, 95% CI -1.13, -0.01). Prebiotic supplementation also significantly reduced postprandial glucose (-0.76, 95% CI -1.41, -0.12) and insulin (-0.77, 95% CI -1.50, -0.04) concentrations. The effects of dietary prebiotics on total energy intake, body weight, peptide YY and glucagon-like peptide-1 concentrations, gastric emptying times, insulin sensitivity, lipids, inflammatory markers and immune function were contradictory. Dietary prebiotic consumption was found to be associated with subjective improvements in satiety and reductions in postprandial glucose and insulin concentrations. Additional evidence is required before recommending prebiotic supplements to individuals with metabolic abnormalities. Large

  14. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

  15. Carbohydrates as synthetic tools in organic chemistry.

    PubMed

    Boysen, Mike M K

    2007-01-01

    While amino acids, terpenes and alkaloids have found broad application as tools in stereoselective organic synthesis, carbohydrates have only lately been recognised as versatile starting materials for chiral auxiliaries, reagents, ligands and organocatalysts. The structural diversity of carbohydrates and the high density of functional groups offer a wide variety of opportunities for derivatization and tailoring of synthetic tools to a specific problem.

  16. Determining a carbohydrate profile for Hansenula polymorpha.

    PubMed

    Petersen, G R

    1985-07-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrates profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  17. Wood adhesives containing proteins and carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  18. Determining a carbohydrate profile for Hansenula polymorpha

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.

    1985-01-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrate profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  19. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  20. Industrial applications of marine carbohydrates.

    PubMed

    Sudha, Prasad N; Aisverya, S; Nithya, R; Vijayalakshmi, K

    2014-01-01

    Biomaterials have been used increasingly in various fields, such as drug delivery, imaging, and tissue engineering. The main reason justifying the widespread use of biomaterials relies on its valuable and low-cost source of new drugs. Current research goals are focused on identifying more potent and specific compounds with antitumor, immunomodulatory, antihyperlipidemic, anticoagulant, and antiviral activities. The increasing knowledge of structural analysis and chemical modifications enables the use of these marine carbohydrates in a newer way for the human welfare. This chapter focuses on the recent developments related to industrial and biomedical applications using chitin, chitosan, alginate, agar, and carrageenan derivatives and reports the main advances published over the last 10-15 years.

  1. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice.

    PubMed

    Druart, Céline; Neyrinck, Audrey M; Dewulf, Evelyne M; De Backer, Fabienne C; Possemiers, Sam; Van de Wiele, Tom; Moens, Frédéric; De Vuyst, Luc; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M

    2013-09-28

    In vitro experiments have shown that isolated human gut bacteria are able to metabolise PUFA into conjugated PUFA like conjugated linoleic acids (CLA). The hypothesis of the present paper was that high-fat (HF) diet feeding and supplementation with fermentable carbohydrates that have prebiotic properties modulate the in vivo production of CLA by the mouse gut microbiota. Mice were treated for 4 weeks as follows: control (CT) groups were fed a standard diet; HF groups were fed a HF diet rich in linoleic acid (18 : 2n-6); the third groups were fed with the HF diet supplemented with either inulin-type fructans (HF-ITF) or arabinoxylans (HF-Ax). HF diet feeding increased rumenic acid (cis-9,trans-11-18 : 2 CLA) content both in the caecal and liver tissues compared with the CT groups. ITF supplementation had no major effect compared with the HF diet whereas Ax supplementation increased further rumenic acid (cis-9,trans-11-18 : 2 CLA) in the caecal tissue. These differences between both prebiotics may be linked to the high fat-binding capacity of Ax that provides more substrates for bacterial metabolism and to differential modulation of the gut microbiota (specific increase in Roseburia spp. in HF-Ax v. HF). In conclusion, these experiments supply the proof of concept that the mouse gut microbiota produces CLA in vivo, with consequences on the level of CLA in the caecal and liver tissues. We postulate that the CLA-producing bacteria could be a mediator to consider in the metabolic effects of both HF diet feeding and prebiotic supplementation.

  2. The importance of dietary carbohydrates.

    PubMed

    Sánchez-Castillo, Claudia P; Hudson, Geoffrey J; Englyst, Hans N; Dewey, Peter; James, W Philip T

    2002-12-01

    Forty years ago carbohydrates (CHO) were regarded as a simple energy source whereas they are now recognized as important food components. The human diet contains a wide range of CHO, the vast majority of which are of plant origin. Modern techniques based on chemical classification of dietary CHO replaced the traditional "by difference" measurement. They provide a logical basis for grouping into categories of specific nutritional importance. The physiological effects of dietary CHO are highly dependent on the rate and extent of digestion and absorption in the small intestine and fermentation in the large intestine, interactions which promote human health. Current knowledge of the fate of dietary CHO means that the potentially undesirable properties of many modern foods could be altered by using processing techniques that yield foods with more intact plant cell wall structures. Such products would more closely resemble the foods in the pre-agriculture diet with respect to the rate of digestion and absorption of CHO in the small intestine. The potentially detrimental physiological consequences of eating sugars and starch that are rapidly digested and absorbed in the small intestine suggest that, as fibre, the form, as well as the amount of starch should be considered. Increasing consumer awareness of the relationship between diet and health has led to demands for more widespread nutrition labelling. The entry "carbohydrate" is required in most countries, and the value is usually obtained "by difference" and used in the calculation of energy content. However, the value provides no nutritional information per se. Food labels should provide values that aid consumers in selecting a healthy diet.

  3. Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora

    PubMed Central

    Samanta, A.K.; Jayapal, Natasha; Senani, S.; Kolte, A.P.; Sridhar, Manpal

    2013-01-01

    In recent years, there has been a growing appreciation on the relevance of gastrointestinal microflora in both ruminants and non-ruminants owing to revelation of their role in several physiological functions including digestion, nutrient utilization, pathogen exclusion, gastrointestinal development, immunity system, gut gene expression and quality of animal products. The ban imposed on the use of antibiotics and hormones in feed has compelled animal researchers in finding an alternative which could overcome the issues of conventional feed additives. Though the concept of prebiotic was evolved keeping in mind the gastrointestinal flora of human beings, presently animal researchers are exploring the efficiency of prebiotic (inulin) for modulating the gut ecosystem of both ruminants and non-ruminants. It was revealed that prebiotic inulin is found to exhibit desirable changes in the gut of non-ruminants like poultry, swine, rabbit etc for augmenting gut health and improvement of product quality. Similarly, in ruminants the prebiotic reduces rumen ammonia nitrogen, methane production, increase microbial protein synthesis and live weight gains in calves. Unlike other feed additives, prebiotic exhibits its effect in multipronged ways for overall increase in the performances of the animals. In coming days, it is expected that prebiotics could be the part of diets in both ruminants and non-ruminants for enabling modulation of gut microflora vis a vis animals productivity in ecological ways. PMID:24159277

  4. The use of prebiotics during the first year of life for atopy prevention and treatment

    PubMed Central

    de Moura, Priscilla Negrão; Rosário Filho, Nelson Augusto

    2013-01-01

    The incidence of allergic diseases has increased in recent decades. Therefore, the aim of this systematic review was to assess the efficacy of prebiotics for the prevention and treatment of allergic manifestations in children. We sought to conduct a systematic review of the effectiveness of prebiotics in the prevention and treatment of allergic diseases in children. We searched the MEDLINE, EMBASE, Cochrane Library, LILACS, SciELO, IBECS, Web of Science and Clinical Trials databases as well as Google Scholar and the references of the articles identified. Randomised clinical trials, in which one of the treatments was performed with prebiotics and the control group was treated with placebo, were included in the review. The data selection were performed by two reviewers, and the study quality was evaluated according to the Consolidated Standards of Reporting Trials (CONSORT) items, according to the recommendations for improving the quality of reports of randomised clinical trials. The selected studies showed heterogeneity with regard to the participants, albeit with similar outcomes. The treatment group size ranged from 134 to 259 children, and the studies compared prebiotic to placebo treatment in each group. In general, these articles showed a trend toward less allergic reactions in the groups receiving active therapy with prebiotics. Although there was a trend for reduced allergic symptoms following the administration of prebiotics, there was not sufficient evidence to establish that such treatment is effective for the prevention of allergies in children. PMID:25400918

  5. [Role of prebiotic oligosaccharides in prevention of gastrointestinal infections: a review].

    PubMed

    Dominguez-Vergara, Ana María; Vázquez-Moreno, Luz; Montfort, Gabriela Ramos-Clamont

    2009-12-01

    Gastrointestinal disorders are still a main world public health problem. Scientific progress shows that and inadequate balance in intestinal microbiota (IM) plays a crucial role in its pathogenesis. Evidence indicates that one way to modulate the IM is through the use of prebiotics. These oligosaccharides stimulate the growth of benefic bacteria and increase the resistance to invading pathogens. Research using animals show that the consumption of prebiotics could be implicated in prevention and treatment of diarrhea. Studies in healthy infants also indicate that the consumption of prebiotic mixtures (galactooligosaccharides/fructooligosaccharides, inulin/galactooligosaccharides) decreases the incidence of fever, infections and pathogens. These results represent a great potential for functional foods that contain prebiotics, mainly the infant formulas. However, results of other clinical studies for prebiotics effects on diarrhea are not conclusive. Specially those studies that include patients with an altered IM (like the elderly), patients with chronic intestinal inflammation and with diarrhea associated to antibiotic treatments. There is a need for more biochemical and microbiological studies in humans at different ages and intestinal health conditions, in order to determine when prebiotics may effectively function on infections.

  6. Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora.

    PubMed

    Samanta, A K; Jayapal, Natasha; Senani, S; Kolte, A P; Sridhar, Manpal

    2013-05-07

    In recent years, there has been a growing appreciation on the relevance of gastrointestinal microflora in both ruminants and non-ruminants owing to revelation of their role in several physiological functions including digestion, nutrient utilization, pathogen exclusion, gastrointestinal development, immunity system, gut gene expression and quality of animal products. The ban imposed on the use of antibiotics and hormones in feed has compelled animal researchers in finding an alternative which could overcome the issues of conventional feed additives. Though the concept of prebiotic was evolved keeping in mind the gastrointestinal flora of human beings, presently animal researchers are exploring the efficiency of prebiotic (inulin) for modulating the gut ecosystem of both ruminants and non-ruminants. It was revealed that prebiotic inulin is found to exhibit desirable changes in the gut of non-ruminants like poultry, swine, rabbit etc for augmenting gut health and improvement of product quality. Similarly, in ruminants the prebiotic reduces rumen ammonia nitrogen, methane production, increase microbial protein synthesis and live weight gains in calves. Unlike other feed additives, prebiotic exhibits its effect in multipronged ways for overall increase in the performances of the animals. In coming days, it is expected that prebiotics could be the part of diets in both ruminants and non-ruminants for enabling modulation of gut microflora vis a vis animals productivity in ecological ways.

  7. Monomer and linkage type of galacto-oligosaccharides affect their resistance to ileal digestion and prebiotic properties in rats.

    PubMed

    Hernández-Hernández, Oswaldo; Marín-Manzano, M Carmen; Rubio, Luis A; Moreno, F Javier; Sanz, M Luz; Clemente, Alfonso

    2012-07-01

    A detailed study was performed to compare the in vivo ileal digestibility and modulatory effects in fecal microbiota of novel galacto-oligosaccharides (GOS) derived from lactulose [GOS-Lu; degree of polymerization (DP) ≥2, 14.0% trisaccharides] and commercial GOS derived from lactose (GOS-La; DP ≥3, 35.1% trisaccharides) in growing rats (5 wk old). Rats were fed either a control diet or diets containing 1% (wt:wt) of GOS-Lu or GOS-La for 14 d. Quantitative analysis of carbohydrates from dietary and ileal samples demonstrated that the trisaccharide fraction of GOS-Lu was significantly more resistant to gut digestion than that from GOS-La, as indicated by their ileal digestibility rates of 12.5 ± 2.6% and 52.9 ± 2.7%, respectively, whereas the disaccharide fraction of GOS-Lu was fully resistant to the extreme environment of the upper digestive tract. The low ileal digestibility of GOS-Lu was due to the great resistance of galactosyl-fructoses to mammalian digestive enzymes, highlighting the key role played by the monomer type and linkage involved in the oligosaccharide chain. The partial digestion of GOS-La trisaccharides showed that glycosidic linkages (1→6) and (1→2) between galactose and glucose monomers were significantly more resistant to in vivo gastrointestinal digestion than the linkage (1→4) between galactose units. The absence of GOS-La and GOS-Lu digestion-resistant oligosaccharides in fecal samples indicated that they were readily fermented within the large intestine, enabling both types of GOS to have a potential prebiotic function. Indeed, compared with controls, the GOS-Lu group had significantly more bifidobacteria in fecal samples after 14 d of treatment. The number of Eubacterium rectale also was greater in the GOS-Lu and GOS-La groups than in controls. These novel data support a direct relationship between patterns of resistance to digestion and prebiotic properties of GOS.

  8. Phenol-Sulfuric Acid Method for Total Carbohydrates

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  9. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  10. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings.

