Binder, Bernd
2008-01-21
An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.
NASA Astrophysics Data System (ADS)
Goepfert, O.; Tilgner, A.
2016-10-01
We investigate with numerical simulations the dynamo properties of liquid flows in precessing cubes. There are some similarities with the flow in precessing spheres. Instabilities in the form of triad resonances are observed. The flow is turbulent far above the onset of instability but simplifies to a single vortex for certain control parameters. The critical magnetic Reynolds numbers for the onset of magnetic field generation are lower than, but comparable to, the numbers known for precessing spheres, and are larger than the Reynolds numbers realizable in an experiment currently under construction in Dresden.
The Precessing Spherical Pendulum.
ERIC Educational Resources Information Center
Olsson, M. G.
1978-01-01
Explains how the spherical pendulum could be used to observe nonreentrant orbits, and shows, using theoretical analysis, that for small displacements the elliptical orbit will precess at a rate proportional to its area. (GA)
Precessing Ferromagnetic Needle Magnetometer.
Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry
2016-05-13
A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.
NASA Astrophysics Data System (ADS)
Hirata, R.
2007-03-01
From the polarimetric observation of Pleione, we found that the intrinsic polarization angle varied from 60° to 130° in 1974-2003. The Hα profile also changed dramatically from the edge-on type (shell-line profile) to the surface-on type (wine-bottle profile). These facts clearly indicate the spatial motion of the disk axis. We interpret these variations in terms of the disk precession, caused by the secondary of this spectroscopic binary with a period of 218d. We performed the χ^2 minimization for the polarization angle, assuming uniform precession with an imposed condition that the shell maximum occurred at edge-on view. The resulting precession angle is 59° with a period of 81 years. Then, we can describe chronologically the spatial motion of disk axis. We also derived the Hα disk radius from the peak separation, assuming the Keplerian disk. The precession of the disk gives natural explanation of the mysterious long-term spectroscopic behaviors of this star.
Proton precession magnetometer
Stager, R.
1986-03-01
The downhole proton precession magnetometer (DPPM) is designed to make total intensity magnetic field measurements in small bore exploratory wells. This manual describes the measurement procedure and discusses maintenance issues. The step-by-step description of the measurement procedure is suitable for use by an operator of the system, while the section on maintenance procedures and theory of operation is intended for use by someone with some experience in electronics. 7 figs.
Global Heat and Precession Energy
NASA Astrophysics Data System (ADS)
Vanyo, J. P.
2006-05-01
Precession Energy: By 1975, precession energy rates were assumed to be inadequate for a geodynamo. Most agreed in favor for a heat core model, but formal critiques on the matter were never published. A 'rigid- sphere' model and two accretion models had examined a precession geodynamo on similar energy features. The core's relative motion has two limits, the core uncoupled to its mantle and then fixed rigidly to its mantle. Both limits produce no energy. Energy rate (power) is produced only when core-mantle torque and core- mantle motion interact. Earlier researchers had estimated that a geodynamo needed approximately 10E11 W to 10E12 W, but could only find 10E8 W. The rigid-sphere model analysis starts with a theoretical solution for precession energy, subject to known Earth parameters 6x10E16 W. A derived dimensionless coefficient C/(1+ Csq) can only have a maximum value 1/2 and C = 1 with Pmax = 3x10E16 W. Precession energy rates in the rigid-sphere model is related inversely to magnetic intensity by the variable C as coupling. More magnetic coupling reduces energy rate, and less magnetic coupling increases energy rate. The theories and estimates for precession energy rates (10E8 W) did not consider the total energy rate (Pmax = 3x10E16 W). This is a zero sum game, and 10E8 W represents a great gap from 3x10E16 W. Precession research has continued, and research now supports much more energetic precession geodynamo models. Experiments have now achieved successes for geodynamo energy rates, core-mantle relative motions which suggest geomagnetic CMB patterns, viscous-electromagnetic coupling analyses, and geodynamo simulations with laminar and turbulent precession models. Global Heat: The Earth's interior has the core's liquid heat reservoir, and the Earth's surface has its water and its ice's heat reservoir. Both core and ice have potential for accretion and ablation, and both have experienced these events during Earth's creation. A geodynamo heat (accretion) model
Harnessing spin precession with dissipation.
Crisan, A D; Datta, S; Viennot, J J; Delbecq, M R; Cottet, A; Kontos, T
2016-01-27
Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.
Harnessing spin precession with dissipation
NASA Astrophysics Data System (ADS)
Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.
2016-01-01
Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.
NASA Astrophysics Data System (ADS)
Meyer, Jennifer; Wisdom, Jack
2011-01-01
Goldreich (Goldreich, P. [1967]. J. Geophys. Res. 72, 3135) showed that a lunar core of low viscosity would not precess with the mantle. We show that this is also the case for much of lunar history. But when the Moon was close to the Earth, the Moon's core was forced to follow closely the precessing mantle, in that the rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar core did not follow the mantle during the Cassini transition. Dwyer and Stevenson (Dwyer, C.A., Stevenson, D.J. [2005]. An Early Nutation-Driven Lunar Dynamo. AGU Fall Meeting Abstracts GP42A-06) suggested that the lunar dynamo needs mechanical stirring to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was closer to the Earth than 26.0-29.0 Earth radii. A lunar dynamo powered by mechanical stirring might have been strongest near the Cassini transition.
NASA Astrophysics Data System (ADS)
Meyer, J.; Wisdom, J.
2011-10-01
Goldreich [3] showed that a lunar core of low viscosity would not precess with the mantle. We show that this is also the case for much of lunar history. But when the Moon was close to the Earth the Moon's core was forced to follow closely the precessing mantle, in that the rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar core did not follow the mantle during the Cassini transition. Dwyer and Stevenson [1] suggested that the lunar dynamo needs mechanical stirring to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was closer to the Earth than 26.0 to 29.0 Earth radii. A lunar dynamo powered by mechanical stirring might have been strongest near the Cassini transition.
Toroidal Precession as a Geometric Phase
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
Nutation control during precession of a spin-stabilized spacecraft
NASA Technical Reports Server (NTRS)
Taylor, J. M.; Donner, R. J.
1973-01-01
The effects of precession thrust pulses and energy dissipation upon nutation of a spin-stabilized spacecraft are studied. Methods for controlling nutation during a precession maneuver are proposed and examined. A precession modulation control law is developed which uses precession thrust pulses to control nutation. Digital simulations show that precession control with separate nutation control is the fastest precessing system; however, the precession modulation method is only fractionally slower while not requiring a separate nutation control system.
Stability of precessing superfluid neutron stars.
Glampedakis, K; Andersson, N; Jones, D I
2008-02-29
We discuss a new superfluid instability occurring in the interior of mature neutron stars with implications for free precession. This instability is similar to the instability which is responsible for the formation of turbulence in superfluid helium. We demonstrate that the instability is unlikely to affect slowly precessing systems with weak superfluid coupling. In contrast, fast precession in systems with strong coupling appears to be generically unstable. This raises serious questions about our understanding of neutron star precession and complicates attempts to constrain neutron star interiors using such observations.
Free nuclear precession gradiometer system
Hinton, G. F.
1985-10-08
A free nuclear precession gradiometer uses a fluid sample surrounded by a coil the fluid sample containing one or more nuclear species which display a magnetic moment. Current in the coil polarizes the nucleii, which when the current is abruptly terminated precess coherently about the earth's magnetic field. The exact frequency generated is a precise measure of the absolute value of the earth's magnetic field. The signal is in the form of a damped sinusoid with the rate of decay being a function of gradients in the ambient magnetic field. Two vector magnetometers are mounted rigidly on the sensor at the right angles to each other and to the earth's magnetic field. A servo system continuously orients the sensor in a two-axis gimbal system to reduce the output of the vector magnetometers to zero. The instrument is polarized, a counter is triggered to make the frequency measurement, and the signal is analyzed by determining the average amplitude of the signal over a precise interval of time. The result is simultaneous measurement of total intensity and total gradient.
Spin precession in anisotropic media
NASA Astrophysics Data System (ADS)
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.
Non-Mathematical Explanation of Precession
ERIC Educational Resources Information Center
Cordell, John
2011-01-01
The phenomenon of precession is necessary to explain the motion of footballs, gyroscopes, tops, the Earth, and many other interesting physical systems, but it was very hard for me to understand as a student and is very difficult to teach to students now. Many explanations of precession in physics textbooks are highly mathematical and hard to…
Gate Controlled Spin Precession Effect
NASA Astrophysics Data System (ADS)
Naser Zainuddin, Abu; Siddiqui, Lutfe; Hong, Seokmin; Datta, Supriyo
2010-03-01
A two-dimensional (2D) non-local lateral spin-transport model is developed based on the non-equilibrium Green's function (NEGF) formalism for ballistic carriers in mode space approach. The effect of gate controlled Rashba spin-orbit (RSO) interaction in modulating the non-local spin voltage has been explicitly taken into account. We found a quantitative agreement with the recent observation on non-local controlled spin-precession by Koo et. al [1]. The phase shift observed in the voltage according to the analytical equation used in [1] is found to be the consequence of both multichannel effect and the effect of injecting and detecting ferromagnetic contact length. In such structures we predict that a short length contact as well as an etched out channel can improve the non-local voltage significantly. [1] H. C. Koo et. al. Science, 325, 1515 (2009).
Insolation and the Precession Index
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2000-01-01
Simple nonlinear climate models yield a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin omega, where e is the Earth's orbital eccentricity and omega is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these periods. Two such models, a grey body and an energy balance climate model with an added quadratic term, produce e sin omega terms in temperature. These terms, which without feedback mechanisms achieve extreme values of about plus or minus 0.48 K for the grey body and plus or minus 0.64 K for the energy balance model, simultaneously cool one hemisphere while they warm the other. Moreover, they produce long-term cooling in the northern hemisphere when the Sun's perigee is near northern solstice and long-term warming in the northern hemisphere when the perigee is near southern solstice. Thus this seemingly paradoxical mechanism works against the standard model which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it may be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is close to the Earth during southern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
Fermi-Walker transport and Thomas precession
NASA Astrophysics Data System (ADS)
Pastor Lambare, Justo
2017-07-01
An exact derivation of the Thomas precession formula is presented based on the Fermi-Walker transport equation. Given that the Thomas precession effect is not a particularly intuitive phenomenon, such that when discovered in 1925 it took by surprise even experts in relativity theory, Einstein included, an alternative perspective can be useful at an intermediate level for physics students. The existing literature linking the Thomas precession to Fermi-Walker transport use geometric algebra as mathematical tool. Here the mathematics is kept within the limits of the usual vector and tensor algebra commonly used in special relativity theory at a level appropriate for advanced undergraduate and beginning graduate students.
Torque-induced precession of bacterial flagella
NASA Astrophysics Data System (ADS)
Shimogonya, Yuji; Sawano, Yoichiro; Wakebe, Hiromichi; Inoue, Yuichi; Ishijima, Akihiko; Ishikawa, Takuji
2015-12-01
The bacterial flagellar motor is an ion-driven rotary machine in the cell envelope of bacteria. Using a gold nanoparticle as a probe, we observed the precession of flagella during rotation. Since the mechanism of flagella precession was unknown, we investigated it using a combination of full simulations, theory, and experiments. The results show that the mechanism can be well explained by fluid mechanics. The validity of our theory was confirmed by our full simulation, which was utilized to predict both the filament tilt angle and motor torque from experimental flagellar precession data. The knowledge obtained is important in understanding mechanical properties of the bacterial motor and hook.
Torque-induced precession of bacterial flagella.
Shimogonya, Yuji; Sawano, Yoichiro; Wakebe, Hiromichi; Inoue, Yuichi; Ishijima, Akihiko; Ishikawa, Takuji
2015-12-22
The bacterial flagellar motor is an ion-driven rotary machine in the cell envelope of bacteria. Using a gold nanoparticle as a probe, we observed the precession of flagella during rotation. Since the mechanism of flagella precession was unknown, we investigated it using a combination of full simulations, theory, and experiments. The results show that the mechanism can be well explained by fluid mechanics. The validity of our theory was confirmed by our full simulation, which was utilized to predict both the filament tilt angle and motor torque from experimental flagellar precession data. The knowledge obtained is important in understanding mechanical properties of the bacterial motor and hook.
About detection of precessing circumpulsar discs
NASA Astrophysics Data System (ADS)
Grimani, Catia
2016-08-01
Detections of circumpulsar discs and planetary systems through electromagnetic observations appear quite rare. In the case of PSR 1931+24 and B0656+14, the hypothesis of a precessing disc penetrating the pulsar light cylinder is found consistent with radio and gamma observations from these stars. Disc self-occultation and precession may affect electromagnetic measurements. We investigate here under which conditions gravitational waves generated by circumpulsar disc precession may be detected by the proposed second-generation space interferometers DECI-hertz Interferometer Gravitational Wave Observatory and Big Bang Observer. The characteristics of circumpulsar detectable precessing discs are estimated as a function of distance from the Solar system. Speculations on detection rates are presented.
Consistent Numerical Expressions for Precession Formulae.
NASA Astrophysics Data System (ADS)
Soma, M.
The precession formulae by Lieske et al. (1977) have been used since 1984 for calculating apparent positions and reducing astrometric observations of celestial objects. These formulae are based on the IAU (1976) Astronomical Constants, some of which deviate from their recently determined values. They are also derived using the secular variations of the ecliptic pole from Newcomb's theory, which is not consistent with the recent planetary theories. Accordingly Simon et al. (1994) developed new precession formulae using the recently determined astronomical constants and also being based on the new planetary theory VSOP87. There are two differing definitions of the ecliptic: ecliptic in the inertial sense and ecliptic in the rotating sense (Standish 1981). The ecliptic given by the VSOP87 theory is that in the inertial sense, but the value for obliquity Simon et al. used is the obliquity in the rotating sense. Therefore their precession formulae has inconsistency. This paper gives corrections for consistent precession formulae.
Trapped Electron Precession Shear Induced Fluctuation Decorrelation
T.S. Hahm; P.H. Diamond; E.-J. Kim
2002-07-29
We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.
Precession and Nutation of the Earth
NASA Astrophysics Data System (ADS)
Souchay, Jean; Capitaine, Nicole
Precession and nutation of the Earth originate in the tidal forces exerted by the Moon, the Sun, and the planets on the equatorial bulge of the Earth. Discovered respectively in the 2nd century B.C. by Hipparcus and in the 18th century by Bradley, their existence and characteristics were deduced theoretically by Newton for the precession and by d'Alembert for the nutation. After a historical review we explain, both in an intuitive manner and by simple calculations, the gravitational origin and the main characteristics of the precession-nutation. Then we describe in detail two fundamental theories, one using the Lagrangian formalism, the other the Hamiltonian one. A large final part is devoted to successive improvements of the precession-nutation theory in the last decades, both when considering the Earth as a rigid body and when taking into account the small effects of non-rigidity.
Tracking the Pacific Decadal Precession
NASA Astrophysics Data System (ADS)
Anderson, Bruce T.; Furtado, Jason C.; Di Lorenzo, Emanuele; Short Gianotti, Daniel J.
2017-03-01
Events of recent years—including extended droughts across California, record fires across western Canada, and destabilization of marine ecosystems—highlight the profound impact of multiannual to decadal-scale climate shifts upon physical, biological, and socioeconomic systems. While previous research has focused on the influence of decadal-scale climate oscillations such as the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation/Interdecadal Pacific Oscillation, recent research has revealed the presence of a quasi-decadal mode of climate variability that, unlike the quasi-stationary standing wave-like structure of the oscillatory modes, involves a progression of atmospheric pressure anomalies around the North Pacific, which has been termed the Pacific Decadal Precession (PDP). In this paper we develop a set of methods to track the spatial and temporal evolutions of the PDP within historical observations as well as numerical model simulations. In addition, we provide a method that approximates the time evolution of the PDP across the full period of available data for real-time monitoring of the PDP. Through the development of these tracking methods, we hope to provide the community with a consistent framework for future analysis and diagnosis of the PDP's characteristics and underlying processes, thereby avoiding the use of different, and disparate, phenomenological- and mathematical-based indices that can confound our understanding of the PDP and its evolution.
On the alignment for precession electron diffraction
Liao, Yifeng; Marks, Laurence D.
2013-01-01
Precession electron diffraction has seen a fast increase in its adoption as a technique for solving crystallographic structures as well as an alternative to conventional selected-area and converged-beam diffraction methods. One of the key issues of precession is the pivot point alignment, as a stationary apparent beam does not guarantee a fixed pivot point. A large precession tilt angle, along with pre-field and post-field misalignment, induces shift in the image plane. We point out here that the beam should be aligned to the pre-field optic axis to keep the electron illumination stationary during the rocking process. A practical alignment procedure is suggested with the focus placed on minimizing the beam wandering on the specimen, and is demonstrated for a (110)-oriented silicon single crystal and for a carbide phase (~20 nm in size) within a cast cobalt–chromium–molybdenum alloy. PMID:22634134
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Kesden, Michael; Gerosa, Davide
2017-07-01
In the post-Newtonian (PN) regime, the time scale on which the spins of binary black holes precess is much shorter than the radiation-reaction time scale on which the black holes inspiral to smaller separations. On the precession time scale, the angle between the total and orbital angular momenta oscillates with nutation period τ , during which the orbital angular momentum precesses about the total angular momentum by an angle α . This defines two distinct frequencies that vary on the radiation-reaction time scale: the nutation frequency ω ≡2 π /τ and the precession frequency Ω ≡α /τ . We use analytic solutions for generic spin precession at 2PN order to derive Fourier series for the total and orbital angular momenta in which each term is a sinusoid with frequency Ω -n ω for integer n . As black holes inspiral, they can pass through nutational resonances (Ω =n ω ) at which the total angular momentum tilts. We derive an approximate expression for this tilt angle and show that it is usually less than 10-3 radians for nutational resonances at binary separations r >10 M . The large tilts occurring during transitional precession (near zero total angular momentum) are a consequence of such states being approximate n =0 nutational resonances. Our new Fourier series for the total and orbital angular momenta converge rapidly with n providing an intuitive and computationally efficient approach to understanding generic precession that may facilitate future calculations of gravitational waveforms in the PN regime.
Thomas precession and squeezed states of light
NASA Astrophysics Data System (ADS)
Han, D.; Hardekopf, E. E.; Kim, Y. S.
1989-02-01
The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.
Spin superfluidity and coherent spin precession
NASA Astrophysics Data System (ADS)
Bunkov, Yuriy M.
2009-04-01
The spontaneous phase coherent precession of the magnetization in superfluid 3He-B was discovered experimentally in 1984 at the Institute for Physical Problems, Moscow by Borovik-Romanov, Bunkov, Dmitriev and Mukharsky and simultaneously explained theoretically by Fomin (Institut Landau, Moscow). Its formation is a direct manifestation of spin superfluidity. The latter is the magnetic counterpart of mass superfluidity and superconductivity. It is also an example of the Bose-Einstein condensation of spin-wave excitations (magnons). The coherent spin precession opened the way for investigations of spin supercurrent magnetization transport and other related phenomena, such as spin-current Josephson effect, process of phase slippage at a critical value of spin supercurrent, spin-current vortices, non-topological solitons (analogous to Q-balls in high energy physics) etc. New measuring techniques based on coherent spin precession made the investigation of mass counterflow and mass vortices possible owing to the spin-mass interaction. New phenomena were observed: mass-spin vortices, the Goldstone mode of the mass vortex with non-axisymmetric core, superfluid density anisotropy etc. Different types of coherent spin precession were later found in superfluid 3He-A and 3He-B confined in anisotropic aerogel, in the states with counterflow and in 3He with reduced magnetization. Finally, spin superfluidity investigations developed the basis for a modern investigation of electron spin supercurrent and spintronics.
spin pumping occurred under nonlinear spin precession
NASA Astrophysics Data System (ADS)
Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng
Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.
Precession of the Earth-Moon System
ERIC Educational Resources Information Center
Urbassek, Herbert M.
2009-01-01
The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…
Nonrelativistic Contribution to Mercury's Perihelion Precession.
ERIC Educational Resources Information Center
Price, Michael P.; Rush, William F.
1979-01-01
Presents a calculation of the precession of the perihelion of Mercury due to the perturbations from the outer planets. The time-average effect of each planet is calculated by replacing that planet with a ring of linear mass density equal to the mass of the planet divided by the circumference of its orbit. (Author/GA)
Precession of the Earth-Moon System
ERIC Educational Resources Information Center
Urbassek, Herbert M.
2009-01-01
The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…
Thomas precession and squeezed states of light
NASA Technical Reports Server (NTRS)
Han, D.; Hardekopf, E. E.; Kim, Y. S.
1989-01-01
The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.
Nonrelativistic Contribution to Mercury's Perihelion Precession.
ERIC Educational Resources Information Center
Price, Michael P.; Rush, William F.
1979-01-01
Presents a calculation of the precession of the perihelion of Mercury due to the perturbations from the outer planets. The time-average effect of each planet is calculated by replacing that planet with a ring of linear mass density equal to the mass of the planet divided by the circumference of its orbit. (Author/GA)
Geodynamo, Core Energy, Precession, and Spheroids
NASA Astrophysics Data System (ADS)
Vanyo, J. P.
2008-12-01
Mantle precession and core oblateness have been suggested for support of geodynamo energy dissipation and fluid motions. Precession usually has been considered negligible. With a precession motion of 25,800 year/period and a period of 60x360 = 21,600 arc-minute, the motion is on the order of one arc-minute/year (little off by the sine of Earth's obliquity). The 'rigid' mantle changes its axis direction about one arc-minute each year. That is a major motion. Compare the sun's or the moon's apparent diameter of about 32 arc- minute. The CMB's oblateness is about (a-b)/a = 1/400. With (a-b) = 8.7 km, and estimates of its surface irregularities over 3 km, the CMB is neither smooth nor oblate. Between its 'calculated' oblate CMB and a 'calculated' included sphere, its very thin crescentoid interstice will generate turbulence and separation form drag with large dissipation energy rates. The actual core will not see the CMB but an effective smaller fluid sphere. Precession is an important feature of a geodynamo, but 1/400 oblateness is less pertinent. The core axis lags the precessing mantle axis by a small angle. This misalignment daily rubs the core against the mantle and produces major energy dissipation rates. The liquid core maintains its average lagging location by coupling drag and core internal flows. A correct analysis will use a 'rigid-sphere' model (1972 ref.) for energy, geodynamo, and coupling motion. The outer core is a melt whose temperature and heat are well known but not its cause. Some will be residual heat, but much of it will be generated by precession and radioactivity. Rigid-sphere energy (J. Appl. Mech. 1972, v39, 18-24). Geodynamo precession (Geo. Astro. Fluid Dyn. 1991, v59, 209-234). Turbulent laminar flow (Geophys. J. Intl., 1995, v121, 136-142). Concentric cylinders (Geophys. J. Intl., 2000, v142, 409-425). Core mantle coupling (Geophys. J. Intl., 2004, v158, 470-478). Theory and data (Rotating Fluids", 2001, Dover, Figs. 4.5, 4.10 and pp. 326
An extension of Newton's apsidal precession theorem
NASA Astrophysics Data System (ADS)
Valluri, S. R.; Yu, P.; Smith, G. E.; Wiegert, P. A.
2005-04-01
Newton's apsidal precession theorem in Proposition 45 of Book I of the `Principia' has great mathematical, physical, astronomical and historical interest. The lunar theory and the precession of the perihelion of the planet Mercury are but two examples of the applications of this theorem. We have examined the precession of orbits under varying force laws as measured by the apsidal angle θ(N, e), where N is the index for the centripetal force law, for varying eccentricity e. The paper derives a general function for the apsidal angle, dependent only on e and N as the potential is spherically symmetric. Further, we explore approximate ways of the solution of this equation, in the neighbourhood of N= 2 which happens to be the case of greatest historical interest. Exact solutions are derived where they are possible. The first derivatives ∂θ/∂N and ∂θ/∂h[where h(N, e) is the angular momentum] are analytically expressed in the neighbourhood of N= 2 (case of the inverse square law). The value of ∂θ/∂N is computed numerically as well for 1 <=N < 3. The resulting integrals are interesting improper integrals with singularities at both limits. Some of the integrals, especially for N= 2, can be given in closed form in terms of generalized hypergeometric functions which are reducible in terms of algebraic and logarithmic functions. No evidence was found for isolated cases of zero precession as e was increased. The N= 1 case of the logarithmic potential is also briefly discussed in view of its interest for the dynamics of eccentric orbits and its relevance to realistic galaxy models. The possibility of apsidal precession was also examined for a few cases of high-eccentricity asteroids and extrasolar planets. We find that these systems may provide interesting new laboratories for studies of gravity.
Spin precession modulation in a magnetic bilayer
Stupakiewicz, A.; Maziewski, A.; Pashkevich, M.; Stognij, A.; Novitskii, N.
2012-12-24
We report on modulation of the spin precession in a Co/garnet bilayer by femtosecond laser excitation using time-resolved magneto-optical tools. Damped oscillations in the Faraday rotation transients representing precessional motion of the magnetization vector are observed in both the 2 nm Co layer and 1.8 {mu}m garnet of the bilayer with distinct frequencies differing by about a factor of two. The excitation efficiency of these precessions strongly depends on the out-of-plane magnetic field. The modulation effect with the coupling in a magnetic bilayer can be useful for non-thermally controlling the magnetization of nanomagnets and ultrafast switching in magnetic nanodevices.
Relativistic spin precession in the double pulsar.
Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea
2008-07-04
The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.
Non-rigid precession of magnetic stars
NASA Astrophysics Data System (ADS)
Lander, S. K.; Jones, D. I.
2017-06-01
Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.
Geodetic precession or dragging of inertial frames
Ashby, N. ); Shahid-Saless, B. )
1990-08-15
In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism.
Thomas precession, Wigner rotations and gauge transformations
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Son, D.
1987-01-01
The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.
Turbulent mixing in a precessing sphere
Goto, Susumu Shimizu, Masaki; Kawahara, Genta
2014-11-15
By numerically simulating turbulent flows at high Reynolds numbers in a precessing sphere, we propose a method to enhance the mixing of a fluid confined within a smooth cavity by its rotational motion alone. To precisely evaluate the mixing efficiency, we extend the quantification method proposed by Danckwerts [“The definition and measurement of some characteristics of mixtures,” Appl. Sci. Res. A 3, 279–296 (1952)] to the case in which only a finite number of fluid particle trajectories can be known. Our accurate numerical tracking of fluid particles in the flow, which is controlled by the Reynolds number (an indicator of the spin rate) and the Poincaré number (the precession rate), shows the following results. First, the mixing process on the time scale normalized by the spin period is independent of the Reynolds number as long as it is high enough for the flow to be developed turbulence. Second, fastest mixing is achieved under weak precession (Poincaré number ≈0.1); in such cases, perfect mixing requires only 10–15 spins of the container. Third, the power to sustain turbulence is a weakly increasing function of the Poincaré number, and the energy efficiency of the mixing is also maximized when the Poincaré number is about 0.1. Fourth, efficient mixing driven by the weak precession arises from the effective cooperation of complex large-scale flow and small-scale turbulence, which itself is sustained by the large-scale flow.
Warp evidence in precessing galactic bar models
NASA Astrophysics Data System (ADS)
Sánchez-Martín, P.; Romero-Gómez, M.; Masdemont, J. J.
2016-04-01
Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, this way confirming the theoretical results.
Thomas precession and its associated grouplike structure
NASA Astrophysics Data System (ADS)
Ungar, Abraham A.
1991-09-01
Mathematics phenomena and discovers the secret analogies which unite them. Joseph Fourier. Where there is physical significance, there is pattern and mathematical regularity. The aim of this article is to expose a hitherto unsuspected grouplike structure underlying the set of all relativistically admissible velocities, which shares remarkable analogies with the ordinary group structure. The physical phenomenon that stores the mathematical regularity in the set of all relativistically admissible three-velocities turns out to be the Thomas precession of special relativity theory. The set of all three-velocities forms a group under velocity addition. In contrast, the set of all relativistically admissible three-velocities does not form a group under relativistic velocity addition. Since groups measure symmetry and exhibit mathematical regularity it seems that the progress from velocities to relativistically admissible ones involves a loss of symmetry and mathematical regularity. This article reveals that the lost symmetry and mathematical regularity is concealed in the Thomas precession. Following a presentation of the group axioms, analogous axioms underlying the grouplike structure of velocities in the relativistic regime are presented. These turn out to include the usual group axioms in which the associative-commutative laws are relaxed by means of the Thomas precession. In order to expose the physics student to the power and elegance of abstract mathematics, our results are placed in the context of an abstract real inner product space. However, not much is lost if the student always assumes that the abstract real inner product space is the familiar Euclidean three-space.
Structure refinement from precession electron diffraction data.
Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D
2013-03-01
Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.
Quipus and System of Coordinated Precession
NASA Astrophysics Data System (ADS)
Campos, T. C.
2004-05-01
The Incas of ancient Peru possessed no writing. Instead, they developed a unique system expressed on spatial arrays of colored knotted cords called Quipus to record and transmit information throughout their vast empire. In their thorough description of quipus, Ascher & Ascher observed that in two cases the numbers registered in their strings have a very special relationship to each other. For this to occur the numbers must have been obtained through the multiplication of whole numbers by fractions or decimals, operations apparently beyond the arithmetic knowledge of the Incas. The quipus AS120 and AS143, coming from Ica (Peru) and conserved in the Museum of Berlin has the suitable characteristics previously. In the AS143 there is a the relationship with the systems of coordinated precession (tilt of Earth's spin axis (40036); eccentricity of Earth's orbit (97357); and precession of equinoxes (between 18504 and 23098)). For the history of the Earth are necessary an chronometer natural to coordinate and to classify the observations and this chronometer comes to be the vernal point, defining the vernal point as" a sensitive axis of maximum conductivity" as itdemonstrates it the stability of the geomagnetic equator (inclination of the field is zero grades), in the year 1939 calculated with the IGRF from the year 1900 up to the 2004 and that it is confirmed with tabulated data of the Geophysical Institute of Huancayo (Peru),from that date until this year (2004) and this fluctuating between the 12-14 South.,on the other hand in the area of Brazil it has advanced very quickly toward the north, and above to 108 km. approximately it is located the equatorial electrojet that is but intense in the equinoxes in South America. And this stability from the point of view of the precession of the equinoxes this coinciding with the entrance of the apparent sun for the constellation of Aquarius, being this mechanism the base to establish a system of coordinated precession where it is
Ballistic missile precession frequency extraction by spectrogram's texture
NASA Astrophysics Data System (ADS)
Wu, Longlong; Xu, Shiyou; Li, Gang; Chen, Zengping
2013-10-01
In order to extract precession frequency, an crucial parameter in ballistic target recognition, which reflected the kinematical characteristics as well as structural and mass distribution features, we developed a dynamic RCS signal model for a conical ballistic missile warhead, with a log-norm multiplicative noise, substituting the familiar additive noise, derived formulas of micro-Doppler induced by precession motion, and analyzed time-varying micro-Doppler features utilizing time-frequency transforms, extracted precession frequency by measuring the spectrogram's texture, verified them by computer simulation studies. Simulation demonstrates the excellent performance of the method proposed in extracting the precession frequency, especially in the case of low SNR.
Zeeko precession for free-form polishing
NASA Astrophysics Data System (ADS)
Procháska, F.; Poláková, I.; Polák, J.; Matoušek, O.; Tomka, D.
2016-11-01
The aim of this work is an exploration of the options for optical surface polishing using the Zeeko IRP 100 machine and raster kinematics suitable for free-form polishing. For this purpose, aspheric surfaces were polished in raster prepolishing mode and then in Precession raster 3D shape correction, which is based on the Dwell time tool movement control. It was found that shape accuracy can achieve the value of approximately 35 nm RMS. The main inaccuracy was caused by the mid-spatial frequencies generated by the kinematics of the applied tools, which also limited the achievable values of microroughness.
Venus's southern polar vortex reveals precessing circulation.
Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F
2011-04-29
Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.
Evaluation of a possible upgrade of the IAU 2006 precession
NASA Astrophysics Data System (ADS)
Liu, J.-C.; Capitaine, N.
2017-01-01
Context. The International Astronomical Union (IAU) adopted a new precession model at its 2006 General Assembly. After more than ten years since the publication of the so-called IAU 2006 precession, we have noticed progress in solar system ephemerides and geophysical observations, which can be used to refine the precession model. Another progress is the increase by 30% since 2003, of the length of the very long baseline interferometry (VLBI) observations to be compared with the theoretical model. Aims: The aim of this paper is to investigate the possibility of upgrading the IAU 2006 precession model based on new solutions of the Earth-Moon barycenter (EMB) motion, new theoretical contributions to the precession rates, and the revised J2 long-term variation obtained from the satellite laser ranging (SLR). Methods: The new precession expressions for the ecliptic are derived by fitting the new analytical planetary theory VSOP2013 to the numerical ephemerides DE422 or INPOP10a. The solution for the precession of the equator was obtained by integrating the dynamical precession equations with the use of an updated Earth model including the J2 quadratic long-term variation. The new precession expressions (denoted LC solution in this paper) are compared with the IAU 2006 model by using the most accurate VLBI observations up to 2015. Results: For the precession of the ecliptic, the changes in the new solutions with respect to the IAU 2006 are about several tens of microarcseconds in the linear terms of PA and QA. The upgraded precession of the equator is such that the quadratic and cubic terms in the quantity ψA differ significantly from IAU 2006 due to the revised J2 model. The statistics of the VLBI celestial pole offsets (1979-2015) and least squares fits with different empirical models, show that the LC precession is slightly more consistent with the VLBI observations, but the improvement relative to the IAU 2006 model is not definitely convincing at present
TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS
Montgomery, M. M.
2012-07-10
Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.
precession: Dynamics of spinning black-hole binaries with python
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-06-01
We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.
Precession electron diffraction – a topical review
Midgley, Paul A.; Eggeman, Alexander S.
2015-01-01
In the 20 years since precession electron diffraction (PED) was introduced, it has grown from a little-known niche technique to one that is seen as a cornerstone of electron crystallography. It is now used primarily in two ways. The first is to determine crystal structures, to identify lattice parameters and symmetry, and ultimately to solve the atomic structure ab initio. The second is, through connection with the microscope scanning system, to map the local orientation of the specimen to investigate crystal texture, rotation and strain at the nanometre scale. This topical review brings the reader up to date, highlighting recent successes using PED and providing some pointers to the future in terms of method development and how the technique can meet some of the needs of the X-ray crystallography community. Complementary electron techniques are also discussed, together with how a synergy of methods may provide the best approach to electron-based structure analysis. PMID:25610633
Precession, Nutation and Wobble of the Earth
NASA Astrophysics Data System (ADS)
Dehant, V.; Mathews, P. M.