    PubMed

    Ooi, Lay-Gaik; Liong, Min-Tze

    2010-06-17

    Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised.

  11. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  12. Safety of low-carbohydrate diets.

    PubMed

    Crowe, T C

    2005-08-01

    Low-carbohydrate diets have re-emerged into the public spotlight and are enjoying a high degree of popularity as people search for a solution to the population's ever-expanding waistline. The current evidence though indicates that low-carbohydrate diets present no significant advantage over more traditional energy-restricted diets on long-term weight loss and maintenance. Furthermore, a higher rate of adverse side-effects can be attributed to low-carbohydrate dieting approaches. Short-term efficacy of low-carbohydrate diets has been demonstrated for some lipid parameters of cardiovascular risk and measures of glucose control and insulin sensitivity, but no studies have ascertained if these effects represent a change in primary outcome measures. Low-carbohydrate diets are likely effective and not harmful in the short term and may have therapeutic benefits for weight-related chronic diseases although weight loss on such a program should be undertaken under medical supervision. While new commercial incarnations of the low-carbohydrate diet are now addressing overall dietary adequacy by encouraging plenty of high-fibre vegetables, fruit, low-glycaemic-index carbohydrates and healthier fat sources, this is not the message that reaches the entire public nor is it the type of diet adopted by many people outside of the world of a well-designed clinical trial. Health effects of long-term ad hoc restriction of inherently beneficial food groups without a concomitant reduction in body weight remains unanswered.

  13. Utilization of carbohydrates by radiation processing

    NASA Astrophysics Data System (ADS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-03-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  14. Carbohydrate functionalized carbon nanotubes and their applications.

    PubMed

    Gorityala, Bala Kishan; Ma, Jimei; Wang, Xin; Chen, Peng; Liu, Xue-Wei

    2010-08-01

    Carbon nanotubes (CNTs) have attracted tremendous attention in biomedical applications due to their molecular size and unique properties. This tutorial review summarizes the strategies to functionalize CNTs with bioactive carbohydrates, which improve their solubility, biocompatibility and biofunctionalities while preserving their desired properties. In addition, studies on the usage of carbohydrate functionalized CNTs to detect bacteria, to bind to specific lectins, to deliver glycomimetic drug molecules into cells and to probe cellular activities as biosensors are reviewed. Improvement in biocompatibility and introduction of bio-functionalities by integration of carbohydrate with CNTs are paving the way to glyconanotechnology and may provide new tools for glycobiological studies.

  15. ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health.

    PubMed

    Latulippe, Marie E; Meheust, Agnès; Augustin, Livia; Benton, David; Berčík, Přemysl; Birkett, Anne; Eldridge, Alison L; Faintuch, Joel; Hoffmann, Christian; Jones, Julie Miller; Kendall, Cyril; Lajolo, Franco; Perdigon, Gabriela; Prieto, Pedro Antonio; Rastall, Robert A; Sievenpiper, John L; Slavin, Joanne; de Menezes, Elizabete Wenzel

    2013-01-01

    To stimulate discussion around the topic of 'carbohydrates' and health, the Brazilian branch of the International Life Sciences Institute held the 11th International Functional Foods Workshop (1-2 December 2011) in which consolidated knowledge and recent scientific advances specific to the relationship between carbohydrates and health were presented. As part of this meeting, several key points related to dietary fiber, glycemic response, fructose, and impacts on satiety, cognition, mood, and gut microbiota were realized: 1) there is a need for global harmonization of a science-based fiber definition; 2) low-glycemic index foods can be used to modulate the postprandial glycemic response and may affect diabetes and cardiovascular outcomes; 3) carbohydrate type may influence satiety and satiation; glycemic load and glycemic index show links to memory, mood, and concentration; 4) validated biomarkers are needed to demonstrate the known prebiotic effect of carbohydrates; 5) negative effects of fructose are not evident when human data are systematically reviewed; 6) new research indicates that diet strongly influences the microbiome; and 7) there is mounting evidence that the intestinal microbiota has the ability to impact the gut-brain axis. Overall, there is much promise for development of functional foods that impact the microbiome and other factors relevant to health, including glycemic response (glycemic index/glycemic load), satiety, mood, cognition, and weight management.

  16. Influence of the UV Environment on the Synthesis of Prebiotic Molecules.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2016-01-01

    Ultraviolet radiation is common to most planetary environments and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g., mercury lamps) often used in laboratory studies of prebiotic chemistry and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al. (2009) and the sugar synthesis pathway of Ritson and Sutherland (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies; we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions.

  17. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment.

    PubMed

    Solis de los Santos, F; Farnell, M B; Téllez, G; Balog, J M; Anthony, N B; Torres-Rodriguez, A; Higgins, S; Hargis, B M; Donoghue, A M

    2005-07-01

    Modern broilers have been genetically selected for an increased growth rate and improved feed conversion, but they are also more susceptible to ascites. Ascites occurs when there is an imbalance between available oxygen and the oxygen demand of the broiler. We hypothesized that promoting neonatal gut development with a prebiotic, such as Aspergillus meal (Prebiotic-AM), would enhance gut efficiency, decrease the oxygen demand of the gut, and reduce ascites incidence. In this study, we compared the effect of Prebiotic-AM on ascites incidence and gut development in commercial broilers reared at a local altitude (390 m above sea level) and a simulated high altitude (2,900 m above sea level). Half of the birds received a National Research Council recommended corn-soybean ration, and the other half received the same ration supplemented with 0.2% Prebiotic-AM. These 2 groups were further divided into a local altitude group and a simulated high altitude group for a total of 4 treatment combinations. Tissues were collected on d 1, 3, 7, 14, and 21 from the duodenum and lower ileum and placed in 10% buffered formalin for morphometric analysis. At a simulated high altitude, ascites incidence was 68% for birds fed the Prebiotic-AM supplement compared with 92% ascites incidence in birds given the control feed. The simulated high altitude decreased (P < 0.05) gut development, but prebiotic-treated birds reared in hypoxic conditions had similar gut development to control birds reared at local altitude. These data suggest that a feed ration supplemented with Prebiotic-AM may reduce the effect of hypoxia on broiler gut development and ascites incidence.

  18. A model for the origin of life through rearrangements among prebiotic phosphodiester polymers.

    PubMed

    Yakhnin, Alexander V

    2013-02-01

    This model proposes that the origin of life on Earth occurred as a result of a process of alteration of the chemical composition of prebiotic macromolecules. The stability of organic compounds assembled into polymers generally exceeded the stability of the same compounds as free monomers. This difference in stability stimulated accumulation of prebiotic macromolecules. The prebiotic circulation of matter included constant formation and decomposition of polymers. Spontaneous chemical reactions between macromolecules with phosphodiester backbones resulted in a non-Darwinian selection for chemical stability, while formation of strong structures provided an advantage in the struggle for stability. Intermolecular structures between nucleotide-containing polymers were further stabilized by occasional acquisition of complementary nucleotides. Less stable macromolecules provided the source of nucleotides. This process resulted first in the enrichment of nucleotide content in prebiotic polymers, and subsequently in the accumulation of complementary oligonucleotides. Finally, the role of complementary copy molecules changed from the stabilization of the original templates to the de novo production of template-like molecules. I associate this stage with the origin of life in the form of cell-free molecular colonies. Original life acquired ready-to-use substrates from constantly forming prebiotic polymers. Metabolism started to develop when life began to consume more substrates than the prebiotic cycling produced. The developing utilization of non-polymeric compounds stimulated the formation of the first membrane-enveloped cells that held small soluble molecules. Cells "digested" the nucleotide-containing prebiotic macromolecules to nucleotide monomers and switched the mode of replication to the polymerization of nucleotide triphosphates.

  19. New Insights into Prebiotic Chemistry from Old Archived Miller Extracts

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael P.; Aubrey, Andrew D.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Following the discovery of an archived set of samples from Stanley Miller's early experiments, analyses were undertaken to better understand the diversity of compounds produced from electric discharges acting on reducing gas mixtures. The paper chromatography methods that Miller used in the 1950s were only capable of detecting a few amino acids and were unable to provide substantial quantitative data relative to today's techniques. Current analytical techniques are much more sensitive and selective, and are capable of precisely quantifying a much larger range of amino acids and their enantiomeric abundances. In one study, preserved dried samples produced by Miller using a lesser-known volcanic apparatus which differed from Miller's classic apparatus in that it utilized an aspirator that injected steam into the electric discharge chamber, simulating a volcanic eruption. The volcanic apparatus produced a wider variety of amino acids than the classic configuration. Prebiotic compounds synthesized in these environments may have locally accumulated where they could have undergone further processing. An additional preserved set of samples from an experiment conducted in 1958 were also found in Miller's archived collection. These samples which had been generated using a mixture of CH4, NH3, H2S and CO2 were collected, catalogued, and stored by Miller, but for unknown reasons were never studied. In our analyses a total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of amino butyric acid, are the highest ever found in a spark discharge experiment

  20. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome

    PubMed Central

    2011-01-01

    The gut microbiota is increasingly considered as a symbiotic partner for the maintenance of health. The homeostasis of the gut microbiota is dependent on host characteristics (age, gender, genetic background…), environmental conditions (stress, drugs, gastrointestinal surgery, infectious and toxic agents…). Moreover, it is dependent on the day-to-day dietary changes. Experimental data in animals, but also observational studies in obese patients, suggest that the composition of the gut microbiota is a factor characterizing obese versus lean individuals, diabetic versus non diabetic patients, or patients presenting hepatic diseases such as non alcoholic steatohepatitis. Interestingly, the changes in the gut microbes can be reversed by dieting and related weight loss. The qualitative and quantitative changes in the intake of specific food components (fatty acids, carbohydrates, micronutrients, prebiotics, probiotics), have not only consequences on the gut microbiota composition, but may modulate the expression of genes in host tissues such as the liver, adipose tissue, intestine, muscle. This in turn may drive or lessen the development of fat mass and metabolic disturbances associated with the gut barrier function and the systemic immunity. The relevance of the prebiotic or probiotic approaches in the management of obesity in humans is supported by few intervention studies in humans up to now, but the experimental data obtained with those compounds help to elucidate novel potential molecular targets relating diet with gut microbes. The metagenomic and integrative metabolomic approaches could help elucidate which bacteria, among the trillions in human gut, or more specifically which activities/genes, could participate to the control of host energy metabolism, and could be relevant for future therapeutic developments. PMID:21995448

  1. Workshop to establish databases of carbohydrate spectra

    SciTech Connect

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  2. Indium triflate catalyzed peracetylation of carbohydrates.

    PubMed

    Bizier, Nicholas P; Atkins, Shannon R; Helland, Luke C; Colvin, Shane F; Twitchell, Joseph R; Cloninger, Mary J

    2008-07-21

    Peracetylation is a very common protection strategy that is widely implemented in carbohydrate synthesis. Here, a method for the peracetylation of carbohydrates using catalytic In(OTf)(3) in neat acetic anhydride is reported. In(OTf)(3) has low toxicity and is mild and water tolerant, and the reactions are high yielding and efficient. Details regarding the scope and mechanism of the reaction are briefly discussed.

  3. Partition coefficients of organic contaminants with carbohydrates.

    PubMed

    Hung, Hsu-Wen; Lin, Tsair-Fuh; Chiou, Cary T

    2010-07-15

    In view of the current lack of reliable partition coefficients for organic compounds with carbohydrates (K(ch)), carefully measured values with cellulose and starch, the two major forms of carbohydrates, are provided for a wide range of compounds: short-chain chlorinated hydrocarbons, halogenated benzenes, alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and organochlorine pesticides. To ensure the accuracy of the K(ch) data, solute concentrations in both water and carbohydrate phases are measured by direct solvent extraction of the samples. For a given compound, the observed partition coefficient with cellulose (K(cl)) is virtually the same as that with starch (K(st)). This finding expedites the evaluation of organic contamination with different forms of carbohydrates. The presently determined K(ch) values of 13 PAHs are substantially lower (by 3-66 times) than the literature data; the latter are suspect as they were obtained with (i) presumably impure carbohydrate samples or (ii) indirectly measured equilibrium solute concentrations in carbohydrate and water phases. Although the K(ch) values are generally considerably lower than the respective K(ow) (octanol-water) or K(lipid) (lipid-water), accurate K(ch) data are duly required to accurately estimate the contamination of carbohydrates by organic compounds because of the abundance of carbohydrates over lipids in crops and plants. To overcome the current lack of reliable K(ch) data for organic compounds, a close correlation of log K(ch) with log K(ow) has been established for predicting the unavailable K(ch) data for low-polarity compounds.

  4. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects.

    PubMed

    Fadda, Elisa; Woods, Robert J

    2010-08-01

    The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate-protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery.

  5. The UV Surface Environment on Young Planets: Implications for Prebiotic Chemistry & Life on Other Worlds

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Simons Collaboration on the Origin of Life, Harvard Origins of Life Initiative

    2017-01-01

    Understanding the origin of life (abiogenesis) on Earth is key to understanding how it might start elsewhere. Recent laboratory studies suggest UV light may have played a critical role in the synthesis of molecules relevant to abiogenesis (prebiotic chemistry), such as RNA. I show that UV light interacts with prebiotic chemistry in ways that may be sensitive to the spectral shape and overall amplitude of irradiation. I use radiative transfer models to constrain the UV environment on early Earth (3.9 Ga). I find that the surface UV is insensitive to much of the considerable uncertainty in the atmospheric state, enabling me to constrain the UV environment for prebiotic chemistry on early Earth. Some authors have suggested Mars as a venue for prebiotic chemistry. Therefore, I explore plausible UV spectral fluences on Mars at 3.9 Ga. I find that the early Martian UV environment is comparable to Earth’s under conventional assumptions about the atmosphere. However, if the atmosphere was dusty or SO2 levels were high, UV fluence would have been strongly suppressed. Intriguingly, despite overall attenuation of UV fluence, SO2 preferentially attenuates destructive FUV radiation over prebiotically-useful NUV radiation, meaning high-SO2 epochs may have been more clement for the origin of life. Better measurements of the spectral dependence of prebiotic photoprocesses are required to constrain this hypothesis. Finally, I calculate the UV fluence on planets orbiting M-dwarfs. I find that UV irradiation on such planets is low compared to Earth. Laboratory studies are required to understand whether prebiotic photoprocesses that worked on Earth can function on low-UV M-dwarf planets. My work 1) provides initial conditions for laboratory studies of prebiotic chemistry, 2) constrains the inhabitability of Mars and planets orbiting M-dwarfs, and 3) demonstrates the need for laboratory studies to characterize the impact of variations in irradiating intensity and spectral shape on

  6. Effects of probiotics and prebiotics on blood lipids.

    PubMed

    Taylor, G R; Williams, C M

    1998-10-01

    Since the early work of Mann and Spoerry, probiotics in the form of fermented milk products have been reputed to have cholesterol-lowering properties in humans. However, studies conducted since the early 1970s have produced equivocal findings, with interpretation of the outcomes complicated by use of excessive quantities of product, inadequate sample sizes, failure to control nutrient intake and energy expenditure and variations in baseline blood lipids. More recent studies are of better quality, but fail to provide convincing evidence that 'live' fermented milk products have cholesterol-lowering efficacy in man. Future studies using probiotics should ensure adequate sample sizes sufficient to detect relatively small changes in blood cholesterol and should be conducted over longer periods of time. The recent introduction of the concept of prebiotics has directed attention towards the possibility that alterations in gut microflora induced by the fermentation of non-digestible components of the diet may also have the potential to influence systemic lipid metabolism. This possibility has been strengthened by the observation that in animals, dietary oligofructosaccharides cause suppression of hepatic triglyceride and VLDL synthesis, resulting in marked reductions in triglyceride, and to a lesser extent cholesterol, levels. Evidence for similar effects in humans is sparse and more studies are needed, particularly with respect to effects on postprandial triglyceride concentrations.

  7. Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites

    PubMed Central

    Pizzarello, Sandra

    2016-01-01

    Carbonaceous Chondrite (CC) meteorites are fragments of asteroids, solar planetesimals that never became large enough to separate matter by their density, like terrestrial planets. CC contains various amounts of organic carbon and carry a record of chemical evolution as it came to be in the Solar System, at the time the Earth was formed and before the origins of life. We review this record as it pertains to the chiral asymmetry determined for several organic compounds in CC, which reaches a broad molecular distribution and enantiomeric excesses of up to 50%–60%. Because homochirality is an indispensable attribute of extant polymers and these meteoritic enantiomeric excesses are still, to date, the only case of chiral asymmetry in organic molecules measured outside the biosphere, the possibility of an exogenous delivery of primed prebiotic compounds to early Earth from meteorites is often proposed. Whether this exogenous delivery held a chiral advantage in molecular evolution remains an open question, as many others regarding the origins of life are. PMID:27089368

  8. Package models and the information crisis of prebiotic evolution.

    PubMed

    Silvestre, Daniel A M M; Fontanari, José F

    2008-05-21

    The coexistence between different types of templates has been the choice solution to the information crisis of prebiotic evolution, triggered by the finding that a single RNA-like template cannot carry enough information to code for any useful replicase. In principle, confining d distinct templates of length L in a package or protocell, whose survival depends on the coexistence of the templates it holds in, could resolve this crisis provided that d is made sufficiently large. Here we review the prototypical package model of Niesert et al. [1981. Origin of life between Scylla and Charybdis. J. Mol. Evol. 17, 348-353] which guarantees the greatest possible region of viability of the protocell population, and show that this model, and hence the entire package approach, does not resolve the information crisis. In particular, we show that the total information stored in a viable protocell (Ld) tends to a constant value that depends only on the spontaneous error rate per nucleotide of the template replication mechanism. As a result, an increase of d must be followed by a decrease of L, so that the net information gain is null.

  9. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  10. Inulin Potential for Enzymatic Obtaining of Prebiotic Oligosaccharides.

    PubMed

    Flores, Adriana C; Morlett, Jesús A; Rodríguez, Raúl

    2016-08-17

    Oligosaccharides have been marketed since the 80s as low-calorie agents and recently have gained interest in the pharmaceutical and food industry as functional sweeteners and prebiotic enriching population of Bifidobacteria. Currently, they have an approximated value of $200 per kg and recently, inulin has been proposed as a feedstock for production of oligosaccharides through selective hydrolysis by action of endoinulinase. High optimum temperature (60°C) and thermostability are two important criteria that determine suitability of this enzyme for industrial applications as well as enzyme cost, a major limiting factor. Significant reduction in cost can be achieved by employing low-value and abundant inulin-rich plants as Jerusalem artichoke, dahlia, yacon, garlic, and onion, among others. In general, the early harvested tubers of these plants contain a greater amount of highly polymerized sugar fractions, which offer more industrial value than late-harvested tubers or those after storage. Also, development of recombinant microorganisms could be useful to reduce the cost of enzyme technology for large-scale production of oligosaccharides. In the case of fungal inulinases, several studies of cloning and modification have been made to achieve greater efficiency. The present paper reviews inulin from vegetable sources as feedstock for oligosaccharides production through the action of inulinases, the impact of polymerization degree of inulin and its availability, and some strategies to increase oligosaccharide production.

  11. Prebiotic Alternatives to Proteins: Structure and Function of Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Mamajanov, Irena; Callahan, Michael P.; Dworkin, Jason P.; Cody, George D.

    2015-06-01

    Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.

  12. Historic perspective: prebiotics, probiotics, and other alternatives to antibiotics.

    PubMed

    Hume, M E

    2011-11-01

    Applications of antimicrobials in food production and human health have found favor throughout human history. Antibiotic applications in agricultural and human medical arenas have resulted in tremendous increases in food animal production and historically unprecedented gains in human health protection. Successes attributed to widespread antibiotic use have been accompanied by the inadvertent emergence of antibiotic-resistant bacteria. A major problem associated with this emerging resistance is the crossover use of some antibiotics in agricultural settings as well as in the prevention and treatment of human disease. This outcome led to calls to restrict the use of human health-related antibiotics in food animal production. Calls for restricted antibiotic use have heightened existing searches for alternatives to antibiotics that give similar or enhanced production qualities as highly reliable as the antibiotics currently provided to food animals. Agricultural and scientific advances, mainly within the last 100 yr, have given us insights into sources, structures, and actions of materials that have found widespread application in our modern world. The purpose of this presentation is to provide a historic perspective on the search for what are generally known as antibiotics and alternative antimicrobials, probiotics, prebiotics, bacteriophages, bacteriocins, and phytotherapeutics.

  13. Intrinsic selectivity in some prebiotic reactions of urazole with sugars

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Colloton, Patricia A.

    2004-02-01

    Urazole (1,2,4-triazolidine-3,5-dione) (1), 4-methylurazole (12), and its carbon analog, 4,4-dimethylpyrazolidine-3,5-dione (18), react with 2-deoxy-D-ribose (2-deoxy-D-erythro-pentose; 6) in an aqueous solution at room temperature in a regioselective manner (a single substitution on a hydrazidic nitrogen, no reaction on the imide nitrogen) to give a mixture of four nucleosides. These are α and β pyranosides (p) and α and β furanosides (f). The α p forms in a stereoselective manner. A crystalline precipitate is formed in each of the above reactions, which is an exclusive enantiospecific product, 1R, 2R α p. 1 with 2-deoxy-L-ribose (10) gives a precipitate with the exclusive 1S, 2S α p stereochemistry. With 2-deoxy-D-glucose (2-deoxy-D-arabino-hexose; 7) the reaction with 1 is stereospecific, since only one isomer, β p, forms in the solution. Causes of enhanced reactivity of 1 with sugars were also studied. It was found that cyclic hydrazide analogs of 1, such as 12 and 18, are reactive, but open-chain analogs, 1,2,-diacetylhydrazine (21) and 1,2-dicarbethoxyhydrazine (22), are not. Although this reactivity assessment was done qualitatively and under restrictive reaction conditions, it still may be valuable for understanding α -effect of hydrazide nucleophiles. The prebiotic significance of our results is discussed.

  14. An efficient prebiotic synthesis of cytosine and uracil

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    In contrast to the purines, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyanoacetylene and cyanate; the former precursor is produced from a spark discharge in a CH4/N2 mixture and is an abundant interstellar molecule. But this reaction requires relatively high concentrations of cyanate (> 0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine. Here we show that in concentrated urea solution--such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth--cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world.

  15. Prebiotic materials from on and off the early Earth

    PubMed Central

    Bernstein, Max

    2006-01-01

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller–Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System. PMID:17008210

  16. [Use of probiotics and prebiotics in primary care].

    PubMed

    Álvarez Calatayud, Guillermo; Azpiroz, Fernando

    2015-02-07

    Probiotics are used in a great number of both paediatric and adult diseases, mainly in gastrointestinal disorders, like diarrhoea. Nevertheless, their beneficial effect on immune alterations, such as atopic dermatitis and, more recently, in women related diseases such as vulvovaginitis and mastitis have also been observed. However, the use of probiotics is not completely implemented into the routine clinical practice for primary care physicians. There is still a great controversy with scarce scientific evidence, due to the diversity in the designs thereof which justifies the variability in the efficacy results. This outcome leads to difficulties in developing definitive treatment guidelines although there are exceptions, for example, WGO. The aim of this workshop, held at the VI Congress of the Spanish Society of Probiotics and Prebiotics is the training of primary care physicians, both paediatricians and general practitioners in the clinical applications of these nutritional preparations in different diseases: acute diarrhoea; antibiotic associated diarrhoea, necrotizing enterocolitis, employment in infant milk formulas, infant colic, irritable bowel syndrome and inflammatory bowel disease, as well as vulvovaginitis and mastitis.

  17. Prebiotic materials from on and off the early Earth.

    PubMed

    Bernstein, Max

    2006-10-29

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.

  18. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits.

    PubMed

    Jain, Ira; Kumar, Vikash; Satyanarayana, T

    2015-03-01

    Oligosaccharides and dietary fibres are non-digestible food ingredients that preferentially stimulate the growth of prebiotic Bifidobacterium and other lactic acid bacteria in the gastro-intestinal tract. Xylooligosaccharides (XOS) provide a plethora of health benefits and can be incorporated into several functional foods. In the recent times, there has been an over emphasis on the microbial conversion of agroresidues into various value added products. Xylan, the major hemicellulosic component of lignocellulosic materials (LCMs), represents an important structural component of plant biomass in agricultural residues and could be a potent bioresource for XOS. On an industrial scale, XOS can be produced by chemical, enzymatic or chemo-enzymatic hydrolysis of LCMs. Chemical methods generate XOS with a broad degree of polymerization (DP), while enzymatic processes will be beneficial for the manufacture of food grade and pharmaceutically important XOS. Xylooligomers exert several health benefits, and therefore, have been considered to provide relief from several ailments. This review provides a brief on production, purification and structural characterization of XOS and their health benefits.

  19. Sugar-driven prebiotic synthesis of ammonia from nitrite.

    PubMed

    Weber, Arthur L

    2010-06-01

    Reaction of 3-5 carbon sugars, glycolaldehyde, and alpha-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible alpha-hydroxycarbonyl group or an alpha-dicarbonyl group. Small amounts of aqueous Fe(+3) catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia's reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species.

  20. Cool Stars May Have Different Prebiotic Chemical Mix

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Spitzer Space Telescope detected a prebiotic, or potentially life-forming, molecule called hydrogen cyanide (HCN) in the planet-forming disks around yellow stars like our sun, but not in the disks around cooler, reddish stars.

    The observations are plotted in this graph, called a spectrum, in which light from the gas in the disks around the stars has been split up into its basic components, or wavelengths. Data from stars like our sun are yellow, and data from cool stars are orange. Light wavelengths are shown on the X-axis, and the relative brightness of disk emission is shown on the Y-axis. The signature of a baseline molecule, called acetylene (C2H2), was seen for both types of stars, but hydrogen cyanide was seen only around stars like our sun.

    Hydrogen cyanide is an organic, nitrogen-containing molecule. Five hydrogen cyanide molecules can link up to form adenine, one of the four chemical bases of DNA.