2015-04-01
Covering both astronomical and geophysical perspectives, this book describes changes in the Earth's orientation, specifically precession and nutation, and how they are observed and computed in terms of tidal forcing and models of the Earth's interior. Following an introduction to key concepts and elementary geodetic theory, the book describes how precise measurements of the Earth's orientation are made using observations of extra-galactic radio-sources by Very Long Baseline Interferometry techniques. It demonstrates how models are used to accurately pinpoint the location and orientation of the Earth with reference to the stars and how to determine variations in its rotation speed. A theoretical framework is also presented that describes the role played by the structure and properties of the Earth's deep interior. Incorporating suggestions for future developments in nutation theory for the next generation models, this book is ideal for advanced-level students and researche! rs in solid Earth geophysics, planetary science and astronomy.
Thomas precession: Where is the torque
Muller, R.A. )
1992-04-01
Special relativity appears to violate the conservation of angular momentum {bold L} since it predicts that an accelerated gyroscope will precess, i.e., {bold L} will change in the absence of any applied torque. The paradox is resolved in a simple example by demonstrating that there is a torque present. The mass distribution in the gyroscope undergoes a relativistic distortion, and the center of mass is displaced away from the position of the accelerating force. The resulting torque {tau}={ital d}{bold L}/{ital dt}. The model also shows the physical origins of spin-orbit coupling and of the oscillating term.'' A related calculation shows why a moving magnetic dipole has an {ital electric} dipole moment.
Gyroscope precession in special and general relativity from basic principles
NASA Astrophysics Data System (ADS)
Jonsson, Rickard M.
2007-05-01
In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.
Forward and Backward Precession of a Vertical Anisotropically Supported Rotor
NASA Astrophysics Data System (ADS)
Muszynska, A.
1996-04-01
This paper presents the analytical and experimental study of a vertical, overhung imbalanced rotor supported by flexible, anisotropic bearings. The results show that existence of imbalance and shaft bow causes the synchronous forced precession of the rotor to be forward (below the first value of split balance resonance and above the second value of the split balance resonance) or backward (between the two values of the split resonance). This phenomenon is classical. The new result consists of exploring the existence of forward precession of the inboard and midspan rotor sections while the outboard disk is precessing backward. The sensitivity analysis shows which system parameters are mainly responsible for this apparently bizarre phenomenon.
Reduction of electron channeling in EDS using precession.
Liao, Yifeng; Marks, Laurence D
2013-03-01
We demonstrated that EDS measurement can be significantly improved by precessing the electron beam, thereby reducing electron channeling effects. For a SrTiO3 specimen orientated along the [001] zone axis, the measured strontium to titanium atomic ratio was 0.74-0.80 using conventional EDS methods, and the ratio was improved to ~0.99 by precessing the electron beam for angles greater than 22.54 mRad. In ALCHEMI-like experiments in which the specimen was tilted to near two-beam condition, the strontium to titanium ratio was insensitive to the deviation from the Bragg condition using a precessed electron beam. Similar reduction of electron channeling effects was also observed in precession-assisted EDS measurements for an L21-ordered Fe2MnAl intermetallic alloy tilted to the [011] zone axis as well as near two-beam conditions.
Observing Lense-Thirring precession in tidal disruption flares.
Stone, Nicholas; Loeb, Abraham
2012-02-10
When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted x-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.
GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS
Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu
2012-06-10
The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.
The Equivalence of Precession Phenomena in Metric Theories of Gravity
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
A simple argument is presented that demonstrates clearly, without the need for detailed calculation, how geodetic precession of a gyroscope and the effect of fram-draggin are fundamentally equivalent.
AR Sco: A Precessing White Dwarf Synchronar?
NASA Astrophysics Data System (ADS)
Katz, J. I.
2017-02-01
The emission of the white dwarf–M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. Synchronization requires a magnetic field ∼100 Gauss at the M dwarf and ∼ {10}8 Gauss at the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf, within the near zone of the rotating white dwarf’s field, by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf’s magnetic field sweeps past the M dwarf or by a misaligned white dwarf rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of the optical maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.
Freeman Dyson and Gravitational Spin Precession
NASA Astrophysics Data System (ADS)
Hari Dass, N. D.
2014-04-01
In 1974 Hulse and Taylor1 discovered the binary pulsar. At that time Prof. Dyson was visiting the Max Planck Institute for Physics at Munich, where I was also working. He initiated a number of discussions on this object. During them it occurred to me that this system could be used to test Geodetic Precession in Einsteins theory, which, even after years of work by the Stanford gyroscope expt,2 had remained a challenge. I showed some preliminary calculations to Prof Dyson and he encouraged me to do a more refined job. To be applicable to the binary pulsar, one needed to generalise the general relativistic calculations to beyond the so called test particle assumption. Barker and O'Connell3 had obtained such a result from analysing the gravitational interactions of spin-1/2 Dirac fermions in linearized spin-2 theories of gravitation. With C. F. Cho I produced a purely classical calculation, using Schwingers Source theory.4 Börner, Ehlers and Rudolf confirmed this result with their general relativistic calculations shortly after.5 With V. Radhakrishnan, I gave a detailed model for the pulse width and polarization sweep as a means of observing this effect.6-9 All throughout Prof. Dyson was supportive with reading the manuscripts and his critical comments. In 2005, coincidentally the centennial of the Annus Mirabilis (1905), Hotan, Bailes and Ord observed this in the binary pulsar J1141-6545.10
Stability Analysis of a Spinning and Precessing Viscoelastic Rotor Model
NASA Astrophysics Data System (ADS)
Bose, S.; Nandi, A.; Neogy, S.
2013-10-01
The present work deals with stability analysis of a spinning and precessing gyroscopic systems, where the spin axis and precession axis intersect at right angle. The nutation speed is zero, the spin and precession speeds are considered to be uniform and the precession axis is located at one end of the shaft. The properties of the shaft material correspond to a four element type linear viscoelastic model. The shaft disk system is assumed to be axially and torsionally stiff. For analysis, a simple rotor has been considered with the rigid disk placed on a massless viscoelastic shaft at specified locations from one end of the shaft. The governing parametric equations for such a rotor are derived in the simultaneously spinning and precessing frame. A stability analysis is performed considering both two- and four-degree of freedom models. The stability borderlines are computed considering spin and precession speeds as parameters. It is shown that though viscoelastic material may appear attractive for its large material damping, for gyroscopic systems it may lead to unstable vibrations.
Contributions to the Earth's Obliquity Rate, Precession, and Nutation
NASA Technical Reports Server (NTRS)
Williams, James G.
1994-01-01
The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub 2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024 sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The effects have generally been allowed for in past nutation theories and some precession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta(psi) plus out-of-phase contributions of 0.14 mas in Delta(psi) and -0.03 mas in Delta(sub epsilon). The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C =0.003 273 763 4 which, in combination with a satellite-derived J(sub 2), gives a normalized polar moment of inertia C/MR(exp 2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from
Perihelion precession, polar ice and global warming
NASA Astrophysics Data System (ADS)
Steel, Duncan
2013-03-01
The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.
A Relativistic Long-term Precession of the Earth
NASA Astrophysics Data System (ADS)
Tang, K.
2016-05-01
A long-term precession represents a secular motion of the ecliptic and th equator in a long time interval. With Vondrák et al. (2011), we assume that precession covers all periods longer than 100 centuries, while the shorter ones are included in the nutation. This thesis deals with the long-term precession in a relativistic framework. Compared with the P03 precession theory which is only valid for several centuries around the epoch J2000.0, the new theory better reflects the realistic long-term behavior of precession. All previous works are not fully consistent with General Relativity. They only consider the dominant relativistic corrections: the first-order post-Newtonian corrections due to the Sun and the geodetic precession. Their standard way to account for the geodetic precession is to solve the purely Newtonian equations of rotational motion and add the geodetic precession as a correction to the solution. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. Recently, Klioner, Gerlach, and Soffel (2010) have constructed a relativistic theory of Earth's rotation. According to the post-Newtonian equations of rotational motion given by Klioner
Contributions to the Earth's obliquity rate, precession, and nutation
NASA Technical Reports Server (NTRS)
Williams, James G.
1994-01-01
The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The J(sub2) effects have generally been allowed for in past nutation theories and some procession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta phi plus out-of-phase contributions of 0.14 mas in Delta phi and -0.03 mas in Delta epsilon. The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C = 0.003 273 763 4 which, in combination with a satellite-derived J(sub2), gives a normalized polar moment of inertia C/MR(exp2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides
Enhanced energy fluxes via phase precession in forced Burgers equation
NASA Astrophysics Data System (ADS)
Murray, Brendan; Bustamante, Miguel; Buzzicotti, Michele; Biferale, Luca
2016-11-01
We present a study of phase dynamics in the non-linear forced Burgers' equation. We uncover a connection between energy flux across scales and the evolution of triad phase combinations in Fourier space. As this energy is dissipated at small scales, real-space shock structures are associated with entangled correlations amongst the phase precession dynamics and the amplitude evolution of triads in Fourier space. We compute precession frequencies of the triad phases, which show a non-Gaussian distribution with multiple peaks and fat tails, with significant correlation between precession frequencies and amplitude growth. The observed fat tails and non-zero precession frequencies are two key criteria for enhancing energy fluxes via precession resonance. We search for this resonance by varying the forcing strength and frequency and, additionally, by modifying the dimension of the underlying system via fractal Fourier decimation. Supported by COST (European Cooperation in Science and Technology, Action MP1305) and SFI (Science Foundation Ireland, research Grant No. 12/IP/1491).
Some new thoughts about long-term precession formula
NASA Astrophysics Data System (ADS)
Vondrák, J.; Capitaine, N.; Wallace, P.
2011-10-01
In our preceding study (Vondrák et al. 2009) we formulated developments for the precessional contribution to the CIP X, Y coordinates suitable for use over long time intervals. They were fitted to IAU 2006 close to J2000.0 and to the numerical integration of the ecliptic (using the integrator package Mercury 6) and of the general precession and obliquity (using Laskar's solution LA93) for more distant epochs. Now we define the boundary between precession and nutation (both are periodic) to avoid their overlap. We use the IAU 2006 model (that is based on the Bretagnon's solution VSOP87 and the JPL planetary ephemerides DE406) to represent the precession of the ecliptic close to J2000.0, a new integration using Mercury 6 for more distant epochs, and Laskar's LA93 solution to represent general precession and obliquity. The goal is to obtain new developments for different sets of precession angles that would fit to modern observations near J2000.0, and at the same time to numerical integration of the translatory-rotatory motions of solar system bodies on scales of several thousand centuries.
Contrasting responses to orbital precession on Titan and Earth
NASA Astrophysics Data System (ADS)
Liu, Junjun; Schneider, Tapio
2016-07-01
Earth and Titan exhibit contrasting atmospheric responses to orbital precession. On Earth, most (water) precipitation falls in low latitudes, and precipitation is enhanced in a hemisphere when perihelion occurs in that hemisphere's summer. On Titan, most (methane) precipitation falls in high latitudes, and precipitation is enhanced in a hemisphere when aphelion occurs in that hemisphere's summer. We use a Titan general circulation model to elucidate the dynamical reasons for these different responses to orbital precession. They arise primarily because of the different diurnal rotation rates of Titan and Earth. The slower rotation rate of Titan leads to wider Hadley cells that transport moisture into polar regions. Changes in the length of summer, rather than in the intensity of summer insolation as in Earth's tropics, then dominate the precession response of the hydrologic cycle.
Precession resonance mechanism in deep-water gravity surface waves
NASA Astrophysics Data System (ADS)
Bustamante, Miguel; Lucas, Dan
2016-11-01
Discovered by Bustamante et al. in 2014 and published in Phys. Rev. Lett. in the same year, precession resonance is a mechanism whereby strong nonlinear energy transfers occur between modes of oscillations whose frequencies are detuned: the amplitude-dependent precession frequencies of the phases help restore the resonance, hence the name "precession resonance". After explaining how this mechanism works and how robust it is, we will discuss new applications of this effect in systems of technological interest, focusing on deep-water gravity surface waves. We report transfer efficiencies of up to 40%, depending on the numerical-experimental setup. All evidence gathered so far points to the conclusion that, to leading order, this effect is dominated by triad interactions at small (but finite) amplitudes. Joint work with Dan Lucas (DAMTP, Cambridge). Financially supported by Science Foundation Ireland (SFI) under research Grant No. 12/IP/1491.
Investigating the Structural Stability of the Precession of Plan
NASA Astrophysics Data System (ADS)
Galiullin, I. A.
The possibility of the regular precession of a symmetric body in a Newtonian force field has been revealed by Routh and Tisserand, who studied such motion in the context of the Earth-Sun-Moon system. Here, regular precession is studied for planets with a potential represented, similarly, by a function of the nutation angle. Specifically, Venus, Mars, Jupiter, and Uranus are considered. Stability conditions are obtained (in par- ticular, for the Earth) with the use of the Skimel' criterion. The Beletskii evolutionary equations are applied to investigating the Neptune-Triton system on the basis of the Voyager mission data. The stability of the singular point that corresponds to the regular precession of Neptune about the normal to its orbital plane is established applying the Lyapunov center theorem.
Anomalous precession of planets for a Weyl conformastatic solution
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Peñagos, Joice A. M.; Alárcon, Manuel S.
2016-12-01
In this article, we investigate the anomalous precession of planets in the nearly Newtonian gravitational regime. This limit is obtained by application of the slow motion condition to the geodesic equations without altering the geodesic deviation equations. Using a non-standard expression for the perihelion advance from the Weyl conformastatic vacuum solution as a model, we can describe the anomaly in planetary precession compared with different observational data, consisting of ephemerides of planets and the Moon (EPM2008 and EPM2011) and Fienga et al.'s planetary and lunar ephemeris (INPOP10a). As a result, using the Levenberg-Marquardt algorithm and calculating the related χ-squared statistic, we find that the anomaly is statistically irrelevant, in accordance with the INPOP10a observations. As a complement to this work, we also perform an application to the relativistic precession of giant planets using observational data calibrated with EPM2011.
Analytic Gravitational Waveforms for Generic Precessing Binary Inspirals
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolás
2017-02-01
Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully precessing, quasicircular binary inspirals.
Analytic Gravitational Waveforms for Generic Precessing Binary Inspirals.
Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolás
2017-02-03
Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully precessing, quasicircular binary inspirals.
Bistable flows forced by precession in planetary cores
NASA Astrophysics Data System (ADS)
Cebron, D.
2015-12-01
The presence of the Moon leads the Earth to precess, which forces a flow in its outer core via the spheroidal Core-Mantle Boundary (CMB). Reciprocally, this is also true for the liquid core core of the Moon, but the CMB is rather a triaxial ellipsoid in this case. In this work, we investigate if the precession can force two different stable flows for the same control parameters, allowing then the core to switch from one state to the other in presence of noise (convection, turbulence, etc.). To do so, we systematically study the parameter ranges where the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739-51) lead to multiple solutions. Then, using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412-39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these multiple solutions, their conditions of existence, and their stability. We also report for the first time the theoretical possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids (such as the liquid core of the Moon). Finally, using the formula we have derived from pre-existent models of the literature, we conclude that the Earth and the Moon do not undergo such a bistable flow forced by precession. However, according to the models of the literature, such a bistable precession forced state exists for geophysically relevant ranges of parameters, and is thus always possible a priori in precessing liquid cores of terrestrial bodies.
Precessive sand ripples in intense steady shear flows.
Restrepo, Juan M; Moulton, Derek E; Uys, Hermann
2011-03-01
We describe experimental observations of fully developed, large-amplitude bars under the action of a shearing fluid. The experiments were performed in an annular tank filled with water and sheared above by a steady motor source. The same steady shearing flow can produce a variety of different erodible bed manifestations: advective or precessive bars, which refer to bar structures with global regularity and a near-steady precession velocity; interactive bars, the structure of which depends on local rearrangements, which are in turn a response to complex background topography; and dispersive bars, which are created when an initially isolated mound of sand evolves into a train of sand ripples. Of these, the most amenable to analysis are the precessive bars. For precession bars, we find that the skin depth, which is the nondimensionalized mean-field transport rate, grows exponentially as a function of the shear velocity. From this, we arrive at an analytical expression that approximates the precession speed of the bars as a function of shear velocity. We use this to obtain a formula for sediment transport rate. However, in intense flows, the bars can get large engendering boundary layer separation, leading to a different dynamic for bar formation and evolution. Numerical flow calculations over an experimentally obtained set of precessive bars are presented and show that classical parametrizations of mass flux in terms of bottom gradients have shortcomings. Within the range of shear rates considered, a quantity that does not change appreciably in time is the aspect ratio, which is defined as the ratio of the average bar amplitude, with respect to a mean depth, to the average bar length.
Thomas precession and spin interaction energy in very special relativity
NASA Astrophysics Data System (ADS)
Ganjitabar, Hassan; Shojai, Ali
2014-08-01
Very Special Relativity (VSR), proposed by Cohen and Glashow, considers one of the subgroups of Poincaré group as the symmetry of spacetime. This paper investigates the transformations of electromagnetic fields under boosts of VSR, and by the aid of them studies the interaction energy between spin of an electron and external electromagnetic fields. Here, we argue that Thomas precession, one of the consequences of Special Relativity (SR), does not exist in HOM(2) avatar of VSR. The predictions of SR and VSR about the spin interaction energy in a certain case are compared, and despite the absence of Thomas precession in VSR, no noticeable departure is seen.
Internal Waves and Synchronized Precession in a Cold Vapor
NASA Astrophysics Data System (ADS)
Oktel, M. Ö.; Levitov, L. S.
2002-06-01
Exchange in a Boltzmann gas of bosons with several internal states leads to collective transport of internal polarization. The internal dynamics can be understood as Larmor precession in the presence of a torque induced by atoms on each other via exchange coupling. A generalized Bloch equation that includes interatomic exchange effects as well as orbital motion in the gas is derived and used to interpret a recent experiment by Lewandowski et al. as an excitation of a collective wave of internal state polarization. It is shown that exchange leads to formation of domains in which precession frequencies are synchronized.
Internal waves and synchronized precession in a cold vapor
NASA Astrophysics Data System (ADS)
Oktel, Mehmet; Levitov, Leonya
2002-03-01
Exchange in a Boltzmann gas of bosons with several internal states leads to collective transport of internal polarization. The internal dynamics can be understood as Larmor precession in the presence of a torque induced by atoms on each other via exchange coupling. A generalized Bloch equation that includes interatomic exchange effects as well as orbital motion in the gas is derived and used to interpret recent experiment by Lewandowski et al.[1] as an excitation of a collective wave of internal state polarization. It is shown that exchange leads to formation of domains in which precession frequencies are synchronized. [1] Lewandowski et.al cond-mat/0109476
Analytic gravitational waveforms for generic precessing compact binaries
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas
2017-01-01
Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.
Bounce Precession Fishbones in the National Spherical Tokamak Experiment
Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Roscoe White
2003-06-27
Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population.
Ultimate Limit of Electron-Spin Precession upon Reflection in Ferromagnetic Films
NASA Astrophysics Data System (ADS)
Hallal, A.; Berdot, T.; Dey, P.; Bismaths, L. Tati; Joly, L.; Bourzami, A.; Scheurer, F.; Bulou, H.; Henk, J.; Alouani, M.; Weber, W.
2011-08-01
We report the discovery of 180° electron-spin precession in spin-polarized electron-reflection experiments on Fe films on Ag(001), the largest possible precession angle in a single electron reflection. Both experiments as a function of Fe film thickness and ab initio calculations show that the appearance of this ultimate spin precession depends with utmost sensitivity on the relaxation of the Fe surface layers during growth. Similar spin precession is also predicted for other ferromagnetic films.
Sparse representations of gravitational waves from precessing compact binaries.
Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel
2014-07-11
Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.
Transit probability of precessing circumstellar planets in binaries and exomoons
NASA Astrophysics Data System (ADS)
Martin, David. V.
2017-05-01
Over two decades of exoplanetology has yielded thousands of discoveries, yet some types of systems are still to be observed. Circumstellar planets around one star in a binary have been found, but not for tight binaries (≲5 au). Additionally, extra-solar moons are yet to be found. This paper motivates finding both types of three-body system by calculating analytic and numerical probabilities for all transit configurations, accounting for any mutual inclination and orbital precession. The precession and relative three-body motion can increase the transit probability to as high as tens of per cent, and make it inherently time-dependent over a precession period as short as 5-10 yr. Circumstellar planets in such tight binaries present a tempting observational challenge: enhanced transit probabilities but with a quasi-periodic signature that may be difficult to identify. This may help explain their present non-detection, or maybe they simply do not exist. Whilst this paper considers binaries of all orientations, it is demonstrated how eclipsing binaries favourably bias the transit probabilities, sometimes to the point of being guaranteed. Transits of exomoons exhibit a similar behaviour under precession, but unfortunately only have one star to transit rather than two.
Spin precession in a black hole and naked singularity spacetimes
NASA Astrophysics Data System (ADS)
Chakraborty, Chandrachur; Kocherlakota, Prashant; Joshi, Pankaj S.
2017-02-01
We propose here a specific criterion to address the existence or otherwise of Kerr naked singularities, in terms of the precession of the spin of a test gyroscope due to the frame dragging by the central spinning body. We show that there is indeed an important characteristic difference in the behavior of gyro spin precession frequency in the limit of approach to these compact objects, and this can be used, in principle, to differentiate the naked singularity from a black hole. Specifically, if gyroscopes are fixed all along the polar axis up to the horizon of a Kerr black hole, the precession frequency becomes arbitrarily high, blowing up as the event horizon is approached. On the other hand, in the case of naked singularity, this frequency remains always finite and well behaved. Interestingly, this behavior is intimately related to and is governed by the geometry of the ergoregion in each of these cases, which we analyze here. One intriguing behavior that emerges is, in the Kerr naked singularity case, the Lense-Thirring precession frequency (ΩLT ) of the gyroscope due to frame-dragging effect decreases as (ΩLT∝r ) after reaching a maximum, in the limit of r =0 , as opposed to r-3 dependence in all other known astrophysical cases.
Do Jets Precess... or Even Move at All?
NASA Astrophysics Data System (ADS)
Nixon, Chris; King, Andrew
2013-03-01
Observations of accreting black holes often provoke suggestions that their jets precess. The precession is usually supposed to result from a combination of the Lense-Thirring effect and accretion disk viscosity. We show that this is unlikely for any type of black hole system, as the disk generally has too little angular momentum compared with a spinning hole to cause any significant movement of the jet direction across the sky on short timescales. Uncorrelated accretion events, as in the chaotic accretion picture of active galactic nuclei (AGNs), change AGN jet directions only on timescales >~ 107 yr. In this picture AGN jet directions are stable on shorter timescales, but uncorrelated with any structure of the host galaxy, as observed. We argue that observations of black hole jets precessing on timescales short compared to the accretion time would be a strong indication that the accretion disk, and not the standard Blandford-Znajek mechanism, is responsible for driving the jet. This would be particularly convincing in a tidal disruption event. We suggest that additional disk physics is needed to explain any jet precession on timescales short compared with the accretion time. Possibilities include the radiation warping instability, or disk tearing.
Combined obliquity and precession pacing of late Pleistocene deglaciations.
Huybers, Peter
2011-12-08
Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.
Transit probability of precessing circumstellar planets in binaries and exomoons
NASA Astrophysics Data System (ADS)
Martin, David. V.
2017-01-01
Over two decades of exoplanetology have yielded thousands of discoveries, yet some types of systems are yet to be observed. Circumstellar planets around one star in a binary have been found, but not for tight binaries (≲ 5 AU). Additionally, extra-solar moons are yet to be found. This paper motivates finding both types of three-body system by calculating analytic and numerical probabilities for all transit configurations, accounting for any mutual inclination and orbital precession. The precession and relative three-body motion can increase the transit probability to as high as tens of per cent, and make it inherently time-dependent over a precession period as short as 5-10 yr. Circumstellar planets in such tight binaries present a tempting observational challenge: enhanced transit probabilities but with a quasi-periodic signature that may be difficult to identify. This may help explain their present non-detection, or maybe they simply do not exist. Whilst this paper considers binaries of all orientations, it is demonstrated how eclipsing binaries favourably bias the transit probabilities, sometimes to the point of being guaranteed. Transits of exomoons exhibit a similar behaviour under precession, but unfortunately only have one star to transit rather than two.
General Relativistic Precession in Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Werner, Stephanie; Hoffmann, Volker; Asher, David; Vaubaillon, Jeremie; Hajdukova, Maria; Li, Gongjie
2016-10-01
Introduction: One of the greatest successes of the Einstein's General Theory of Relativity (GR) was the correct prediction of the precession of perihelion of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre (ω) can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Analytical Approach and Numerical Integrations: Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of ω. Numerical integrations were done with package MERCURY incorporating the GR code to test the same effects. Numerical approach showed the same interesting relationship (as shown by analytical theory) between values of ω and the peaks/dips in MOID values. Previous works have shown that GR precession suppresses Kozai oscillations and this aspect was verified using our integrations. There is an overall agreement between both analytical and numerical methods.Summary and Discussion: We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements). Previous works have looked into impact probabilities and collision scenarios on
Lense-Thirring precession around neutron stars with known spin
NASA Astrophysics Data System (ADS)
Van Doesburgh, Marieke; van der Klis, Michiel
2016-07-01
Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of
Ballistic missile precession frequency extraction based on the Viterbi & Kalman algorithm
NASA Astrophysics Data System (ADS)
Wu, Longlong; Xie, Yongjie; Xu, Daping; Ren, Li
2015-12-01
Radar Micro-Doppler signatures are of great potential for target detection, classification and recognition. In the mid-course phase, warheads flying outside the atmosphere are usually accompanied by precession. Precession may induce additional frequency modulations on the returned radar signal, which can be regarded as a unique signature and provide additional information that is complementary to existing target recognition methods. The main purpose of this paper is to establish a more actual precession model of conical ballistic missile warhead and extract the precession parameters by utilizing Viterbi & Kalman algorithm, which improving the precession frequency estimation accuracy evidently , especially in low SNR.
Precession and circularization of elliptical space-tether motion
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Grosserode, Patrick
1993-01-01
In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.
Nonlinear dynamo action in a cylindrical container driven by precession
NASA Astrophysics Data System (ADS)
Nore, C.; Léorat, J.; Guermond, J.-L.; Luddens, F.
2011-12-01
Precession, which results simply from the composition of two rotations with distinct axes, is an efficient way to drive a 3D flow in a closed rigid container. Are such flows relevant to dynamo action in some astrophysical bodies? Positive answers are available for a spherical and a spheroidal containers, using parameters which are, however, not realistic. An experimental approach could be relevant to natural dynamos and seems within reach using a cylindrical container (cf. the experiment now planned at the DREsden Sodium facility for DYNamo and thermohydraulic studies in Germany (DRESDYN), F. Stefani, personal communication, 2011). Using a nonlinear magnetohydrodynamics (MHD) code (SFEMaNS), we numerically demonstrate that precession is able to drive a cylindrical dynamo.
Spin precession of Dirac particles in Kerr geometry
NASA Astrophysics Data System (ADS)
Farooqui, Anusar
2017-01-01
We isolate and study the transformation of the intrinsic spin of Dirac particles as they propagate along timelike geodesics in Kerr geometry. Reference frames play a crucial role in the definition and measurement of the intrinsic spin of test particles. We show how observers located in the outer geometry of Kerr black holes may exploit the symmetries of the geometry to set up reference frames using purely geometric, locally-available information. Armed with these geometrically-defined reference frames, we obtain a closed-form expression for the geometrically-induced spin precession of Dirac particles in the outer geometry of Kerr black holes. We show that the spin of Dirac particles does not precess on the equatorial place of Kerr geometry; and hence, in Schwarzschild geometry.
Precession of cylindrical dust particles in the plasma sheath
Banu, N.; Ticoş, C. M.
2015-10-15
The vertical precession of cylindrical dust particles levitated in the sheath of an rf plasma is experimentally investigated. Typically, the dust particles have two equilibrium positions depending on the orientation of their longitudinal axis: horizontal and vertical. A transition between these two states is induced by rapidly increasing the neutral gas pressure in the plasma chamber. During this transition, the cylindrical dust particles make an angle with the horizontal and rotate about their center of mass. The rotation speed increases as the dust rods aligned with the vertical axis. All dust particles will eventually end up in the vertical state while spinning fast about their longitudinal axis. Dust-dust interaction and the attracting ion wakes are possible mechanisms for inducing the observed dust precession.
Very Special Relativity is Incompatible with Thomas Precession
NASA Astrophysics Data System (ADS)
Das, Suratna; Mohanty, Subhendra
Glashow and Cohen make the interesting observation that certain proper subgroups of the Lorentz group like HOM(2) or SIM(2) can explain many results of special relativity like time dilation, relativistic velocity addition and a maximal isotropic speed of light. We show here that such SIM(2) and HOM(2) based VSR theories predict an incorrect value for the Thomas precession and are therefore ruled out by observations. In VSR theories the spin-orbital coupling in atoms turn out to be too large by a factor of 2. The Thomas-BMT equation derived from VSR predicts a precession of electrons and muons in storage rings which is too large by a factor of 103. VSR theories are therefore ruled out by observations.
Rotating and Precessing Dissipative-Optical-Topological-3D Solitons
NASA Astrophysics Data System (ADS)
Veretenov, N. A.; Rosanov, N. N.; Fedorov, S. V.
2016-10-01
We predict and study a new type of three-dimensional soliton: asymmetric rotating and precessing stable topological-dissipative-optical localized structures in homogeneous media with saturable amplification and absorption. The crucial factor determining their dynamics is the ratio of the diffusion coefficients characterizing the frequency dispersion and angular selectivity (dichroism) of the scheme. These vortex solitons exist and are stable for overcritical values of the selectivity coefficients and can be realized in lasers of large sizes with saturable absorption.
Contribution of HIPPARCOS to the Determination of Precession
NASA Astrophysics Data System (ADS)
Vityazev, V. V.
2002-01-01
The IAU (1976) luni-solar precession constant was derived by Fricke from intensive study of the catalog of 512 FK4-FK4/Sup distant stars. At present, when the data from the catalog HIPPARCOS is available, it is helpful to reconsider Fricke's analysis. This paper presents a redetermination of precession based on the following new factors: (a) the accurate parallaxes of stars have been taken into account; (b) galactic rotation and other kinematics have been eliminated from the proper motions of 512 stars; (c) the systems of the FK5 and improved GC catalog were used in combination with the HIPPARCOS catalog; (d) a new method (the MOTOR) of studying stellar kinematics was used. This method is based on the decomposition of proper motions on a set of orthogonal functions. The MOTOR, in contrast to the commonly used Least Squares Procedure, provides a test for whether or not the model is compatible with the data. Derived corrections to the IAU (1976) luni-solar precession constant are consistent with the results from VLBI observations and kinematic study of modern catalogues of proper motions.
WOBBLING AND PRECESSING JETS FROM WARPED DISKS IN BINARY SYSTEMS
Sheikhnezami, Somayeh; Fendt, Christian E-mail: fendt@mpia.de
2015-12-01
We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion–ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star–disk–jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.
Numerical simulations of a precession driven flow in a cylinder.
NASA Astrophysics Data System (ADS)
Giesecke, Andre; Gundrum, Thomas; Herault, Johann; Stefani, Frank
2015-04-01
Precession has long been discussed as a complementary energy source for driving the geodynamo. A fluid flow of liquid sodium in a cylindrical container, solely driven by precession, is considered as a source for magnetic field generation in the next generation dynamo experiment currently under development in the framework of DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). We present results from three-dimensional non-linear hydrodynamic simulations of a precession driven flow in cylindrical geometry. The main focus will be on non-axisymmetric time-dependent flow structures that could be responsible for dynamo action. Promising candidates may be triadic resonances that are caused by non-linear interaction of three distinct inertial modes. These modes have a comparable structure as the columnar convection cells that are responsible for dynamo action in geodynamo simulations, and it seems reasonable to expect similar properties in case of precessional forcing. Our simulations reveal clear triads at aspect ratios close to predictions from the linear theory. However, the emergence of these structures requires a remarkable long time-span of the order of a few hundred rotation periods till a (quasi-)steady state is reached. Furthermore, the amplitude of the waves with higher azimuthal wavenumbers remains well below the forced m=1 mode. Their ability for dynamo action will have to be verified in future simulations of the magnetic induction equation.
The precessing jets of 1E 1740.7-2942
NASA Astrophysics Data System (ADS)
Luque-Escamilla, Pedro L.; Martí, Josep; Martínez-Aroza, José
2015-12-01
Context. The source 1E 1740.7-2942 is believed to be one of the two prototypical microquasars towards the Galactic center region whose X-ray states strongly resemble those of Cygnus X-1. Yet, the bipolar radio jets of 1E 1740.7-2942 are very reminiscent of a radio galaxy. The true nature of the object has thus remained an open question for nearly a quarter of a century. Aims: Our main goal here is to confirm the Galactic membership of 1E 1740.7-2942 by searching for morphological changes of its extended radio jets in human timescales. This work was triggered as a result of recent positive detection of fast structural changes in the large-scale jets of the very similar source GRS 1758-258. Methods: We carried out an in-depth exploration of the Very Large Array public archives and fully recalibrated all 1E 1740.7-2942 extended data sets in the C configuration of the array. We obtained and analyzed matching beam radio maps for five epochs, covering years 1992, 1993, 1994, 1997 and 2000, with an angular resolution of a few arcseconds. Results: We clearly detected structural changes in the arc-minute jets of 1E 1740.7-2942 on timescales of roughly a year, which set a firm distance upper limit of 12 kpc. Moreover, a simple precessing twin-jet model was simultaneously fitted to the five observing epochs available. The observed changes in the jet flow are strongly suggestive of a precession period of ~1.3 yr. Conclusions: The fitting of the precession model to the data yields a distance of ~5 kpc. This value, and the observed changes, rule out any remaining doubts about the 1E 1740.7-2942 Galactic nature. To our knowledge, this microquasar is the second whose jet precession ephemeris become available after SS433. This kind of information is relevant to the physics of compact objects, since the genesis of the precession phenomenon occurs very close to the interplay region between the accretion disk and the compact object in the system. Appendix A and a movie associated to
Gyroscope precession along bound equatorial plane orbits around a Kerr black hole
NASA Astrophysics Data System (ADS)
Bini, Donato; Geralico, Andrea; Jantzen, Robert T.
2016-09-01
The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.
Progress Report of the IAU Working Group on Precession and the Ecliptic
2006-12-01
may be used with either the traditional rotation matrix, or those rotation matrices described in Capitaine et al. (2003) and Fukushima (2003). We...precession of about 6.4 mas cent−2 in longitude. Thus, the precession theory was not dynamically consistent. 93 Furthermore, Fukushima (2003) showed that...2003, Capitaine et al. 2003, and Fukushima 2003) have been published recently to address the shortcomings of the precession portion, including the
The use of precession modulation for nutation control in spin-stabilized spacecraft
NASA Technical Reports Server (NTRS)
Taylor, J. M.; Donner, R. J.; Tasar, V.