  1. Functional food concept and its application to prebiotics.

    PubMed

    Roberfroid, M

    2002-09-01

    A food can be regarded as functional if it is satisfactorily demonstrated to affect beneficially one or more target functions in the body, beyond adequate nutritional effects, in a way which is relevant to either the state of wellbeing and health or the reduction of the risk of a disease. A food can be made functional by increasing the concentration, adding or improving the bioavailability of a particular component. Functional food science will serve to establish claims based either on enhanced function or disease risk reduction. Inulin and oligofructose are functional food ingredients present in miscellaneous edible plants. They are non-digestible oligosaccharides classified as dietary fibres. The target for their functional effects is the colonic microflora that ferment them and for which they serve as selective "fertilizers"; the gastrointestinal physiology; the immune functions; the bioavailability of minerals; the metabolism of lipids; and colonic carcinogenesis. The scientific data available on the nutritional effects of inulin and oligofructose provide strong evidence for a prebiotic effect (i.e., selective stimulation of growth of bifidobacteria in colonic microbiota), improvement of bowel habit (both stool frequency and stool weight) and improved calcium bioavailability.

  2. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth.

  3. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    PubMed Central

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-01-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45–90 d, starting with an initial formamide weight fraction of 10−3 wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  4. Isotopic characterisation of prebiotic synthesis of organic material

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Chang, S.

    1986-01-01

    Many primitive meteorites contain an insoluble organic material, much like terrestrial kerogen, whose mode of origin is currently unknown. When sujbected to stepwise decomposition, this material, unlike its terrestrial counterpart, reveals characteristic release patterns for the stable isotopes of carbon, hydrogen and nitrogen as a function of fractional release of each element. The purpose of this study is to try to match those release patterns using organic matter synthesised in the laboratory under controlled conditions. If successful, such a study would shed light on the origin of kerogen-like organic matter in the early solar system and, by extension, on prebiotic organic synthesis in general. The range of possible syntheses, starting materials and reaction conditions to be investigated is considerable. Samples analysed to date include: a heavy oil produced by Fischer-Tropsch-type catalysis of CO + H2; a solid residue generated by a plasma discharge in CO + H2 + N2; a solid deposited on the electrodes of a Miller-Urey synthesis operating on CH4 + H2O + N2; and a solid residue formed by polymerization of light hydrocarbons procured by a Miller-Urey discharge acting on CH4. Significant structure is observed in the release patterns for the carbon and hydrogen isotopes from the synthetic samples, though there is little evidence for isotopic fractionation during the analysis itself.

  5. Carbohydrate Nutrition and Team Sport Performance.

    PubMed

    Williams, Clyde; Rollo, Ian

    2015-11-01

    The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores.

  6. Techniques for visualization of carbohydrate molecules.

    PubMed

    Kuttel, Michelle; Gain, James; Burger, Anton; Eborn, Ian

    2006-11-01

    Standard molecular visualizations, such as the classic ball-and-stick model, are not suitable for large, complex molecules because the overall molecular structure is obscured by the atomic detail. For proteins, the more abstract ribbon and cartoon representations are instead used to reveal large scale molecular conformation and connectivity. However, there is currently no accepted convention for simplifying oligo- and polysaccharide structures. We introduce two novel visualization algorithms for carbohydrates, incorporated into a visualization package, CarboHydra. Both algorithms highlight the sugar rings and backbone conformation of the carbohydrate chain, ignoring ring substituents. The first algorithm, termed PaperChain, emphasizes the type and conformation of the carbohydrate rings. The second, Twister, emphasizes the relative orientation of the rings. We further include two rendering enhancements to augment these visualizations: silhouettes edges and a translucent overlay of the ball-and-stick atomic representation. To demonstrate their utility, the algorithms and visualization enhancements are here applied to a variety of carbohydrate molecules. User evaluations indicate that they present a more useful view of carbohydrate structure than the standard ball-and-stick representation. The algorithms were found to be complementary, with PaperChain particularly effective for smaller carbohydrates and Twister useful at larger scales for highlighting the backbone twist of polysaccharides.

  7. Is there a Place for Prebiotics in the Management of Neonatal Inguinal Hernia? A Preliminary Study

    PubMed Central

    Dhaou, Mahdi Ben; Zouari, Mohamed; Ammar, Saloua; Bouraoui, Amira; Gassara, Imene; Feki, Ines; Zitouni, , Hayet; Jallouli, Mohamed; Masmoudi, Jawaher; Gargouri, Abdellatif; Mhiri, Riadh

    2017-01-01

    The objective of this study was to assess the place of prebiotics in the management of neonatal inguinal hernia. Boys with a diagnosis of unilateral non-complicated inguinal hernia, aged less than 40 days, were prospectively followed from January 2012 to December 2014. Clinical and psychiatric data and outcomes were collected before and after prebiotics (Primalac AC) administration. Ninety-eight patients were included. There were 75 inguinal hernias and 23 inguino-scrotal hernias. Before prebiotics administration 72.2% of infants had abdominal distention and 98% had colic. After prebiotics, abdominal distention and colic regressed in 85.2% and 73.2% of patients, respectively. Hernias disappeared clinically in 66.3% of cases. The factors associated with the disappearance of hernias were the type of the hernia (p<0.001), colic (p<0.001), and abdominal distention (p<0.001). Prebiotics would be a new adjunct in the management of neonatal inguinal hernia. They decrease colic and abdominal distention, which seems helpful to prevent strangulation and probably get spontaneous resolution of small hernias. PMID:28083493

  8. Is there a Place for Prebiotics in the Management of Neonatal Inguinal Hernia? A Preliminary Study.

    PubMed

    Dhaou, Mahdi Ben; Zouari, Mohamed; Ammar, Saloua; Bouraoui, Amira; Gassara, Imene; Feki, Ines; Zitouni, Hayet; Jallouli, Mohamed; Masmoudi, Jawaher; Gargouri, Abdellatif; Mhiri, Riadh

    2017-01-01

    The objective of this study was to assess the place of prebiotics in the management of neonatal inguinal hernia. Boys with a diagnosis of unilateral non-complicated inguinal hernia, aged less than 40 days, were prospectively followed from January 2012 to December 2014. Clinical and psychiatric data and outcomes were collected before and after prebiotics (Primalac AC) administration. Ninety-eight patients were included. There were 75 inguinal hernias and 23 inguino-scrotal hernias. Before prebiotics administration 72.2% of infants had abdominal distention and 98% had colic. After prebiotics, abdominal distention and colic regressed in 85.2% and 73.2% of patients, respectively. Hernias disappeared clinically in 66.3% of cases. The factors associated with the disappearance of hernias were the type of the hernia (p<0.001), colic (p<0.001), and abdominal distention (p<0.001). Prebiotics would be a new adjunct in the management of neonatal inguinal hernia. They decrease colic and abdominal distention, which seems helpful to prevent strangulation and probably get spontaneous resolution of small hernias.

  9. TECHNOLOGICAL INFORMATION REGARDING PREBIOTICS AND PROBIOTICS NUTRITION VERSUS THE PATENT REGISTERS: WHAT IS NEW?

    PubMed Central

    dos REIS, José Maciel Caldas; PINHEIRO, Maurício Fortuna; OTI, André Takashi; FEITOSA-JUNIOR, Denilson José Silva; PANTOJA, Mauro de Souza; BARROS, Rui Sérgio Monteiro

    2016-01-01

    ABSTRACT Introduction: Food is a key factor both in prevention and in promoting human health. Among the functional food are highlighted probiotics and prebiotics. Patent databases are the main source of technological information about innovation worldwide, providing extensive library for research sector. Objective: Perform mapping in the main patent databases about pre and probiotics, seeking relevant information regarding the use of biotechnology, nanotechnology and genetic engineering in the production of these foods. Method: Electronic consultation was conducted (online) in the main public databases of patents in Brazil (INPI), United States (USPTO) and the European Patent Bank (EPO). The research involved the period from January 2014 to July 2015, being used in the title fields and summary of patents, the following descriptors in INPI "prebiotic", "prebiotic" "probiotics", "probiotic" and the USPTO and EPO: "prebiotic", "prebiotics", "probiotic", "probiotics". Results: This search haven't found any deposit at the brazilian patents website (INPI) in this period; US Patent &Trademark Office had registered 60 titles in patents and the European Patent Office (EPO) showed 10 documents on the issue. Conclusion: Information technology offered by genetic engineering, biotechnology and nanotechnology deposited in the form of titles and abstracts of patents in relation to early nutritional intervention as functional foods, has increasingly required to decrease the risks and control the progression of health problems. But, the existing summaries, although attractive and promising in this sense, are still incipient to recommend them safely as a therapeutic tool. Therefore, they should be seen more as diet elements and healthy lifestyles. PMID:28076487

  10. Effects of the prebiotics GroBiotic-A and inulin on the intestinal microbiota of red drum, Sciaenops ocellatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate feeding trials examined the effects of dietary supplementation of the prebiotics GroBiotic®-A and inulin on growth performance and gastrointestinal tract microbiota of the red drum Sciaenops ocellatus. In the first feeding trial, fishmeal-based diets without prebiotics or supplemented ...

  11. Value-added prebiotic GGMO oligosaccharides from a high-volume molasses by-product of pine fiber board manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Prebiotics" are substances that enhance the growth of beneficial bacteria in the gastrointestinal tract of host animals. To be of value, prebiotics must provide a selective nutrient source for desirable gut bacteria, especially Bifidobacterium, while reducing the incidence of undesirable bacteria ...

  12. Prebiotic supplementation and adequate calcium intake have beneficial effects on body mass index changes during early adolescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotics have been shown to enhance bone and gastrointestinal health. Recent data suggest a benefit to weight maintenance as well. However, few data are available in children or adolescents. The interactive effects of prebiotic intake and calcium intake on weight maintenance are unknown. Our objec...

  13. Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet.

    PubMed

    Staudacher, Heidi M; Whelan, Kevin

    2016-08-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder characterised by abdominal pain or discomfort with disordered defecation. This review describes the role of the gastrointestinal (GI) microbiota in the pathogenesis of IBS and how dietary strategies to manage symptoms impact on the microbial community. Evidence suggests a dysbiosis of the luminal and mucosal colonic microbiota in IBS, frequently characterised by a reduction in species of Bifidobacteria which has been associated with worse symptom profile. Probiotic supplementation trials suggest intentional modulation of the GI microbiota may be effective in treating IBS. A smaller number of prebiotic supplementation studies have also demonstrated effectiveness in IBS whilst increasing Bifidobacteria. In contrast, a novel method of managing IBS symptoms is the restriction of short-chain fermentable carbohydrates (low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet). Studies consistently demonstrate clinical effectiveness of the low FODMAP diet in patients with IBS. However, one unintentional consequence of this dietary intervention is its impact on the microbiota. This leads to an interesting paradox; namely, increasing luminal Bifidobacteria through probiotic supplementation is associated with a reduction in IBS symptoms while in direct conflict to this, the low FODMAP diet has clinical efficacy but markedly reduces luminal Bifidobacteria concentration. Given the multifactorial aetiology of IBS, the heterogeneity of symptoms and the complex and diverse nature of the microbiome, it is probable that both interventions are effective in patient subgroups. However combination treatment has never been explored and as such, presents an exciting opportunity for optimising clinical management, whilst preventing potentially deleterious effects on the GI microbiota.

  14. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry.

    PubMed

    Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas

    2016-10-24

    Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl2 , CaCl2 , SrCl2 , CuCl2 , FeCl2 , FeCl3 , ZnCl2 ). A combination of (13) C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn(2+) stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis.

  15. Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Palomino-Schätzlein, Martina; Monedero, Vicente; Yebra, María J

    2017-01-01

    Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.

  16. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

    PubMed Central

    Postma, P W; Lengeler, J W; Jacobson, G R

    1993-01-01

    Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the

  17. Metabolic aspects of low carbohydrate diets and exercise

    PubMed Central

    Peters, Sandra J; LeBlanc, Paul J

    2004-01-01

    Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise. PMID:15507161

  18. Carbohydrate markers of organism purity and growth environment

    SciTech Connect

    Wunschel, David S.; Fox, Alvin

    2012-01-01

    Recent experience with Bacillus spore characterization has demonstrated that carbohydrate content can provide potentially vital bioforensic information. Like other metabolites, the carbohydrate profiles of samples reflect variations in cellular structures as well as presence of residual carbohydrates from the medium found as trace components. The presence and characteristics of residual carbohydrates, such as agar, represent strong indicators of culturing method. The methods to detect residual carbohydrates can be extended to other compounds used in processing and preservation of microbes in a dry form.

  19. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice.