1974-01-01
The relations which determine the nutation effects induced in a spinning spacecraft by periodic precession thrust pulses are derived analytically. By utilizing the idea that nutation need only be observed just before each precession thrust pulse, a difficult continuous-time derivation is replaced by a simple discrete-time derivation using z-transforms. The analytic results obtained are used to develop two types of modulated precession control laws which use the precession maneuver to concurrently control nutation. Results are illustrated by digital simulation of an actual spacecraft configuration.
NASA Technical Reports Server (NTRS)
Zimmerman, M.
1979-01-01
The classical mechanics results for free precession which are needed in order to calculate the weak field, slow-motion, quadrupole-moment gravitational waves are reviewed. Within that formalism, algorithms are given for computing the exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely-precessing sources. The dominant terms are presented in series expansions of the waveforms for the case of an almost spherical object precessing with a small wobble angle. These series expansions, which retain the precise frequency dependence of the waves, may be useful for gravitational astronomers when freely-precessing sources begin to be observed.
Non-thermal optical excitation of terahertz-spin precession in a magneto-optical insulator
Parchenko, Sergii; Maziewski, Andrzej; Stupakiewicz, Andrzej; Satoh, Takuya; Yoshimine, Isao; Stobiecki, Feliks
2016-01-18
We demonstrate non-thermal ultrafast laser excitation of spin precession with THz frequency in Gd-Bi-substituted iron garnet via the inverse Faraday effect. The modulation of THz precession by about 60 GHz below the compensation temperature of magnetic moment was observed. The THz frequency precession was caused by the exchange resonance between the Gd and Fe sublattices; we attributed the low-frequency modulation to dielectric resonance mode with a magnetic contribution. We demonstrate the possibility of polarization-sensitive control of spin precession under THz generation by laser pulses, helping to develop high-speed magneto-optical devices.
On the observational appearances of a freely precessing neutron star in Hercules X-1
NASA Technical Reports Server (NTRS)
Postnov, K. A.; Prokhorov, M. E.; Shakura, N. I.
1991-01-01
Evidence for neutron star free precession is discussed, which is often presumed to be responsible for the observed 35-day cycle in Hercules X-1. The precise formula for the period derivative due to free precession is obtained under assumption that the precession period is much longer than that of the neutron star rotation. The optical light curves to be seen from the binary, with freely precessing accretion neutron star are simulated numerically. This simulation takes into account the reflection effect on the surface of the secondary component and on the accretion disk itself for different diagrams of x-ray emission.
Electrical control of flying spin precession in chiral 1D edge states
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
The forced precession of the Moon's inner core
NASA Astrophysics Data System (ADS)
Dumberry, Mathieu; Wieczorek, Mark A.
2016-07-01
The tilt angle of the 18.6 year precession of the Moon's solid inner core is unknown, but it is set by a balance between gravitational and pressure torques acting on its elliptical figure. We show here that to first order, the angle of precession of the inner core of a planetary body is determined by the frequency of the free inner core nutation, ωficn, relative to the precession frequency, Ωp. If |ωficn|≪|Ωp|, the inner core is blind to the gravitational influence of the mantle. If |ωficn|≫|Ωp|, the inner core is gravitationally locked to the mantle and is nearly aligned with it. If ωficn≈Ωp, large inner core tilt angles can result from resonant excitation. Viscous inner core relaxation and electromagnetic coupling can attenuate large tilt angles. For the specific case of the Moon, we show that ωficn is to within a factor of 2 of Ωp = 2π/18.6 yr-1. For a rigid inner core, this implies a tilt of 2 to 5° with respect to the mantle, and larger if ωficn is very close to Ωp. More modest tilt angles between 0 and 0.5° result if viscous relaxation within the inner core occurs on a timescale of one lunar day. Predictions from our model may be used in an attempt to detect the gravity signal resulting from a tilted inner core, to determine the past history of the inner core tilt angle, and to assess models of dynamo generation powered by differential rotation at the core-mantle and inner core boundaries.
Pluto and Charon: A Case of Precession-Orbit Resonance?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2000-01-01
Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
Measurement quality estimation of proton-precession magnetometers
NASA Astrophysics Data System (ADS)
Denisov, A. Y.; Denisova, O. V.; Sapunov, V. A.; Khomutov, S. Y.
2006-06-01
A method for calculating quality estimation of the magnetic field value measured by proton-precession magnetometers from data of single measurement is presented. This method is appropriate for frequency measurement algorithms which process time-series of signal's zero crossing. Expressions for measurement error estimation are obtained taking into account signal decay and correlated noise. Presented formulas allow a result reliability to be estimated immediately in single measurement and give an opportunity for complex control of a device performance. Correlation and relaxation corrections are given. It was experimentally tested that the standard deviation of measurements is in a good qualitative agreement with presented error estimation.
Observation of self-induced optical vortex precession.
Ketara, Mohamed El; Brasselet, Etienne
2013-06-07
We report on the observation of self-induced precession of an optical vortex as a result of the nonlinear interaction between light and liquid crystals. The phenomenon corresponds to an instability for the spin-orbit interaction of light that manifests as a spontaneous axial symmetry breaking, which leads to the orbital motion of the optical vortex around the beam propagation. A nonlinear spin Hall effect of light is experimentally identified, thereby unveiling an original demonstration of spin to extrinsic orbital light angular momentum self-conversion.
Three-axis atomic magnetometer based on spin precession modulation
Huang, H. C.; Dong, H. F. Hu, X. Y.; Chen, L.; Gao, Y.
2015-11-02
We demonstrate a three-axis atomic magnetometer with one intensity-modulated pump beam and one orthogonal probe beam. The main field component is measured using the resonance of the pumping light, while the transverse field components are measured simultaneously using the optical rotation of the probe beam modulated by the spin precession. It is an all-optical magnetometer without using any modulation field or radio frequency field. Magnetic field sensitivity of 0.8 pT/Hz{sup 1∕2} is achieved under a bias field of 2 μT.
Gravitomagnetic gyroscope precession in Palatini f(R) gravity
Ruggiero, Matteo Luca
2009-04-15
We study gravitomagnetic effects in the Palatini formalism of f(R) gravity. On using the Kerr-de Sitter metric, which is a solution of f(R) field equations, we calculate the impact of f(R) gravity on the gravitomagnetic precession of an orbiting gyroscope. We show that, even though an f(R) contribution is present in principle, its magnitude is negligibly small and far to be detectable in the present (like GP-B) and foreseeable space missions or observational tests around the Earth.
Resonant neutrino spin-flavor precession and supernova shock revival
Akhmedov, E.K.; Lanza, A.; Petcov, S.T.; Sciama, D.W.
1997-01-01
A new mechanism of supernova shock revival is proposed which involves the resonant spin-flavor precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The mechanism can be operative in supernovae for transition magnetic moments as small as 10{sup {minus}14}{mu}{sub B} provided the neutrino mass squared difference is in the range {Delta}m{sup 2}{approximately}(3 eV){sup 2}{minus}(600eV){sup 2}. It is shown that this mechanism can increase the neutrino-induced shock reheating energy by about 60{percent}. {copyright} {ital 1997} {ital The American Physical Society}
Geometric phase and gravitational precession of D-branes
Pedder, Chris; Sonner, Julian; Tong, David
2007-12-15
We study Berry's phase in the D0-D4-brane system. When a D0-brane moves in the background of D4-branes, the first excited states undergo a holonomy described by a non-Abelian Berry connection. At weak coupling this is an SU(2) connection over R{sup 5}, known as the Yang monopole. At strong coupling, the holonomy is recast as the classical gravitational precession of a spinning particle. The Berry connection is the spin connection of the near-horizon limit of the D4-branes, which is a continuous deformation of the Yang and anti-Yang monopole.
Accretion-disc precession in UX Ursae Majoris
NASA Astrophysics Data System (ADS)
de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.
2016-04-01
We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.
Phase Locking the Spin Precession in a Storage Ring.
Hempelmann, N; Hejny, V; Pretz, J; Stephenson, E; Augustyniak, W; Bagdasarian, Z; Bai, M; Barion, L; Berz, M; Chekmenev, S; Ciullo, G; Dymov, S; Etzkorn, F-J; Eversmann, D; Gaisser, M; Gebel, R; Grigoryev, K; Grzonka, D; Guidoboni, G; Hanraths, T; Heberling, D; Hetzel, J; Hinder, F; Kacharava, A; Kamerdzhiev, V; Keshelashvili, I; Koop, I; Kulikov, A; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Maanen, P; Macharashvili, G; Magiera, A; Mchedlishvili, D; Mey, S; Müller, F; Nass, A; Nikolaev, N N; Pesce, A; Prasuhn, D; Rathmann, F; Rosenthal, M; Saleev, A; Schmidt, V; Semertzidis, Y; Shmakova, V; Silenko, A; Slim, J; Soltner, H; Stahl, A; Stassen, R; Stockhorst, H; Ströher, H; Tabidze, M; Tagliente, G; Talman, R; Thörngren Engblom, P; Trinkel, F; Uzikov, Yu; Valdau, Yu; Valetov, E; Vassiliev, A; Weidemann, C; Wrońska, A; Wüstner, P; Zuprański, P; Żurek, M
2017-07-07
This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.
Ballistic reentry vehicles dispersion due to precession stoppage
NASA Astrophysics Data System (ADS)
Lin, T. C.; Grabowsky, W. R.; Yelmgren, K. E.; Landa, M.
1982-08-01
Ballistic reentry vehicle (RV) precession stoppage phenomena are investigated analytically and several postulated reasons for its occurrence are discussed. Both analytical solutions and six-degree-of-freedom (6DOF) simulations are presented. In addition to the familiar phenomena of roll through zero (RTZ), roll near zero (RNZ) and angle-of-attack divergence, there are four additional aerodynamic forcing functions that are found to be particularly interesting and significant since they can induce the so-called 'space-fixed-trim' phenomena, i.e., the lift-vector becomes momentarily stationary in space. These four forcing functions are: (1) a shift from body-fixed to wind-fixed trim moment in high freestream dynamic pressure environments; (2) RV with transient unstable aerodynamic stability derivative; (3) trim plane migrations induced by a series of asymmetric nose spallations, and (4) a Magnus-type out-of-plane moment in conjunction with the wind-fixed moment induced by ablation lag phenomena. When this occurs, the trajectory deflection becomes prohibitively large. According to the present analytical/numerical results, the initial spin rate can be crucial for the magnitude as well as the direction of the RV dispersion. Finally, some possible physical mechanisms which would cause RV precession stoppage are suggested.
THE RECENTLY DETERMINED ANOMALOUS PERIHELION PRECESSION OF SATURN
Iorio, Lorenzo
2009-03-15
The astronomer E. V. Pitjeva, by analyzing with the EPM2008 ephemerides a large number of planetary observations including also two years (2004-2006) of normal points from the Cassini spacecraft, phenomenologically estimated a statistically significant nonzero correction to the usual Newtonian/Einsteinian secular precession of the longitude of the perihelion of Saturn, i.e., {delta}{omega}-bar-dot{sub Sat} = -0.006{+-}0''.002 cy{sup -1}; the formal, statistical error is 0.''0007. It can be explained neither by any of the standard classical and general relativistic dynamical effects mismodeled/unmodeled in the force models of the EPM2008 ephemerides nor by several exotic modifications of gravity recently put forth to accommodate certain cosmological/astrophysical observations without resorting to dark energy/dark matter. Both independent analyses by other teams of astronomers and further processing of larger data sets from Cassini will be helpful in clarifying the nature and the true existence of the anomalous precession of the perihelion of Saturn.
Phase Locking the Spin Precession in a Storage Ring
NASA Astrophysics Data System (ADS)
Hempelmann, N.; Hejny, V.; Pretz, J.; Stephenson, E.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Etzkorn, F.-J.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Hanraths, T.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration
2017-07-01
This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV /c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz ) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ =0.21 rad . The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad /s . Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.
Noise characterization for the FID signal from proton precession magnetometer
NASA Astrophysics Data System (ADS)
Liu, H.; Dong, H.; Liu, Z.; Ge, J.; Bai, B.; Zhang, C.
2017-07-01
Proton precession magnetometer is a high-precision device for weak magnetostatic field measurement. The measurement accuracy depends on the frequency measurement of free induction decay (FID) signal, while the signal to noise ratio (SNR) is an important factor affecting the results. Many signal processing methods have been proposed to improve the SNR of FID signal. However, the theoretical analysis of different types of noises for FID signal has not be conducted yet. In addition, the relationship between the frequency measurement accuracy and SNR has not been explicitly established and quantified. This paper first proposes a background noise model based on the extracted features from the FID signal. With this model, background noises, such as white noise, narrow-band noise, and phase noise etc., can be calculated and estimated. Secondly, the relationship between the frequency measurement accuracy and SNR is identified. We also built a prototype proton magnetometer for field tests and validation purpose. Experiments were conducted to investigate this relation through simulation. Different values for frequency accuracy were obtained with different SNRs from the acquired FID signals from field tests. The consistence between the measurement and computational results is observed. When SNR is larger than 30 dB, the absolute frequency accuracy becomes constant which is about 0.04 Hz. With the stability taken into account, the accuracy can be better even when the SNR is higher than 30 dB. This study provides a reference to optimize the design of proton precession magnetometer and the frequency calculation for FID signal.
Control and imaging of O(1D2) precession.
Wu, Shiou-Min; Radenovic, Dragana Č; van der Zande, Wim J; Groenenboom, Gerrit C; Parker, David H; Vallance, Claire; Zare, Richard N
2011-01-01
Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O(2) at 157 nm provides a clean source of fast-moving O((1)D(2)) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield 'time-lapse-photography' style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.
NASA Astrophysics Data System (ADS)
Wolf, Carl
By considering a spin-one particle precession in a magnetic field, we demonstrate that if very refined measurements were made of both the precession frequency and the amplitude of spin polarization, these measurements could be used to probe for compositeness of gauge bosons, discrete time effects and possible Markov environmental effects.
The precession constant of the Earth: Variations through the ice-age
Peltier, W.R.; Jiang, X.
1994-10-01
We directly calculate the history of variations in Earth`s precession constant H that are forced by variations in surface mass associated with late Pleistocene ice-age glaciation and deglaciation events. Our analyses show that the magnitude of Delta H/H(sub zero) is lower than that required to cause the recently hypothesized resonant reduction of the precession period.
Possible improvements in the IAU 2006 precession based on recent progresses
NASA Astrophysics Data System (ADS)
Liu, J.-C.; Capitaine, N.
2015-08-01
We aim to investigate the possibility of improving the IAU2006 precession model after more than 10 years since its publication based on new solutions of the Earth-Moon Barycenter (EMB) motion, new theoretical contribution to the precession rates, and the revised J2 long-term variation obtained from the Satellite Laser Ranging (SLR). We use these upgraded models and follow the same procedure as that followed by Capitaine et al. (2003) to provide the IAU~2006 precession expressions. The revised precession expressions for the ecliptic are derived by fitting the new analytical planetary theory VSOP2013 to the JPL numerical ephemerides DE422. For solving the precession of the equator, more realistic Earth model including the J2 quadratic variation and precession rate at initial epoch are applied in the integration of equations. The quadratic and cubic terms in the revised precession quantity ψ_A differs from IAU2006 quite significantly. The statistics of the VLBI celestial pole offsets (1979-2014) and least squares fits with different empirical models show that the revised precession is slightly more consistent with the VLBI observations but the improvement relative to the IAU model is not convincing.
The Pole Orientation, Pole Precession, and Moment of Inertia Factor of Saturn
NASA Technical Reports Server (NTRS)
Jacobson, R. A.; French, R. G.; Nicholson, P. D.; Hedman, M.; Colwell, J. E.; Marouf, E.; Rappaport, N.; McGhee, C.; Sepersky, T.; Lonergan, K.
2011-01-01
This paper discusses our determination of the Saturn's pole orientation and precession using a combination of Earthbased and spacecraft based observational data. From our model of the polar motion and the observed precession rate we obtain a value for Saturn's polar moment of inertia
Precession and Nutation from the Analysis of Positions of Extragalactic Radio Sources
NASA Technical Reports Server (NTRS)
Walter, H. G.; Sovers, O. J.
1995-01-01
Corrections to the Earth's precession and nutation have been derived from VLBI observations of extragalactic sources carried out by JPL's Deep Space Network between 1978 and 1994. The analysis is based on the source right ascensions and declinations given in annual position catalogues. These catalogues result from adopting specific conventions on precession and a nutation model, using VLBI data.
Precession and Nutation from the Analysis of Positions of Extragalactic Radio Sources
NASA Technical Reports Server (NTRS)
Walter, H. G.; Sovers, O. J.
1995-01-01
Corrections to the Earth's precession and nutation have been derived from VLBI observations of extragalactic sources carried out by JPL's Deep Space Network between 1978 and 1994. The analysis is based on the source right ascensions and declinations given in annual position catalogues. These catalogues result from adopting specific conventions on precession and a nutation model, using VLBI data.
The Precession Index, A Nonlinear Energy Balance Model, And Seversmith Psychroterms
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2004-01-01
An important component of Milankovitch's astronomical theory of climate change is the precession index. The precession index, along with the Earth's tilt and orbital eccentricity, are believed to be the major controlling factors of climate change in the last few million years. The precession index is e sin omega(sub s) where e is the Earth's orbital eccentricity and omega(sub s) measures how close the Sun is to the Earth at midsummer. When omega(sub s) = 90deg the Sun is close to the Earth during northern summer, and at 270deg it is far from the Earth during northern summer. The precession index varies with time, because both the eccentricity e and the parameter omega(sub s) are constantly changing due to disturbances in the Earth's orbit by other planets, and due to the precession of the Earth, The change is largely periodic, with a period of about 23,000 years.
Misaligned spin and orbital axes cause the anomalous precession of DI Herculis.
Albrecht, Simon; Reffert, Sabine; Snellen, Ignas A G; Winn, Joshua N
2009-09-17
The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from any additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. One system, however-DI Herculis-has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. Here we report that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.
Precession missile feature extraction using sparse component analysis of radar measurements
NASA Astrophysics Data System (ADS)
Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des
2012-12-01
According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.
Highly stable atomic vector magnetometer based on free spin precession.
Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Grujić, Z D; Hayen, L; Hélaine, V; Kasprzak, M; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Piegsa, F M; Prashanth, P N; Quéméner, G; Rawlik, M; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severjins, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zsigmond, G
2015-08-24
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μrad for integration times from 10 s up to 2000 s.
Evidence for a Precessing Disk in the Extreme Binary Aurigae
NASA Astrophysics Data System (ADS)
Stencel, Robert E.
2007-08-01
Among the longest known eclipse durations and binary periods is that of the star epsilon Aurigae which exhibits 2 year long eclipses every 27.1 years. Oddly, the nature of the secondary in the system continues to elude ready identification. In 1965, Huang proposed a massive disk as the eclipsing body, and study of the 1984 eclipse led Lissauer and Backman to suggest an embedded B star binary in the disk to maintain it. A collaboration of observers allows me to present recent optical photometry and spectroscopy, near-IR spectroscopy and Spitzer space telescope IRS and MIPS observations of epsilon Aurigae as it approaches its next eclipse. These data argue for current detectability of the embedded binary, and precession of the disk axis, suggesting a radical change is possible for the next mid-eclipse brightening. An international monitoring campaign for the 2009-2011 is being organized, and participation invited via website http://www.du.edu/~rstencel/epsaur.htm.
Study of vortex core precession in combustion chambers
NASA Astrophysics Data System (ADS)
Alekseenko, S. V.; Markovich, D. M.; Dulin, V. M.; Chikishev, L. M.
2014-12-01
The article presents the results of experimental investigation of swirling flow of lean propane/air flame in a model combustion chamber at atmospheric pressure. To study the unsteady turbulent flow, the particle image velocimetry technique was used. It was concluded that dynamics of high swirl flows with and without combustion was determined by a global helical mode, complying with a precessing double-spiral coherent vortex structure. The studied low swirl flame had similar size and stability characteristics, but amplitude of the coherent helical structure substantially oscillated in time. The oscillations were associated with intermittently appearing central recirculation zone that was absent in the nonreacting flow. It is expected that the low swirl flow without the permanent central recirculation zone should be more sensitive to an external active control. In particular, this result may be useful for suppression of thermoacoustic resonance in combustion chambers.
Study of vortex core precession in combustion chambers
NASA Astrophysics Data System (ADS)
Alekseenko, S. V.; Markovich, D. M.; Dulin, V. M.; Chikishev, L. M.
2013-12-01
The article presents the results of experimental investigation of swirling flow of lean propane/air flame in a model combustion chamber at atmospheric pressure. To study the unsteady turbulent flow, the particle image velocimetry technique was used. It was concluded that dynamics of high swirl flows with and without combustion was determined by a global helical mode, complying with a precessing double-spiral coherent vortex structure. The studied low swirl flame had similar size and stability characteristics, but amplitude of the coherent helical structure substantially oscillated in time. The oscillations were associated with intermittently appearing central recirculation zone that was absent in the nonreacting flow. It is expected that the low swirl flow without the permanent central recirculation zone should be more sensitive to an external active control. In particular, this result may be useful for suppression of thermoacoustic resonance in combustion chambers.
On precession of entangled spins in a strong laser field
Eliashvili, M.; Gerdt, V.; Khvedelidze, A.
2009-05-15
A dynamics of the entanglement under an environmental influence is modelled by a bound state composed of two heavy particles interacting with a strong laser. Adopting the semiclassical attitude, a trajectory of the bound state's center-of-mass is found from the Newton equations solved beyond the dipole approximation and taking into account the magnetic field effect. At the same time the dynamics of constituent spins under the laser coupling is studied quantum mechanically solving the nonrelativistic von Neumann equation with the effective Hamiltonian determined by the bound state's classical trajectory. Based on the solution, the effects of an intense linearly polarized monochromatic plane wave on the precession of entangled spins are discussed for a specific kind of mixed initial states including a family of maximally entangled Werner states.
Noninvasive cineangiography by magnetic resonance global coherent free precession.
Rehwald, Wolfgang G; Chen, Enn-Ling; Kim, Raymond J; Judd, Robert M
2004-05-01
Cardiovascular disease is primarily diagnosed using invasive X-ray cineangiography. Here we introduce a new concept in magnetic resonance imaging (MRI) that, for the first time, produces similar images noninvasively and without a contrast agent. Protons in moving blood are 'tagged' every few milliseconds as they travel through an arbitrary region in space. Simultaneous with ongoing tagging of new blood, previously tagged blood is maintained in a state of global coherent free precession (GCFP), which allows acquisition of consecutive movie frames as the heart pushes blood through the vascular bed. Body tissue surrounding the moving blood is never excited and therefore remains invisible. In 18 subjects, pulsating blood could be seen flowing through three-dimensional (3D) space for distances of up to 16 cm outside the stationary excitation region. These data underscore that our approach noninvasively characterizes both anatomy and blood flow in a manner directly analogous to invasive procedures.
Hopping Precession of Molecules in Crystalline Carbon Dioxide Films
NASA Astrophysics Data System (ADS)
Krainyukova, Nina; Kuchta, Bogdan
2017-04-01
We report a low-temperature transmission high-energy electron diffraction study of solid carbon dioxide films in the temperature range 15-87 K. The precise analysis of the experimental diffraction intensities shows that molecular axes noticeably deviate from the cubic space diagonals of the Paoverline{3} structure. The molecular tips tend to be oriented toward the empty spaces between two molecules in the nearest basal planes. Nevertheless, the crystal structure is still identified as Paoverline{3} but with 24 equivalent positions for oxygen atoms instead of 8 positions as it was thought before. We have shown that the relevant maximal angle deviations in the selected directions could be as big as {˜ } 30° at the lowest temperatures and they decrease at higher temperature. This results in hopping precession of molecules instead of simple librations.
Spinning gas clouds: III. Solutions of minimal energy with precession
NASA Astrophysics Data System (ADS)
Gaffet, B.
2003-05-01
We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index gamma = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.
A decadal precession of atmospheric pressures over the North Pacific
NASA Astrophysics Data System (ADS)
Anderson, Bruce T.; Gianotti, Daniel J. S.; Furtado, Jason C.; Di Lorenzo, Emanuele
2016-04-01
Sustained droughts over the Northwestern U.S. can alter water availability to the region's agricultural, hydroelectric, and ecosystem service sectors. Here we analyze decadal variations in precipitation across this region and reveal their relation to the slow (~10 year) progression of an atmospheric pressure pattern around the North Pacific, which we term the Pacific Decadal Precession (PDP). Observations corroborate that leading patterns of atmospheric pressure variability over the North Pacific evolve in a manner consistent with the PDP and manifest as different phases in its evolution. Further analysis of the data indicates that low-frequency fluctuations of the tropical Pacific Ocean state energize one phase of the PDP and possibly the other through coupling with the polar stratosphere. Evidence that many recent climate variations influencing the North Pacific/North American sector over the last few years are consistent with the current phase of the PDP confirms the need to enhance our predictive understanding of its behavior.
Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons
Altarev, I.; Gutsmiedl, E.; Baker, C. A.; Iaydjiev, P.; Ivanov, S. N.; Ban, G.; Lefort, T.; Naviliat-Cuncic, O.; Quemener, G.; Bodek, K.; Kistryn, S.; Zejma, J.; Daum, M.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Mtchedlishvili, A.; Petzoldt, G.
2009-08-21
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and {sup 199}Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b{sub perpendicular}<2x10{sup -20} eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |g{sub n}|<0.3 eV/c{sup 2} m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |g{sub n}|<3x10{sup -4} eV/c{sup 2} m.
Martian precession and rotation from Viking lander range data
NASA Astrophysics Data System (ADS)
Yoder, C. F.; Standish, E. M.
The spatial orientation of the Martian pole of rotation and axial rotation parameters have been determined at a midpoint in the Viking epoch (January 1, 1980). The mean obliquity ɛ and node ψ angles are ɛ=25.1894°+/-0.0001, ψ=35.4796°+/-0.0002(2σ). The mean precession rate is ψ0=-7.83+/-0.30 arc sec yr-1. The corresponding moment estimate is C/MRe2=0.355+/-0.015 and covers two extreme theoretical estimates. Seasonal (annual and semiannual) variations in Mars' rotation angle have also been observed and are 279+/-100 and 311+/-100 milliarc-second of angle (mas) respectively, after correcting for a general relativity effect. A simple model has been constructed for the main contribution involving seasonal mass exchange between the ice caps and atmosphere where the air pressure at the Viking 1 lander site is a proxy for the global ice cap/air pressure histories. The annual term is about 190 mas smaller and differs in phase by ~30° compared to the model prediction. The semiannual term is 100 mas larger and also differs in phase by ~30° compared to the model. A combination of tidally driven rotation changes, zonal winds, polar motion and ice cap model deficiencies may account for any discrepancy. The upcoming Pathfinder lander and Mars Global Surveyor missions carry ranging transponders which can dramatically improve our knowledge of Mars' interior through precise determination of the precession rate and detection of core and tidal effects. We advocate that plans be developed for a coordinated campaign of simultaneous ranging and Doppler tracking to each transponder.
A precessing accretion disc in the intermediate polar XY Arietis?
NASA Astrophysics Data System (ADS)
Norton, A. J.; Mukai, K.
2007-09-01
Context: XY Ari is the only intermediate polar to show deep X-ray eclipses of its white dwarf. Previously published observations with Ginga and Chandra have also revealed a broad X-ray orbital modulation, roughly antiphased with the eclipse, and presumed to be due to absorption in an extended structure near the edge of an accretion disc. The X-ray pulse profile is generally seen to be double-peaked, although a single-peaked pulse was seen by RXTE during an outburst in 1996. Aims: We intended to investigate the cause of the broad orbital modulation in XY Ari to better understand the accretion flow in this system and other intermediate polars. Methods: We observed XY Ari with RXTE and analysed previously unpublished archival observations of the system made with ASCA and XMM-Newton. These observations comprise six separate visits and span about ten years. Results: The various X-ray observations show that the broad orbital modulation varies in phase and significance, then ultimately disappears entirely in the last few years. In addition, the X-ray pulse profile shows variations in depth and shape, and in the recent RXTE observations displays no evidence for changes in hardness ratio. Conclusions: The observed changes indicates that both the pulse profile and the orbital modulation are solely due to geometrical effects at the time of the RXTE observations, rather than phase-dependent variations in photoelectric absorption as seen previously. We suggest that this is evidence for a precessing, tilted accretion disc in this system. The precession of the disc moves structures out of our line of sight both at its outer edge (changing the orbital modulation) and at its inner edge where the accretion curtains are anchored (changing the pulse profile).
A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM
Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P.; Carilli, Christopher L.; Hack, Warren
2010-02-20
Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from {approx}300 AU to {approx}1400 AU, with the shock front propagating with velocity <100 km s{sup -1}. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at {approx}170 AU, and a SW component ending in several clumps extending out to {approx}750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of {approx}500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.
Inspiral waveforms for spinning compact binaries in a new precessing convention
NASA Astrophysics Data System (ADS)
Gupta, Anuradha; Gopakumar, Achamveedu
2016-05-01
It is customary to use a precessing convention, based on Newtonian orbital angular momentum L N, to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a postNewtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum L, to evolve the L N-based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use L to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual L N-based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between inspiral waveforms that employ L and L N-based precessing conventions. We found that the match estimates are smaller than the optimal value, namely 0.97, for a non-negligible fraction of unequal mass spinning compact binaries.
Bieri, Oliver
2011-02-01
Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes. Copyright © 2010 Wiley-Liss, Inc.
Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries
Sravan, N.; Valsecchi, F.; Kalogera, V.; Althaus, L. G.
2014-09-10
Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.
All-optical detection of magnetization precession in tunnel junctions under applied voltage
NASA Astrophysics Data System (ADS)
Sasaki, Yuta; Suzuki, Kazuya; Sugihara, Atsushi; Kamimaki, Akira; Iihama, Satoshi; Ando, Yasuo; Mizukami, Shigemi
2017-02-01
An all-optical time-resolved magneto-optical Kerr effect measurement of a micron-sized tunnel junction with a CoFeB electrode was performed. The femtosecond (fs) laser-induced magnetization precession was clearly observed at various magnetic field angles. The frequency f and relaxation time τ of the magnetization precession varied with the voltage applied via a MgO barrier. The precession dynamics were in accordance with Kittel’s ferromagnetic resonance mode, and the voltage-induced changes in f and τ were well explained by the voltage-induced change in the perpendicular magnetic anisotropy of -36 fJ/Vm.
Technical Aspects of Larmor Precession with Inclined Front and End Faces
NASA Astrophysics Data System (ADS)
Rekveldt, M. Th.; Bouwman, W. G.; Kraan, W. H.; Uca, O.; Grigoriev, S. V.; Kreuger, R.
Some technical and physical features of Larmor precession techniques will be discussed. Various options to encode the transmission angle of the neutron beam by inclined front and end faces using DC fields are considered, under which magnetized foils and wedge shaped precession regions. The use of shaped pole faces as precession regions to avoid material in the transmitted beam are considered together with correction methods for the inhomogeneous field line integrals accompanied by those magnetic fields. It appears that the use of pi flippers as occurring in the resonance method are of great advantage.
Modeling of magnetization precession in spin-torque nano-oscillators with a tilted polarizer
Lv, Gang; Zhang, Hong E-mail: yaowen@tongji.edu.cn; Cao, Xuecheng; Qin, Yufeng; Li, Guihua; Wang, Linhui; Liu, Yaowen E-mail: yaowen@tongji.edu.cn; Hou, Zhiwei
2015-07-15
The spin-torque induced magnetization precession dynamics are studied in a spin-valve with a tilted spin polarizer. Macrospin simulations demonstrate that the frequency of precession state depends both on the external DC current and the intrinsic parameters of devices such as the tilted angle of spin polarizer, the damping factor and saturation magnetization of the free layer. The dependence role of those parameters is characterized by phase diagrams. An analytical model is presented, which can successfully interpret the features of precession frequency.
Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects
Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.
2014-08-04
The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.
The Precession Index and a Nonlinear Energy Balance Climate Model
NASA Technical Reports Server (NTRS)
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
The Precession Index and a Nonlinear Energy Balance Climate Model
NASA Technical Reports Server (NTRS)
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
Wid, O.; Wahler, M.; Homonnay, N.; Richter, T.; Schmidt, G.
2015-11-15
We demonstrate coherent control of time domain ferromagnetic resonance by all electrical excitation and detection. Using two ultrashort magnetic field steps with variable time delay we control the induction decay in yttrium iron garnet (YIG). By setting suitable delay times between the two steps the precession of the magnetization can either be enhanced or completely stopped. The method allows for a determination of the precession frequency within a few precession periods and with an accuracy much higher than can be achieved using fast fourier transformation. Moreover it holds the promise to massively increase precession amplitudes in pulsed inductive microwave magnetometry (PIMM) using low amplitude finite pulse trains. Our experiments are supported by micromagnetic simulations which nicely confirm the experimental results.
The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Susan-Resiga, Romeo
2016-11-01
The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.
Spin Precessing Black Hole Binaries in Dynamical Chern-Simons Gravity
NASA Astrophysics Data System (ADS)
Loutrel, Nicholas; Yunes, Nicolas; Tanaka, Takahiro
2017-01-01
Spinning black holes in binary systems under go spin precession, as well as precession of the orbital plane, as a result of the coupling between the black hole spins and the orbital angular momentum. This effect introduces an observable modulation in the amplitude of the gravitational waves emitted by the binary. In dynamical Chern-Simons gravity, spinning black holes are modified from General Relativity through the presence of a scalar dipole moment, which is proportional to the spin of the black hole. Such additional degrees of freedom modify the spin precession equations, and thus the observable modulation of the gravitational waves. In this talk, I will discuss how to approach the spin precession of black holes in dynamical Chern-Simons gravity from an effective field theory perspective and discuss how the modulation of gravitational waves differs from General Relativity. Supported by NSF EAPSI Fellowship Award No. 1614203 and NSF CAREER Grant PHY-1250636.
The influence of inlet flow condition on the frequency of self-excited jet precession
NASA Astrophysics Data System (ADS)
Mi, J.; Nathan, G. J.; Wong, C. Y.
2006-01-01
A precessing jet flow can be generated naturally by a fluidic nozzle comprising a cylindrical nozzle-chamber with a large sudden expansion at its inlet and a small lip at its outlet. Such a precessing jet flow is offset with respect to the chamber axis, about which it rotates. The aim of the present study is to investigate the influence of the chamber-inlet configuration on the frequency of such precession. Three different inlet configurations, classified as long pipe, smooth contraction, and sharp-edged orifice plate, are tested. It is found that the frequency of precession from the orifice is highest, whereas that of the pipe jet is lowest. These differences appear to result partly from the distinct differences in their respective initial boundary layers.
The Effect of Dark Matter on Solar System and Perihelion Precession of Earth Planet
NASA Astrophysics Data System (ADS)
Saadat, Hassan; Mousavi, S. N.; Saadat, M.; Saadat, N.; Saadat, A. M.
2010-10-01
This paper visualizes effect of dark matter on solar system and especially perihelion precession of Earth planet. The relation between the rate of perihelion shift of Earth planet and dark matter are obtained.
NASA Astrophysics Data System (ADS)
Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao
2017-03-01
We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4-7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress.
Magnetic-stress-assisted damping of magnetization precession in multilayered metallic films
NASA Astrophysics Data System (ADS)
Bastrukov, Sergey; Yong Khoo, Jun; Lukianchuk, Boris; Molodtsova, Irina
2013-09-01
Micromagnetic dynamics of spin relaxation in multilayered metallic films of stacked microelectronic devices is modeled by a modified Landau-Lifshitz-Gilbert equation with a newly introduced form of damping torque owing its origin to coupling between precessing magnetization-vector and stress-tensor of combined intrinsic and extrinsic magnetic anisotropy. Based on the magnetization energy loss equation, the exponential relaxation time as a function of precession frequency and angle of applied rf-field is obtained, depending upon two parameters of intrinsic and extrinsic damping torques acting on precessing magnetization. It is shown that theoretically obtained from the Gabor uncertainty relation the FMR linewidth, originating from the above magnetic-stress-assisted damping of magnetization precession, provides proper account for the empirical non-linear linewidth-vs-frequency curves deduced from recent in-plane FMR measurements on multilayered ultrathin films of ferromagnetic metals.
Anomalous spin precession and spin Hall effect in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Bi, Xintao; He, Peiru; Hankiewicz, E. M.; Winkler, R.; Vignale, Giovanni; Culcer, Dimitrie
2013-07-01
Spin-orbit (SO) interactions give a spin-dependent correction r̂so to the position operator, referred to as the anomalous position operator. We study the contributions of r̂so to the spin Hall effect (SHE) in quasi-two-dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r̂so, which have not been considered in the literature so far. One term reflects the modification of spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r̂so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish identically.
Gyroscope precession along unbound equatorial plane orbits around a Kerr black hole
NASA Astrophysics Data System (ADS)
Bini, Donato; Geralico, Andrea; Jantzen, Robert T.
2016-12-01
The precession of a test gyroscope along unbound equatorial plane geodesic orbits around a Kerr black hole is analyzed with respect to a static reference frame whose axes point towards the "fixed stars." The accumulated precession angle after a complete scattering process is evaluated and compared with the corresponding change in the orbital angle. Limiting results for the nonrotating Schwarzschild black hole case are also discussed.
Reifenstein, Eric; Stemmler, Martin; Herz, Andreas V. M.; Kempter, Richard; Schreiber, Susanne
2014-01-01
As a rat moves, grid cells in its entorhinal cortex (EC) discharge at multiple locations of the external world, and the firing fields of each grid cell span a hexagonal lattice. For movements on linear tracks, spikes tend to occur at successively earlier phases of the theta-band filtered local field potential during the traversal of a firing field – a phenomenon termed phase precession. The complex movement patterns observed in two-dimensional (2D) open-field environments may fundamentally alter phase precession. To study this question at the behaviorally relevant single-run level, we analyzed EC spike patterns as a function of the distance traveled by the rat along each trajectory. This analysis revealed that cells across all EC layers fire spikes that phase-precess; indeed, the rate and extent of phase precession were the same, only the correlation between spike phase and path length was weaker in EC layer III. Both slope and correlation of phase precession were surprisingly similar on linear tracks and in 2D open-field environments despite strong differences in the movement statistics, including running speed. While the phase-precession slope did not correlate with the average running speed, it did depend on specific properties of the animal's path. The longer a curving path through a grid-field in a 2D environment, the shallower was the rate of phase precession, while runs that grazed a grid field tangentially led to a steeper phase-precession slope than runs through the field center. Oscillatory interference models for grid cells do not reproduce the observed phenomena. PMID:24959748
Valley precession and valley polarization in graphene with inter-valley coupling
NASA Astrophysics Data System (ADS)
Wu, Qing-Ping; Liu, Zheng-Fang; Chen, Ai-Xi; Xiao, Xian-Bo; Zhang, Heng; Miao, Guo-Xing
2017-10-01
We theoretically investigate the valley precession and valley polarization in graphene under inter-valley coupling. Our results show that the inter-valley coupling can induce valley polarization in graphene and also precess valleys in real space in a manner similar to the Rashba spin-orbit interaction rotating spins. Moreover, using strain modulation, we can achieve high valley polarization with large valley-polarized currents. These findings provide a new way to create and manipulate valley polarization in graphene.
Spinning gas clouds with precession: a new formulation
NASA Astrophysics Data System (ADS)
Gaffet, B.
2010-04-01
We consider Dyson's model (Dyson F J 1968 J. Math. Mech. 18 91) of an ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum, in the Liouville integrable case where the gas is monatomic (γ = 5/3) and there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I). In the cases of rotation about a fixed axis the separation of variables can be achieved, and the separable variables are linearly related to a set of three variables denoted by ρ, R, W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195; Paper II). We show in the present work that these variables admit a natural generalization to cases of rotation about a movable axis (precessing motion). The present study is restricted to the consideration of the so-called degenerate cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we hope to generalize our results in the future to the non-degenerate ones as well. We also present a new, compact and generally valid formulation of one of the integrals of motion, of the sixth degree in the momenta, denoted by I6.
Alignment physics of disks warped by Lense-Thirring precession
NASA Astrophysics Data System (ADS)
Krolik, Julian H.; Sorathia, Kareem; Hawley, John F.
2014-12-01
Accretion disks occur in a wide variety of astrophysical contexts, from planet formation to accretion onto black holes. For simplicity, they are generally imagined as thin and flat. However, whenever the disk's angular momentum is oblique to the angular momentum of the central object(s), a torque causes rings within the disk to precess, twisting and warping it. Because the torque weakens rapidly with increasing radius, it has long been thought that some unspecified ‘friction’ brings the inner portions of such disks into alignment, while the outer parts remain in their original orientation. Nearly all previous work on this topic has assumed that such a disk's internal stresses can be described by an isotropic viscosity, even though it has been known for more than four decades that fluid viscosity is far too weak to be significant in accretion disks, and for two decades that accretion stresses are actually due to anisotropic MHD turbulence. This paper reviews recent numerical simulation work showing how twisted disks align when their mechanics are described only in terms of real forces, including MHD turbulence. The detailed mechanisms of alignment are identified, the rate at which it occurs is quantified, and the isotropic viscosity model is shown to be in drastic disagreement with the simulation data.
Flexible theta sequence compression mediated via phase precessing interneurons
Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F
2016-01-01
Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan. DOI: http://dx.doi.org/10.7554/eLife.20349.001 PMID:27929374
On the perihelion precession as a Machian effect
NASA Technical Reports Server (NTRS)
Eby, P. B.
1977-01-01
A Lagrangian is constructed which gives Newtonian gravity in the lowest-order approximation in an isotropic universe and also predicts the correct advance of the perihelion with the proper choice of a constant governing the ratio of inertial to gravitational mass. The situation considered is that of a test particle orbiting a central body with external mass at rest and distributed isotropically at large distances from the central body. In the theory developed, the perihelion advance is due to a small contribution to the test-particle inertial mass by the central attracting body rather than to a failure of the inverse-square law of attraction. Some interesting Machian features of this theory are that: (1) the local value of the gravitational constant is determined by the mass distribution of the external matter; (2) the orbits are fixed, and the perihelion advances unambiguously with respect to the external-mass distribution; (3) there are no vestiges of absolute space; (4) the perihelion precession arises from the inertial interaction of the test particle with the central mass; (5) the local rest mass is really determined by the mass distribution of the rest of the universe; and (6) a limited form of the equivalence principle is inherent in one of the equations.
Refinements on precession, nutation, and wobble of the Earth
NASA Astrophysics Data System (ADS)
Dehant, V. Folgueira M.; Puica, M.; Van Hoolst, T.
2015-08-01
Most of the essential elements of the theory of nutation of the nonrigid Earth have been presented in the IAU adopted model MHB2000 (Mathews et al., 2002) considering an ellipsoidal rotating Earth, with a solid inner core, a liquid outer core, and an ellipsoidal inelastic mantle, and with a magnetic field. However in the meantime, the observed nutation amplitudes have been redetermined with a better precision. A number of relatively small significant effects have to be taken into account before one can expect to have a theoretical framework that can yield numerical results matching the precession and nutation observations. The adopted model already accounts for the existence of a geomagnetic field passing through the mantle and the fluid core regions and beyond. The model MHB2000 considers an electromagnetic torque generated by this field when the core and the mantle are moving relative to each other, which can in turn affect some nutation amplitudes (both in phase and out-of-phase) to the extent of a few hundreds of microarcsecond (μas), playing thus a significant role. The paper revisits the last adopted model in order to incorporate potential additional coupling effects at the core-mantle boundary, that can be at an observable level, such as the existence of a non-hydrostatic core-mantle boundary topography, the viscosity of the liquid core, the existence of stratification in the core, the existence of boundary layers at both sides of the core-mantle boundary.
An Analytical Treatment of Aircraft Propeller Precession Instability
NASA Technical Reports Server (NTRS)
Reed, Wilmer H., III; Bland, Samuel R.
1961-01-01
An analytical investigation is made of a precession-type instability which can occur in a flexibly supported aircraft-engine-propeller combination. By means of an idealized mathematical model which is comprised of a rigid power-plant system flexibly mounted in pitch and yaw to a fixed backup structure, the conditions required for neutral stability are determined. The paper also examines the sensitivity of the stability boundaries to changes in such parameters as stiffness, damping, and asymmetries in the engine mount, propeller speed, airspeed, Mach number, propeller thrust, and location of pitch and yaw axes. Stability is found to depend strongly on the damping and stiffness in the system. With the use of nondimensional charts, theoretical stability boundaries are compared with experimental results obtained in wind-tunnel tests of an aeroelastic airplane model. In general, the theoretical results, which do not account for wing response, show the same trends as observed experimentally; however, for a given set of conditions calculated airspeeds for neutral stability are consistently lower than the measured values. Evidently, this result is due to the fact that wing response tends to add damping to the system.
Flows driven by libration, precession, and tides in planetary cores*
NASA Astrophysics Data System (ADS)
Le Bars, Michael
2016-10-01
Understanding the flows in planetary cores, i.e., the large liquid iron oceans hidden in the central part of terrestrial planets, is a tremendous interdisciplinary challenge, at the frontier of fundamental fluid dynamics and planetary sciences. Beyond buoyancy driven flows that constitute the standard model for core fluid dynamics, an increasing amount of research has focused on the rotational dynamics of these spinning systems, periodically perturbed by tides, precession, and libration. Although of small amplitude, those harmonic forcings are capable of exciting resonant instabilities in planetary cores, providing alternative routes towards turbulence and magnetic field generation. In this paper I provide an overview of some recent works on this field, focusing on the mechanisms of tide and libration driven elliptical instabilities. Combined laboratory experiments and pioneering numerical simulations have allowed a full description of the stability and linear state of these flows, as well as the investigation of some convincing planetary applications. Open questions now remain regarding the nonlinear saturation of the excited flows as well as their dynamo capability. These will undoubtedly be the focus of future research, in the context of intense activity in planetary exploration of our solar system and others, which highlights the need to go beyond the standard convective models.
Further Evidence for Collimated Particle Beams from Pulsars and Precession
NASA Astrophysics Data System (ADS)
Deshpande, Avinash A.; Radhakrishnan, V.
2007-02-01
We follow up on our (Radhakrishnan & Deshpande) radically different interpretation of the observed structures and morphologies in the X-ray observations of the nebulae around young pulsars (PWNe). In our general model for PWNe (Radhakrishnan & Deshpande), originally motivated by the Chandra observations of the Vela X-ray nebula, the bright arcs, the jetlike feature, and the diffuse components in such nebulae can be explained together in detail, wherein the arcs are understood as traces of the particle beams from the two magnetic poles at the shock front. We consider this as important evidence for collimated particle beams from pulsars' magnetic poles. In this paper we discuss the variability in the features in the Vela X-ray nebula observed by Pavlov and coworkers and assess the relevance and implication of our model to the observations on the Crab and other remnants. Our basic picture after incorporating the signatures of free precession of the central compact object can readily account for the variability and significant asymmetries, including the bent jetlike features, in the observed morphologies. The implications of these findings are discussed.
Spin-orbit precession damping in transition metal ferromagnets (invited)
NASA Astrophysics Data System (ADS)
Gilmore, K.; Idzerda, Y. U.; Stiles, M. D.
2008-04-01
We provide a simple explanation, based on an effective field, for the precession damping rate due to the spin-orbit interaction. Previous effective field treatments of spin-orbit damping include only variations of the state energies with respect to the magnetization direction, an effect referred to as the breathing Fermi surface. Treating the interaction of the rotating spins with the orbits as a perturbation, we include also changes in the state populations in the effective field. In order to investigate the quantitative differences between the damping rates of iron, cobalt, and nickel, we compute the dependence of the damping rate on the density of states and the spin-orbit parameter. There is a strong correlation between the density of states and the damping rate. The intraband terms of the damping rate depend on the spin-orbit parameter cubed, while the interband terms are proportional to the spin-orbit parameter squared. However, the spectrum of band spacings is also an important quantity and does not appear to depend in a simple way on material parameters.
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-11-01
PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2017-03-01
In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ≈ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A^* are, instead, not viable because of the excessive smallness of the predicted precessions for them.
Phase coding by grid cells in unconstrained environments: Two-dimensional (2D) phase precession
Climer, Jason R.; Newman, Ehren L.; Hasselmo, Michael E.
2014-01-01
Action potential timing is thought to play a critical role in neural representation. For example, theta phase precession is a robust phenomenon exhibited by spatial cells of the rat entorhinal-hippocampal circuit. In phase precession, the time a neuron fires relative to the phase of theta rhythm (6-10Hz) oscillations in the local field potential reduces uncertainty about the position of the animal. This relationship between neural firing and behavior has made precession an important constraint for hypothetical mechanisms of temporal coding. However, challenges exist in identifying what regulates the spike timing of these cells. We have developed novel analytical techniques for mapping between behavior and neural firing that provide sufficient sensitivity to examine features of grid cell phase coding in open environments. Here, we show robust, omnidirectional phase precession by entorhinal grid cells in openfield enclosures. We present evidence that full phase precession persists regardless of how close the animal comes to the center of a firing field. We found many conjunctive grid cells, previously thought to be phase locked, also exhibit phase coding. However, we were unable to detect directional or field specific phase coding predicted by some variants of models. Finally, we present data that suggests bursting of layer II grid cells contributes to the bimodality of phase precession. We discuss implications of these observations for models of temporal coding and propose the utility of these techniques in other domains where behavior is aligned to neural spiking. PMID:23718553
NASA Technical Reports Server (NTRS)
DeHart, Russell; Smith, Eric; Lakin, John
2015-01-01
The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.;
2016-01-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(+5)(-3) solar M; and 30(+3)(-4) solar M; (where errors correspond to 90 symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate is less than 0.65 and a secondary spin estimate is less than 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Book Review: Precession, Nutation, and Wobble of the Earth
NASA Astrophysics Data System (ADS)
Sterken, Christiaan; Dehant, V.; Mathews, P. M.
2016-10-01
This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle
Spectral element simulation of precession driven flows in the outer cores of spheroidal planets
NASA Astrophysics Data System (ADS)
Vormann, Jan; Hansen, Ulrich
2015-04-01
A common feature of the planets in the solar system is the precession of the rotation axes, driven by the gravitational influence of another body (e.g. the Earth's moon). In a precessing body, the rotation axis itself is rotating around another axis, describing a cone during one precession period. Similar to the coriolis and centrifugal force appearing from the transformation to a rotating system, the addition of precession adds another term to the Navier-Stokes equation, the so called Poincaré force. The main geophysical motivation in studying precession driven flows comes from their ability to act as magnetohydrodynamic dynamos in planets and moons. Precession may either act as the only driving force or operate together with other forces such as thermochemical convection. One of the challenges in direct numerical simulations of such flows lies in the spheroidal shape of the fluid volume, which should not be neglected since it contributes an additional forcing trough pressure torques. Codes developed for the simulation of flows in spheres mostly use efficient global spectral algorithms that converge fast, but lack geometric flexibility, while local methods are usable in more complex shapes, but often lack high accuracy. We therefore adapted the spectral element code Nek5000, developed at Argonne National Laboratory, to the problem. The spectral element method is capable of solving for the flow in arbitrary geometries while still offering spectral convergence. We present first results for the simulation of a purely hydrodynamic, precession-driven flow in a spheroid with no-slip boundaries and an inner core. The driving by the Poincaré force is in a range where theoretical work predicts multiple solutions for a laminar flow. Our simulations indicate a transition to turbulent flows for Ekman numbers of 10-6 and lower.
Influence of orbital precession on the polar methane accumulation on Titan
NASA Astrophysics Data System (ADS)
Liu, J.; Schneider, T.
2014-12-01
Data collected by Cassini Spacecraft indicate that lakes on Titan are primarily found in the polar regions, preferentially in the north. It has been suggested that the hemispherical asymmetry in lake distribution is related to Saturn's orbital precession, which changes the seasonal distribution of solar radiation on Titan, but not the annual mean (Aharonson et al., 2009; Schneider et al., 2012). Saturn's current longitude of perihelion is near northern winter solstice. Hence, the northern summer on Titan is longer and less intense than the southern summer. The longer northern summer leads to greater net precipitation in the annual mean and the methane accumulation over the northern polar region (Schneider et al. 2012). Saturn's perihelion precesses over an approximately 45-kyr period, so the solar radiation at the top of Titan's atmosphere varies on this time scale. Here we investigate how the orbital precession influences the polar methane accumulation with a three-dimensional atmospheric model coupled to a dynamic surface reservoir of methane (Schneider et al. 2012). We find that methane accumulation is closely tied to Saturn's orbital precession. At the time when Saturn's longitude of perihelion is 180 degree away from the present day value, methane is mainly accumulated in the southern polar region due to the stronger annual-mean precipitation there induced by the longer southern summer. The annual-mean evaporation is largely unchanged with orbital precession, since it scales with the annual-mean insolation, which does not change under orbital precession. When Saturn's longitude of perihelion is close to equinox, methane is approximately evenly distributed in the northern and southern polar regions, and the lake dichotomy disappears. The timescale of methane redistribution from one pole to the other is short compared with the timescale of orbital precession, so the surface methane distribution can be viewed as being approximately in equilibrium with the solar
Change in general relativistic precession rates due to Lidov-Kozai oscillations in Solar system
NASA Astrophysics Data System (ADS)
Sekhar, A.; Asher, D. J.; Werner, S. C.; Vaubaillon, J.; Li, G.
2017-06-01
Both general relativistic (GR) precession and the Lidov-Kozai mechanism, separately, are known to play an important role in the orbital evolution of Solar system bodies. Previous works have studied these two mechanisms independently in great detail. However, both these phenomena occurring at the same time in real Solar system bodies have rarely been explored. In this work, we find a continuum connecting the GR precession dominant and Lidov-Kozai-like mechanism dominant regimes, i.e. an intermediate regime where the competing effects of GR precession and Lidov-Kozai-like oscillations coexist simultaneously. We find some real examples in the Solar system in this intermediate regime. Moreover, we identify a rare example among them, comet 96P/Machholz 1, which shows significant changes in the rates of GR precession (an order of magnitude higher than Mercury's GR precession rate) due to sungrazing and sun-colliding phases induced by Lidov-Kozai-like oscillations. This comet's combination of orbital elements and initial conditions (at the present epoch) favour this measurable rapid change in GR precession (at some points peaking up to 60 times Mercury's GR precession rate) along with prograde-retrograde inclination flip (due to Lidov-Kozai-like oscillations). Similar tests are performed for hundreds of bodies lying in the moderately low perihelion distance and moderately low semimajor axis phase space in the Solar system, the present lowest perihelion distance asteroid 322P/SOHO 1, and further examples connected with 96P/Machholz 1 namely, the Marsden and Kracht families of sungrazing comets plus low perihelion meteoroid streams like Daytime Arietids and Southern Delta Aquariids.
Consistency problems associated to the improvement of precession-nutation theories
NASA Astrophysics Data System (ADS)
Ferrandiz, J. M.; Escapa, A.; Baenas, T.; Getino, J.; Navarro, J. F.; Belda, S.
2014-12-01
The complexity of the modelling of the rotational motion of the Earth in space has produced that no single theory has been adopted to describe it in full. Hence, it is customary using at least a theory for precession and another one for nutation. The classic approach proceeds by deriving some of the fundamentals parameters from the precession theory at hand, like, e.g. the dynamical ellipticity H, and then using that valuesin the nutation theory. The former IAU1976 precession and IAU1980 nutation theories followed that scheme. Along with the improvement of the accuracy of the determination of EOP (Earth orientation parameters), IAU1980 was superseded by IAU2000, based on the application of the MHB2000 (Mathews et al 2002) transfer function to the previous rigid earth analytical theory REN2000 (Souchay et al 1999). The latter was derived while the precession model IAU1976 was still in force therefore it used the corresponding values for some of the fundamental parameters, as the precession rate, associated to the dynamical ellipticity, and the obliquity of the ecliptic at the reference epoch. The new precession model P03 was adopted as IAU2006. That change introduced some inconsistency since P03 used different values for some of the fundamental parameters that MHB2000 inherited from REN2000. Besides, the derivation of the basic earth parameters of MHB2000 itself comprised a fitted variation of the dynamical ellipticity adopted in the background rigid theory. Due to the strict requirements of accuracy of the present and coming times, the magnitude of the inconsistencies originated by this two-fold approach is no longer negligible as earlier. Some corrections have been proposed by Capitaine et al (2005) and Escapa et al (2014) in order to reach a better level of consistency between precession and nutation theories and parameters. In this presentation we revisit the problem taking into account some of the advances in precession theory not accounted for yet, stemming
NASA Technical Reports Server (NTRS)
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-01-01
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
Misaligned Spin and Orbital Axes Cause the Anomalous Precession of DI Herculis
NASA Technical Reports Server (NTRS)
Albrecht, Simon; Reffert, Sabine; Snellen, Ignas A. G.; Winn, Joshua N.
2009-01-01
In this case we applied our Rossiter-McLaughlin methodology to a binary star, rather than a star-planet system. The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from any additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. However, one system known as DI Herculis has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. In this paper we reported that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.
THE FIRST KINEMATIC DETERMINATION OF MILLION-YEAR PRECESSION PERIOD OF ACTIVE GALACTIC NUCLEI
Gong, B. P.; Li, Y. P.; Zhang, H. C.
2011-06-20
Short precession periods like the 164 day period of SS433 can be well determined by observations of timescales longer or much longer than the precession period. However, this does not work for sources with precession periods of millions of years. This Letter utilizes the particular morphologies of X-shaped sources, so that the three-dimensional kinematics of lobes can be obtained. Thus, for the first time, the million-year precession period of X-shaped sources by an observer on the Earth can be determined elegantly: 6.1 {+-} 1.5 Myr, 1.8 {+-} 0.5 Myr, and 3.2 {+-} 1.2 Myr for 3C52, 3C223.1, and 4C12.03, respectively. The result naturally explains the asymmetry displayed in the morphology of these sources, and the effect of propagation time on the diversity of morphologies is well demonstrated. The precession period may originate from long-term effects of a binary supermassive black hole system, which is a potential source of gravitational wave radiation.
Transition between one-dimensional and zero-dimensional spin transport studied by Hanle precession
NASA Astrophysics Data System (ADS)
Wojtaszek, M.; Vera-Marun, I. J.; van Wees, B. J.
2014-06-01
The precession of electron spins in a perpendicular magnetic field, the so-called Hanle effect, provides an unique insight into spin properties of a nonmagnetic material. In practice, the spin signal is fitted to the analytic solution of the spin Bloch equation, which accounts for diffusion, relaxation, and precession effects on spin. The analytic formula, however, is derived for an infinite length of the 1D spin channel. This is usually not satisfied in the real devices. The finite size of the channel length ldev leads to confinement of spins and increase of spin accumulation. Moreover, reflection of spins from the channel ends leads to spin interference, altering the characteristic precession line shape. In this work we study the influence of finite ldev on the Hanle line shape and show when it can lead to a twofold discrepancy in the extracted spin coefficients. We propose the extension of the Hanle analytic formula to include the geometrical aspects of the real device and get an excellent agreement with a finite-element model of spin precession, where this geometry is explicitly set. We also demonstrate that in the limit of a channel length shorter than the spin relaxation length λs, the spin diffusion is negligible and a 0D spin transport description with the Lorentzian precession dependence applies. We provide a universal criterion for which transport description, 0D or 1D, to apply depending on the ratio ldev/λs and the corresponding accuracy of such a choice.
Misaligned Spin and Orbital Axes Cause the Anomalous Precession of DI Herculis
NASA Technical Reports Server (NTRS)
Albrecht, Simon; Reffert, Sabine; Snellen, Ignas A. G.; Winn, Joshua N.
2009-01-01
In this case we applied our Rossiter-McLaughlin methodology to a binary star, rather than a star-planet system. The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from any additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. However, one system known as DI Herculis has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. In this paper we reported that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.
Precession in Stokes flow: spin and revolution of a bacterial flagellum
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Sawano, Yoichiro; Wakebe, Hiromichi; Inoue, Yuichi; Ishijima, Akihiko; Shimogonya, Yuji
2016-11-01
The bacterial flagellar motor is an ion-driven rotary machine in the cell envelope of bacteria. When we performed a bead assay, in which the cell body was affixed to a glass surface to observe the rotation of a truncated flagellum via the positioning of a 250 nm-diameter gold nanoparticle, we often observed that the filament motion consisted of two types of rotation: spin and revolution, which resulted in precession. Since the mechanism of flagella precession was unknown, we investigated it using numerical simulations. The results show that the precession occurred due to hydrodynamic interactions between the flagellum and the wall in the Stokes flow regime. We also developed a simple theory of the precession, which validity was confirmed by comparing with the simulation. The theory could be utilized to predict both the filament tilt angle and motor torque from experimental flagellar precession data. The knowledge obtained is important in understanding mechanical properties of the bacterial motor and hook. This work was supported in part by a Japan Society Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI) (Grant Nos. 25000008 and 26242039).
Hydrodynamic simulations of molecular outflows driven by slow-precessing protostellar jets
NASA Astrophysics Data System (ADS)
Smith, Michael D.; Rosen, Alexander
2005-02-01
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.
NASA Technical Reports Server (NTRS)
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-01-01
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
TIDALLY INDUCED APSIDAL PRECESSION IN DOUBLE WHITE DWARFS: A NEW MASS MEASUREMENT TOOL WITH LISA
Valsecchi, F.; Farr, W. M.; Willems, B.; Deloye, C. J.; Kalogera, V.
2012-02-01
Galactic interacting double white dwarfs (DWDs) are guaranteed gravitational wave (GW) sources for the Laser Interferometer Space Antenna GW detector, with more than 10{sup 4} binaries expected to be detected over the mission's lifetime. Part of this population is expected to be eccentric, and here we investigate the potential for constraining the white dwarf (WD) properties through apsidal precession in these binaries. We analyze the tidal, rotational, and general relativistic contributions to apsidal precession by using detailed He WD models, where the evolution of the star's interior is followed throughout the cooling phase. In agreement with previous studies of zero-temperature WDs, we find that apsidal precession in eccentric DWDs can lead to a detectable shift in the emitted GW signal when binaries with cool (old) components are considered. This shift increases significantly for hot (young) WDs. We find that apsidal motion in hot (cool) DWDs is dominated by tides at orbital frequencies above {approx}> 10{sup -4} Hz (10{sup -3} Hz). The analysis of apsidal precession in these sources while ignoring the tidal component would lead to an extreme bias in the mass determination, and could lead us to misidentify WDs as neutron stars or black holes. We use the detailed WD models to show that for older, cold WDs, there is a unique relationship that ties the radius and apsidal precession constant to the WD masses, therefore allowing tides to be used as a tool to constrain the source masses.
Understanding the Effect of Precession on South American Climate
NASA Astrophysics Data System (ADS)
Liu, X.; Battisti, D. S.
2014-12-01
The oxygen isotope concentration in calcite (δ18Oc) in speleothems over South America shows a distinct spatial pattern of change for the past 250,000 years orchestrated by precessional forcing. Using an isotope-enabled model (ECHAM4.6) coupled to a slab ocean model, we study how and why precession changes the climate of South America. Two experiments, called the "low insolation" experiment and "high insolation" experiment, were performed with the same modern boundary conditions, but forced with the extreme minimum and maximum of Southern Hemisphere (SH) summer insolation, respectively. Differences between these two experiments ("low" minus "high") display as a dipole pattern: less precipitation and heavier precipitation-weighted δ18O (δ18Op) along the Andes, and more precipitation and lighter δ18Op in northeastern Brazil. The differences in δ18Op are consistent with δ18Oc of speleothems, in terms of both sign and magnitude. Further analysis of the δ18O of precipitation, the δ18O of water vapor and the probability distribution function (pdf) of precipitation intensity reveals that changes in both the seasonality of precipitation and the "amount effect" contribute to the heavier δ18Op along the Andes, while the "amount effect" almost exclusively contributes to the lighter δ18Op in northeastern Brazil. To identify the causes of precipitation response, three additional experiments are performed with localized albedo increase over South America and/or Africa. These show that the decrease in precipitation along the Andes is caused by cooling of South American continent, whereas the increase in precipitation over northeastern Brazil is associated with cooling of northern Africa. Reduction of SH summer insolation cools both South America and northern Africa. Cooling of South America weakens the South American summer monsoon (SASM) and changes the pdf of precipitation intensity over tropical South America and along the Andes; contrary to previous suggestions
Origin of light-induced precession of magnetization in ferromagnetic (Ga,Mn)As
NASA Astrophysics Data System (ADS)
Rozkotova, Eva; Nemec, Petr; Sprinzl, Daniel; Tesarova, Nada; Maly, Petr; Novak, Vit; Olejnik, Kamil; Zemen, Jan; Cukr, Miroslav; Jungwirth, Tomas; Wunderlich, Joerg
2009-03-01
The impact of femtosecond laser pulse leads to the precession of magnetization in (Ga,Mn)As, which can be detected by the time- resolved Kerr rotation (KR) technique. Even though this phenomenon is known for several years [1], the exact physical mechanism inducing the precession is still not clear [2,3]. We show, by a detailed comparison of the KR experimental results and the microscopic calculations of the magnetic anisotropy, that the precession is a consequence of the anisotropy field modification due to the laser pulse-induced change of hole concentration and lattice temperature. [1] A. Oiwa, H. Takechi, H. Munekata, J. Supercond. 18, 9 (2005).[2] Y. Hashimoto, S. Kobayashi, H. Munekata, PRL 100, 067202 (2008).[3] E. Rozkotova, P. Nemec, P. Horodyska, D. Sprinzl, F. Trojanek, P. Maly, V. Novak, K. Olejnik, M. Cukr, T. Jungwirth, Appl. Phys. Lett 92, 122507 (2008).
CYCLIC TRANSIT PROBABILITIES OF LONG-PERIOD ECCENTRIC PLANETS DUE TO PERIASTRON PRECESSION
Kane, Stephen R.; Von Braun, Kaspar; Horner, Jonathan
2012-09-20
The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters as a path to measuring these precessions and cyclic transit probabilities.
Simulation of Statistical Fluctuations in the Spin Precession Measurements at RHIC
Poblaguev, A. A.
2014-02-25
Measurements of the driven spin coherent precession S_{x}(t)=S_{x}^{(0)} - S_{x}^{(1)} sin(ωt+φ_{0}) were initiated in RHIC Run13. The expected value of the precession amplitude S_{x}^{(1)} ~ 2 x 10^{-4} is about the statistical error in a single measurement and data fit gives a biased estimate of the S_{x}^{(1)}. For a proper statistical interpretation of the results of the several measurements, statistical fluctuations were studied using Monte-Carlo simulation. Preliminary results of the spin precession measurements in RHIC Run13 are presented.
The Origin of Warped, Precessing Accretion Disks in X-ray Binaries
NASA Technical Reports Server (NTRS)
Maloney, Philip R.; Begelman, Mitchell C.
1997-01-01
The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.
Rouviere, Jean-Luc Martin, Yannick; Denneulin, Thibaud; Cooper, David
2013-12-09
NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10{sup −4} is obtained with a probe size approaching 1 nm in diameter.
How to Determine The Precession of the Inner Accretion Disk in Cygnus X-1
Torres, D F; Romero, G E; Barcons, X; Lu, Y
2005-01-05
We show that changes in the orientation of the inner accretion disk of Cygnus X-1 affect the shape of the broad Fe K{alpha} emission line emitted from this object, in such a way that eV-level spectral resolution observations (such as those that will be carried out by the ASTRO-E2 satellite) can be used to analyze the dynamics of the disk. We here present a new diagnosis tool, supported by numerical simulations, by which short observations of Cygnus X-1, separated in time, can determine whether its accretion disk actually processes, and if so, determine its period and precession angle. Knowing the precession parameters of Cygnus X-1 would result in a clarification of the origin of such precession, distinguishing between tidal and spin-spin coupling. This approach could also be used for similar studies in other microquasar systems.
Effects of the law for nongravitational forces on the precession model of comet Encke
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1986-01-01
The precession model for P/Encke formulated by Whipple and Sekanina (1979) is reexamined in the light of the recent measurements of the OH and H production rates. An optimized precession solution derived using the production law of A'Hearn et al. (1985) is shown to require unacceptably small nucleus dimensions and to offer an inferior fit to observed variations in the orientation of the comet's perihelion fan-shaped coma. Observed changes in the emission fan suggest that both the thrust on the nucleus exerted by unit mass of sublimating ice and the average lag in outgassing are substantially greater before than after perihelion. It is concluded that at this time the Whipple-Sekanina model remains the best available precession solution for this comet.
NASA Astrophysics Data System (ADS)
Zhao, Congpeng; Ma, Xingqiao; Huang, Houbing; Liu, Zhuhong; Jafri, Hasnain Mehdi; Wang, Jianjun; Wang, Xueyun; Chen, Long-Qing
2017-08-01
Understanding electric field effects on precession dynamics is crucial to the design of spin transfer torque devices for improving the performance in nano-oscillator. In this letter, the precession dynamics of a CoFeB/MgO multi-layer structured nano-oscillator under externally applied electric field is predicted using a micromagnetic simulation. It is revealed that the electric field can modify the range of oscillation spectra in single frequency mode. With the increase in electric field, there is a red-shift of the resonant frequency. When a positive electric field pulse is applied, a phase lag of the spin precession is induced, which is proportional to the pulse amplitude and duration. The present work is expected to stimulate future experimental efforts on designing devices with electric-field modulated spin transfer torque nano-oscillators.
Effects of the law for nongravitational forces on the precession model of comet Encke
NASA Astrophysics Data System (ADS)
Sekanina, Z.
1986-02-01
The precession model for P/Encke formulated by Whipple and Sekanina (1979) is re-examined in the light of the recent measurements of the OH and H production rates, which according to A'Hearn et al. (1985) indicate that the comet's visual light curve cannot be employed to approximate the variations with time in the nongravitational force that is being exerted on the nucleus by the comet's outgassing. The optimized precession solution derived here with the use of the A'Hearn et al. production law is shown to require unacceptably small nucleus dimensions and to offer an inferior fit to observed variations in the orientation of the comet's preperihelion fan-shaped coma. It is concluded that the Whipple-Sekanina model remains the best available precession solution for this comet.
Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations
NASA Astrophysics Data System (ADS)
Le Maistre, S.; Folkner, W. M.; Jacobson, R. A.; Serra, D.
2016-07-01
Through detailed and realistic numerical simulations, the present paper assesses the precision with which the Juno spacecraft can measure the normalized polar moment of inertia (MOI) of Jupiter. Based on Ka-band Earth-based Doppler data, created with realistic 10 μm/s of white noise at 60 s of integration, this analysis shows that the determination of the precession rate of Jupiter is by far more efficient than the Lense-Thirring effect previously proposed to determine the moment of inertia and therefore to constrain the internal structure of the giant planet with Juno. We show that the Juno mission will allow the estimation of the precession rate of Jupiter's pole with an accuracy better than 0.1%. We provide an equation relating the pole precession rate and the normalized polar moment of inertia of Jupiter. Accounting for the uncertainty in the parameters affecting precession, we show that the accuracy of the MOI inferred from the precession rate is also better than 0.1%, and at least 50 times better than inferred from the Lense-Thirring acceleration undergone by Juno. This accuracy of the MOI determination should provide tight constraints on the interior structure of Jupiter, especially the core size and mass, helping to distinguish among competing scenarios of formation and evolution of the giant planet. In addition, though the Juno mission operations are already defined, the exact duration of the tracking and its occurrence with respect to the spacecraft pericenter pass are not definitely scheduled. The simulations performed here quantify the impact of this aspect of the mission on the Juno sensitivity to (in particular) the spin-pole precession rate of Jupiter. Finally, additional simulations have been performed to test the usefulness of combining Doppler data with VLBI data, showing the latter measurements to be 104-105 times less sensitive than the former to our parameters of interest and therefore, obviously, totally needless.
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an
Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft
NASA Astrophysics Data System (ADS)
Park, Ryan S.; Folkner, William M.; Konopliv, Alexander S.; Williams, James G.; Smith, David E.; Zuber, Maria T.
2017-03-01
The perihelion of Mercury’s orbit precesses due to perturbations from other solar system bodies, solar quadrupole moment (J 2), and relativistic gravitational effects that are proportional to linear combinations of the parametrized post-Newtonian parameters β and γ. The orbits and masses of the solar system bodies are quite well known, and thus the uncertainty in recovering the precession rate of Mercury’s perihelion is dominated by the uncertainties in the parameters J 2, β, and γ. Separating the effects due to these parameters is challenging since the secular precession rate has a linear dependence on each parameter. Here we use an analysis of radiometric range measurements to the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft in orbit about Mercury to estimate the precession of Mercury’s perihelion. We show that the MESSENGER ranging data allow us to measure not only the secular precession rate of Mercury’s perihelion with substantially improved accuracy, but also the periodic perturbation in the argument of perihelion sensitive to β and γ. When combined with the γ estimate from a Shapiro delay experiment from the Cassini mission, we can decouple the effects due to β and J 2 and estimate both parameters, yielding (β -1)=(-2.7+/- 3.9)× {10}-5 and J 2 = (2.25 ± 0.09) × 10‑7. We also estimate the total precession rate of Mercury’s perihelion as 575.3100 ± 0.0015″/century and provide estimated contributions and uncertainties due to various perturbing effects.
NASA Astrophysics Data System (ADS)
Mizukami, S.; Sakuma, A.; Kubota, T.; Kondo, Y.; Sugihara, A.; Miyazaki, T.
2013-09-01
Epitaxial growth and magnetization precessional dynamics for tetragonal MnAlGe films are investigated. The films are grown on MgO (100) with c axis parallel to the film normal and well-ordered layered structures. The film exhibits rectangular hysteresis loop with perpendicular magnetic anisotropy constant of 4.7 Merg/cm3 and saturation magnetization of 250 emu/cm3. Magnetization precession with precession frequency of ˜100 GHz is observed by time-resolved magneto-optical Kerr effect. Further, the Gilbert damping constant is found to be less than ˜0.05, which is much larger than that obtained using the first principles calculations.
Broadband mode in proton-precession magnetometers with signal processing regression methods
NASA Astrophysics Data System (ADS)
Denisov, Alexey Y.; Sapunov, Vladimir A.; Rubinstein, Boris
2014-05-01
The choice of the signal processing method may improve characteristics of the measuring device. We consider the measurement error of signal processing regression methods for a quasi-harmonic signal generated in a frequency selective device. The results are applied to analyze the difference between the simple period meter processing and regression algorithms using measurement cycle signal data in proton-precession magnetometers. Dependences of the measurement error on the sensor quality factor and frequency of nuclear precession are obtained. It is shown that regression methods considerably widen the registration bandwidth and relax the requirements on the magnetometer hardware, and thus affect the optimization criteria of the registration system.
Measurement of the de Sitter precession of the moon - A relativistic three-body effect
NASA Technical Reports Server (NTRS)
Shapiro, I. I.; Reasenberg, R. D.; Chandler, J. F.; Babcock, R. W.
1988-01-01
Lunar laser-ranging data, accumulated between 1970 and 1986, are analyzed to estimate the deviation of the precession of the moon's orbit from the predictions of general relativity. No deviation from this predicted de Sitter precession rate of nearly 2 angular sec per century (sec/cy) is found, to within an estimated standard error of 0.04 sec/cy. This standard error, 2 percent of the predicted effect, incorporates an assessment of the likely contributions of systematic errors, and is about threefold larger than the statistical standard error.
New test of general relativity - Measurement of de Sitter geodetic precession rate for lunar perigee
NASA Technical Reports Server (NTRS)
Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L.
1987-01-01
According to general relativity, the calculated rate of motion of lunar perigee should include a contribution of 19.2 msec/yr from geodetic precession. It is shown that existing analyses of lunar-laser-ranging data confirm the general-relativistic rate for geodetic precession with respect to the planetary dynamical frame. In addition, the comparison of earth-rotation results from lunar laser ranging and from VLBI shows that the relative drift of the planetary dynamical frame and the extragalactic VLBI reference frame is small. The estimated accuracy is about 10 percent.
Lyutyy, T V; Denisov, S I; Reva, V V; Bystrik, Yu S
2015-10-01
We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.
New test of general relativity - Measurement of de Sitter geodetic precession rate for lunar perigee
NASA Technical Reports Server (NTRS)
Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L.
1987-01-01
According to general relativity, the calculated rate of motion of lunar perigee should include a contribution of 19.2 msec/yr from geodetic precession. It is shown that existing analyses of lunar-laser-ranging data confirm the general-relativistic rate for geodetic precession with respect to the planetary dynamical frame. In addition, the comparison of earth-rotation results from lunar laser ranging and from VLBI shows that the relative drift of the planetary dynamical frame and the extragalactic VLBI reference frame is small. The estimated accuracy is about 10 percent.
The evolution of adopted values for precession. [historical survey of reference systems
NASA Technical Reports Server (NTRS)
Lieske, J. H.
1985-01-01
The history of astronomical longitude precession determination is reviewed. Consideration is given to the work of Hipparchus and Ptolemy, the definition of rotation axes, the major 19th-century determinations, and 20th-century studies (using the data of Newcomb; based on PGC, GC, and McCormick/Cape catalogs; using FK3, FK4, and AGK3; involving galaxies; and using the dynamical method). Laser ranging and VLBI are seen as the most promising techniques for future precession measurements. Diagrams, graphs, and tables of numerical data are provided.
Probing white dwarf interiors with LISA: periastron precession in eccentric double white dwarfs.
Willems, B; Vecchio, A; Kalogera, V
2008-02-01
In globular clusters, dynamical interactions give rise to a population of eccentric double white dwarfs detectable by the Laser Interferometer Space Antenna (LISA) up to the Large Magellanic Cloud. In this Letter, we explore the detectability of periastron precession in these systems with LISA. Unlike previous investigations, we consider contributions due to tidal and rotational distortions of the binary components in addition to general relativistic contributions to the periastron precession. At orbital frequencies above a few mHz, we find that tides and stellar rotation dominate, opening up a possibly unique window to the study of the interior and structure of white dwarfs.
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Asher, David; Morbidelli, Alessandro; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
Two well known phenomena in orbital dynamics associated with low perihelion distance bodies are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations.In this work, we are interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK like oscillations and being GR active at the same time. We find that LK mechanism leads to secular lowering of perihelion distance which in turn leads to a huge increase in GR precession of the argument of pericentre depending on the initial orbital elements. This in turn gives feedback to the LK mechanism as the eccentricity, inclination and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show rapid enhancement in GR precession rates due to LK like oscillations and there are cases where GR precession rate peaks to about 60 times that of the GR precession of Mercury thus showing the strength and complementary nature between these two dynamical phenomena.An analytical treatment is done on few bodies to understand the difference in their orbital evolution in the context of LK mechanism with and without GR precession term by incorporating suitable Hamiltonian dynamics. This result is subsequently matched using numerical integrations to find direct correlations. Real solar system bodies showing both GR precession and LK like oscillations are identified using compiled observational records from IAU-Minor Planet Center, Cometary Catalogue, IAU-Meteor Data Center and performing analytical plus numerical tests on them. This intermediate state (where GR and LK effects are comparable and co-exist) brings up the interesting possibility of drastic changes in GR precession rates during orbital evolution due to sungrazing and sun colliding phases induced by the LK like mechanism, thus combining both these important effects in a
A complete solution for GP-B's gyroscopic precession by retarded gravitational theory
NASA Astrophysics Data System (ADS)
Tang, Keyun
Mainstream physicists generally believe that Mercury’s Perihelion precession and GP-B’ gyroscopic precession are two of the strongest evidences supporting Einstein’ curved spacetime and general relativity. However, most classical literatures and textbooks (e.g. Ohanain: Gravitation and Spacetime) paint an incorrect picture of Mercury’s orbit anomaly, namely Mercury’s perihelion precessed 43 arc-seconds per century; a correct picture should be that Mercury rotated 43 arc-seconds per century more than along Newtonian theoretical orbit. The essence of Le Verrier’s and Newcomb’s observation and analysis is that the angular speed of Mercury is slightly faster than the Newtonian theoretical value. The complete explanation to Mercury’s orbit anomaly should include two factors, perihelion precession is one of two factors, in addition, the change of orbital radius will also cause a change of angular speed, which is another component of Mercury's orbital anomaly. If Schwarzschild metric is correct, then the solution of the Schwarzschild orbit equation must contain three non-ignorable items. The first corresponds to Newtonian ellipse; the second is a nonlinear perturbation with increasing amplitude, which causes the precession of orbit perihelion; this is just one part of the angular speed anomaly of Mercury; the third part is a linear perturbation, corresponding to a similar figure of the Newton's ellipse, but with a minimal radius; this makes no contribution to the perihelion precession of the Schwarzschild orbit, but makes the Schwarzschild orbital radius slightly smaller, leading to a slight increase in Mercury’s angular speed. All classical literatures of general relativity ignored this last factor, which is a gross oversight. If you correctly take all three factors into consideration, the final result is that the difference between the angles rotated along Schwarzschild’s orbit and the angle rotated along Newton’s orbit for one hundred years should
THE DETECTABILITY OF TRANSIT DEPTH VARIATIONS DUE TO EXOPLANETARY OBLATENESS AND SPIN PRECESSION
Carter, Joshua A.; Winn, Joshua N.
2010-06-10
Knowledge of an exoplanet's oblateness and obliquity would give clues about its formation and internal structure. In principle, a light curve of a transiting planet bears information about the planet's shape, but previous work has shown that the oblateness-induced signal will be extremely difficult to detect. Here, we investigate the potentially larger signals due to planetary spin precession. The most readily detectable effects are transit depth variations (T{delta}V's) in a sequence of light curves. For a planet as oblate as Jupiter or Saturn, the transit depth will undergo fractional variations of order 1%. The most promising systems are those with orbital periods of approximately 15-30 days, which are short enough for the precession period to be less than about 40 yr and long enough to avoid spin-down due to tidal friction. The detectability of the T{delta}V signal would be enhanced by moons (which would decrease the precession period) or planetary rings (which would increase the amplitude). The Kepler mission should find several planets for which precession-induced T{delta}V signals will be detectable. Due to modeling degeneracies, Kepler photometry would yield only a lower bound on oblateness. The degeneracy could be lifted by observing the oblateness-induced asymmetry in at least one transit light curve or by making assumptions about the planetary interior.
NASA Astrophysics Data System (ADS)
Walker, D. D.; Beaucamp, A. T. H.; Doubrovski, V.; Dunn, C.; Freeman, R.; McCavana, G.; Morton, R.; Riley, D.; Simms, J.; Wei, X.
2005-09-01
Zeeko's Precession polishing process uses a bulged, rotating membrane tool, creating a contact-area of variable size. In separate modes of operation, the bonnet rotation-axis is orientated pole-down on the surface, or inclined at an angle and then precessed about the local normal. The bonnet, covered with standard polishing cloth and working with standard slurry, has been found to give superb surface textures in the regime of nanometre to sub-nanometre Ra values, starting with parts directly off precision CNC aspheric grinding machines. This paper reports an important extension of the process to the precision-controlled smoothing (or 'fining') operation required between more conventional diamond milling and subsequent Precession polishing. The method utilises an aggressive surface on the bonnet, again with slurry. This is compared with an alternative approach using diamond abrasives bound onto flexible carriers attached to the bonnets. The results demonstrate the viability of smoothing aspheric surfaces, which extends Precessions processing to parts with inferior input-quality. This may prove of particular importance to large optics where significant volumes of material may need to be removed, and to the creation of more substantial aspheric departures from a parent sphere. The paper continues with a recent update on results obtained, and lessons learnt, processing free-form surfaces, and concludes with an assessment of the relevance of the smoothing and free-form operations to the fabrication of off-axis parts including segments for extremely large telescopes.
On the free-precession candidate PSR B1828-11: Evidence for increasing deformation
NASA Astrophysics Data System (ADS)
Ashton, G.; Jones, D. I.; Prix, R.
2017-01-01
We observe that the periodic variations in spin-down rate and beam-width of the radio pulsar PSR B1828-11 are getting faster. In the context of a free precession model, this corresponds to a decrease in the precession period Pfp. We investigate how a precession model can account for such a decrease in Pfp, in terms of an increase over time in the absolute biaxial deformation (|ɛp| ˜ 10-8) of this pulsar. We perform a Bayesian model comparison against the `base' precession model (with constant ɛp) developed in Ashton et al. (2016), and we obtain decisive odds in favour of a time-varying deformation. We study two types of time-variation: (i) a linear drift with a posterior estimate of dot{ɛ }_p{˜ }10^{-18} s^{-1} and odds of 1075 compared to the base-model, and (ii) N discrete positive jumps in ɛp with very similar odds to the linear ɛp-drift model. The physical mechanism explaining this behaviour is unclear, but the observation could provide a crucial probe of the interior physics of neutron stars. We also place an upper bound on the rate at which the precessional motion is damped, and translate this into a bound on a dissipative mutual friction-type coupling between the star's crust and core.
On the precession of the elliptic mode shape of a circular ring owing to nonlinear effects
NASA Astrophysics Data System (ADS)
Zhuravlev, V. Ph.
2015-01-01
The Foucault pendulum, which maintains the plane of its vibrations in inertial space, loses this property as soon as the trajectory ceases to be flat. If the pendulum end circumscribes an elliptic trajectory instead of a straight line segment, then this ellipse precesses in the same direction as the material point circumscribes the ellipse itself. In this case, the angular velocity of the ellipse precession is proportional to its area and can be explained by the nonlinearity of the equations of vibrations of a mathematical pendulum [1]. A similar phenomenon takes place in an elastic inextensible ring, which is a representative of the "generalized Foucault pendulum" family [1]. If a standing wave is excited in an immovable ring, then this wave is immovable with respect to the ring only in the case of zero quadrature, but if the quadrature is nonzero, then the standing wave precesses with respect to the ring with a velocity proportional to the quadrature value. As in the case of the classical pendulum, this phenomenon can be explained by the nonlinearity of the ring regarded as an oscillatory system. In the present paper, we obtain an explicit formula for calculating the angular velocity of such a precession.
Phase precession of grid cells in a network model without external pacemaker.
Thurley, Kay; Hellmundt, Franziska; Leibold, Christian
2013-09-01
Rodent brains encode space in both the firing rate and the spike timing of neurons in the medial entorhinal cortex. The rate code is realized by grid fields, that is, the neurons fire at multiple places that are arranged on a hexagonal lattice. Such activity is accompanied by theta oscillations of the local field potential. The phase of spikes thereby encodes space as well, since it decreases with the distance traveled in the field-a phenomenon called phase precession. A likely candidate for grid cells are entorhinal cortex stellate cells, which are type II oscillators and have been suggested to act as pacemakers. It is unclear how spiking of such putative pacemaker neurons would be able to precess in phase relative to a self-generated oscillation. This article presents a computational model of how this paradox can be resolved although the periodicity of the grid fields interferes with the periodic firing of the neurons. Our simulations show that the connections between stellate cells synchronize small cell groups, which allows a population oscillation during grid field activity that is accompanied by theta phase precession. Direct excitatory coupling between the stellate cells, indirect inhibitory coupling via a gamma-oscillating network of interneurons, or both could mediate this phase coordination. Our model further suggests modulation of h-currents to be a feasible mechanism to adjust phase precession to running-speed. The coexistence of rate and timing code for space hence follows as a natural consequence of the self-organization in a recurrent network.
ERIC Educational Resources Information Center
O'Donnell, Kane; Visser, Matt
2011-01-01
The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary,…
ERIC Educational Resources Information Center
O'Donnell, Kane; Visser, Matt
2011-01-01
The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary,…
The Precession of SS433's Radio Ruff on Long Timescales
NASA Astrophysics Data System (ADS)
Doolin, Samuel; Blundell, Katherine M.
2009-06-01
Roughly perpendicular to SS433's famous precessing jets is an outflowing "ruff" of radio-emitting plasma, revealed by direct imaging on milliarcsecond scales. Over the last decade, images of the ruff have revealed that its orientation changes over time with respect to a fixed sky coordinate grid. For example, during two months of daily observations with the VLBA by Mioduszewski et al., a steady rotation through ~10° is observed while the jet angle changes by ~20°. The ruff reorientation is not coupled with the well known precession of SS433's radio jets, as the ruff orientation varies across a range of 69° while the jet angle varies across 40°, and on greatly differing and noncommensurate timescales. It has been proposed that the ruff is fed by SS433's circumbinary disk, discovered by a sequence of optical spectroscopy by Blundell et al., and so we present the results of three-dimensional numerical simulations of circumbinary orbits. These simulations show precession in the longitude of the ascending node of all inclined circumbinary orbits—an effect which would manifest itself as the observed ruff reorientation. Matching the rate of ruff precession is possible if circumbinary components are sufficiently close to the binary system, but only if the binary mass fraction is close to equality and the binary eccentricity is nonzero.
Detectability of gravitational waves from binary black holes: Impact of precession and higher modes
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre
2017-05-01
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.
Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Cochran, William D.; Collier Cameron, Andrew; Bayliss, Daniel
2015-09-01
We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of {db}/{dt}={-0.0228}-0.0018+0.0050 {{yr}}-1 and dλ /{dt}={-0\\buildrel{\\circ}\\over{.} 487}-0.076+0.089 {{yr}}-1, respectively, corresponding to a rate of nodal precession of d{{Ω }}/{dt}=0\\buildrel{\\circ}\\over{.} {373}-0.083+0.031 {{yr}}-1. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 0.0054≤slant {J}2≤slant 0.035.
NASA Astrophysics Data System (ADS)
Babak, Stanislav; Taracchini, Andrea; Buonanno, Alessandra
2017-01-01
In Abbott et al. [Phys. Rev. X 6, 041014 (2016), 10.1103/PhysRevX.6.041014], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such an EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all ℓ=2 modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10 M⊙ and 200 M⊙ , we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge signal of the underlying nonprecessing EOBNR model. The unfaithfulness is computed with maximization over time and phase of arrival, sky location, and polarization of the EOBNR waveform, and it is averaged over sky location and polarization of the NR signal. We also present comparisons between NR and EOBNR waveforms in a frame that tracks the orbital precession.
Precession dynamics of the relativistic electron spin in laser-plasma acceleration
Pugacheva, D V; Andreev, N E
2016-01-31
A model is developed to study the precession dynamics of the relativistic electron spin in a laser-plasma accelerator versus the initial energy of the electron and its injection phase. Optimal parameters providing minimum depolarisation of the electron in the acceleration process are determined. (laser -plasma acceleration of electrons)
The impact of precession and obliquity on the Late-Devonian greenhouse climate
NASA Astrophysics Data System (ADS)
De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.
2012-12-01
To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter
Effects of the observed J2 variations on the Earth's precession and nutation
NASA Astrophysics Data System (ADS)
Ferrándiz, José M.; Baenas, Tomás; Belda, Santiago
2016-04-01
The Earth's oblateness parameter J2 is closely related to the dynamical ellipticity H, which factorizes the main components of the precession and the different nutation terms. In most theoretical approaches to the Earth's rotation, with IAU2000 nutation theory among them, H is assumed to be constant. The precession model IAU2006 supposes H to have a conventional linear variation, based on the J2 time series derived mainly from satellite laser ranging (SLR) data for decades, which gives rise to an additional quadratic term of the precession in longitude and some corrections of the nutation terms. The time evolution of J2 is, however, too complex to be well approximated by a simple linear model. The effect of more general models including periodic terms and closer to the observed time series, although still unable to reproduce a significant part of the signal, has been seldom investigated. In this work we address the problem of deriving the effect of the observed J2 variations without resorting to such simplified models. The Hamiltonian approach to the Earth rotation is extended to allow the McCullagh's term of the potential to depend on a time-varying oblateness. An analytical solution is derived by means of a suitable perturbation method in the case of the time series provided by the Center for Space Research (CSR) of the University of Texas, which results in non-negligible contributions to the precession-nutation angles. The presentation focuses on the main effects on the longitude of the equator; a noticeable non-linear trend is superimposed to the linear main precession term, along with some periodic and decadal variations.
Precession, nutation, and space geodetic determination of the Earth's variable gravity field
NASA Astrophysics Data System (ADS)
Bourda, G.; Capitaine, N.
2004-12-01
Precession and nutation of the Earth depend on the Earth's dynamical flattening, H, which is closely related to the second degree zonal coefficient, J2 of the geopotential. A small secular decrease as well as seasonal variations of this coefficient have been detected by precise measurements of artificial satellites (Nerem et al. \\cite{Nerem1993}; Cazenave et al. \\cite{Cazenave1995}) which have to be taken into account for modelling precession and nutation at a microarcsecond accuracy in order to be in agreement with the accuracy of current VLBI determinations of the Earth orientation parameters. However, the large uncertainties in the theoretical models for these J2 variations (for example a recent change in the observed secular trend) is one of the most important causes of why the accuracy of the precession-nutation models is limited (Williams \\cite{Williams1994}; Capitaine et al. \\cite{Capitaine2003}). We have investigated in this paper how the use of the variations of J2 observed by space geodetic techniques can influence the theoretical expressions for precession and nutation. We have used time series of J2 obtained by the ``Groupe de Recherches en Géodésie spatiale'' (GRGS) from the precise orbit determination of several artificial satellites from 1985 to 2002 to evaluate the effect of the corresponding constant, secular and periodic parts of H and we have discussed the best way of taking the observed variations into account. We have concluded that, although a realistic estimation of the J2 rate must rely not only on space geodetic observations over a limited period but also on other kinds of observations, the monitoring of periodic variations in J2 could be used for predicting the effects on the periodic part of the precession-nutation motion.
NASA Astrophysics Data System (ADS)
Pan, Yi; Buonanno, Alessandra; Taracchini, Andrea; Kidder, Lawrence E.; Mroué, Abdul H.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla
2014-04-01
We describe a general procedure to generate spinning, precessing waveforms that include inspiral, merger, and ringdown stages in the effective-one-body (EOB) approach. The procedure uses a precessing frame in which precession-induced amplitude and phase modulations are minimized, and an inertial frame, aligned with the spin of the final black hole, in which we carry out the matching of the inspiral-plunge to merger-ringdown waveforms. As a first application, we build spinning, precessing EOB waveforms for the gravitational modes ℓ=2 such that in the nonprecessing limit those waveforms agree with the EOB waveforms recently calibrated to numerical-relativity waveforms. Without recalibrating the EOB model, we then compare EOB and post-Newtonian precessing waveforms to two numerical-relativity waveforms produced by the Caltech-Cornell-CITA collaboration. The numerical waveforms are strongly precessing and have 35 and 65 gravitational-wave cycles. We find a remarkable agreement between EOB and numerical-relativity precessing waveforms and spins' evolutions. The phase difference is ˜0.2 rad rad at merger, while the mismatches, computed using the advanced-LIGO noise spectral density, are below 2% when maximizing only on the time and phase at coalescence and on the polarization angle.
Change in General Relativistic precession rates due to Lidov-Kozai oscillations in the Solar System
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Asher, David J.; Werner, Stephanie C.; Vaubaillon, Jeremie; Li, Gongjie
2017-04-01
Introduction: Two well known phenomena associated with low perihelion distance bodies in orbital dynamics are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations. The accurate prediction of the perihelion shift of Mercury in accord with real observations is one of the significant triumphs of the general theory of relativity developed by Einstein. The Lidov-Kozai mechanism was first proposed and derived by Kozai and independently by Lidov explaining the periodic exchange between eccentricities e and inclinations i thereby increasing or decreasing the perihelion distance q secularly in the orbiting body. Co-existence of GR Precession and LK Oscillations: In this work, we were interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK oscillations and being GR active at the same time. Of all the bodies we checked from the IAU-Minor Planet Center, and Marsden plus Kracht families from the comet catalogue, 96P/Machholz 1 stands out because it shows all these trends in the near future. LK leads to secular lowering of q which in turn leads to a huge increase in GR precession of argument of pericentre. This in turn gives feedback to the LK mechanism as the e,i and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show the continuum nature between GR precession domi-nant and LK mechanism dominant regimes. Results and Discussion: We have shown that there are bodies in the solar system in which both GR precession and LK mechanism can co-exist at the same time and for which these effects can be measured and identified using analytical and numerical techniques. Thus there is a continuum of bodies encompassing, firstly GR precession dominant, secondly GR precession plus LK mechanism co-existing and finally LK mechanism dominant states which are all
Turbulence driven by precession in spherical and slightly elongated spheroidal cavities
Goto, Susumu; Matsunaga, Arihiro; Tsuda, Shinya; Fujiwara, Masahiro; Yamato, Masahiro; Nishioka, Michio; Kida, Shigeo
2014-05-15
Motivated by the fascinating fact that strong turbulence can be sustained in a weakly precessing container, we conducted a series of laboratory experiments on the flow in a precessing spherical cavity, and in a slightly elongated prolate spheroidal cavity with a minor-to-major axis ratio of 0.9. In order to determine the conditions required to sustain turbulence in these cavities, and to investigate the statistics of the sustained turbulence, we developed an experimental technique to conduct high-quality flow visualizations as well as measurements via particle image velocimetry on a turntable and by using an intense laser. In general, flows in a precessing cavity are controlled by two non-dimensional parameters: the Reynolds number Re (or its reciprocal, the Ekman number) which is defined by the cavity size, spin angular velocity, and the kinematic viscosity of the confined fluid, and the Poincaré number Po, which is defined by the ratio of the magnitude of the precession angular velocity to that of the spin angular velocity. However, our experiments show that the global flow statistics, such as the mean velocity field and the spatial distribution of the intensity of the turbulence, are almost independent of Re, and they are determined predominantly by Po, whereas the instability of these global flow structures is governed by Re. It is also shown that the turbulence statistics are most likely similar in the two cavities due to the slight difference between their shapes. However, the condition to sustain the unsteady flows, and therefore the turbulence, differs drastically depending on the cavity shape. Interestingly, the asymmetric cavity, i.e., the spheroid, requires a much stronger precession than a sphere to sustain such unsteady flows. The most developed turbulence for a given Re is generated in these cavities when 0.04 ≲ Po ≲ 0.1. In such cases, the sustained turbulence is always accompanied by vigorous large-scale vortical structures, and shearing
Constraining the Preferred-Frame α1, α2 Parameters from Solar System Planetary Precessions
NASA Astrophysics Data System (ADS)
Iorio, L.
2014-10-01
Analytical expressions for the orbital precessions affecting the relative motion of the components of a local binary system induced by Lorentz-violating Preferred Frame Effects (PFE) are explicitly computed in terms of the Parametrized Post-Newtonian (PPN) parameters α1, α2. Preliminary constraints on α1, α2 are inferred from the latest determinations of the observationally admitted ranges Δ ˙ ǎrpi for any anomalous Solar System planetary perihelion precessions. Other bounds existing in the literature are critically reviewed, with particular emphasis on the constraint ěrt α 2 ěrt <=ssapprox 10-7 based on an interpretation of the current close alignment of the Sun's equator with the invariable plane of the Solar System in terms of the action of a α2-induced torque throughout the entire Solar System's existence. Taken individually, the supplementary precessions Δ ˙ ǎrpi of Earth and Mercury, recently determined with the INPOP10a ephemerides without modeling PFE, yield α1 = (0.8±4) × 10-6 and α2 = (4±6) × 10-6, respectively. A linear combination of the supplementary perihelion precessions of all the inner planets of the Solar System, able to remove the a priori bias of unmodeled/mismodeled standard effects such as the general relativistic Lense-Thirring precessions and the classical rates due to the Sun's oblateness J2, allows to infer α1 = (-1 ± 6) × 10-6, α2 = (-0.9 ± 3.5) × 10-5. Such figures are obtained by assuming that the ranges of values for the anomalous perihelion precessions are entirely due to the unmodeled effects of α1 and α2. Our bounds should be improved in the near-mid future with the MESSENGER and, especially, BepiColombo spacecrafts. Nonetheless, it is worthwhile noticing that our constraints are close to those predicted for BepiColombo in two independent studies. In further dedicated planetary analyses, PFE may be explicitly modeled to estimate α1, α2 simultaneously with the other PPN parameters as well.
Obliquity, precession rate, and nutation coefficients for a set of 100 asteroids
NASA Astrophysics Data System (ADS)
Lhotka, C.; Souchay, J.; Shahsavari, A.
2013-08-01
Context. Thanks to various space missions and the progress of ground-based observational techniques, the knowledge of asteroids has considerably increased in the recent years. Aims: Due to this increasing database that accompanies this evolution, we compute for a set of 100 asteroids their rotational parameters: the moments of inertia along the principal axes of the object, the obliquity of the axis of rotation with respect to the orbital plane, the precession rates, and the nutation coefficients. Methods: We select 100 asteroids for which the parameters for the study are well-known from observations or space missions. For each asteroid, we determine the moments of inertia, assuming an ellipsoidal shape. We calculate their obliquity from their orbit (instead of the ecliptic) and the orientation of the spin-pole. Finally, we calculate the precession rates and the largest nutation components. The number of asteroids concerned leads to some statistical studies of the output. Results: We provide a table of rotational parameters for our set of asteroids. The table includes the obliquity, their axes ratio, their dynamical ellipticity Hd, and the scaling factor K. We compute the precession rate ψ˙ and the leading nutation coefficients Δψ and Δɛ. We observe similar characteristics, as observed by previous authors that is, a significantly larger number of asteroids rotates in the prograde mode (≈ 60%) than in the retrograde one with a bimodal distribution. In particular, there is a deficiency of objects with a polar axis close to the orbit. The precession rates have a mean absolute value of 18″/y, and the leading nutation coefficients have an average absolute amplitude of 5.7″ for Δψ and 5.2″ for Δɛ. At last, we identify and characterize some cases with large precession rates, as seen in 25143 Itokawa, with has a precession rate of about - 475''/y. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130
NASA Astrophysics Data System (ADS)
Moriyama, Takahiro
2009-03-01
A variety of experimentally observed phenomena involving nonlocal magnetization dynamics in magnetic multilayers are due to two complementary effects: (i) the transfer of spin angular momentum accompanying charge currents driven by the applied bias voltage between ferromagnetic layers results in torques that (for sufficiently high current densities) generate spontaneous magnetization precession and switching; and (ii) the precessing magnetization of a ferromagnet (FM) pumps spins into adjacent normal metal layers (NM) with no applied bias. In particular, the spin pumping effect is a promising candidate for realizing a spin battery device [1] as a source of elusive pure spin currents (not accompanied by any net charge transport) emitted at the FM/NM interface, where steady magnetization precession of the FM layer is sustained by the absorption of external rf radiation under the FMR conditions. We report the electrical detection of magnetization dynamics in an Al/AlOx/Ni80Fe20/Cu tunnel junction, where a Ni80Fe20 ferromagnetic layer is brought into precession under the ferromagnetic resonance (FMR) conditions. The dc voltage generated across the junction by the precessing ferromagnet is enhanced about an order of magnitude compared to the voltage signal observed in Cu/FeNi/Pt structures [2]. A structure of Cu (100nm)/Al (10nm)/AlOx (2.3nm)/Ni80Fe20 (20nm)/Cu (70nm)/Au (25nm) was fabricated on a Si substrate with a 1μm thick thermal oxide layer. The bottom-most 100 nm Cu layer was patterned into a coplanar waveguide (CPW) and the rest of the structure was patterned into a pillar structure on the signal line of the CPW. Dc voltages ˜μV were observed in the Al/AlOx/Ni80Fe20/Cu tunnel junction when the Ni80Fe20 is in the ferromagnetic resonance. The dc voltages increase as the precession cone angle and frequency increase. We discuss the relation of this phenomenon to magnetic spin pumping and speculate on other possible underlying mechanisms responsible for the
NASA Astrophysics Data System (ADS)
Wang, Xian-Chao; Xin, Zi-Hua; Feng, Li-Ya
2010-02-01
The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.
Measuring the Lense-Thirring precession using a second Lageos satellite
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Ciufolini, I.
1989-01-01
A complete numerical simulation and error analysis was performed for the proposed experiment with the objective of establishing an accurate assessment of the feasibility and the potential accuracy of the measurement of the Lense-Thirring precession. Consideration was given to identifying the error sources which limit the accuracy of the experiment and proposing procedures for eliminating or reducing the effect of these errors. Analytic investigations were conducted to study the effects of major error sources with the objective of providing error bounds on the experiment. The analysis of realistic simulated data is used to demonstrate that satellite laser ranging of two Lageos satellites, orbiting with supplemental inclinations, collected for a period of 3 years or more, can be used to verify the Lense-Thirring precession. A comprehensive covariance analysis for the solution was also developed.