    PubMed

    Gomes, Wesley Faria; Tiwari, Brijesh Kumar; Rodriguez, Óscar; de Brito, Edy Sousa; Fernandes, Fabiano André Narciso; Rodrigues, Sueli

    2017-03-01

    This work evaluated the effect of high pressure processing (HPP) and ultrasound (US) on the quality of prebiotic cranberry juice fortified with fructo-oligosaccharides (FOS). The juice was subjected to HPP for 5min (450MPa) and to ultrasonic treatment for 5min (600 and 1200W/L) followed by HPP for 5min (450MPa). Chemical analyses were carried out to identify and quantify the anthocyanins, and to quantify FOS, organic acids, instrumental color, soluble solids, pH and antioxidant capacity. Both non-thermal treatments preserved the FOS content maintaining the prebiotic property of the juice. The retention of organic acids was high (>90%) and an increase in anthocyanin content (up to 24%) was observed when ultrasound was followed by HPP. The changes in instrumental color, soluble solids content and pH were negligible. The use of HPP and ultrasound processing has been proven satisfactory to treat prebiotic cranberry juice.

  20. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water

    PubMed Central

    Cafferty, Brian J.; Fialho, David M.; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V.

    2016-01-01

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life. PMID:27108699

  1. Characterization and prebiotic activity of aqueous extract and indigestible polysaccharide from Anoectochilus formosanus.

    PubMed

    Yang, Li-Chan; Lin, Wen-Chuan; Lu, Ting-Jang

    2012-09-05

    Anoectochilus formosanus (Orchidaceae) is a folk medicine in Asia. This study investigated the in vivo and in vitro prebiotic effects of an aqueous extract of A. formosanus (SAEAF) and of an indigestible polysaccharide (AFP) isolated from SAEAF. Chemical analyses showed AFP was mainly composed of arabinogalactan type II (AG-II), with an average molecular weight of 29 kDa. Following 4 weeks of oral administration to rats, SAEAF exhibited prebiotic effects including a decrease in cecum pH and increases of calcium absorption and fecal bifidobacteria. Furthermore, through a bioactivity-guided separation strategy, AFP was proven to be a bifidogenic component in vitro fecal strains fermentation and in vivo administration to mice. In RT-PCR analysis of Bifidobacterium , AFP increased the expression of ABC transporter related to nutrient uptake. Thus, AFP, a polysaccharide from A. formosanus, was demonstrated to be a prebiotic that has a positive health effect on gut microbiota.

  2. Discrete dynamic system oriented on the formation of prebiotic dipeptides from Rode's experiment.

    PubMed

    Polanco, Carlos; Samaniego, José Lino; Buhse, Thomas; Castañón González, Jorge Alberto

    2014-01-01

    This work attempts to rationalize the possible prebiotic profile of the first dipeptides of about 4 billion years ago based on a computational discrete dynamic system that uses the final yields of the dipeptides obtained in Rode's experiments of salt-induced peptide formation (Rode et al., 1999, Peptides 20: 773-786). The system built a prebiotic scenario that allowed us to observe that (i) the primordial peptide generation was strongly affected by the abundances of the amino acid monomers, (ii) small variations in the concentration of the monomers have almost no effect on the final distribution pattern of the dipeptides and (iii) the most plausible chemical reaction of prebiotic peptide bond formation can be linked to Rode's hypothesis of a salt-induced scenario. The results of our computational simulations were related to former simulations of the Miller, and Fox & Harada experiments on amino acid monomer and oligomer generation, respectively, offering additional information to our approach.

  3. Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream.

    PubMed

    Balthazar, C F; Silva, H L A; Vieira, A H; Neto, R P C; Cappato, L P; Coimbra, P T; Moraes, J; Andrade, M M; Calado, V M A; Granato, D; Freitas, M Q; Tavares, M I B; Raices, R S L; Silva, M C; Cruz, A G

    2017-01-01

    The objective of this study was to assess the effects of different prebiotic dietary oligosaccharides (inulin, fructo-oligosaccharide, galacto-oligossacaride, short-chain fructo-oligosaccharide, resistant starch, corn dietary oligosaccharide and polydextrose) in non-fat sheep milk ice cream processing through physical parameters, water mobility and thermal analysis. Overall, the fat replacement by dietary prebiotic oligosaccharides significantly decreased the melting time, melting temperature and the fraction and relaxation time for fat and bound water (T22) while increased the white intensity and glass transition temperature. The replacement of sheep milk fat by prebiotics in sheep milk ice cream constitutes an interesting option to enhance nutritional aspects and develop a functional food.

  4. Prebiotic potential of neutral oligo- and polysaccharides from seed mucilage of Hyptis suaveolens.

    PubMed

    Mueller, Monika; Čavarkapa, Andrea; Unger, Frank M; Viernstein, Helmut; Praznik, Werner

    2017-04-15

    Prebiotics are selectively fermented by the gastrointestinal microflora, resulting in benefits to human health. The seed mucilage of Hyptis suaveolens contains neutral and acidic polysaccharides in a ratio of 1:1. The neutral polysaccharides consist of galactose, glucose and mannose whereas the acidic polysaccharides contain fucose, xylose and 4-O-methylglucuronic acid -residues. The growth of probiotics in the presence of total, acidic or neutral polysaccharides and oligosaccharides was tested using turbidity measurements. The majority (11 out of 14) of the tested probiotic strains significantly grew in the neutral fraction. Growth occurred with some time delay, but may be longer lasting than with other lower molecular prebiotics. The extent of growth increased with neutral polysaccharides from H. suaveolens corresponding to the externally available galactose units (20%). In conclusion, neutral poly- and oligosaccharides from H. suaveolens have a prebiotic potential characterized by a delayed but long lasting effect.

  5. Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut?

    PubMed

    Wang, Hanru; Geier, Mark S; Howarth, Gordon S

    2016-01-01

    Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine.

  6. Biotechnological approaches for the production of prebiotics and their potential applications.

    PubMed

    Panesar, Parmjit S; Kumari, Shweta; Panesar, Reeba

    2013-12-01

    Worldwide interest in prebiotics have been increasing extensively both as food ingredients and pharmacological supplements, since they have beneficial properties for human health. Prebiotics not only stimulate the growth of healthy bacteria such as bifidobacteria and lactobacilli in the gut but also increase the resistance towards pathogens. In addition to this, they also act as dietary fiber, an energy source for intestinal cells after converting to short-chain fatty acids, a stimulator of immune systems, sugar replacer etc. Moreover, due to heat resistant properties, they are able to maintain their intact form during the baking process and allow them to be incorporated into every day food products. Thus, they can be interesting and useful ingredients in the development of novel functional foods. This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.

  7. Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs' morphology in chickens.

    PubMed

    Madej, J P; Stefaniak, T; Bednarczyk, M

    2015-06-01

    Prebiotics and probiotics, either alone or together (synbiotics), can influence the intestinal microbiota and modulate the immune response. We aimed to investigate the effects of prebiotic and synbiotic administration during the early stage of development on the histological structures of central (bursa of Fabricius and thymus) and peripheral (spleen) lymphatic organs in broilers. We used 800 hatching eggs from meat-type hens (Ross 308). Prebiotics and synbiotics were administered in ovo into the air chamber of chicken eggs at d 12 incubation, as follows: prebiotic inulin (Pre1), Bi2tos (Pre2), a synbiotic composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1), a synbiotic composed of Bi2tos and L. lactis subsp. cremoris IBB SC1 (Syn2), or physiological saline (control group, C). In ovo delivery of prebiotics and synbiotics had no adverse effect on the development of the immune system in exposed chickens. Administration of Bi2tos with L. lactis subsp. cremoris (Syn2) decreased the cortex/medulla ratio in the thymus and slowed the development of the cortex in bursal follicles on d 21 posthatching, with consequent impacts on the primary lymphatic organs. The above treatment also stimulated germinal centers' formation in the spleens of 21- and 35-day-old chickens, indicating enhanced B-cell proliferation in secondary lymphatic organs. Syn2 also caused an age-dependent increase in the spleen/bursa of Fabricius ratio. In conclusion, the in ovo administration of pre- and synbiotics at d 12 incubation can modulate the central and peripheral lymphatic organ development in broilers. This effect is more pronounced after synbiotic treatment than in prebiotic-treated groups.

  8. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake.

    PubMed

    Pedersen, Camilla; Gallagher, Edith; Horton, Felicity; Ellis, Richard J; Ijaz, Umer Z; Wu, Huihai; Jaiyeola, Etana; Diribe, Onyinye; Duparc, Thibaut; Cani, Patrice D; Gibson, Glenn R; Hinton, Paul; Wright, John; La Ragione, Roberto; Robertson, M Denise

    2016-12-01

    Aberrant microbiota composition and function have been linked to several pathologies, including type 2 diabetes. In animal models, prebiotics induce favourable changes in the intestinal microbiota, intestinal permeability (IP) and endotoxaemia, which are linked to concurrent improvement in glucose tolerance. This is the first study to investigate the link between IP, glucose tolerance and intestinal bacteria in human type 2 diabetes. In all, twenty-nine men with well-controlled type 2 diabetes were randomised to a prebiotic (galacto-oligosaccharide mixture) or placebo (maltodextrin) supplement (5·5 g/d for 12 weeks). Intestinal microbial community structure, IP, endotoxaemia, inflammatory markers and glucose tolerance were assessed at baseline and post intervention. IP was estimated by the urinary recovery of oral 51Cr-EDTA and glucose tolerance by insulin-modified intravenous glucose tolerance test. Intestinal microbial community analysis was performed by high-throughput next-generation sequencing of 16S rRNA amplicons and quantitative PCR. Prebiotic fibre supplementation had no significant effects on clinical outcomes or bacterial abundances compared with placebo; however, changes in the bacterial family Veillonellaceae correlated inversely with changes in glucose response and IL-6 levels (r -0·90, P=0·042 for both) following prebiotic intake. The absence of significant changes to the microbial community structure at a prebiotic dosage/length of supplementation shown to be effective in healthy individuals is an important finding. We propose that concurrent metformin treatment and the high heterogeneity of human type 2 diabetes may have played a significant role. The current study does not provide evidence for the role of prebiotics in the treatment of type 2 diabetes.

  9. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  10. Prebiotic organic matter - Possible pathways for synthesis in a geological context

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1982-01-01

    Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.

  11. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  12. The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.

    2017-03-01

    Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen ( PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid ( ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.

  13. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  14. Progress in demonstrating homochiral selection in prebiotic RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2013-03-01

    The dual properties of RNA as an enzyme catalyst (ribozyme) and its ability to store genetic information suggest that early life could have been based on RNA. We have synthesized RNA oligomers up to 50-mer chain lengths by Na+-montmorillonite catalyzed reactions of 5‧-activated mononucleotides. For studying chiral selectivity, the reactions of racemic mixtures of D, L-ImpA and D, L-ImpU were carried out on Na+-montmorillonite. The dimer, trimer, tetramer and pentamer fractions (yields 43.3%, 14.5%, 5.8% and 3.0%, respectively) were investigated for homochiral selection. These products were collected via ion exchange HPLC, their terminal 5‧-phosphate was cleaved by alkaline phosphatase and further analyzed by reverse phase HPLC. Twelve linear and three cyclic dimers were isolated and characterized. The homochirality of dimers was 63.5 ± 0.8%. Out of the sixteen trimers isolated, ten were homochiral with an overall homochirality of 74.2 ± 1.6%. The tetramers and pentamers were separated into 24 and 20 isomers, respectively. Their co-elution with those formed in the binary reactions of D-ImpA with D-ImpU on Na+-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality, respectively. These results suggest that Na+-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection. Work is in progress to determine chiral selectivity in the reaction mixtures of activated nucleotides of racemic A, U, G and C on Na+-montmorillonite.

  15. Nonequilibrium steady states in a model for prebiotic evolution

    NASA Astrophysics Data System (ADS)

    Wynveen, A.; Fedorov, I.; Halley, J. W.

    2014-02-01

    Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.

  16. Chemical evolution in space--a source of prebiotic molecules.

    PubMed

    Greenberg, J M

    1983-01-01

    In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.

  17. Saturated fat, carbohydrate, and cardiovascular disease.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-03-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.

  18. Carbohydrate sources in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Hedges, John I.

    1984-10-01

    Individual neutral sugars in sediments, sediment trap materials and major biological sources of a coastal marine environment (Dabob Bay, Washington State) were analyzed by capillary gas chromatography of equilibrated isomeric mixtures. Plankton, bacteria, and vascular plant tissues of different types yielded reproducible and biochemically consistent compositional patterns. These patterns, when expressed in simple parameters, allowed distinctions between marine and terrestrial carbohydrate sources as well as among the major different types of vascular plant tissues. Plankton and bacteria, due to their compositional diversity, were not further distinguishable by carbohydrate compositions alone. Carbohydrate compositions of Dabob Bay sediments and sediment trap materials, interpreted using source-indicator parameters, indicate a predominantly marine origin with increased relative input of terrestrially-derived carbohydrates in winter periods of low phytoplankton productivity. Both plankton and grasses are indicated as major carbohydrate sources during spring. Glucose yield enhancement factors, determined by comparative acid pretreatments, confirm the general predominance of α-cellulose-poor marine polysaccharides and increased levels of α-cellulose-rich vascular plant remains in winter sediment trap samples.

  19. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000.

  20. Carbohydrates and T cells: a sweet twosome.

    PubMed

    Avci, Fikri Y; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L

    2013-04-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease.

  1. Nutraceutical and pharmacological implications of marine carbohydrates.

    PubMed

    Pallela, Ramjee

    2014-01-01

    Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals.

  2. Investigation of Carbohydrate Recognition via Computer Simulation

    SciTech Connect

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  3. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGES

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; ...

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  4. Boronic acids for fluorescence imaging of carbohydrates.

    PubMed

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  5. Chemical and enzymatic approaches to carbohydrate-derived spiroketals: di-D-fructose dianhydrides (DFAs).

    PubMed

    García-Moreno, M Isabel; Benito, Juan M; Mellet, Carmen Ortiz; Fernández, José M García

    2008-08-12

    Di-D-fructose dianhydrides (DFAs) comprise a unique family of stereoisomeric spiro-tricyclic disaccharides formed upon thermal and/or acidic activation of sucrose- and/ or D-fructose-rich materials. The recent discovery of the presence of DFAs in food products and their remarkable nutritional features has attracted considerable interest from the food industry. DFAs behave as low-caloric sweeteners and have proven to exert beneficial prebiotic nutritional functions, favouring the growth of Bifidobacterium spp. In the era of functional foods, investigation of the beneficial properties of DFAs has become an important issue. However, the complexity of the DFA mixtures formed during caramelization or roasting of carbohydrates by traditional procedures (up to 14 diastereomeric spiroketal cores) makes evaluation of their individual properties a difficult challenge. Great effort has gone into the development of efficient procedures to obtain DFAs in pure form at laboratory and industrial scale. This paper is devoted to review the recent advances in the stereoselective synthesis of DFAs by means of chemical and enzymatic approaches, their scope, limitations, and complementarities.

  6. Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin.

    PubMed

    Hobden, Mark R; Guérin-Deremaux, Laetitia; Rowland, Ian; Gibson, Glenn R; Kennedy, Orla B

    2015-08-01

    Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.

  7. Complex carbohydrates as a possible source of high energy to formulate functional feeds.

    PubMed

    Ochoa, Leonel; Paniagua Michel, José de Jesús; Olmos-Soto, Jorge

    2014-01-01

    Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics.

  8. Capillary electrophoresis-mass spectrometry of carbohydrates

    PubMed Central

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  9. Oxygen solubility and permeability of carbohydrates.

    PubMed

    Whitcombe, Michael J; Parker, Roger; Ring, Stephen G

    2005-06-13

    The saturated oxygen concentration in a series of aqueous solutions of sorbitol (up to 35% w/w) and maltitol (up to 50% w/w) was measured using colorimetric reagent vials based on Rhodazine D. The results indicate that the solubility of oxygen in low-water carbohydrates is considerably lower than its solubility in pure water. It was concluded that the low-oxygen solubility is a major factor contributing to the barrier properties of low-water content carbohydrates used in the encapsulation of flavours, lipids, peptides and other oxidisable species.

  10. Fructose-derived carbohydrates from Alisma orientalis.

    PubMed

    Zhang, Zhen; Wang, Dong; Zhao, Yun; Gao, Hong; Hu, Ying-He; Hu, Jin-Feng

    2009-01-01

    Nine fructose-derived carbohydrates were obtained from the methanol extract from the rhizome of Alisma orientalis. On the basis of spectroscopic analysis, their structures were determined to be alpha-D-fructofuranose (1), beta-D-fructofuranose (2), ethyl alpha-D-fructofuranoside (3), ethyl beta-D-fructofuranoside (4), 5-hydroxymethyl-furaldehyde (5), sucrose (6), raffinose (7), stachyose (8) and verbascose (9), along with two oligosaccharides of manninotriose (10) and verbascotetraose (11). Compounds 3, 4 and 7-11 were isolated from this plant for the first time. A hypothetical biosynthesis pathway among these isolated carbohydrates (1-11) was briefly introduced.

  11. Synthesis of chiral dopants based on carbohydrates.

    PubMed

    Tsuruta, Toru; Koyama, Tetsuo; Yasutake, Mikio; Hatano, Ken; Matsuoka, Koji

    2014-07-01

    Chiral dopants based on carbohydrates for nematic liquid crystals were synthesized from D-glucose, and their helical twisting power (HTP) values were evaluated. The chiral dopants induced helices in the host nematic liquid crystals. An acetyl derivative having an ether-type glycosidic linkage between carbohydrate and a mesogenic moiety showed the highest HTP value of 10.4 μm(-1), while an acetyl derivative having an anomeric ester-type linkage did not show any HTP. It was surprising that this molecule had no HTP despite the presence of chirality in the molecule. A relationship between HTP and specific rotation was not observed in this study.

  12. Capillary electrophoresis-mass spectrometry of carbohydrates.

    PubMed

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  13. Potential roles and clinical utility of prebiotics in newborns, infants, and children: proceedings from a global prebiotic summit meeting, New York City, June 27-28, 2008.

    PubMed

    Sherman, Philip M; Cabana, Michael; Gibson, Glenn R; Koletzko, Berthold V; Neu, Josef; Veereman-Wauters, Gigi; Ziegler, Ekhard E; Walker, W Allan

    2009-11-01

    Initial bacterial colonization, including colonization with health-positive bacteria, such as bifidobacteria and lactobacilli, is necessary for the normal development of intestinal innate and adaptive immune defenses. The predominance of beneficial bacteria in the gut microflora of breast-fed infants is thought to be, at least in part, supported by the metabolism of the complex mixture of oligosaccharides present in human breast milk, and a more adult-type intestinal microbiota is found in formula-fed infants. Inadequate gut colonization, dysbiosis, may lead to an increased risk of infectious, allergic, and autoimmune disorders later in life. The addition of appropriate amounts of selected prebiotics to infant formulas can enhance the growth of bifidobacteria or lactobacilli in the colonic microbiota and, thereby, might produce beneficial effects. Among the substrates considered as prebiotics are the oligosaccharides inulin, fructo-oligosaccharides, galacto-oligosaccharides, and lactulose. There are some reports that such prebiotics have beneficial effects on various markers of health. For example, primary prevention trials in infants have provided promising data on prevention of infections and atopic dermatitis. Additional well-designed prospective clinical trials and mechanistic studies are needed to advance knowledge further in this promising field.

  14. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    PubMed

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P

    2016-08-01

    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P < 0.05) between all pair-wise comparisons such that CAFF + CMR (65 ± 26 min) was superior to CMR (52 ± 23 min) and PLACEBO (36 ± 22 min). We conclude that carbohydrate mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle.

  15. A Universal Protocol for Photochemical Covalent Immobilization of Intact Carbohydrates for the Preparation of Carbohydrate Microarrays

    PubMed Central

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2010-01-01

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274

  16. Enteral-tube-feeding diarrhoea: manipulating the colonic microbiota with probiotics and prebiotics.

    PubMed

    Whelan, Kevin

    2007-08-01

    Diarrhoea is a common and serious complication of enteral tube feeding. Its pathogenesis involves antibiotic prescription, enteropathogenic colonization and abnormal colonic responses, all of which involve an interaction with the colonic microbiota. Alterations in the colonic microbiota have been identified in patients receiving enteral tube feeding and these changes may be associated with the incidence of diarrhoea. Preventing negative alterations in the colonic microbiota has therefore been investigated as a method of reducing the incidence of diarrhoea. Probiotics and prebiotics may be effective because of their suppression of enteropathogenic colonization, stimulation of immune function and modulation of colonic metabolism. Randomized controlled trials of probiotics have produced contrasting results, although Saccharomyces boulardii has been shown to reduce the incidence of diarrhoea in patients in the intensive care unit receiving enteral tube feeding. Prebiotic fructo-oligosaccharides have been shown to increase the concentration of faecal bifidobacteria in healthy subjects consuming enteral formula, although this finding has not yet been confirmed in patients receiving enteral tube feeding. Furthermore, there are no clinical trials investigating the effect of a prebiotic alone on the incidence of diarrhoea. Further trials of the efficacy of probiotics and prebiotics, alone and in combination, in preventing diarrhoea in this patient group are warranted.

  17. Similar calcium status is present in infants fed formula with and without prebiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...

  18. In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communis L.).

    PubMed

    Mandalari, Giuseppina; Faulks, Richard M; Bisignano, Carlo; Waldron, Keith W; Narbad, Arjan; Wickham, Martin S J

    2010-03-01

    In this study we investigated the potential prebiotic effect of natural (NS) and blanched (BS) almond skins, the latter being a byproduct of the almond-processing industry. A full model of the gastrointestinal tract, including in vitro gastric and duodenal digestion, followed by colonic fermentation using mixed faecal bacterial cultures, was used. Both NS and BS significantly increased the population of bifidobacteria and Clostridium coccoides/Eubacterium rectale group, resulting in a prebiotic index (3.2 for BS and 3.3 for NS) that compared well with the commercial prebiotic fructo-oligosaccharides (4.2) at a 24-h incubation. No significant differences in the proportion of gut bacteria groups and in short-chain fatty acid production were detected between NS and BS, showing that polyphenols present in almond skins did not affect bacterial fermentation. In conclusion, we have shown that dietary fibre from almond skins altered the composition of gut bacteria and almond skins resulting from industrial blanching could be used as potential prebiotics.

  19. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics.

    PubMed

    Grimoud, Julien; Durand, Henri; Courtin, Céline; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine

    2010-10-01

    Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models.

  20. Diastereoselectivity in prebiotically relevant 5(4H)-oxazolone-mediated peptide couplings.

    PubMed

    Beaufils, Damien; Danger, Grégoire; Boiteau, Laurent; Rossi, Jean-Christophe; Pascal, Robert

    2014-03-21

    A stereochemical study of a potentially prebiotic peptide-forming reaction was carried out as the first part of a systems chemistry investigation of potential paths for symmetry breaking. Substantial diastereomeric excesses result from a fast epimerization of the 5(4H)-oxazolone intermediate in aqueous solution.

  1. Role of ferrocyanides in the prebiotic synthesis of α-amino acids.

    PubMed

    Ruiz-Bermejo, Marta; Osuna-Esteban, Susana; Zorzano, María-Paz

    2013-06-01

    We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids. We showed how HCN captured as Prussian Blue (or another complex compound) may, in turn, have served as the HCN source when exposed to UV radiation, allowing for the sustained production of amino acids in conjunction with the production of oxyhydroxides that precipitate as by-products. We conclude that ferrocyanides and related compounds may have played a significant role as intermediate products in the prebiotic formation of amino acids and oxyhydroxides, such as those that are found in iron-containing soils and that the aerosol cycle of the primitive ocean may have enhanced the yield of the amino acid production.

  2. Protein design at the interface of the pre-biotic and biotic worlds.

    PubMed

    Longo, Liam M; Blaber, Michael

    2012-10-01

    "Proteogenesis" (the origin of proteins) is a likely key event in the unsolved problem of biogenesis (the origin of life). The raw material for the very first proteins comprised the available amino acids produced and accumulated upon the early earth via abiotic chemical and physical processes. A broad consensus is emerging that this pre-biotic set likely comprised Ala, Asp, Glu, Gly, Ile, Leu, Pro, Ser, Thr, and Val. A key question in proteogenesis is whether such abiotically-produced amino acids comprise a "foldable" set. Current knowledge of protein folding identifies properties of complexity, secondary structure propensity, hydrophobic-hydrophilic patterning, core-packing potential, among others, as necessary elements of foldability. None of these requirements excludes the pre-biotic set of amino acids from being a foldable set. Moreover, nucleophile and metal ion/mineral binding capabilities also appear present in the pre-biotic set. Properties of the pre-biotic set, however, likely restrict foldability to the acidophilic/halophilic environment.

  3. In vitro comparison of the prebiotic effects of two inulin-type fructans.

    PubMed

    Pompei, Anna; Cordisco, Lisa; Raimondi, Stefano; Amaretti, Alberto; Pagnoni, Ugo Maria; Matteuzzi, Diego; Rossi, Maddalena

    2008-11-01

    Faecal cultures were used to compare the prebiotic effects of a new fructan containing high solubility inulin (HSI) and of a well-established prebiotic containing oligofructose (OF) with a negative control (CT). Changes in the intestinal microbiota, pH, ammonia, volatile organic acids and lactic acid were monitored during incubation. Molecular techniques for microbial enumeration indicated that both HSI and OF led to a significant increase in bifidobacteria (P< or =0.05) and lactobacilli (P< or =0.05) compared to the control. Significant changes in the pH and levels of ammonia with both inulin-type fructans were observed, as well as higher levels of acetic, lactic and formic acids (P< or =0.05). The fermentative metabolism appeared to be faster on OF than on HSI. Both OF and HSI showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization (DP). This study provides proof for the prebiotic effectiveness of HSI, and shows that inulin-type fructans with higher DP might have a prolonged bifidogenic effect, thus could extend the saccharolytic metabolism and low pH to the distal parts of the colon.

  4. Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil is an important staple food crop in many regions world-wide and is a good source of protein (20-30%) and various micronutrients. Lentil contains raffinose-family oligosaccharides (RFO), resistant starch (RS), and other prebiotic compounds essential for maintenance of healthy gastrointestinal ...

  5. The enhancement activities of histidyl-histidine in some prebiotic reactions

    NASA Technical Reports Server (NTRS)

    Shen, C.; Lazcano, A.; Oro, J.