Palatinus, Lukáš; Corrêa, Cinthia Antunes; Steciuk, Gwladys; Jacob, Damien; Roussel, Pascal; Boullay, Philippe; Klementová, Mariana; Gemmi, Mauro; Kopeček, Jaromír; Domeneghetti, M Chiara; Cámara, Fernando; Petříček, Václav
2015-12-01
The recently published method for the structure refinement from three-dimensional precession electron diffraction data using dynamical diffraction theory [Palatinus et al. (2015). Acta Cryst. A71, 235-244] has been applied to a set of experimental data sets from five different samples - Ni2Si, PrVO3, kaolinite, orthopyroxene and mayenite. The data were measured on different instruments and with variable precession angles. For each sample a reliable reference structure was available. A large series of tests revealed that the method provides structure models with an average error in atomic positions typically between 0.01 and 0.02 Å. The obtained structure models are significantly more accurate than models obtained by refinement using kinematical approximation for the calculation of model intensities. The method also allows a reliable determination of site occupancies and determination of absolute structure. Based on the extensive tests, an optimal set of the parameters for the method is proposed.
Eggeman, Alexander S.; Krakow, Robert; Midgley, Paul A.
2015-01-01
Three-dimensional (3D) reconstructions from electron tomography provide important morphological, compositional, optical and electro-magnetic information across a wide range of materials and devices. Precession electron diffraction, in combination with scanning transmission electron microscopy, can be used to elucidate the local orientation of crystalline materials. Here we show, using the example of a Ni-base superalloy, that combining these techniques and extending them to three dimensions, to produce scanning precession electron tomography, enables the 3D orientation of nanoscale sub-volumes to be determined and provides a one-to-one correspondence between 3D real space and 3D reciprocal space for almost any polycrystalline or multi-phase material. PMID:26028514
Obliquity of Mercury: Influence of the precession of the pericenter and of tides
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Yseboodt, Marie; Rivoldini, Attilio; Van Hoolst, Tim
2017-07-01
Mercury is expected to deviate from the classical Cassini state since this state is defined for a uniformly precessing rigid planet. We develop an extended Cassini state model that includes the variations (or nutations) in obliquity and deviation induced by the slow precession of the pericenter. The model also describes the constant shift over time in mean obliquity and deviation associated with the short-periodic tidal deformations of Mercury, characterized by the tidal love number k2 and by the ratio k2/Q of the tidal Love number over the tidal quality factor, respectively. This model is then used to interpret Mercury's orientation, including the deviation from the classical Cassini state, in terms of parameters of Mercury's interior.
Spin-locked balanced steady-state free-precession (slSSFP).
Witschey, Walter R T; Borthakur, Ari; Elliott, Mark A; Magland, Jeremy; McArdle, Erin L; Wheaton, Andrew; Reddy, Ravinder
2009-10-01
A spin-locked balanced steady-state free-precession (slSSFP) pulse sequence is described that combines a balanced gradient-echo acquisition with an off-resonance spin-lock pulse for fast MRI. The transient and steady-state magnetization trajectory was solved numerically using the Bloch equations and was shown to be similar to balanced steady-state free-precession (bSSFP) for a range of T(2)/T(1) and flip angles, although the slSSFP steady-state could be maintained with considerably lower radio frequency (RF) power. In both simulations and brain scans performed at 7T, slSSFP was shown to exhibit similar contrast and signal-to-noise ratio (SNR) efficiency to bSSFP, but with significantly lower power.
Jet precession and its observational evidence: The cases of 3C 345 and 3C 120
NASA Astrophysics Data System (ADS)
Caproni, Anderson; Abraham, Zulema
2004-11-01
Several radio-loud objects exhibit a complex structure when observed at radio wavelengths: a stationary core, which is thought to harbour the central engine that powers the AGN phenomena, and a relativistic jet, formed by several superluminal components. In some cases, jet components are ejected with different apparent proper motions and directions on the plane of the sky. Moreover, these sources can also show signatures of long-term periodic variability in their historical optical light curve. In this work, we selected the objects 3C 120 and 3C 345, which exhibit both characteristics mentioned above, and interpret them in the framework of jet inlet precession. A brief discussion about what kind of mechanism could be responsible for jet precession is also presented.
Free precession in quasi-periodic oscillators. [in accreting neutron stars
NASA Technical Reports Server (NTRS)
Shaham, Jacob
1986-01-01
The recent discoveries of quasi-periodic oscillations (QPOs) brought about a surge of theoretical work concerned with the disk-magnetosphere boundary in accreting neutron stars. Much of the detailed theoretical discussion deals with the beat-frequency model (BFM). The beat frequency (BF) spectrum resulting from applying the BFM to the most general freely rotating neutron star, i.e., a freely precessing neutron star whose angular momentum vector is, in addition, not perpendicular to the disk, is considered. It is found that in the course of free precession, the BF spectrum usually changes, with the various QPO lines changing in intensity. This allows, in principle, phenomena of frequency changing not due to changes in luminosity such as those observed in Cyg X-2 and, perhaps, in other QPOs. Such 'mode' changes may, in turn, reflect the nature of the disk-magnetosphere coupling in QPOs.
Precessing cylinders at the second and third resonance: Turbulence controlled by geostrophic flow
NASA Astrophysics Data System (ADS)
Jiang, Jianfei; Kong, Dali; Zhu, Rixiang; Zhang, Keke
2015-09-01
We investigate, via both asymptotic analysis and direct numerical simulation, precessionally driven flow of a homogeneous fluid confined in fluid-filled circular cylinders that rotate rapidly about their symmetry axis and precess about a different axis and that are marked by radius-height aspect ratios Γ =1.045 945 and Γ =1.611 089 . At these radius-height aspect ratios, the Poincaré force resonates directly with the two special inertial modes that have the simplest vertical structure. An asymptotic analytical solution in closed form describing weakly precessing flow is derived in the mantle frame of reference for asymptotically small Ekman numbers, showing quantitative agreement with the result of direct nonlinear numerical simulation. Our numerical simulation makes use of a finite-element method with the three-dimensional tetrahedralization of a cylindrical cavity that allows the construction of dense nodes in the vicinity of the bounding surface of the cavity for resolving the thin viscous boundary layer. It is found that axisymmetric geostrophic flow in the alternating eastward and westward direction can be generated and maintained by nonlinear and viscous effects in the viscous boundary layer. It is also found that, when the precessing rate is moderate and, consequently, the geostrophic flow is weak, nonlinear interaction between the resonant inertial mode and the nonesonant inertial modes driven by the Poincaré force and the boundary-layer influx leads to strongly turbulent flow with irregular temporal-spatial fluctuation. When the cylinders are strongly precessing such that the geostrophic flow becomes predominant, however, the effect of the geostrophic flow controls/stabilizes its nonlinear dynamics, leading to weakly turbulent flow that can be largely described by a dominant quasisteady geostrophic component and a weak nonaxisymmetric component localized in the region where the geostrophic flow is weak.
NASA Technical Reports Server (NTRS)
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
Precession of the isolated neutron star PSR B1828-11
NASA Astrophysics Data System (ADS)
Akgün, Taner; Link, Bennett; Wasserman, Ira
2006-01-01
Stairs, Lyne & Shemar have found that the arrival-time residuals from PSR B1828-11 vary periodically with a period ~500 d. This behaviour can be accounted for by precession of the radio pulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same time-scale. Here, we model the period residuals from PSR B1828-11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points towards the observer varies with precession phase; and (ii) the spin-down contribution, which arises from any dependence of the spin-down torque acting on the pulsar on the angle between its spin and magnetic axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spin-down torque on , for which we assume the sum of a spin-aligned component (with a weight 1 -a) and a dipolar component perpendicular to the magnetic beam axis (weight a), rather than the vacuum dipole torque (a= 1). We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star, we find evidence for an angle-dependent spin-down torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of the timing behaviour of PSR B1828-11, without fine tuning of the parameters.
Contributions of the Elasticity to the Precession of a Two-layer Earth Model
NASA Astrophysics Data System (ADS)
Baenas, T.; Ferrándiz, J. M.; Escapa, A.; Getino, J.; Navarro, J. F.
2017-02-01
We focus on the updating of a specific contribution to the precession of the equator in longitude, usually named as “second order.” It stems from the crossing of certain terms of the lunisolar gravitational potential. The IAU2006 precession theory assigns it the value of ‑46.8 mas/cy that was derived for a rigid Earth model. Instead of that model, we consider a two-layer Earth composed of an elastic mantle and a liquid core, working out the problem within the Hamiltonian framework developed by Getino and Ferrándiz. The targeted effect is obtained without further simplifying assumptions through Hori’s canonical perturbation method applied up to the second order of perturbation. On account of using a more realistic Earth model, the revised value of the second-order contribution is significantly changed and reaches ‑55.29 mas/cy. That variation of the second-order contribution is larger than other contributions included in IAU2006. It must be compensated with an increase of ‑8.51 mas/cy in the value of the lunisolar first-order component {p}A\\prime of the precession of the equator rate, which is derived from the total rate by subtracting the remaining contributions accounted for in IAU2006 precession. The updating of the second-order contribution implies that the {p}A\\prime parameter has to be changed, from 5040684.593 to 5040693.104 mas/cy in absence of potential revisions of other contributions. It entails a proportional variation of Earth’s dynamical ellipticity Hd, for which the estimation associated with IAU2006, 0.00327379448, should be updated to 0.00327380001, about 1.7 ppm larger.
Precession of orbits around the stellar-mass black hole in H 1743-322
NASA Astrophysics Data System (ADS)
Ingram, Adam
2016-07-01
Accreting stellar-mass black holes often show a quasi-periodic oscillation (QPO) in their X-ray flux with a period that slowly drifts from ~10s to ~0.05s, and an iron emission line in their X-ray spectrum. The iron line is generated by fluorescent re-emission, by the accretion disk, of X-ray photons originating in the innermost hot flow. The line shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The QPO arises from the immediate vicinity of the black hole, but its physical origin has long been debated. It has been suggested that the QPO originates via Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red and blue shift as the receding and approaching sides of the disk are respectively illuminated. I will talk about our observations of the black hole binary H 1743-322 in which the line energy varies in step with the ~4.5s QPO cycle, providing strong evidence that such QPOs originate via Lense-Thirring precession. This effect has previously been measured in our Solar System but our detection is in the strong field regime of General Relativity, at a precession rate 14 orders of magnitude faster than possible in the Earth's gravitational field. Our result enables the application of tomographic techniques to map the motion of matter in the strong gravity near black hole event horizons.
Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession
NASA Astrophysics Data System (ADS)
Escapa, A.; Getino, J.; Ferrándiz, J. M.; Baenas, T.
2017-08-01
The adoption of International Astronomical Union (IAU) 2006 precession model, IAU 2006 precession, requires IAU 2000A nutation to be adjusted to ensure compatibility between both theories. This consists of adding small terms to some nutation amplitudes relevant at the microarcsecond level. Those contributions were derived in previously published articles and are incorporated into current astronomical standards. They are due to the estimation process of nutation amplitudes by Very Long Baseline Interferometry (VLBI) and to the changes induced by the J2 rate present in the precession theory. We focus on the second kind of those adjustments, and develop a simple model of the Earth nutation capable of determining all the changes arising in the theoretical construction of the nutation series in a dynamical consistent way. This entails the consideration of three main classes of effects: the J2 rate, the orbital coefficients rate, and the variations induced by the update of some IAU 2006 precession quantities. With this aim, we construct a first order model for the nutations of the angular momentum axis of the non-rigid Earth. Our treatment is based on a Hamiltonian formalism and leads to analytical formulae for the nutation amplitudes in the form of in-phase, out-of-phase, and mixed secular terms. They allow numerical evaluation of the contributions of the former effects. We conclude that the accepted corrections associated with the J2 rate must be supplemented with new, hitherto unconsidered terms of the same order of magnitude, and that these should be incorporated into present standards.
AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION
Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.
2016-02-20
Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.
On HPM approximation for the perihelion precession angle in general relativity
NASA Astrophysics Data System (ADS)
Shchigolev, Victor; Bezbatko, Dmitrii
2017-03-01
In this paper, the homotopy perturbation method (HPM) is applied for calculating the perihelion precession angle of planetary orbits in General Relativity. The HPM is quite efficient and is practically well suited for use in many astrophysical and cosmological problems. For our purpose, we applied HPM to the approximate solutions for the orbits in order to calculate the perihelion shift. On the basis of the main idea of HPM, we construct the appropriate homotopy that leads to the problem of solving the set of linear algebraic equations. As a result, we obtain a simple formula for the angle of precession avoiding any restrictions on the smallness of physical parameters. First of all, we consider the simple examples of the Schwarzschild metric and the Reissner - Nordström spacetime of a charged star for which the approximate geodesics solutions are known. Furthermore, the implementation of HPM has allowed us to readily obtain the precession angle for the orbits in the gravitational field of Kiselev black hole.
Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Ha-Youn; Lee, Jae-Hyeok; Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D
2015-06-16
We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)(2.20±0.14), where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging.
Lense-Thirring precession around supermassive black holes during tidal disruption events
NASA Astrophysics Data System (ADS)
Franchini, Alessia; Lodato, Giuseppe; Facchini, Stefano
2016-01-01
A tidal disruption event occurs when a star wanders close enough to a black hole to be disrupted by its tidal force. The debris of a tidally disrupted star are expected to form an accretion disc around the supermassive black hole. The light curves of these events sometimes show a quasi-periodic modulation of the flux that can be associated with the precession of the accretion disc due to the Lense-Thirring (`frame-dragging') effect. Since the initial star orbit is in general inclined with respect to the black hole spin, this misalignment combined with the Lense-Thirring effect leads to a warp in the disc. In this paper, we provide a simple model of the system composed by a thick and narrow accretion disc surrounding a spinning supermassive black hole, with the aim to: (a) compute the expected precession period as a function of the system parameters, (b) discuss the conditions that have to be satisfied in order to have rigid precession, (c) investigate the alignment process, highlighting how different mechanisms play a role leading the disc and the black hole angular momenta into alignment.
Where angular momentum goes in a precessing black-hole binary
NASA Astrophysics Data System (ADS)
Lousto, Carlos O.; Zlochower, Yosef
2014-01-01
We evolve a set of 32 equal-mass black-hole binaries with collinear spins (with intrinsic spin magnitudes |S⃗1,2/m1,22|=0.8) to study the effects of precession in the highly nonlinear plunge and merger regimes. We compare the direction of the instantaneous radiated angular momentum, δJ^rad(t), to the directions of the total angular momentum, J^(t), and the orbital angular momentum, L^(t). We find that δJ^rad(t) approximately follows L^ throughout the evolution. During the orbital evolution and merger, we observe that the angle between L⃗ and total spin S⃗ is approximately conserved to within 1°, which allows us to propose and test models for the merger remnant's mass and spin. For instance, we verify that the hang-up effect is the dominant effect and largely explains the observed total energy and angular momentum radiated by these precessing systems. We also verify that the total angular momentum, which significantly decreases in magnitude during the inspiral, varies in direction by less than ˜5°. The maximum variation in the direction of J⃗ occurs when the spins are nearly antialigned with the orbital angular momentum. Based on our results, we conjecture that transitional precession, which would lead to large variations in the direction of J⃗, is not possible for similar-mass binaries and would require a mass ratio m1/m2≲1/4.
An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction
NASA Astrophysics Data System (ADS)
Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.
2016-02-01
Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.
On the equal-mass limit of precessing black-hole binaries
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Sperhake, Ulrich; Vošmera, Jakub
2017-03-01
We analyze the inspiral dynamics of equal-mass precessing black-hole binaries using multi-timescale techniques. The orbit-averaged post-Newtonian evolutionary equations admit two constants of motion in the equal-mass limit, namely the magnitude of the total spin S and the effective spin ξ. This feature makes the entire dynamics qualitatively different compared to the generic unequal-mass case, where only ξ is constant while the variable S parametrizes the precession dynamics. For fixed individual masses and spin magnitudes, an equal-mass black-hole inspiral is uniquely characterized by the two parameters ≤ft(S,ξ \\right) : these two numbers completely determine the entire evolution under the effect of radiation reaction. In particular, for equal-mass binaries we find that (i) the black-hole binary spin morphology is constant throughout the inspiral, and that (ii) the precessional motion of the two black-hole spins about the total spin takes place on a longer timescale than the precession of the total spin and the orbital plane about the total angular momentum.
Montgomery, M. M.
2012-02-15
Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.
POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES
Ingram, Adam; Maccarone, Thomas J.; Poutanen, Juri; Krawczynski, Henric
2015-07-01
It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense–Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about the Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur)
A curious ringlet that shares Prometheus' orbit but precesses like the F ring
NASA Astrophysics Data System (ADS)
Hedman, M. M.; Carter, B. J.
2017-01-01
Images obtained by the Cassini spacecraft of the region just beyond Saturn's main rings reveal a previously unreported narrow and dusty ringlet that has dynamical connections with both Saturn's small satellite Prometheus and the F ring. The radial position of this ringlet is observed to vary with time and longitude, indicating that it is eccentric with an eccentricity of 0.0012 and that its mean orbital radius varies between 139,300 km and 139,400 km. These mean radii are consistent with material trapped in a co-orbital 1:1 resonance with Prometheus. However, the apsidal precession rate of this ringlet is not that expected for material close to Prometheus' orbit (2.76°/day). Instead, the ringlet appears to be precessing at the same rate as the F ring (2.70°/day). This ringlet therefore appears to consist of material co-rotating with Prometheus whose apsidal precession rates have been modified by interactions with F-ring material. This ringlet may therefore provide new insights into how rings can maintain organized eccentric structures over a range of semi-major axes.
Resonantly exited precession motion of three-dimensional vortex core in magnetic nanospheres
Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Ha-Youn; Lee, Jae-Hyeok; Gaididei, Yuri; Kravchuk, Volodymyr P.; Sheka, Denis D.
2015-01-01
We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)2.20±0.14, where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging. PMID:26079895
NASA Astrophysics Data System (ADS)
Chen, Son-Hsien; Chang, Ching-Ray; Xiao, John Q.; Nikolić, Branislav K.
2009-02-01
We study spin and charge currents pumped by precessing magnetization of a single ferromagnetic layer within F|I|N or F|I|F ( F -ferromagnet; I -insulator; N -normal metal) multilayers of nanoscale thickness attached to two normal-metal electrodes with no applied bias voltage between them. Both simple one-dimensional model, consisting of a single precessing spin and a potential barrier as the “sample,” and realistic three-dimensional devices are investigated. In the rotating reference frame, where the magnetization appears to be static, these junctions are mapped onto a four-terminal dc circuit whose effectively half-metallic ferromagnetic electrodes are biased by the frequency ℏω/e of microwave radiation driving magnetization precession at the ferromagnetic resonance (FMR) conditions. We show that pumped spin current in F|I|F junctions, diminished behind the tunnel barrier and increased in the opposite direction, is filtered into charge current by the second F layer to generate dc pumping voltage of the order of ˜1μV (at FMR frequency ˜10GHz ) in an open circuit. In F|I|N devices, several orders of magnitude smaller charge current and the corresponding dc voltage appear concomitantly with the pumped spin current due to barrier induced asymmetry in the transmission coefficients connecting the four electrodes in the rotating-frame picture of pumping.
Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene
NASA Astrophysics Data System (ADS)
Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.
2014-12-01
Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.
Weisberg, J. M.; Everett, J. E.; Morgan, J. J.; Brisbin, D. G.; Cordes, J. M.
2010-10-01
In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle are usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3{sigma} level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of {approx}(200-1300) days and amplitudes of {approx}(1-12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar and relate these to limits on precession and interstellar magnetic field variations.
Near-IR imaging toward a puzzling young stellar object precessing jet
NASA Astrophysics Data System (ADS)
Paron, S.; Fariña, C.; Ortega, M. E.
2016-10-01
Aims: The study of jets that are related to stellar objects in formation is important because it enables us to understand the history of how the stars have built up their mass. Many studies currently examine jets towards low-mass young stellar objects, while equivalent studies toward massive or intermediate-mass young stellar objects are rare. In a previous study, based on 12CO J = 3-2 and public near-IR data, we found highly misaligned molecular outflows toward the infrared point source UGPS J185808.46+010041.8 (IRS) and some infrared features suggesting the existence of a precessing jet. Methods: Using near-IR data acquired with Gemini-NIRI at the JHKs broad- and narrowbands centered on the emission lines of [FeII], H2 1-0 S(1), H2 2-1 S(1), Brγ, and CO 2-0 (bh), we studied the circumstellar environment of IRS with an angular resolution between 0.̋35 and 0.̋45. Results: The emission in the JHKs broadbands shows in great detail a cone-shaped nebula extending to the north-northeast of the point source, which appears to be attached to it by a jet-like structure. In the three bands the nebula is resolved in a twisted-shaped feature composed of two arc-like features and a bow-shock-like structure seen mainly in the Ks band, which strongly suggests the presence of a precessing jet. An analysis of proper motions based on our Gemini observations and UKIDSS data additionally supports the precession scenario. We present one of the best-resolved cone-like nebula that is most likely related to a precessing jet up to date. The analysis of the observed near-IR lines shows that the H2 is collisionally excited, and the spatially coincidence of the [FeII] and H2 emissions in the closer arc-like feature suggests that this region is affected by a J shock. The second arc-like feature presents H2 emission without [FeII], which suggests a nondissociated C shock or a less energetic J shock. The H2 1-0 S(1) continuum-subtracted image reveals several knots and filaments at a larger
A Search For Neutron Star Precession and Interstellar Magnetic Field Variations
NASA Astrophysics Data System (ADS)
Morgan, J. J.; Weisberg, J. M.; Despotes, J. T.; Everett, J. E.; Cordes, J. M.
1995-12-01
Pulsars' emissions are highly polarized, allowing us to measure various properties of the spinning neutron stars. The most important is the position angle of the linearly polarized emission, which is related to the orientation of the emission beam on the sky. The spin axis of an object will precess over time if the body is not distributed symmetrically with respect to the spin axis. This phenomenon is called free precession, and the resulting orientation changes will lead to secular changes in the polarized position angle. In a pulsar one would expect the cause of this precession to be an irregularity in the shape of the neutron star due to its cataclysmic birth. The highly polarized nature of pulsar radio signals also leads to the most direct way of measuring the interstellar magnetic field, via Faraday rotation. By examining the variations in position angle over time, one can determine the strength of the interstellar magnetic field variations. Over one hundred pulsars were observed at 21 cm with the Arecibo telescope in fifteen sessions during a four year period from 1989 to 1993. (See Weitz et al. contribution for details.) We determined full polarization parameters, including position angles, on all sufficiently strong pulsars. The position angles of several of the strongest pulsars were examined, and two of them, PSR B1929+10 and PSR B0540+23, were found to have steady position angles over short and long timescales. These two pulsars were used as position angle references for all of the other pulsars. We performed a search for variations in position angle with time over all the sessions. If a change was seen, it could be explained either by precession or by variations in the magnetized interstellar medium between the pulsar and the Earth. We saw no evidence for a significant time variation in the position angle in any of approximately eighty pulsars on which we had adequate data for two or more sessions. We use these results to place upper limits on the
Modeling North American Ice Sheet Response to Changes in Precession and Obliquity
NASA Astrophysics Data System (ADS)
Tabor, C.; Poulsen, C. J.; Pollard, D.
2012-12-01
precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.
NASA Astrophysics Data System (ADS)
Nazarenko, V. V.; Nazarenko, S. V.
In this study, the models of slaved precession of accretion disc and donors radiation-driven wind were performed using three-dimensional numerical astrophysical methods by the example of microquasar Cyg X-1. As is shown, in the course of precession of the accretion disc blown by the donor's wind the states with high and low temperature (low and high mass accretion rate, respectively) start being generated in the centre of disc. Our computations of disc precession performed on base of undefined precession that means each point of rotation axis of accretion disc makes unclosed difficult curve instead of a circle as it is in case of definite precession. In this case, the transition between states of high and low temperature takes place irregularly and not depend on precession period. The duration of transition between these both states is less than intervals of states on several orders of magnitudes.
NASA Astrophysics Data System (ADS)
Escapa, Alberto; Ferrándiz, José M.; Baenas, Tomás; Getino, Juan; Navarro, Juan F.; Belda-Palazón, Santiago
2016-03-01
The complexity of the modeling of the rotational motion of the Earth in space has produced that no single theory has been adopted to describe it in full. Hence, it is customary using at least a theory for precession and another one for nutation. The classic approach proceeds by deriving some of the fundamental parameters from the precession theory, like, e.g., the dynamical ellipticity Hd, and then using those values in the nutation theory. The former IAU 1976 precession and IAU 1980 nutation theories followed that scheme. Along with the improvement of the accuracy of the determination of Earth orientation parameters, IAU 1980 was superseded by IAU2000, based on the application of the MHB2000 transfer function to the previous rigid Earth analytical theory REN2000. The latter was derived while the precession model IAU 1976 was still in force, therefore it used the corresponding values for some of the fundamental parameters, as the precession rate, associated to the dynamical ellipticity. The new precession model P03 was adopted as IAU 2006. That change introduced some inconsistency since P03 used different values for some of the fundamental parameters that MHB2000 inherited from REN2000. Besides, the derivation of the basic Earth parameters of MHB2000 itself comprised a fitted variation of the dynamical ellipticity adopted in the background rigid theory. Due to the strict requirements of accuracy of the present and coming times, the magnitude of the inconsistencies originated by this twofold approach is no longer negligible as earlier, hence the need of discussing the effects of considering slightly different values for H_d in precession and nutation theories.
NASA Astrophysics Data System (ADS)
Chakraborty, Chandrachur; Kocherlakota, Prashant; Patil, Mandar; Bhattacharyya, Sudip; Joshi, Pankaj S.; Królak, Andrzej
2017-04-01
We study here the precession of the spin of a test gyroscope attached to a stationary observer in the Kerr spacetime, specifically, to distinguish a naked singularity (NS) from a black hole (BH). It was shown recently that for gyros attached to static observers, their precession frequency became arbitrarily large in the limit of approach to the ergosurface. For gyros attached to stationary observers that move with nonzero angular velocity Ω , this divergence at the ergosurface can be avoided. Specifically, for such gyros, the precession frequencies diverge on the event horizon of a BH, but are finite and regular for a NS everywhere except at the singularity itself. Therefore a genuine detection of the event horizon becomes possible in this case. We also show that for a near-extremal NS (1 precession frequency, using which we can further distinguish a near-extremal NS from a BH, or even from a NS with larger angular momentum. We then investigate the Lense-Thirring (LT) precession or nodal plane precession frequency of the accretion disk around a BH and NS to show that clear distinctions exist for these configurations in terms of radial variation features. The LT precession in equatorial circular orbits increases on approaching a BH, whereas for NS it increases, attains a peak, and then decreases. Interestingly, for a*=1.089 , it decreases until it vanishes at a certain radius, and it acquires negative values for a*>1.089 for a certain range of r . For 1
Theta phase precession and phase selectivity: a cognitive device description of neural coding
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Bardakjian, Berj L.
2009-06-01
Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to
Hysteresis and precession of a swirling jet normal to a wall.
Shtern, V; Mi, J
2004-01-01
Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.
Self-force correction to geodetic spin precession in Kerr spacetime
NASA Astrophysics Data System (ADS)
Akcay, Sarp
2017-08-01
We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.
NASA Astrophysics Data System (ADS)
Keramati, Sam; Singh, Uday; Kurfman, Seth; Binek, Ch.; Adenwalla, S.
2015-03-01
Ultrafast high-power laser systems have successfully opened up the field of magnetization dynamics, studying subpicosecond laser-induced spin precession dynamics, demagnetization processes and magnetization reorientation. Here we investigate laser-induced magnetization dynamics in a series of photolithographically patterned microstructures of exchange coupled trilayers of Co/Cu/Py grown on Si substrates. The microstructures have different shape anisotropies as well as different exchange coupling parameters. The latter determines the magnetization state, varying from ferromagnetically to anti-ferromagnetically coupled. We explore how the different spin precession frequencies of the constituent exchange coupled magnetic layers with unequal relaxation times can trade-off with the differing shape anisotropies. The key physical point is that the precession frequency of ferromagnetic materials and their damping parameter vary with the effective field which depends on both the shape anisotropy, and exchange coupling, while their corresponding effects can be modulated through the action of the intense pump beam. Precession frequency maps of the behavior of the exchange coupling parameter of the samples with respect to their shape anisotropy and their laser-induced modulated precession frequencies will be generated through a pump-probe experiment to address the above-mentioned objective of our work. This work is supported by NSF Grant No. 1409622 and MRSEC DMR-0820521.
An interacting binary system powers precessing outflows of an evolved star.
Boffin, Henri M J; Miszalski, Brent; Rauch, Thomas; Jones, David; Corradi, Romano L M; Napiwotzki, Ralf; Day-Jones, Avril C; Köppen, Joachim
2012-11-09
Stars are generally spherical, yet their gaseous envelopes often appear nonspherical when ejected near the end of their lives. This quirk is most notable during the planetary nebula phase, when these envelopes become ionized. Interactions among stars in a binary system are suspected to cause the asymmetry. In particular, a precessing accretion disk around a companion is believed to launch point-symmetric jets, as seen in the prototype Fleming 1. Our finding of a post-common-envelope binary nucleus in Fleming 1 confirms that this scenario is highly favorable. Similar binary interactions are therefore likely to explain these kinds of outflows in a large variety of systems.
Mizukami, S; Wu, F; Sakuma, A; Walowski, J; Watanabe, D; Kubota, T; Zhang, X; Naganuma, H; Oogane, M; Ando, Y; Miyazaki, T
2011-03-18
Spin precession with frequencies up to 280 GHz is observed in Mn(3-δ)Ga alloy films with a perpendicular magnetic anisotropy constant K(u)∼15 M erg/cm(3). The damping constant α, characterizing macroscopic spin relaxation and being a key factor in spin-transfer-torque systems, is not larger than 0.008 (0.015) for the δ=1.46 (0.88) film. Those are about one-tenth of α values for known materials with large K(u). First-principles calculations well describe both low α and large K(u) for these alloys.
Non-interferometric determination of Berry phases: Precession reversal in noiseless systems
NASA Astrophysics Data System (ADS)
Englman, R.
2016-11-01
It is pointed out that the transition spectra between energy eigen-states of time periodic two level systems manifesting a Berry phase (BP) have two-peaked structures. These are similar to the twin peaks described by the author in Englman [J. Chem. Phys. 144, 024103 (2016)] for the "Molecular Aharonov-Bohm effect," but are now of unequal heights depending on the values of the BP. A rotation-directional reversal protocol of the precessing field allows a novel, spectroscopic (not interferometric or phase-probing) determination of the dynamic and topological phases from the peak-to-peak line shape distances, here worked out for noiseless BP systems.
Spin transport and precession in graphene measured by nonlocal and three-terminal methods
Dankert, André Kamalakar, Mutta Venkata; Bergsten, Johan; Dash, Saroj P.
2014-05-12
We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.
Recent developments in the theory of the Earth’s precession and nutation
NASA Astrophysics Data System (ADS)
Escapa, Alberto; Getino, Juan; Ferrándiz, Jose Manuel; Navarro, Juan F.; Baenas, Tomás
2015-08-01
We report on recent advances in the theoretical modelling of the precession and nutation of the non-rigid Earth, with especial emphasis in those obtained by the authors following the Hamiltonian approach. We focus in second order components of the approximate solutions that come from various origins of physical and mathematical nature. They have been neglected in the available models up to now. Their contribution to the solutions, however, has a non-negligible magnitude, which in some cases reaches some tens of micro arcseconds.
Negative muon spin precession measurement of the hyperfine states of muonic sodium
NASA Astrophysics Data System (ADS)
Brewer, J. H.; Ghandi, K.; Froese, A. M.; Fryer, B. A.
2005-05-01
Both hyperfine states of muonic 23Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2μs-1, is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8μs-1, leaving medium-dependent effects ambiguous.
NASA Astrophysics Data System (ADS)
Marzocchi, Alice; Flecker, Rachel; Lunt, Dan; Gladstone, Rupert; Hilgen, Frits; Krijgsman, Wout; Sierro, Francisco; Ivanovic, Ruza
2014-05-01
The Messinian Salinity Crisis (MSC) drastically modified the environment of the Mediterranean Sea. The large signal-noise ratio preserved in the geological record for this extreme event makes it a perfect target for exploring the biogeochemical processes involved through palaeoclimate modelling. In addition, Late Miocene sequences in the Mediterranean have been astronomically tuned, providing a very high-resolution age model that resolves sediment data on a millennial timescale or shorter. Consequently it is possible to carry out robust model-data comparison where the precise orbital phasing is equivalent. Sequences of laminated sapropelitic beds interbedded within homogeneous marls are frequently found in Late Miocene sections in the Mediterranean and have been associated with orbitally-driven climate responses. In fact, the deposition of these sediments has been linked to freshwater input causing both stratification of the water column and increased surface productivity, at times of high summer insolation. Most of the hypotheses relating the phasing of the sedimentary record to the orbital forcing are, however, still untested. Insight can therefore be gained by investigating the impact of varying orbital parameters on the Mediterranean's hydrologic budget using global climate models. A series of 22 fully coupled atmosphere-ocean-vegetation snap-shot simulations have been run at evenly spaced intervals (1kyr) through an entire precession cycle during the pre-evaporite stage of the MSC (~6.5 Ma). In our simulations, the Mediterranean Sea's hydrologic budget exhibits high seasonal variability. Model results can be directly compared with high-resolution geological data that is available for our selected time slice; for instance, cyclic changes in microfaunal assemblages that have a strong seasonal bias can be compared with our model output. This allows us to test the biogeochemical phasing of Mediterranean successions in relation to orbital forcing. Our simulations
Polarization of the binary radio pulsar 1913 + 16 - Constraints on geodetic precession
NASA Technical Reports Server (NTRS)
Cordes, J. M.; Wasserman, I.; Blaskiewicz, M.
1990-01-01
Using polarization data, the relative orientations of the line of sight and the pulsar's spin axis and magnetic moment are determined. The data are sensitive enough to allow detection of spin-orbit geodetic precession in a few years if the spin axis is misaligned from the orbital angular momentum vector by more than a few degrees. From the secular pulse shape changes measured by Weisberg, et al. (1989) it is concluded that the misalignment angle is no more than 15 deg but is probably more than 1 deg. A specific beaming model is proposed to account for the pulse shape changes.
Gyroscope precession along general timelike geodesics in a Kerr black hole spacetime
NASA Astrophysics Data System (ADS)
Bini, Donato; Geralico, Andrea; Jantzen, Robert T.
2017-06-01
The precession angular velocity of a gyroscope moving along a general geodesic in the Kerr spacetime is analyzed using the geometric properties of the spacetime. Natural frames along the gyroscope world line are explicitly constructed by boosting frames adapted to fundamental observers. A novel geometrical description is given to Marck's construction of a parallel propagated orthonormal frame along a general geodesic, identifying and clarifying the special role played by the Carter family of observers in this general context, thus extending previous discussion for the equatorial plane case.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
NASA Astrophysics Data System (ADS)
Doulliev, A. M.; Zabotin, V. I.
2003-11-01
Two models of intersatellite communication channels in satellite systems on precessing elliptic orbits are considered. By assuming that these systems provide for a continuous survey of the Earth of the necessary multiplicity, algorithms of the analysis of ballistic system structures are constructed for these models in order to maintain multichannel global communication and organization of corresponding intersatellite channels. The algorithm operation is illustrated by numerical examples. This paper develops the results from [1-3], where a similar approach was advanced for the analysis of ballistic structures of satellite systems with simplified models of motion.
Cooper, David; Bernier, Nicolas; Rouvière, Jean-Luc; Wang, Yun-Yu; Weng, Weihao; Madan, Anita; Mochizuki, Shogo; Jagannathan, Hemanth
2017-05-29
Precession electron diffraction has been used to systematically measure the deformation in Si/SiGe blanket films and patterned finFET test structures grown on silicon-on-insulator type wafers. Deformation maps have been obtained with a spatial resolution of 2.0 nm and a precision of ±0.025%. The measured deformation by precession diffraction for the blanket films has been validated by comparison to energy dispersive x-ray spectrometry, X-Ray diffraction, and finite element simulations. We show that although the blanket films remain biaxially strained, the patterned fin structures are fully relaxed in the crystallographic planes that have been investigated. We demonstrate that precession diffraction is a viable deformation mapping technique that can be used to provide useful studies of state-of-the-art electronic devices.
Sculpting a Pre-Planetary Nebula with a Precessing Jet: IRAS 16342-3814
NASA Technical Reports Server (NTRS)
Sahai, R.; Le Mignant, D.; Sanchez Contreras, C.; Campbell, R. D.; Chaffee, F. H.
2005-01-01
We have imaged the bipolar pre-planetary nebula IRAS 16342-3814 with the Keck adaptive optics (AO) system in four near-infrared bands in the 1.6-4.7 (micro)m range. The lobes, which showed smoothly varying brightness distributions in previous optical images taken with the Hubble Space Telescope, have a limb-brightened appearance in the AO images, with a remarkable corkscrew structure inscribed on the lobe walls. A well-collimated, precessing jet with a diameter less than or approximately equal to 100 AU and a precession period less than or approximately equal to 50 yr, interacting with ambient circumstellar material, is most likely responsible for the corkscrew structure and the lobes, as indicated by a detailed comparison of our observations with published numerical simulations. The very red colors of the lobes in the near-infrared, coupled with their visibility at optical wavelengths, require that at least half, but not all, of the light of the central star be trapped by a compact circumstellar dust cloud heated to approximately 600-700 K and reradiated in the infrared. The lobes are thus illuminated both by the infrared light from this dust cloud as well as by the optical light from the central star.
Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect.
Choi, Won Young; Kim, Hyung-jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Johnson, Mark
2015-08-01
The spin-orbit interaction in two-dimensional electron systems provides an exceptionally rich area of research. Coherent spin precession in a Rashba effective magnetic field in the channel of a spin field-effect transistor and the spin Hall effect are the two most compelling topics in this area. Here, we combine these effects to provide a direct demonstration of the ballistic intrinsic spin Hall effect and to demonstrate a technique for an all-electric measurement of the Datta-Das conductance oscillation, that is, the oscillation in the source-drain conductance due to spin precession. Our hybrid device has a ferromagnet electrode as a spin injector and a spin Hall detector. Results from multiple devices with different channel lengths map out two full wavelengths of the Datta-Das oscillation. We also use the original Datta-Das technique with a single device of fixed length and measure the channel conductance as the gate voltage is varied. Our experiments show that the ballistic spin Hall effect can be used for efficient injection or detection of spin polarized electrons, thereby enabling the development of an integrated spin transistor.
A model for precessing helical vortex in the turbine discharge cone
NASA Astrophysics Data System (ADS)
Kuibin, P. A.; Susan-Resiga, R. F.; Muntean, S.
2014-03-01
The decelerated swirling flow in the discharge cone of hydraulic turbine develops various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency regime. In particular, the precessing helical vortex ("vortex rope") developed at part-load regimes is notoriously difficult and expensive to be computed using full three-dimensional turbulent unsteady flow models. On the other hand, modern design and optimization techniques require robust, tractable and accurate a-priori assessment of the turbine flow unsteadiness level within a wide operating range before actually knowing the runner geometry details. This paper presents the development and validation of a quasi-analytical model of the vortex rope in the discharge cone. The first stage is the computing of the axisymmetrical swirling flow at runner outlet with input information related only to the operating point and to the blade outlet angle. Then, the swirling flow profile further downstream is computed in successive cross-sections through the discharge cone. The second stage is the reconstruction of the precessing vortex core parameters in successive cross-sections of the discharge cone. The final stage lies in assembling 3D unsteady flow field in the discharge cone. The end result is validated against both experimental and numerical data.
Capua, Amir; Rettner, Charles; Parkin, Stuart S P
2016-01-29
We study the parametric excitation of high orders of magnetization precession in ultrathin films having perpendicular magnetic anisotropy. We observe that for a given driving field amplitude the harmonic generation can be increased by lowering the barrier with the application of an in-plane magnetic field in the manner of the Smit-Beljers effect. In this effect, the magnetic stiffness is reduced not by lowering the magnitude of the magnetic field upon which the spins precess, but rather by effectively releasing the field's "anchoring" point. This results in a shallow energy barrier where the electrons' spin is locally unconstrained. While the observation is unveiled in the form of nonlinear high harmonic generation, we believe that the physics whereby the barrier is suppressed by an external magnetic field may apply to other phenomena associated with ultrathin films. In these cases, such unconstrained motion may serve as a sensitive probe of the torques associated with proximate spin currents. Moreover, our approach may be used as a model system for the study of phase transitions in the field of nonlinear dynamics.
Determination of the spin-lifetime anisotropy in graphene using oblique spin precession
Raes, Bart; Scheerder, Jeroen E.; Costache, Marius V.; Bonell, Frédéric; Sierra, Juan F.; Cuppens, Jo; Van de Vondel, Joris; Valenzuela, Sergio O.
2016-01-01
We determine the spin-lifetime anisotropy of spin-polarized carriers in graphene. In contrast to prior approaches, our method does not require large out-of-plane magnetic fields and thus it is reliable for both low- and high-carrier densities. We first determine the in-plane spin lifetime by conventional spin precession measurements with magnetic fields perpendicular to the graphene plane. Then, to evaluate the out-of-plane spin lifetime, we implement spin precession measurements under oblique magnetic fields that generate an out-of-plane spin population. We find that the spin-lifetime anisotropy of graphene on silicon oxide is independent of carrier density and temperature down to 150 K, and much weaker than previously reported. Indeed, within the experimental uncertainty, the spin relaxation is isotropic. Altogether with the gate dependence of the spin lifetime, this indicates that the spin relaxation is driven by magnetic impurities or random spin-orbit or gauge fields. PMID:27157318
Ajisai spin-axis precession and rotation-period variations from photometric observations
NASA Astrophysics Data System (ADS)
Koshkin, N.; Shakun, L.; Burlak, N.; Korobeynikova, E.; Strakhova, S.; Melikyants, S.; Terpan, S.; Ryabov, A.
2017-10-01
This paper investigates the evolution of the spin parameters of Japanese Geodetic Satellite Ajisai. The satellite is spherical and equipped with 318 solar reflecting mirrors on its outer surface, which enables to use photometry for our purpose. In the present study, we have improved the method of the determination of all spin parameters of the satellite by fast photometry discussed in our earlier papers. Using a tracking telescope at the Astronomical Observatory of Odessa National University and a dedicated high-speed recording system, 279 Ajisai light curves were obtained over seven years (2009-2015). The temporal resolution is 20 msec and time measurement error no greater than 0.1 μ sec. The analysis of a sequence of multiple specular glints enabled us to update the model of the arrangement and orientation of the mirrors and to apply this model to determine the inertial rotation period and spin-axis orientation for each pass of the satellite. The secular decrease and periodic variation in the spinning rate, as well as the spin-axis precession pattern known from the SLR-observations (Kucharski et al., 2010a, 2013) have been obtained independently. New spin-axis nutation-precession parameters obtained in this study adequately confirm the empirical model by Kucharski et al. (2016). The method for photometric determination of the Ajisai spin parameters discussed here has the same level of accuracy as the SLR method, and thus, it can be widely used by observatories not fitted out with sophisticated laser ranging equipment.
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-03-01
Gravitational wave searches to date have largely focused on nonprecessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by nonprecessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, toward but with the restrictions that the orientation of the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the nonprecessing search might miss signals.
Spin diffusion and precession at the multiferroic interface and InAs quantum wells
NASA Astrophysics Data System (ADS)
Zhang, Peng; Wu, Ming-Wei
2012-02-01
We study spin diffusion and precession in a two-dimensional electron gas at the multiferroic interface and InAs quantum wells respectively by means of the kinetic spin Bloch equation approach [Wu et al., Physics reports 493, 61 (2010)]. At the AlO3/SrTiO3/TbMnO3 heterostructure with a temperature being as low as 15 K, the two-dimensional electron gas at the LaAlO3/SrTiO3 interface interacts with the spiral magnetic moments of Mn^3+ in TbMnO3 via the Heisenberg exchange interaction. It is demonstrated that the spin diffusion length at the interface is always finite, despite the polarization direction of the injected spins. It is also revealed that the Coulomb scattering plays an important role and effectively suppresses the spin diffusion. The spin precession in InAs quantum wells is investigated with the Rashba spin-orbit coupling being modulated by a gate voltage. The gate-voltage dependence of spin diffusion under different temperatures is studied with all the scattering explicitly included. Our result partially supports the claim of the realization of the Datta-Das spin-injected field effect-transistor by Koo et al. [Science 325, 1515 (2009)]. We also show that the scattering plays an important role in spin diffusion in such a system.
Bouncing Dirac particles: compatibility between MIT boundary conditions and Thomas precession
NASA Astrophysics Data System (ADS)
Nicolaevici, Nistor
2017-01-01
We consider the reflection of a Dirac plane wave on a perfectly reflecting plane described by chiral MIT boundary conditions and determine the rotation of the spin in the reflected component of the wave. We solve the analogous problem for a classical particle using the evolution of the spin defined by the Thomas precession and make a comparison with the quantum result. We find that the rotation axes of the spin in the two problems coincide only for a vanishing chiral angle, in which case the rotation angles coincide in the nonrelativistic limit, and remain remarkably close in the relativistic regime. The result shows that in the nonrelativistic limit the interaction between the spin and a reflecting surface with nonchiral boundary conditions is completely contained in the Thomas precession effect, in conformity with the fact that these boundary conditions are equivalent to an infinite repulsive scalar potential outside the boundary. By contrast, in the ultrarelativistic limit the rotation angle in the quantum problem remains finite, while in the classical one the rotation angle diverges. We comment on the possible implications of this discrepancy on the validity of the Mathisson-Papapetrou-Dixon equations at large accelerations.
Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect
NASA Astrophysics Data System (ADS)
Choi, Won Young; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Johnson, Mark
2015-08-01
The spin-orbit interaction in two-dimensional electron systems provides an exceptionally rich area of research. Coherent spin precession in a Rashba effective magnetic field in the channel of a spin field-effect transistor and the spin Hall effect are the two most compelling topics in this area. Here, we combine these effects to provide a direct demonstration of the ballistic intrinsic spin Hall effect and to demonstrate a technique for an all-electric measurement of the Datta-Das conductance oscillation, that is, the oscillation in the source-drain conductance due to spin precession. Our hybrid device has a ferromagnet electrode as a spin injector and a spin Hall detector. Results from multiple devices with different channel lengths map out two full wavelengths of the Datta-Das oscillation. We also use the original Datta-Das technique with a single device of fixed length and measure the channel conductance as the gate voltage is varied. Our experiments show that the ballistic spin Hall effect can be used for efficient injection or detection of spin polarized electrons, thereby enabling the development of an integrated spin transistor.
Constraints on Galileon-induced precessions from solar system orbital motions
Iorio, L.
2012-07-01
We use latest data from solar system planetary orbital motions to put constraints on some Galileon-induced precessional effects. Due to the Vainshtein mechanism, the Galileon-type spherically symmetric field of a monopole induces a small, screened correction ∝(r){sup 1/2} to the r{sup −1} Newtonian potential which causes a secular precession of the pericenter of a test particle. In the case of our solar system, latest data from Mars allow to constrain the magnitude of such an interaction down to α ≤ 0.3 level, where α corresponds to the non minimal coupling of the Galileon to matter. Another Galileon-type effect which might impact solar system dynamics is due to an unscreened constant gradient induced by the peculiar motion of the Galaxy. The magnitude of such an effect, depending on the different gravitational binding energies of the Sun and the planets, taken into account by ξ, is ξ ≤ 0.004 from the latest bounds on the supplementary perihelion precession of Saturn.
Spin-orbit precession for eccentric black hole binaries at first order in the mass ratio
NASA Astrophysics Data System (ADS)
Akcay, Sarp; Dempsey, David; Dolan, Sam R.
2017-04-01
We consider spin-orbit (‘geodetic’) precession for a compact binary in strong-field gravity. Specifically, we compute ψ, the ratio of the accumulated spin-precession and orbital angles over one radial period, for a spinning compact body of mass m 1 and spin s 1, with {{s}1}\\ll Gm12/c , orbiting a non-rotating black hole. We show that ψ can be computed for eccentric orbits in both the gravitational self-force and post-Newtonian frameworks, and that the results appear to be consistent. We present a post-Newtonian expansion for ψ at next-to-next-to-leading order, and a Lorenz-gauge gravitational self-force calculation for ψ at first order in the mass ratio. The latter provides new numerical data in the strong-field regime to inform the effective one-body model of the gravitational two-body problem. We conclude that ψ complements the Detweiler redshift z as a key invariant quantity characterizing eccentric orbits in the gravitational two-body problem.
Numerical simulation of precessing vortex core dumping by localized nonstationary heat source
NASA Astrophysics Data System (ADS)
Porfiriev, Denis; Gorbunova, Anastasiya; Zavershinsky, Igor; Sugak, Semen; Molevich, Nonna
2016-10-01
The precessing vortex core (PVC) is a crucial structure for many technical devices with the heat release. For this purpose, we performed the 3D numerical simulations of PVC in the swirling flow created in the open tube with the paraxial nonstationary heat source. Power of the source was modulated by sinusoidal law. We showed that three turbulence models give the qualitatively similar dependences of PVC frequency and amplitude on the heat-source power. The numerical simulation demonstrated that the obtained PVC is a left-handed co-rotated bending single-vortex structure. For considered values of the swirl and mass flow rate, we obtained that, for wide range of modulation frequencies, the growth of the heat-source power leads to gradual increase in the PVC frequency and slow change in the amplitude of vortex core oscillations. However, for specific modulation frequency, which depends on the tube geometry, dependencies of the PVC frequency and the amplitudes of oscillations have distinct maximum and minimum. Which means that, under specific conditions, flow pattern changes dramatically and precession is almost dumped at the relatively low values of heat power.
TIME EVOLUTION OF FLARES IN GRB 130925A: JET PRECESSION IN A BLACK HOLE ACCRETION SYSTEM
Hou, Shu-Jin; Liu, Tong; Gu, Wei-Min; Sun, Mou-Yuan; Lu, Ju-Fu; Lin, Da-Bin; Wu, Xue-Feng
2014-01-20
GRB 130925A, composed of three gamma-ray emission episodes and a series of orderly flares, has been detected by Swift, Fermi, Konus-Wind, and INTEGRAL. If the third weakest gamma-ray episode can be considered a giant flare, we find that after the second gamma-ray episode observed by INTEGRAL located at about 2000 s, a positive relation exists between the time intervals of the adjacent flares and the time since the episode. We suggest that the second gamma-ray episode and its flares originate from the resumption of the accretion process due to the fragments from the collapsar falling back; such a relation may be related to a hyperaccretion disk around a precessed black hole (BH). We propose that the origin and time evolution of the flares, and the approximately symmetrical temporal structure and spectral evolution of the single flare can be explained well by a jet precession model. In addition, the mass and spin of the BH can be constrained, which indicates a stellar-mass, fast-rotating BH located in the center of GRB 130925A.
THE EVOLUTION OF PSR J0737-3039B AND A MODEL FOR RELATIVISTIC SPIN PRECESSION
Perera, B. B. P.; McLaughlin, M. A.; Kramer, M.; Lyne, A. G.; Stairs, I. H.; Ferdman, R. D.; Freire, P. C. C.; Possenti, A.; Burgay, M.; Breton, R. P.; Manchester, R. N.; Camilo, F.
2010-10-01
We present the evolution of the radio emission from the 2.8 s pulsar of the double pulsar system PSR J0737- 3039A/B. We provide an update on the Burgay et al. analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy yr{sup -1} at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.{sup 0}6 yr{sup -1}. The pulse profile changes are most likely caused by relativistic spin precession but cannot be easily explained with a circular hollow-cone beam as in the model of Clifton and Weisberg. Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well and the reappearance is expected to happen in {approx}2035 with the same part of the beam or in {approx}2014 if we assume a symmetric beam shape. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent with and similar to those derived by Breton et al. However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.
Constraints on Non-Standard Gravitomagnetism by the Anomalous Perihelion Precession of the Planets
NASA Astrophysics Data System (ADS)
Acedo, Luis
2014-09-01
A team of astronomers has recently reported an anomalous retrograde precession of the perihelion of Saturn amounting to Δω SATURN = -0.006(2) arcsec per century (arcsec cy-1). This unexplained precession was obtained after taking into account all classical and relativistic effects in the context of the highly refined EPM2008 ephemerides. More recent analyzes have not confirmed this effect, but they have found similar discrepancies in other planets. Our objective in this paper is to discuss a non-standard model involving transversal gravitomagnetism generated by the Sun as a possible source of these anomalies. In order to compute the Lense-Thirring perturbations induced by the suggested interaction, we should consider the orientation of the Sun's rotational axis in Carrington elements and the inclination of the planetary orbits with respect to the ecliptic plane. We find that an extra component of the gravitomagnetic field not predicted by General Relativity could explain the reported anomalies without conflicting with the Gravity Probe B experiment and the orbits of the geodynamics satellites.
Extending the climatic precession curve back into the Late Miocene by signature template comparison
NASA Astrophysics Data System (ADS)
Benson, Richard H.; Hayek, Lee-Ann C.; Hodell, David A.; Rakic-El Bied, Kruna
1995-02-01
The rhythm of sedimentary cycles reflecting the climatic precession signal (19 and 23 kyr components) from the upper Miocene of the Bou Regreg section at Ain el Beida near Rabat, Morocco, had been analyzed to determine the age of the geomagnetic polarity reversals of Subchron 5N1 (C3An.1n). A new method of analysis of cycle "signatures" uses adjusted data series as represented by a signal obtained from grey-level traces through image-enhanced photographs of the sediment cycles. The measured, "timeless" signal is reduced and geometrically transformed to a signature template in order to compare its pattern with similar time constrained segments of the target precession signal (retrodicted for 35° N). Conventional statistical and spectral analysis tests are used to regress to the best possible fit. A date estimate of 5.94 Ma for the Chron 5/Gilbert boundary (C3An.1n/C3r), which occurs near the times of the closure of the Rifian Corridor and the beginning of the "drawdown" phase of the Messinian Salinity Crisis, is found to be in close agreement with independent approximations derived from extrapolation of sea floor spreading, radiometric dating, and younger Earth-orbital tuning ages.
NASA Astrophysics Data System (ADS)
Zhu, Sheng-Yuan; Mueller, Ivan I.
1983-03-01
First, the paper is devoted to the effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame: The effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time; on UT1 it is a linear term. Second, general principles are given the use of which can determine the effects of small rotations (such as precession, nutation or equinox corrections) of the frame of a Conventional Inertial Reference System (CIS) on the frame of the Conventional Terrestrial Reference System (CTS). Next, seven CTS options are presented, one of which is necessary to accommodate such rotations (corrections). The last of these options requiring no changes in the origin of terrestrial longitudes and in UT1 is advocated; this option would be maintained by eventually referencing the Greenwich Mean Sidereal Time to a fixed point on the equator, instead of to the mean equinox of date, the current practice. Accommodating possible future changes in the astronomical nutation is discussed in the last section. The Appendix deals with the effects of differences which may exist between the various CTS's and CIS's (inherent in the various observational techniques) on earth rotation parameters (ERP) and how these differences can be determined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.
High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations
NASA Astrophysics Data System (ADS)
Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.
2011-05-01
We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.
Intrinsic fat suppression in TIDE balanced steady-state free precession imaging.
Paul, Dominik; Hennig, Jürgen; Zaitsev, Maxim
2006-12-01
A novel fat-suppressed balanced steady-state free precession (b-SSFP) imaging method based on the transition into driven equilibrium (TIDE) sequence with variable flip angles is presented. The new method, called fat-saturated (FS)-TIDE, exploits the special behavior of TIDE signals from off-resonance spins during the flip angle ramp. As shown by simulations and experimental data, the TIDE signal evolution for off-resonant isochromats during the transition from turbo spin-echo (TSE)-like behavior to the true fast imaging with steady precession (TrueFISP) mode undergoes a zero crossing. The resulting signal notch for off-resonant spins is then used for fat suppression. The efficiency of FS-TIDE is demonstrated in phantoms and healthy volunteers on a 1.5T system. The resulting images are compared with standard TrueFISP data with and without fat suppression. It is demonstrated that FS-TIDE provides a fast and stable means for homogenous fat suppression in abdominal imaging while maintaining balanced SSFP-like image contrast and signal-to-noise ratio (SNR). The scan time of FS-TIDE is not increased compared to normal TrueFISP imaging without fat suppression and identical k-space trajectories. Because of the intrinsic fat suppression, no additional preparation is needed. Possible repetition times (TRs) are not firmly limited to special values and are nearly arbitrary.
NASA Astrophysics Data System (ADS)
Iorio, L.
2014-02-01
In the framework of the parametrized post-Newtonian (PPN) formalism, we calculate the long-term preferred location (PL) effects, proportional to the Whitehead parameter ξ, affecting all the Keplerian orbital elements of a localized two-body system, apart from the semimajor axis a. They violate the gravitational local position invariance, fulfilled by general relativity. We obtain preliminary bounds on ξ by using the latest results in the field of the Solar system planetary ephemerides. The non-detection of any anomalous perihelion precession for Mars allows us to indirectly infer |ξ| ≤ 5.8 × 10-6. Such a bound is close to the constraint, of the order of 10-6, expected from the future BepiColombo mission to Mercury. As a complementary approach, the PL effects should be explicitly included in the dynamical models fitted to planetary data sets to estimate ξ in a least-squares fashion in a dedicated ephemerides orbit solution. The ratio of the anomalous perihelion precessions for Venus and Jupiter, determined with the EPM2011 ephemerides at the <3σ level, if confirmed as genuine physical effects needing explanation by future studies, rules out the hypothesis ξ ≠ 0. A critical discussion of the |ξ| ≲ 10-6-10-7 upper bounds obtained in the literature from the close alignment of the Sun's spin axis and the total angular momentum of the Solar system is presented.
Influence of precession on velocity measurements in a strong laboratory vortex
NASA Astrophysics Data System (ADS)
Wunenburger, R.; Andreotti, B.; Petitjeans, P.
A strong laboratory vortex is generated in a cylindrical cell using a rotating disk and stretched by pumping the fluid out through a hole in the centre of the top of the cell. The velocity field is measured by means of laser Doppler anemometry and Doppler ultrasonic anemometry which are both non intrusive methods. The vortex exhibits a slight precession which induces temporal fluctuations of the velocity at the measurement point. Due to the centrifugal force, the tracers concentrate in a tubular region around the vortex, leading to spatial variations of the measurement counting rate. Under these two effects, the probability density function (PDF) of the one point velocity exhibits a strong non-Gaussian behaviour. In order to access the details of the velocity profile of the vortex in its own system of reference, the influence of the vortex precession, of the spatial variations of the concentration in tracers and of the intrinsic measurement dispersion is investigated and a model is proposed. It allows to recover statistically the characteristics of the vortex and to deduce the trajectory of its centre from the instantaneous velocity profiles.
A candidate dual AGN in a double-peaked emission-line galaxy with precessing radio jets
NASA Astrophysics Data System (ADS)
Rubinur, K.; Das, M.; Kharb, P.; Honey, M.
2017-03-01
We present high-resolution radio continuum observations with the Karl G. Jansky very large array at 6, 8.5, 11.5 and 15 GHz of the double-peaked emission-line galaxy 2MASXJ12032061+1319316. The radio emission has a prominent S-shaped morphology with highly symmetric radio jets that extend over a distance of ∼1.5 arcsec (1.74 kpc) on either side of the core of size ∼0.1 arcsec (116 pc). The radio jets have a helical structure resembling the precessing jets in the galaxy NGC 326 which has confirmed dual active galactic nuclei (AGN). The nuclear bulge velocity dispersion gives an upper limit of (1.56 ± 0.26) × 108 M⊙ for the total mass of nuclear black hole(s). We present a simple model of precessing jets in 2MASXJ1203 and find that the precession time-scale is around 105 yr: this matches the source lifetime estimate via spectral ageing. We find that the expected supermassive black hole (SMBH) separation corresponding to this time-scale is 0.02 pc. We used the double-peaked emission lines in 2MASXJ1203 to determine an orbital speed for a dual AGN system and the associated jet precession time-scale, which turns out to be more than the Hubble time, making it unfeasible. We conclude that the S-shaped radio jets are due to jet precession caused either by a binary/dual SMBH system, a single SMBH with a tilted accretion disc or a dual AGN system where a close pass of the secondary SMBH in the past has given rise to jet precession.
A candidate dual AGN in a double-peaked emission-line galaxy with precessing radio jets
NASA Astrophysics Data System (ADS)
Rubinur, K.; Das, M.; Kharb, P.; Honey, M.
2017-03-01
We present high-resolution radio continuum observations with the Karl G. Jansky very large array at 6, 8.5, 11.5 and 15 GHz of the double-peaked emission-line galaxy 2MASXJ12032061+1319316. The radio emission has a prominent S-shaped morphology with highly symmetric radio jets that extend over a distance of ˜1.5 arcsec (1.74 kpc) on either side of the core of size ˜0.1 arcsec (116 pc). The radio jets have a helical structure resembling the precessing jets in the galaxy NGC 326 which has confirmed dual active galactic nuclei (AGN). The nuclear bulge velocity dispersion gives an upper limit of (1.56 ± 0.26) × 108 M⊙ for the total mass of nuclear black hole(s). We present a simple model of precessing jets in 2MASXJ1203 and find that the precession time-scale is around 105 yr: this matches the source lifetime estimate via spectral ageing. We find that the expected supermassive black hole (SMBH) separation corresponding to this time-scale is 0.02 pc. We used the double-peaked emission lines in 2MASXJ1203 to determine an orbital speed for a dual AGN system and the associated jet precession time-scale, which turns out to be more than the Hubble time, making it unfeasible. We conclude that the S-shaped radio jets are due to jet precession caused either by a binary/dual SMBH system, a single SMBH with a tilted accretion disc or a dual AGN system where a close pass of the secondary SMBH in the past has given rise to jet precession.
Binary system and jet precession and expansion in G35.20-0.74N
NASA Astrophysics Data System (ADS)
Beltrán, M. T.; Cesaroni, R.; Moscadelli, L.; Sánchez-Monge, Á.; Hirota, T.; Kumar, M. S. N.
2016-09-01
Context. Atacama Large Millimeter/submillimeter Array (ALMA) observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18 M⊙, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. Aims: We establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. Methods: We carried out VLA continuum observations of G35.20-0.74N at 2 cm in the B configuration and at 1.3 cm and 7 mm in the A and B configurations. The bandwidth at 7 mm covers the CH3OH maser line at 44.069 GHz. Continuum images at 6 and 3.6 cm in the A configuration were obtained from the VLA archive. We also carried out VERA observations of the H2O maser line at 22.235 GHz. Results: The observations have revealed the presence of a binary system of UC/HC Hii regions at the geometrical center of the radio jet in G35.20-0.74N. This binary system, which is associated with a Keplerian rotating disk, consists of two B-type stars of 11 and 6 M⊙. The S-shaped morphology of the radio jet has been successfully explained as being due to precession produced by the binary system. The analysis of the precession of the radio jet has allowed us to better interpret the IR emission in the region, which would be not tracing a wide-angle cavity open by a single outflow with a position angle of ~55°, but two different flows: a precessing one in the NE-SW direction associated with the radio jet, and a second one in an almost E-W direction. Comparison of the radio jet images
Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab
2016-01-25
We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.
NASA Astrophysics Data System (ADS)
Kondo, Y.; Wolff, C. L.; van Flandern, T. C.
1983-10-01
The concept of the precessing accretion disk in HZ Her/Her X-1 in its varied forms, to account for the 35 day periodicity in the X-ray flux, has met many objections from a number of workers on various grounds, but it is still being invoked in current publications. These objections are reviewed and additional arguments are presented against the precessing accretion disk model. The implausibility of the disk models is demonstrated. An alternate clock mechanism, based on nonlinear oscillations in the normal star, which provides the modulation of the mass flow is discussed.
Gjønnes, J; Hansen, V; Kverneland, A
2004-02-01
Crystal structure of nano-scale precipitates in age-hardening aluminum alloys is a challenge to crystallography. The utility of selected area electron diffraction intensities from embedded precipitates is limited by double scattering via matrix reflections. This effect can be signally reduced by the precession technique, which we have used to collect extensive intensity data from the semicoherent, metastable eta-precipitate in the Al-Zn-Mg alloy system. A structure model in the space group P-62c is proposed from high-resolution microscopy and electron diffraction intensities. The advantages of using the precession technique for quantitative electron diffraction is discussed.
NASA Astrophysics Data System (ADS)
Ursulov, A. V.; Chuvasheva, T. V.
2017-05-01
The results of theoretical studies of the influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system are presented. An expression for the precession angle due to such additions is obtained. It is shown that, with certain relationships between the parameters in the Yukawa potential, their contribution to the perihelion precession of the trans-Neptunian objects 2000 OO67, 2006 SQ372, 2009 FW54, 2013 BL76, and 2003 VB12 is of order 0.01" over the period, exceeding the contribution of general relativistic terms by at least an order of magnitude. The fundamental possibility of perihelion precession of these trans-Neptunian objects in the retrograde direction is established. Observational data on the precession of planets in the solar system are used to place constraints on the parameters of the added Yukawa potential.
Viladot, Désirée; Portillo, Joaquim; Gemí, Mauro; Nicolopoulos, Stavros; Llorca-Isern, Núria
2014-02-01
The structure determination of an HfSi4 precipitate has been carried out by a combination of two precession electron diffraction techniques: high precession angle, 2.2°, single pattern collection at eight different zone axes and low precession angle, 0.5°, serial collection of patterns obtained by increasing tilts of 1°. A three-dimensional reconstruction of the associated reciprocal space shows an orthorhombic unit cell with parameters a = 11.4 Å, b = 11.8 Å, c = 14.6 Å, and an extinction condition of (hkl) h + k odd. The merged intensities from the high angle precession patterns have been symmetry tested for possible space groups (SG) fulfilling this condition and a best symmetrization residual found at 18% for SG 65 Cmmm. Use of the SIR2011 direct methods program allowed solving the structure with a structure residual of 18%. The precipitate objects of this study were reproducibly found in a newly implemented alloy, designed according to molecular orbital theory.
Feng, Ting; Silva, Delia; Foster, David J
2015-03-25
Theta sequences are circuit-level activity patterns produced when groups of hippocampal place cells fire in sequences that reflect a compressed behavioral order of place fields within each theta cycle. The high temporal coordination between place cells exhibited in theta sequences is compatible with the induction of synaptic plasticity and has been proposed as one of the mechanisms underlying the encoding of episodic memory of recently acquired experience. Yet how theta sequences develop with experience has not been directly addressed. Here we simultaneously recorded large numbers of cells in the dorsal hippocampal CA1 area from rats exploring on a novel linear track. Although place cell firing activities accurately represented the animal's current location, distinct theta sequences were absent on the first lap but emerged immediately thereafter and remained stable once established. The absence of theta sequences on the first lap was not due to place field instability, decreased overall excitability of place cells, behavior variables, or the absence of individual neuronal phase precession. We observed strong single-lap phase precession in a significant percentage of place fields on the first lap and throughout the recording. Individual neuronal phase precession was stable from the first lap to subsequent laps but, across neurons, phase precession became more synchronized after experience, suggesting a novel mechanism for the generation of theta sequences. These results suggest that experience-independent temporal coding in individual neurons is combined with rapid plasticity of hippocampal neural networks during experience to acquire predictive representations of the immediate future.
NASA Astrophysics Data System (ADS)
Alfonso, W. D.; Sánchez, L. A.; Mosquera, H. J.
2015-11-01
The electromagnetic radiation emitted from some astrophysical objects such as active galactic nuclei (AGN), micro-quasars (M-QSRs), and central engines of gamma-ray burst (GRBs), seems to have a similar physical origin: a powerful jet of plasma ejected from a localized system, presumably composed of an accretion disk encircling a compact object. This radiation is generally beamed in the polar directions and in some cases, it appears to have a spiral-like structure that could be explained if the central system itself precesses. In this work, we use the slim disk accretion model, presented by Popham et al. (1999), to studying the gravitational waves (GWs) emitted by the precession of the accretion disk around a solar-mass Kerr black hole (KBH). For practical purposes, this model describes the central engine of a class of GRBs when some astrophysical constrains are fulfilled. The induced precession considered here is driven by the Bardeen-Petterson effect, which results from the combination of viscous effects in such disks and the relativistic frame-dragging effect. We evaluate the feasibility of direct detection of the GWs computed for such a model and show that the precession of this kind of systems could be detected by gravitational wave observatories like DECIGO, ultimate-DECIGO, and BBO, with higher probability if such a class of sources are placed at distances less than 1 Mpc.
Feng, Ting; Silva, Delia
2015-01-01
Theta sequences are circuit-level activity patterns produced when groups of hippocampal place cells fire in sequences that reflect a compressed behavioral order of place fields within each theta cycle. The high temporal coordination between place cells exhibited in theta sequences is compatible with the induction of synaptic plasticity and has been proposed as one of the mechanisms underlying the encoding of episodic memory of recently acquired experience. Yet how theta sequences develop with experience has not been directly addressed. Here we simultaneously recorded large numbers of cells in the dorsal hippocampal CA1 area from rats exploring on a novel linear track. Although place cell firing activities accurately represented the animal's current location, distinct theta sequences were absent on the first lap but emerged immediately thereafter and remained stable once established. The absence of theta sequences on the first lap was not due to place field instability, decreased overall excitability of place cells, behavior variables, or the absence of individual neuronal phase precession. We observed strong single-lap phase precession in a significant percentage of place fields on the first lap and throughout the recording. Individual neuronal phase precession was stable from the first lap to subsequent laps but, across neurons, phase precession became more synchronized after experience, suggesting a novel mechanism for the generation of theta sequences. These results suggest that experience-independent temporal coding in individual neurons is combined with rapid plasticity of hippocampal neural networks during experience to acquire predictive representations of the immediate future. PMID:25810520
NASA Astrophysics Data System (ADS)
Sharp, T. G.