    1990-01-01

    The prebiotic synthesis of His and its dimer has led us to study the possible catalytic properties of His-His. The enhancing effect of His-His has been tested in the dephosphorylation of dAMP, the hydrolysis of oligo(A)12, and the oligomerization of 2'3'-cAMP.

  6. Prebiotics and probiotics: their role in the management of gastrointestinal disorders in adults.

    PubMed

    Quigley, Eamonn M M

    2012-04-01

    For decades, if not centuries, a variety of products with what would now be regarded as prebiotic and probiotic properties have been consumed by the general public and advocated for their benefits on health and, in particular, gastrointestinal well-being. More recently, medical science has taken a great interest in the population of micro-organisms, the gut microbiota that normally populates the human gut, and the range of important functions carried out by the microbiota in health is being progressively defined. As a corollary, the list of disorders and diseases that may result from disruption of the normal microbiota and/or its interaction with the host continues to grow. A scientific basis for the use of probiotics and prebiotics is, therefore, beginning to emerge. Unfortunately, although progress has been made, the clinical evidence to support the use of these preparations lags behind. Nevertheless, a number of human disease states may benefit from the use of probiotics, most notably, diarrheal illnesses, some inflammatory bowel diseases, certain infectious disorders, and irritable bowel syndrome. Prebiotics promote the growth of "good" bacteria, and although a variety of health benefits have been attributed to their use, prebiotics have been subjected to few large-scale clinical trials.

  7. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  8. ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health

    PubMed Central

    Meheust, Agnès; Augustin, Livia; Benton, David; Berčík, Přemysl; Birkett, Anne; Eldridge, Alison L.; Faintuch, Joel; Hoffmann, Christian; Jones, Julie Miller; Kendall, Cyril; Lajolo, Franco; Perdigon, Gabriela; Prieto, Pedro Antonio; Rastall, Robert A.; Sievenpiper, John L.; Slavin, Joanne; de Menezes, Elizabete Wenzel

    2013-01-01

    To stimulate discussion around the topic of ‘carbohydrates’ and health, the Brazilian branch of the International Life Sciences Institute held the 11th International Functional Foods Workshop (1–2 December 2011) in which consolidated knowledge and recent scientific advances specific to the relationship between carbohydrates and health were presented. As part of this meeting, several key points related to dietary fiber, glycemic response, fructose, and impacts on satiety, cognition, mood, and gut microbiota were realized: 1) there is a need for global harmonization of a science-based fiber definition; 2) low-glycemic index foods can be used to modulate the postprandial glycemic response and may affect diabetes and cardiovascular outcomes; 3) carbohydrate type may influence satiety and satiation; glycemic load and glycemic index show links to memory, mood, and concentration; 4) validated biomarkers are needed to demonstrate the known prebiotic effect of carbohydrates; 5) negative effects of fructose are not evident when human data are systematically reviewed; 6) new research indicates that diet strongly influences the microbiome; and 7) there is mounting evidence that the intestinal microbiota has the ability to impact the gut–brain axis. Overall, there is much promise for development of functional foods that impact the microbiome and other factors relevant to health, including glycemic response (glycemic index/glycemic load), satiety, mood, cognition, and weight management. PMID:23399638

  9. Optimum conditions for prebiotic evolution in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Abbas, Ousama H.

    The overall goal of the dissertation was to devise synthetic pathways leading to the production of peptides and amino acids from smaller organic precursors. To this end, eight different zeolites were tested in order to determine their catalytic potential in the conversion of amino acids to peptides. The zeolites tested were either synthetic or naturally occurring. Acidic solutions of amino acids were prepared with or without zeolites and their reactivity was monitored over a four-week time interval. The kinetics and feasibility of peptide synthesis from selected amino acid combinations was investigated via the paper chromatography technique. Nine different amino acids were tested. The nature and extent of product were measured at constant time intervals. It was found that two ZSM-5 synthetic zeolites as well as the Fisher Scientific zeolite mix without alumina salts may have a catalytic potential in the conversion of amino acids to peptides. The conversion was verified by matching the paper chromatogram of the experimental product with that of a known peptide. The experimental results demonstrate that the optimum solvent system for paper chromatographic analysis of the zeolite-catalyzed self-assembly of the amino acids L-aspartic acid, L- asparagine, L-histidine, and L-serine is a 50:50 mixture of 1-butanol and acetone by volume. For the amino acids L-alanine, L-glycine, and L-valine, the optimum solvent was found to be a 30:70 mixture of ammonia and propanol by volume. A mathematical model describing the distance traveled (spot position) versus reaction time was constructed for the zeolite-catalyzed conversion of L- leucine and L-tyrosine and was found to approximately follow the function f(t) = 25 ln t. Two case studies for prebiotic synthesis leading to the production of amino acids or peptides in extraterrestrial environments were discussed: one involving Saturn's moon Titan, and the other involving Jupiter's moon Europa. In the Titan study, it was determined

  10. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial.

    PubMed

    Hume, Megan P; Nicolucci, Alissa C; Reimer, Raylene A

    2017-02-22

    Background: Prebiotics have been shown to improve satiety in adults with overweight and obesity; however, studies in children are limited.Objective: We examined the effects of prebiotic supplementation on appetite control and energy intake in children with overweight and obesity.Design: This study was a randomized, double-blind, placebo-controlled trial. Forty-two boys and girls, ages 7-12 y, with a body mass index (BMI) of ≥85th percentile were randomly assigned to 8 g oligofructose-enriched inulin/d or placebo (maltodextrin) for 16 wk. Objective measures of appetite included energy intake at an ad libitum breakfast buffet, 3-d food records, and fasting satiety hormone concentrations. Subjective appetite ratings were obtained from visual analog scales before and after the breakfast. Children's Eating Behavior Questionnaires were also completed by caregivers.Results: Compared with placebo, prebiotic intake resulted in significantly higher feelings of fullness (P = 0.04) and lower prospective food consumption (P = 0.03) at the breakfast buffet at 16 wk compared with baseline. Compared with placebo, prebiotic supplementation significantly reduced energy intake at the week 16 breakfast buffet in 11- and 12-y-olds (P = 0.04) but not in 7- to 10-y-olds. Fasting adiponectin (P = 0.04) and ghrelin (P = 0.03) increased at 16 wk with the prebiotic compared with placebo. In intent-to-treat analysis, there was a trend for prebiotic supplementation to reduce BMI z score to a greater extent than placebo (-3.4%; P = 0.09) and a significant -3.8% reduction in per-protocol analysis (P = 0.043).Conclusions: Independent of other lifestyle changes, prebiotic supplementation in children with overweight and obesity improved subjective appetite ratings. This translated into reduced energy intake in a breakfast buffet in older but not in younger children. This simple dietary change has the potential to help with appetite regulation in children with obesity. This trial was registered at

  11. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  12. Evaporite Borate-Containing Mineral Ensembles Make Phosphate Available and Regiospecifically Phosphorylate Ribonucleosides: Borate as a Multifaceted Problem Solver in Prebiotic Chemistry.

    PubMed

    Kim, Hyo-Joong; Furukawa, Yoshihiro; Kakegawa, Takeshi; Bita, Andrei; Scorei, Romulus; Benner, Steven A

    2016-12-19

    RNA is currently thought to have been the first biopolymer to support Darwinian natural selection on Earth. However, the phosphate esters in RNA and its precursors, and the many sites at which phosphorylation might occur in ribonucleosides under conditions that make it possible, challenge prebiotic chemists. Moreover, free inorganic phosphate may have been scarce on early Earth owing to its sequestration by calcium in the unreactive mineral hydroxyapatite. Herein, it is shown that these problems can be mitigated by a particular geological environment that contains borate, magnesium, sulfate, calcium, and phosphate in evaporite deposits. Actual geological environments, reproduced here, show that Mg(2+) and borate sequester phosphate from calcium to form the mineral lüneburgite. Ribonucleosides stabilized by borate mobilize borate and phosphate from lüneburgite, and are then regiospecifically phosphorylated by the mineral. Thus, in addition to guiding carbohydrate pre-metabolism, borate minerals in evaporite geoorganic contexts offer a solution to the phosphate problem in the "RNA first" model for the origins of life.

  13. Carbohydrate-Based Lactones: Synthesis and Applications

    NASA Astrophysics Data System (ADS)

    Xavier, Nuno M.; Rauter, Amélia P.; Queneau, Yves

    The synthesis and uses of different kinds of carbohydrate-based lactones are described. This group of compounds includes aldonolactones, other related monocyclic lactones and bicyclic systems. The latter can arise from uronic acids, carboxymethyl ethers or glycosides, or from C-branched sugars.

  14. Indicators of normal carbohydrate digestion in children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More research is needed to determine the nutritional and clinical significance of the intermediate values of low but not deficient duodenal disaccharidase activities, but the Dahlqvist-method biopsy assay of activity serves as a gnomon of carbohydrate digestion, in the sense that Anaximander used a ...

  15. Carbohydrate Metabolism in Bifidobacteria: Human Symbiotic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bifidobacterium ssp. constitute up to 90% of microbial gut flora in the infant colon, but considerably less in adults. Carbohydrate metabolism in these bacteria is highly unusual. Data from four Bifidobacterium genomes indicates genes missing from glycolysis, gluconeogenesis, and the TCA cycle, in...

  16. Permethylation Linkage Analysis Techniques for Residual Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permethylation analysis is the classic approach to establishing the position of glycosidic linkages between sugar residues. Typically, the carbohydrate is derivatized to form acid-stable methyl ethers, hydrolyzed, peracetylated, and analyzed by gas chromatography-mass spectrometry (GC-MS). The pos...

  17. Separation and quantification of microalgal carbohydrates.

    PubMed

    Templeton, David W; Quinn, Matthew; Van Wychen, Stefanie; Hyman, Deborah; Laurens, Lieve M L

    2012-12-28

    Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their respective monomers and the subsequent identification and quantification of those monosaccharides. We address the second limitation, chromatographic separation of monosaccharides, here by identifying optimum conditions for the resolution of a synthetic mixture of 13 microalgae-specific monosaccharides, comprised of 8 neutral, 2 amino sugars, 2 uronic acids and 1 alditol (myo-inositol as an internal standard). The synthetic 13-carbohydrate mix showed incomplete resolution across 11 traditional high performance liquid chromatography (HPLC) methods, but showed improved resolution and accurate quantification using anion exchange chromatography (HPAEC) as well as alditol acetate derivatization followed by gas chromatography (for the neutral- and amino-sugars only). We demonstrate the application of monosaccharide quantification using optimized chromatography conditions after sulfuric acid analytical hydrolysis for three model algae strains and compare the quantification and complexity of monosaccharides in analytical hydrolysates relative to a typical terrestrial feedstock, sugarcane bagasse.

  18. General Properties, Occurrence, and Preparation of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  19. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial

    PubMed Central

    Buigues, Cristina; Fernández-Garrido, Julio; Pruimboom, Leo; Hoogland, Aldert J.; Navarro-Martínez, Rut; Martínez-Martínez, Mary; Verdejo, Yolanda; Mascarós, Mari Carmen; Peris, Carlos; Cauli, Omar

    2016-01-01

    Aging can result in major changes in the composition and metabolic activities of bacterial populations in the gastrointestinal system and result in impaired function of the immune system. We assessed the efficacy of prebiotic Darmocare Pre® (Bonusan Besloten Vennootschap (BV), Numansdorp, The Netherlands) to evaluate whether the regular intake of this product can improve frailty criteria, functional status and response of the immune system in elderly people affected by the frailty syndrome. The study was a placebo-controlled, randomized, double blind design in sixty older participants aged 65 and over. The prebiotic product was composed of a mixture of inulin plus fructooligosaccharides and was compared with placebo (maltodextrin). Participants were randomized to a parallel group intervention of 13 weeks’ duration with a daily intake of Darmocare Pre® or placebo. Either prebiotic or placebo were administered after breakfast (between 9–10 a.m.) dissolved in a glass of water carefully stirred just before drinking. The primary outcome was to study the effect on frailty syndrome. The secondary outcomes were effect on functional and cognitive behavior and sleep quality. Moreover, we evaluated whether prebiotic administration alters blood parameters (haemogram and biochemical analysis). The overall rate of frailty was not significantly modified by Darmocare Pre® administration. Nevertheless, prebiotic administration compared with placebo significantly improved two frailty criteria, e.g., exhaustion and handgrip strength (p < 0.01 and p < 0.05, respectively). No significant effects were observed in functional and cognitive behavior or sleep quality. The use of novel therapeutic approaches influencing the gut microbiota–muscle–brain axis could be considered for treatment of the frailty syndrome. PMID:27314331

  20. Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics.

    PubMed

    Allgeyer, L C; Miller, M J; Lee, S-Y

    2010-10-01

    The popularity of dairy products fortified with prebiotics and probiotics continues to increase as consumers desire flavorful foods that will fulfill their health needs. Our objectives were to assess the sensory profile of drinkable yogurts made with prebiotics and probiotics and to determine the viability of the probiotics in the yogurt drink over the duration of storage. Thirteen trained descriptive panelists evaluated 10 yogurt drinks on a 16-point category scale. Three selected prebiotics, soluble corn fiber, polydextrose, and chicory inulin, were each present individually at an amount to claim an excellent source of fiber (5 g of fiber/serving) or a good source of fiber (2.5 g of fiber/serving) in 6 different yogurt drinks. Three additional yogurt drinks contained 5 g of each of the separate prebiotics along with a mixture of the selected probiotics (Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus LA-5). A control sample with no prebiotics or probiotics was also included in the experimental design. Data were analyzed by ANOVA, Fisher's least significant difference, and principal component analysis. Survival of the probiotics in the yogurt drinks during a 30-d refrigerated storage period was also analyzed. Results showed that clover honey aroma, buttermilk aroma, butter aroma, sweetness, sourness, chalky mouthfeel, and viscosity were identified as significant attributes in the yogurt drinks. Total variance explained by the principal component analysis biplot of factors 1 and 2 was 65%, which showed yogurt drinks with soluble corn fiber and inulin varying by the sweet versus sour attributes and yogurt drinks with polydextrose varying by the mouthfeel attributes. The viability study determined a 2- to 3-log decrease in the survival of probiotics in all of the yogurt treatments during a 30-d refrigerated storage period. Based on the results of the current study, only the polydextrose treatment would be an acceptable vehicle to deliver the probiotic

  1. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity

    PubMed Central

    Everard, Amandine; Lazarevic, Vladimir; Gaïa, Nadia; Johansson, Maria; Ståhlman, Marcus; Backhed, Fredrik; Delzenne, Nathalie M; Schrenzel, Jacques; François, Patrice; Cani, Patrice D

    2014-01-01

    The gut microbiota is involved in metabolic and immune disorders associated with obesity and type 2 diabetes. We previously demonstrated that prebiotic treatment may significantly improve host health by modulating bacterial species related to the improvement of gut endocrine, barrier and immune functions. An analysis of the gut metagenome is needed to determine which bacterial functions and taxa are responsible for beneficial microbiota–host interactions upon nutritional intervention. We subjected mice to prebiotic (Pre) treatment under physiological (control diet: CT) and pathological conditions (high-fat diet: HFD) for 8 weeks and investigated the production of intestinal antimicrobial peptides and the gut microbiome. HFD feeding significantly decreased the expression of regenerating islet-derived 3-gamma (Reg3g) and phospholipase A2 group-II (PLA2g2) in the jejunum. Prebiotic treatment increased Reg3g expression (by ∼50-fold) and improved intestinal homeostasis as suggested by the increase in the expression of intectin, a key protein involved in intestinal epithelial cell turnover. Deep metagenomic sequencing analysis revealed that HFD and prebiotic treatment significantly affected the gut microbiome at different taxonomic levels. Functional analyses based on the occurrence of clusters of orthologous groups (COGs) of proteins also revealed distinct profiles for the HFD, Pre, HFD-Pre and CT groups. Finally, the gut microbiota modulations induced by prebiotics counteracted HFD-induced inflammation and related metabolic disorders. Thus, we identified novel putative taxa and metabolic functions that may contribute to the development of or protection against the metabolic alterations observed during HFD feeding and HFD-Pre feeding. PMID:24694712

  2. High Carbohydrate-Fiber Nutrition for Running and Health.

    ERIC Educational Resources Information Center

    Battinelli, Thomas

    1983-01-01

    The roles of carbohydrates, fats, proteins, and fiber in producing energy for health and exercise are discussed. Long-distance runners should have a high intake of complex carbohydrates and fiber. (PP)

  3. Carbohydrates: How Carbs Fit into a Healthy Diet

    MedlinePlus

    ... carbohydrates to processed foods in the form of starch or added sugar. Common sources of naturally occurring ... fructose), table sugar (sucrose) and milk sugar (lactose). Starch. Starch is a complex carbohydrate, meaning it is ...

  4. Exercise and Regulation of Carbohydrate Metabolism.

    PubMed

    Mul, Joram D; Stanford, Kristin I; Hirshman, Michael F; Goodyear, Laurie J

    2015-01-01

    Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits.

  5. Maternal carbohydrate intake and pregnancy outcome.

    PubMed

    Clapp, James F

    2002-02-01

    Experimental evidence indicates that the primary maternal environmental factor that regulates feto-placental growth is substrate delivery to the placental site, which is the product of maternal substrate levels and the rate of placental-bed blood flow. Thus, maternal factors which change either substrate level or flow alter feto-placental growth rate. The best-studied substrate in human pregnancy is glucose, and there is a direct relationship between maternal blood glucose levels and size at birth. Altering the type of carbohydrate eaten (high- v. low-glycaemic sources) changes postprandial glucose and insulin responses in both pregnant and non-pregnant women, and a consistent change in the type of carbohydrate eaten during pregnancy influences both the rate of feto-placental growth and maternal weight gain. Eating primarily high-glycaemic carbohydrate results in feto-placental overgrowth and excessive maternal weight gain, while intake of low-glycaemic carbohydrate produces infants with birth weights between the 25th and the 50th percentile and normal maternal weight gain. The calculated difference in energy retention with similar total energy intakes is of the order of 80,000 kJ. Preliminary information from subsequent metabolic studies indicates that the mechanisms involved include changes in: daily digestible energy requirements (i.e. metabolic efficiency), substrate utilization (glucose oxidation v. lipid oxidation), and insulin resistance and sensitivity. Thus, altering the source of maternal dietary carbohydrate may prove to be a valuable tool in the management of pregnancies at risk for anomalous feto-placental growth and for the prevention and/or treatment of obesity and insulin resistance in the non-pregnant state.

  6. Crystal structures of three bicyclic carbohydrate derivatives

    PubMed Central

    Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten

    2016-01-01

    The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. PMID:27980845

  7. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    PubMed

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  8. Expanding the evaluation of probiotics and prebiotics for aquafeeds: perspectives on the limitations and needs for surrogate measures of effectiveness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics (live or inactivated beneficial microorganisms) and prebiotics (indigestible nutrients for beneficial microorganisms) have been used as additives to aquafeeds as a means to improve production (immunity and growth) in intensively-reared finfish species. The research literature has document...

  9. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    PubMed Central

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  10. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...

  11. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5.

    PubMed

    Das, Deeplina; Baruah, Rwivoo; Goyal, Arun

    2014-08-01

    An α-d-glucan produced by Lactobacillus plantarum DM5 was explored for in vitro prebiotic activities. Glucan-DM5 demonstrated 21.6% solubility, 316.9% water holding capacity, 86.2% flocculation activity, 71.4% emulsification activity and a degradation temperature (Td) of 292.2°C. Glucan-DM5 exhibited lowest digestibility of 0.54% by artificial gastric juice, 0.21% by intestinal fluid and 0.32% by α-amylase whereas the standard prebiotic inulin, showed 25.23%, 5.97% and 19.13%, hydrolysis, respectively. Prebiotic activity assay of glucan-DM5 displayed increased growth of probiotic bacteria such as Bifidobacterium infantis and Lactobacillus acidophilus, but did not support the growth of non-probiotic bacteria such as Escherichia coli and Enterobacter aerogenes. The overall findings indicated that glucan from L. plantarum DM5 can serve as a potential prebiotic additive for food products.

  12. Organotin-catalyzed highly regioselective thiocarbonylation of nonprotected carbohydrates and synthesis of deoxy carbohydrates in a minimum number of steps.

    PubMed

    Muramatsu, Wataru; Tanigawa, Satoko; Takemoto, Yuki; Yoshimatsu, Hirofumi; Onomura, Osamu

    2012-04-16

    Nonprotected carbohydrates: The catalytic regioselective thiocarbonylation of carbohydrates by using organotin dichloride under mild conditions was demonstrated. The reaction afforded various deoxy saccharides in high yields and excellent regioselectivity in a minimum number of steps. The regioselectivity of the thiocarbonylation is attributed to the intrinsic character of the carbohydrates based on the stereorelationship of their hydroxy groups (see scheme).

  13. Carbohydrate and the regulation of blood glucose and metabolism.

    PubMed

    Wolever, Thomas M S

    2003-05-01

    Classifying the glycemic responses of carbohydrate foods using the glycemic index (GI) requires standardized methodology for valid results. Dietary carbohydrates influence metabolism by at least four mechanisms: nature of the monosaccharides absorbed, amount of carbohydrate consumed, rate of absorption, and colonic fermentation. Reducing glycemic responses by reducing carbohydrate intake increases postprandial serum free-fatty acids (FFA) and does not improve overall glycemic control in diabetic subjects. By contrast, low-GI diets reduce serum FFA and improve glycemic control. Thus, current evidence supports FAO/WHO recommendations to maintain a high-carbohydrate diet and choose low-GI starchy foods.

  14. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax.

    PubMed

    Carbone, Donatella; Faggio, Caterina

    2016-07-01

    Infectious diseases in fish represent a major problem for the aquaculture field as they produce extensive damages and loss. Over the last few years, with increased development of the aquaculture industry, different methods have been used to contrast these pathologies. Common interest has led to the use of components (as additives in diets) that could contrast diseases without causing any negative impact on the environment. These components are represented by prebiotics, probiotics, and plant extracts. In this review, the effects of prebiotics are described. Prebiotics are indigestible fibres fermented by gut enzymes and commensal bacteria, whose beneficial effects are due to the by-products generated from fermentation. The influence of pre-biotics on the immune system of fish is called immunosaccharides. Mannanoligosaccharides (MOS), Fructooligosaccharides (FOS) and Inulin act at different levels in the innate immune response. For example, through phagocytosis, lysozyme activity, and the complement system activity, an increase in fish growth and an amelioration of their health status is brought about. In this review, the use of prebiotics in aquaculture, such as immunostimulants, has been highlighted: particularly in two teleost fish species, Sparus aurata and Dicentrarchus labrax. The results demonstrate that the road is still long and further studies are required, but the use of prebiotics, individually or coupled together, can open the doors to pioneering a new model of alternative components to antimicrobial agents.

  15. Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems.

    PubMed

    Long, Wenmin; Xue, Zhengsheng; Zhang, Qianpeng; Feng, Zhou; Bridgewater, Laura; Wang, Linghua; Zhao, Liping; Pang, Xiaoyan

    2015-08-25

    The same prebiotics have produced inconsistent effects on microbiota when evaluated in different batch fermentation studies. To understand the reasons behind these discrepancies, we compared impact of one prebiotic formula on the same inoculated fecal microbiota in two frequently used batch systems: phosphate-buffered saline (PBS, oligotrophic) and basal culture medium (BCM, eutrophic). The microbiota was monitored using 454 pyrosequencing. Negative controls (no prebiotic) of both systems showed significant shifts in the microbiota during fermentation, although their pH remained relatively stable, especially in BCM, with increases in Bilophila and Escherichia/Shigella but a decrease in Faecalibacterium. We identified prebiotic responders via redundancy analysis by including both baseline and negative controls. The key positive and negative responders in the two systems were very different, with only 8 consistently modulated OTUs (7 of the 28 positive responders and 1 of the 35 negative responders). Moreover, some OTUs within the same genus responded to the prebiotic in opposite ways. Therefore, to obtain a complete in vitro evaluation of the modulatory effects of a prebiotic on microbiota, it is necessary to use both oligotrophic and eutrophic systems, compare treatment groups with both baseline and negative controls, and analyze the microbiota changes down to the OTU level.

  16. Carbohydrate engineered cells for regenerative medicine.

    PubMed

    Du, Jian; Yarema, Kevin J

    2010-06-15

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a "sugar code" that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering - a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx - is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine.

  17. Carbohydrate Engineered Cells for Regenerative Medicine

    PubMed Central

    Du, Jian; Yarema, Kevin J.

    2010-01-01

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a “sugar code” that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering – a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx – is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine. PMID:20117158

  18. Solubility of carbohydrates in heavy water.

    PubMed

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water.

  19. Functionalized carbon nanomaterials derived from carbohydrates.

    PubMed

    Jagadeesan, Dinesh; Eswaramoorthy, Muthusamy

    2010-02-01

    A tremendous growth in the field of carbon nanomaterials has led to the emergence of carbon nanotubes, fullerenes, mesoporous carbon and more recently graphene. Some of these materials have found applications in electronics, sensors, catalysis, drug delivery, composites, and so forth. The high temperatures and hydrocarbon precursors involved in their synthesis usually yield highly inert graphitic surfaces. As some of the applications require functionalization of their inert graphitic surface with groups like -COOH, -OH, and -NH(2), treatment of these materials in oxidizing agents and concentrated acids become inevitable. More recent works have involved using precursors like carbohydrates to produce carbon nanostructures rich in functional groups in a single-step under hydrothermal conditions. These carbon nanostructures have already found many applications in composites, drug delivery, materials synthesis, and Li ion batteries. The review aims to highlight some of the recent developments in the application of carbohydrate derived carbon nanostructures and also provide an outlook of their future prospects.

  20. Small-Molecule Carbohydrate-Based Immunostimulants.

    PubMed

    Marzabadi, Cecilia H; Franck, Richard W

    2017-02-03

    In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.