2015-12-01
Precession electron diffraction is a technique used in scanning transmission electron microscopy (STEM) to collect electron diffraction patterns while precessing the beam in a cone around the optic axis of the microscope. Electrons are strongly scattered by matter, resulting in dynamical diffraction effects and complex intensity distributions. Precession diffraction produces patterns that are nearly kinematical and lack the complicated intensity distributions of dynamical scattering. These patterns are readily indexed by computer, which allows for the structural characterization of the sample at each pixel. This technique is analogous to electron backscatter diffraction (EBSD), but with higher spatial resolution. Like EBSD, precession diffraction is used to make phase and orientation maps in polycrystalline aggregates and deformed crystals. The technique also provides quantitative strain mapping at the nanometer scale for characterization of defects and coherent interfaces. This technique is especially useful for characterizing nano-scale intergrowths that are produced in high-pressure experiments and in naturally shocked samples. We are using this technique on our aberration corrects JEOL ARM200F STEM. Examples of experimentally and naturally transformed olivine will be presented.
NASA Astrophysics Data System (ADS)
Fontana, A.; Marzari, F.
2016-05-01
Context. Planetesimals and planets embedded in a circumstellar disk are dynamically perturbed by the disk gravity. It causes an apsidal line precession at a rate that depends on the disk density profile and on the distance of the massive body from the star. Aims: Different analytical models are exploited to compute the precession rate of the perihelion ϖ˙. We compare them to verify their equivalence, in particular after analytical manipulations performed to derive handy formulas, and test their predictions against numerical models in some selected cases. Methods: The theoretical precession rates were computed with analytical algorithms found in the literature using the Mathematica symbolic code, while the numerical simulations were performed with the hydrodynamical code FARGO. Results: For low-mass bodies (planetesimals) the analytical approaches described in Binney & Tremaine (2008, Galactic Dynamics, p. 96), Ward (1981, Icarus, 47, 234), and Silsbee & Rafikov (2015a, ApJ, 798, 71) are equivalent under the same initial conditions for the disk in terms of mass, density profile, and inner and outer borders. They also match the numerical values computed with FARGO away from the outer border of the disk reasonably well. On the other hand, the predictions of the classical Mestel disk (Mestel 1963, MNRAS, 126, 553) for disks with p = 1 significantly depart from the numerical solution for radial distances beyond one-third of the disk extension because of the underlying assumption of the Mestel disk is that the outer disk border is equal to infinity. For massive bodies such as terrestrial and giant planets, the agreement of the analytical approaches is progressively poorer because of the changes in the disk structure that are induced by the planet gravity. For giant planets the precession rate changes sign and is higher than the modulus of the theoretical value by a factor ranging from 1.5 to 1.8. In this case, the correction of the formula proposed by Ward (1981) to
Estimation of dislocation density from precession electron diffraction data using the Nye tensor.
Leff, A C; Weinberger, C R; Taheri, M L
2015-06-01
The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in TEM in order to demonstrate the utility of the technique for characterizing microstructural dynamics.
Precessing supermassive black hole binaries and dark energy measurements with LISA
Stavridis, Adamantios; Arun, K. G.; Will, Clifford M.
2009-09-15
Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respect to the nonprecessing case depending on the total mass and the redshift.
Confinement and precession of vortex pairs in coherently coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Tylutki, Marek; Pitaevskii, Lev P.; Recati, Alessio; Stringari, Sandro
2016-04-01
The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two vortices in condensates of atoms occupying different spin states and its effect on the precession of the vortex pair. The results, based on the numerical solution of the Gross-Pitaevskii equations, are compared with the predictions of an analytical macroscopic model and are discussed as a function of the size of the pair, the Rabi coupling, and the intercomponent interaction. We show that the increase of the Rabi coupling results in the disintegration of the domain wall into smaller pieces, connecting vortices of newly created vortex pairs. The resulting scenario is the analog of quark confinement and string breaking in quantum chromodynamics.
NASA Astrophysics Data System (ADS)
Rhén, Christin; Isacsson, Andreas
2017-09-01
By numerical integration, we study the relaxation dynamics of degenerate harmonic oscillator modes dispersively coupled to particle positions. Depending on whether the effective inertial potential induced by the oscillators keeps the particles confined or if the particle trajectories traverse the system, the local oscillator energy dissipation rate changes drastically. The inertial trapping, release, and retrapping of particles result in a characteristic stepwise relaxation process, with alternating regions of fast and slow dissipation. To demonstrate this phenomenon we consider first a one-dimensional minimal prototype model which displays these characteristics. We then treat the effect of dispersive interaction in a model corresponding to an adsorbate diffusing on a circular membrane interacting with its three lowest vibrational modes. In the latter model, stepwise relaxation appears only in the presence of thermal noise, which also causes a slow-in-time stochastic precession of the mixing angle between the degenerate eigenmodes.
Peters, Dana C.; Ennis, Daniel B.; McVeigh, Elliot R.
2007-01-01
The purpose of this study was to investigate the trabecular structure of the endocardial wall of the living human heart, and the effect of that structure on the measurement of myocardial function using MRI. High-resolution MR images (0.8 × 0.8 × 8 mm voxels) of cardiac function were obtained in five volunteers using a combination of undersampled projection reconstruction (PR) and steady-state free precession (SSFP) contrast in ECG-gated breath-held scans. These images provide movies of cardiac function with new levels of endocardial detail. The trabecular-papillary muscle complex, consisting of a mixture of blood and endocardial structures, is measured to constitute as much as 50% of the myocardial wall in some sectors. Myocardial wall strain measurements derived from tagged MR images show correlation between regions of trabeculae and papillary muscles and regions of high strain, leading to an overestimation of function in the lateral wall. PMID:12111934
Separation of magnetization precession in 3He-B into two magnetic domains. Theory
NASA Astrophysics Data System (ADS)
Fomin, I. A.
It is shown that even small deviations of the magnetic field from uniformity can substantially modify the magnetization precession in 3He-B. Specifically, a two-domain structure forms if the magnetic-field non-uniformity is linear. The magnetization makes an angle ˜ 104° with the field in one of the domains and is parallel to it in the other. These domains can explain the anomalously long persistence of the induction signal in 3He-B; moreover, the change in the induction-signal frequency with time discovered and investigated by Borovik-Romanov et al. [JETP Lett. 40, 1033 (1984)] is a consequence of the relaxation of the domain structure.
On the changes of IAU 2000 nutation theory stemming from IAU 2006 precession theory
NASA Astrophysics Data System (ADS)
Escapa, A.; Getino, J.; Ferrándiz, J. M.; Baenas, T.
2014-12-01
The adoption of IAU 2006 precession theory (Capitaine et al. 2003) introduced some small changes in IAU 2000A nutation theory, relevant at the mircroarcsecond level. These adjustments were derived in Capitaine et al. (2005) and are currently considered in international standards like, for example, IERS Conventions (2010) or in the Explanatory Supplement to the Astronomical Almanac (2013). We reexamine the issue, working out the induced modifications due to a change in the value of the obliquity of the ecliptic and to the secular variation of the Earth dynamical flattening. In particular, within the framework of the Hamiltonian theory of the rotation of the Earth we derive analytical expressions of those changes for the motion of the figure axis. These expressions and their corresponding numerical contributions will be compared with those obtained in Capitaine et al. (2005).
Search for Lorentz and CPT violation effects in Muon spin precession.
Bennett, G W; Bousquet, B; Brown, H N; Bunce, G; Carey, R M; Cushman, P; Danby, G T; Debevec, P T; Deile, M; Deng, H; Deninger, W; Dhawan, S K; Druzhinin, V P; Duong, L; Efstathiadis, E; Farley, F J M; Fedotovich, G V; Giron, S; Gray, F E; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, M F; Hertzog, D W; Huang, X; Hughes, V W; Iwasaki, M; Jungmann, K; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I; Lam, A; Larsen, R; Lee, Y Y; Logashenko, I; McNabb, R; Meng, W; Mi, J; Miller, J P; Mizumachi, Y; Morse, W M; Nikas, D; Onderwater, C J G; Orlov, Y; Ozben, C S; Paley, J M; Peng, Q; Polly, C C; Pretz, J; Prigl, R; zu Putlitz, G; Qian, T; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N; Sedykh, S; Semertzidis, Y K; Shagin, P; Shatunov, Yu M; Sichtermann, E P; Solodov, E; Sossong, M; Steinmetz, A; Sulak, L R; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D
2008-03-07
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.0+/-1.1) x 10(-23) GeV; (m mu dZ0 + HXY)=(1.8+/-6.0) x 10(-23) GeV; and the 95% confidence level limits b perpendicular mu+ <1.4 x 10(-24) GeV and b perpendicular mu- <2.6 x 10(-24) GeV.
NASA Astrophysics Data System (ADS)
Kerr, M.; Hobbs, G.; Johnston, S.; Shannon, R. M.
2016-01-01
In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.
Nutation and precession control of the High Energy Solar Physics (HESP) satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C. P.; Robertson, B. P.
1993-01-01
The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.
NASA Technical Reports Server (NTRS)
Zhu, S. Y.; Mueller, I. I.
1982-01-01
The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.
SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY
Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás
2015-01-01
Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.
Nutation and precession control of the High Energy Solar Physics (HESP) satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C. P.; Robertson, B. P.
1993-01-01
The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.
NASA Technical Reports Server (NTRS)
Zhu, S. Y.; Mueller, I. I.
1982-01-01
The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.
Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor.
Matsunaga, Ryusuke; Tsuji, Naoto; Fujita, Hiroyuki; Sugioka, Arata; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Aoki, Hideo; Shimano, Ryo
2014-09-05
Superconductors host collective modes that can be manipulated with light. We show that a strong terahertz light field can induce oscillations of the superconducting order parameter in NbN with twice the frequency of the terahertz field. The result can be captured as a collective precession of Anderson's pseudospins in ac driving fields. A resonance between the field and the Higgs amplitude mode of the superconductor then results in large terahertz third-harmonic generation. The method we present here paves a way toward nonlinear quantum optics in superconductors with driving the pseudospins collectively and can be potentially extended to exotic superconductors for shedding light on the character of order parameters and their coupling to other degrees of freedom. Copyright © 2014, American Association for the Advancement of Science.
Wigner rotation and Thomas precession: geometric phases and related physical theories
NASA Astrophysics Data System (ADS)
Brezov, Danail S.; Mladenova, Clementina D.; Mladenov, Ivaïlo M.
2015-06-01
We use a vector parameter description of the Lorentz groups in ℝ2,1 and ℝ3,1 to obtain an exact expression for the Thomas factor as a geometric phase. The effect of phase accumulation in Thomas-Wigner precession phenomena is seen as a manifestation of the hyperbolic solid angle theorem. On the infinitesimal level, our description involves affine connections on the noncompact Hopf fibrations U(1) → SU(1, 1) → Δ and SU(2) → PSL(2,ℂ) → H 3. The associated gauge field is a restriction of the familiar Yang-Mills anti-instanton. We also consider the dual compact case, and we discuss generalizations to arbitrary dimensions and applications in various branches of theoretical physics.
K2 and MAXI observations of Sco X-1 - evidence for disc precession?
NASA Astrophysics Data System (ADS)
Hakala, Pasi; Ramsay, Gavin; Barclay, Thomas; Charles, Phil
2015-10-01
Sco X-1 is the archetypal low-mass X-ray binary and the brightest persistent extrasolar X-ray source in the sky. It was included in the K2 Campaign 2 field and was observed continuously for 71 d with 1 min time resolution. In this Letter, we report these results and underline the potential of K2 for similar observations of other accreting compact binaries. We reconfirm that Sco X-1 shows a bimodal distribution of optical `high' and `low' states and rapid transitions between them on time-scales less than 3 h (or 0.15 orbits). We also find evidence that this behaviour has a typical systemic time-scale of 4.8 d, which we interpret as a possible disc precession period in the system. Finally, we confirm the complex optical versus X-ray correlation/anticorrelation behaviour for `high' and `low' optical states, respectively.
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
Cheung, Yeuk-Kwan E.; Xu Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
Precession of a two-layer Earth: contributions of the core and elasticity
NASA Astrophysics Data System (ADS)
Baenas, Tomás; Ferrándiz, José M.; Escapa, Alberto; Getino, Juan; Navarro, Juan F.
2016-04-01
The Earth's internal structure contributes to the precession rate in a small but non-negligible amount, given the current accuracy goals demanded by IAG/GGOS to the reference frames, namely 30 μas and 3 μas/yr. These contributions come from a variety of sources. One of those not yet accounted for in current IAU models is associated to the crossed effects of certain nutation-rising terms of a two-layer Earth model; intuitively, it gathers an 'indirect' effect of the core via the NDFW, or FCN, resonance as well as a 'direct' effect arising from terms that account for energy variations depending on the elasticity of the core. Similar order of magnitude reaches the direct effect of the departure of the Earth's rheology from linear elasticity. To compute those effects we work out the problem in a unified way within the Hamiltonian framework developed by Getino and Ferrándiz (2001). It allows a consistent treatment of the problem since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. The problem admits an asymptotic analytical solution. The Hamiltonian is constructed by considering a two-layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. The former effects reach some tens of μas/yr in the longitude rate, hence above the target accuracy level. We outline their influence in the estimation of the Earth's dynamical ellipticity, a main parameter factorizing both precession and nutation.
NASA Technical Reports Server (NTRS)
Charlot, P.; Sovers, O. J.; Williams, J. G.; Newhall, X. X.
1995-01-01
24 years of Lunar Laser Ranging (LLR) observations and 16 years of Very Long Baseline Interferometry (VLBI) observations are combined in a global analysis to yield improved estimates of the Earth's precession and nutation. The correction to the International Astronomical Union (IAU) (1976) precession constant inferred from this joint VLBI/LLR analysis is -3.00 +/- 0.20 milliarcsec/yr (mas/yr). A significant obliquity rate correction of -0.20 +/- 0.08 mas/yr is also found. In all, 32 forced nutation coefficients are estimated. These coefficients confirm that the IAU (1980) nutation theory is in error by several mas. The estimated nutation coeficients are found to vary by as much as several tenths of mas, depending on the a priori nutation model used to analyze the VLBI and LLR data. Forced circular nutations derived from this analysis agree with the ZMOA-1990-2 nutation theory at the 0.2 mas level for the 18.6 yr terms, and at the 0.05 mas level for the other terms (periods less than or = 1 yr). A retrograde free core nutation with an amplitude of 0.20 mas is also detected. Its phase is found to be very sensitive to the precise value of the free core nutation period used in the solution. Separate analyses of four independent subsets of the LVBI data indicate no significant variations of the free core nutation since 1988. The pre-1988 estimates of the free core nutation are consistent with the post-1988 estimates but are not accurate enough to rule out possible variations of the free core nutation at these earlier epochs.
Hysteresis and precession of a swirling jet normal to a wall
NASA Astrophysics Data System (ADS)
Shtern, V.; Mi, J.
2004-01-01
Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane—a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession—the effects observed in technological flows and in tornadoes.
Maurer, Andrew P; Cowen, Stephen L; Burke, Sara N; Barnes, Carol A; McNaughton, Bruce L
2006-12-27
Although hippocampal interneurons typically do not show discrete regions of elevated firing in an environment, such as seen in pyramidal cell place fields, they do exhibit significant spatial modulation (McNaughton et al., 1983a). Strong monosynaptic coupling between pyramidal neurons and nearby interneurons in the CA1 stratum pyramidale has been strongly implicated on the basis of significant, short-latency peaks in cross-correlogram plots (Csicsvari et al., 1998). Furthermore, interneurons receiving a putative monosynaptic connection from a simultaneously recorded pyramidal cell appear to inherit the spatial modulation of the latter (Marshall et al., 2002). Buzsaki and colleagues hypothesize that interneurons may also adopt the firing phase dynamics of their afferent place cells, which show a phase shift relative to the hippocampal theta rhythm as a rat passes through the place field ("phase precession"). This study confirms and extends the previous reports by showing that interneurons in the dorsal and middle hippocampus with putative monosynaptic connections with place cells recorded on the same tetrode share other properties with their pyramidal cell afferents, including the spatial scale of the place field of pyramidal cell, a characteristic of the septotemporal level of the hippocampus from which the cells are recorded, and the rate of phase precession, which is slower in middle regions. Furthermore, variations in pyramidal cell place field scale within each septotemporal level attributable to task variations are similarly associated with variations in interneuron place field scale. The available data strongly suggest that spatial selectivity of CA1 stratum pyramidale interneurons is inherited from a small cluster of local pyramidal cells and is not a consequence of spatially selective synaptic input from CA3 or other sources.
NASA Astrophysics Data System (ADS)
Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.
2015-01-01
We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.
Kulovits, A.K. Facco, G.; Wiezorek, J.M.K.
2012-01-15
Precession illumination hollow cone dark field (PI-HCDF) transmission electron microscopy (TEM) provides high contrast multi-beam dark field images, which are suitable for effective and robust grain size measurements in nano-scale polycrystalline aggregates. Precession illumination with slightly converged electron beam probes and precession angles up to 3 Degree-Sign has been produced using a computer-controlled system using a JEOL JEM 2000FX TEM instrument. Theoretical and practical aspects of the experimental technique are discussed using example precession illumination hollow cone diffraction patterns from single crystalline NiAl and the importance of selecting the appropriate precession angle for PI-HCDF image formation and interpretation is described. Results obtained for precession illumination are compared with those of conventional parallel beam illumination experiments. Nanocrystalline Al has been used to evaluate the influence of the precession angle on PI-HCDF image contrast with a focus on grain size analysis. PI-HCDF imaging has been applied for grain size measurements in regions of a nanocrystalline Al thin film adjacent to the edge of a pulsed laser melted and rapidly solidified region and determined the dimensions of a heat-affected zone. - Highlights: Black-Right-Pointing-Pointer New TEM method for grain size measurements combines TEM resolution with obtainability of statistically significant data sets. Black-Right-Pointing-Pointer We use precession illumination to produce time precession illumination hollow cone diffraction patterns PI-HCDP. Black-Right-Pointing-Pointer Contrast in dark field images (PI-HCDF) formed from PI-HCDP is easy to interpret as dynamical effects are reduced. Black-Right-Pointing-Pointer PI-HCDFs use several time-averaged g-rings simultaneously and contain more information than conventional DF-images. Black-Right-Pointing-Pointer Easy contrast interpretation and less dark field images required, allows fast, robust and
Precessão do jato de 3C120: simulações hidrodinâmicas 3D
NASA Astrophysics Data System (ADS)
Caproni, A.; de Gouveia dal Pino, E. M.; Abraham, Z.; Raga, A. C.
2003-08-01
Observações com técnicas de interferometria com longa linha de base têm mostrado a existência de um jato relativístico com componentes superluminais na região central de 3C 120. Estas componentes são ejetadas em distintas direções no plano do céu e com diferentes velocidades aparentes. Estas características foram interpretadas em trabalhos anteriores como efeitos da precessão do jato relativístico. Neste trabalho, realizamos simulações tri-dimensionais do jato de 3C 120 utilizando os parâmetros de precessão determinados em trabalhos anteriores e variando as características iniciais do jato e meio ambiente, tais como densidade numérica e temperatura. Todas as simulações foram feitas com o código hidrodinâmico YGUAZÚ-A, assumindo-se um jato adiabático descrito por uma equação de estado relativística. Pelo fato de estarmos utilizando um código hidrodinâmico, nós assumimos que a intensidade do campo magnético e a distribuição de partículas, necessários para se calcular a emissão sincrotron, são proporcionais à pressão hidrodinâmica. Comparação entre dois cenários distintos, nos quais o material do jato é ejetado com velocidade constante (jato contínuo) e com velocidade modulada por um padrão sinusoidal no tempo (jato intermitente), é apresentada e discutida. Para jatos que apresentam fenômenos de precessão e intermitência, com amplitude de variação na velocidade de injeção maior que dez por cento da velocidade média de injeção, a hipótese balística, controlada pela intermitencia, é mais provável. Por outro lado, para jatos com precessão mas sem intermitência (ou com amplitude de variabilidade em velocidade mais baixa que no caso anterior), o efeito da precessão na morfologia do jato não é desprezível. Portanto, de um modo geral, ambos efeitos (precessão e movimentos balísticos) devem estar concorrendo para afetar a morfologia dos jatos superluminais.
Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni
NASA Astrophysics Data System (ADS)
Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.
2017-08-01
In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.
NASA Astrophysics Data System (ADS)
Finocchiaro, S.; Iess, L.; Folkner, W. M.; Asmar, S.
2011-12-01
In its one-year mission around Jupiter (Oct. 2016 - Oct. 2017), the Juno spacecraft will carry out a precise determination of the gravity field, with the goal of unveiling the interior structure of the planet. Juno will be inserted in a polar, highly eccentric orbit (e = 0,9466) with a period of nearly 11 days. The very low pericenter (about 5000 km altitude) makes the orbit especially sensitive to the zonal gravity field. In addition to the perturbations due to classical gravity, the spacecraft is also exposed to significant relativistic effects. In particular, the high velocity at pericenter (60 km/s), in combination with Jupiter's fast rotation (T=10 h), induces a significant acceleration due to the Lense-Thirring (LT) precession. In the low-velocity, weak field approximation, the acceleration is proportional to the angular momentum of the central body and to the velocity of the test particle, and orthogonal to them. A measurement of the LT precession would therefore provide also the angular momentum of the planet. As the perturbing field rapidly decreases with the radial distance, by far the largest acceleration occurs during the pericenter pass (about 6 h). This unique opportunity to observe the LT precession on a planet other than the Earth was first pointed out in [1]. However, the suggested approach, used for the LAGEOS satellites orbiting the Earth, cannot be applied to Juno because large longitude-keeping maneuvers destroy the dynamical coherence of the orbit. We have adopted a different approach, based upon the direct estimation of the LT parameter using a multi-arc, least squares filter. During a pericenter pass, the LT acceleration produces a line-of-sight velocity variation of 0.35 mm/s and a displacement of several meters. These variations can be observed as Doppler shifts on the two-way tracking radio signal. The onboard radio system supports a highly stable, two-way, Ka-band radio link (34 GHz uplink, 32.5 GHz downlink), providing two-way range
Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gutiérrez, P. J.; Jorda, L.; Gaskell, R. W.; Davidsson, B. J. R.; Capanna, C.; Hviid, S. F.; Keller, H. U.; Maquet, L.; Mottola, S.; Preusker, F.; Scholten, F.; Lara, L. M.; Moreno, F.; Rodrigo, R.; Sierks, H.; Barbieri, C.; Lamy, P.; Koschny, D.; Rickman, H.; Agarwal, J.; A'Hearn, M. F.; Auger, A. T.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Güttler, C.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; López-Moreno, J. J.; Magrin, S.; Marchi, S.; Marzari, F.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Sabau, D.; Thomas, N.; Toth, I.; Tubiana, C.; Vincent, J. B.
2016-05-01
Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h ± 12 h.Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h ± 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims: The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods: We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results: Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions: The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi; Kurihara, Takayuki; Kato, Takeo; Yamaguchi, Keita; Suemoto, Tohru
2017-08-01
Coherent control of spin waves in terahertz frequencies promises fruitful applications in ultrafast spintronic devices and has been receiving increasing attention. Although materials with low spin-wave damping are especially desirable for such purposes, quality factor values reported in previous studies were limited to the order of several tens. Here, we prepared a high quality orthoferrite ErFeO3 single crystal and investigated the precession motion (quasi-ferromagnetic resonance mode), by using terahertz pulse pumping and near infrared probe pulse to observe the transient Faraday rotation. As a result, we found a quality factor of spin precession exceeding 1000 in a slab sample. The results from rod shaped samples of various widths fabricated from the same single crystal suggest that the spatial coherence length is larger than 100 μm. The results indicate that the high quality ErFeO3 crystals can be an ideal platform for ultrafast spintronics and quantum information technology.
Neumann, Ingmar; Van de Vondel, Joris; Bridoux, German; Costache, Marius V; Alzina, Francesc; Sotomayor Torres, Clivia M; Valenzuela, Sergio O
2013-01-14
Spin injection and detection is achieved in freely suspended graphene using cobalt electrodes and a nonlocal spin-valve geometry. The devices are fabricated with a single electron-beam-resist poly(methyl methacrylate) process that minimizes both the fabrication steps and the number of (aggressive) chemicals used, greatly reducing contamination and increasing the yield of high-quality, mechanically stable devices. As-grown devices can present mobilities exceeding 10(4) cm(2) V(-1) s(-1) at room temperature and, because the contacts deposited on graphene are only exposed to acetone and isopropanol, the method is compatible with almost any contacting material. Spin accumulation and spin precession are studied in these nonlocal spin valves. Fitting of Hanle spin precession data in bilayer and multilayer graphene yields a spin relaxation time of ∼125-250 ps and a spin diffusion length of 1.7-1.9 μm at room temperature.
NASA Astrophysics Data System (ADS)
Dremov, S. V.; Shtork, S. I.; Skripkin, S. G.; Kabardin, I. K.
2016-10-01
This paper is devoted to experimental investigation of the interaction between the pair of precessing vortices in a tangential vortex chamber. The test section was the tangential vortex chamber with a cylindrical working area. The liquid was tangentially fed into the chamber through 12 rectangular nozzles. The swirl parameter varied in the range 0 ÷ 6.6, and the Reynolds number varied within 6000 ÷ 52000. On the basis of visualization materials the dependence of the precession frequency of the system of two vortices was obtained. For the quantitative investigation the optical methods of laser Doppler anemometry (LDA) and the Particle Image Velocimetry (PIV) were used. Information about vortices and recirculation zones was obtained from the optical measurements.
NASA Astrophysics Data System (ADS)
Li, Hang; Zhang, Xinhui; Liu, Xinyu; Furdyna, Jacek K.
2015-11-01
Ultrafast laser-triggered coherent magnetization dynamics in ferromagnetic (Ga,Mn)As films have been investigated by time-resolved magneto-optical spectroscopy. Dynamic phase reversal in the magnetic precession process is observed when the ambient temperature or the external magnetic field is varied. This phenomenon is found to be sensitive to the spontaneous magnetization orientation, and is attributed to the giant magnetic linear dichroism (MLD) effect in (Ga,Mn)As. Our findings suggest that this effect will enable the sensitive measurement of the dynamic phase of in-plane magnetization precession on picosecond time scale in the collective spin excitation in (Ga,Mn)As, thus enabling efficient and ultrafast magneto-optical detection for magnetization dynamics in ferromagnetic semiconductor-based spintronic devices.
NASA Astrophysics Data System (ADS)
Favrel, A.; Müller, A.; Landry, C.; Gomes, J.; Yamamoto, K.; Avellan, F.
2017-04-01
At part load conditions, Francis turbines experience the formation of a cavitation vortex rope at the runner outlet whose precession acts as a pressure excitation source for the hydraulic circuit. This can lead to hydro-acoustic resonances characterized by high pressure pulsations, as well as torque and output power fluctuations. This study highlights the influence of the discharge factor on both the vortex parameters and the pressure excitation source by performing Particle Image Velocimetry (PIV) and pressure measurements. Moreover, it is shown that the occurrence of hydro-acoustic resonances in cavitation conditions mainly depend on the swirl degree of the flow independently of the speed factor. Empirical laws linking both natural and precession frequencies with the operating parameters of the machine are, then, derived, enabling the prediction of resonance conditions on the complete part load operating range of the turbine.
NASA Astrophysics Data System (ADS)
Schempp, Walter J.
2013-09-01
Based on projective geometry, a quantum holographic approach to the orbiton / spinon dynamics of quantum blackholography and clinical magnetic resonance tomography is mathematically described. Crucial applications of the conformal steady-state free-precession modality and automorphic scattering theory are the evidence for a supermassive central black hole in the Milky Way galaxy and the modalities of clinical cardiovascular magnetic resonance tomography and diffusion weighted magnetic resonance tomography of non-invasive radiological diagnostics.
2007-11-01
planet : 3. A semianalytical and a purely numerical approach Pini Gurfil · Valéry Lainey · Michael Efroimsky Received: 12 January 2006 / Revised: 31 July...theory of orbits about a precessing and nutating oblate planet , in terms of osculating elements defined in a frame associated with the equator of...analytical machinery with numerical tools. Our model includes three factors: the J2 of the planet , its nonuniform equinoctial pre- cession described by the
NASA Astrophysics Data System (ADS)
Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.
2016-11-01
The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity
Online Analysis of Spin Precession for a New Search of the Atomic EDM of Xe-129 at FRM-II
NASA Astrophysics Data System (ADS)
Huneau, Jake; Excellence Cluster Universe; Technische Universität München Collaboration; Physikalisch-Technische Bundesanstalt Collaboration; University of Michigan Collaboration; Juelich CenterNeutron Science Collaboration
2016-09-01
The existence of a permanent electric dipole moment (EDM) would be a clear signature of time-reversal symmetry violation. Such an observation, at planned levels of sensitivity, would be unambiguous evidence for physics beyond the Standard Model. A search for a permanent EDM in 129Xe is being conducted at FRM-II, which utilizes 3He as a co-magnetometer to improve on the current limits of EDM searches. The experiment is conducted in a magnetically shielded room, which has an ultra-low magnetic field with high stability. The gas mixture of 129Xe and 3He are polarized by spin-exchange optical pumping. In the room, the noble gases precess in a cell with a magnetic and electric field applied where the precession is detected using LTc SQUID sensors. Spin lifetimes have been detected to be more than 2700 seconds for both of the gases. Online analysis of spin precession data taken during test runs will be discussed. DFG cluster of excellence ``Origin and Structure of the Universe''.
Yung, Bosco H. K.; Nakashima, Jun-ichi; Kwok, Sun; Imai, Hiroshi; Deguchi, Shuji; Diamond, Philip J.
2011-11-10
We report the results of multi-epoch Very Long Baseline Array observations of the 22.2 GHz H{sub 2}O maser emission associated with the 'water fountain' IRAS 18286-0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by H{sub 2}O maser emission, the other is W 43A. The detected H{sub 2}O emission peaks are distributed over a velocity range from -50 km s{sup -1} to 150 km s{sup -1}. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (jet 1) extended southeast to northwest; the remaining features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a 'double-helix' pattern which lies across {approx}200 mas. The maser distribution is reasonably fit by a model consisting of two bipolar precessing jets. The three-dimensional velocities of jet 1 and jet 2 are derived to be 138 km s{sup -1} and 99 km s{sup -1}, respectively. The precession period of jet 1 is about 56 years. For jet 2, three possible models are tested and they give different values for the kinematic parameters. We propose that the appearance of two jets is the result of a single driving source with significant proper motion.
Goulon, Jośe; Rogalev, Andrei; Goujon, Gérard; Wilhelm, Fabrice; Ben Youssef, Jamal; Gros, Claude; Barbe, Jean-Michel; Guilard, Roger
2011-01-01
X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence. PMID:22272105
Precession-averaged evolution of the orbital and total angular momenta in binary black-hole systems
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Kesden, Michael H.; Gerosa, Davide
2017-01-01
In the post-Newtonian regime, the timescale on which binary black-hole (BBH) spins precess is much less than the radiation-reaction timescale on which they inspiral to smaller separations. For a given binary system, the angle between total and orbital angular momenta oscillates with precessional period tau, during which the orbital angular momentum precesses about the total angular momentum by an angle alpha. This defines two different frequencies associated with these two periodicities: the nutation frequency nu = 2*pi/tau and the precession frequency Omega = alpha/tau. This allows us to derive Fourier expansions for the total and orbital angular momenta. We found that during the inspiral, BBHs can encounter nutational resonances where Omega = n*nu for integer n. At such resonances, the total angular momentum changes direction by a tilt angle. We derive an approximate expression for this tilt angle for BBHs with arbitrary masses and spins satisfying this resonance condition. Our new approach to studying the evolution of binary black-hole systems on long timescales may be more computationally efficient than previous methods, which might be helpful for calculating waveforms in the future.
Internal field of homogeneously magnetized toroid sensor for proton free precession magnetometer
NASA Astrophysics Data System (ADS)
Primdahl, F.; Merayo, J. M. G.; Brauer, P.; Laursen, I.; Risbo, T.
2005-02-01
The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 nT.
Bär, Sébastien; Weigel, Matthias; von Elverfeldt, Dominik; Hennig, Jürgen; Leupold, Jochen
2015-11-01
The purpose of this work was to analyze the intrinsic diffusion sensitivity of the balanced steady-state free precession (bSSFP) imaging sequence, meaning the observation of diffusion-induced attenuation of the bSSFP steady-state signal due to the imaging gradients. Although these diffusion effects are usually neglected for most clinical gradient systems, such strong gradient systems are employed for high resolution imaging of small animals or MR Microscopy. The impact on the bSSFP signal of the imaging gradients characterized by their b-values was analyzed with simulations and experiments at a 7T animal scanner using a gradient system with maximum gradient amplitude of approx. 700 mT/m. It was found that the readout gradients have a stronger impact on the attenuation than the phase encoding gradients. Also, as the PE gradients are varying with each repetition interval, the diffusion effects induce strong modulations of the bSSFP signal over the sequence repetition cycles depending on the phase encoding gradient table. It is shown that a signal gain can be obtained through a change of flip angle as a new optimal flip angle maximizing the signal can be defined. The dependency of the diffusion effects on relaxation times and b-values were explored with simulations. The attenuation increases with T2. In conclusion, diffusion attenuation of the bSSFP signal becomes significant for high resolution imaging voxel size (roughly < 100 μm) of long T2 substances.
The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism
NASA Astrophysics Data System (ADS)
Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.
2017-05-01
Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.
Pachon, Leonardo A.; Rueda, Jorge A.; Valenzuela-Toledo, Cesar A. E-mail: jorge.rueda@icra.it
2012-09-01
Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.
The BANANA project. V. Misaligned and precessing stellar rotation axes in CV Velorum
Albrecht, Simon; Winn, Joshua N.; Triaud, Amaury; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Queloz, Didier; Snellen, Ignas; Eggleton, Peter
2014-04-20
As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of β{sub p} = –52° ± 6° and β{sub s} = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i {sub *}) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i {sub *}. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary.
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
Bennett, G. W.; Brown, H. N.; Bunce, G.; Danby, G. T.; Larsen, R.; Lee, Y. Y.; Meng, W.; Mi, J.; Morse, W. M.; Nikas, D.; Prigl, R.; Semertzidis, Y. K.; Warburton, D.; Bousquet, B.; Cushman, P.; Duong, L.; Giron, S.; Kindem, J.; Kronkvist, I.; Qian, T.
2008-03-07
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero {delta}{omega}{sub a}(={omega}{sub a}{sup {mu}{sup {+-}}{omega}{sub a}{sup {mu}{sup -}}) and a sidereal variation of {omega}{sub a}{sup {mu}{sup {+-}}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: b{sub Z}=-(1.0{+-}1.1)x 10{sup -23} GeV; (m{sub {mu}}d{sub Z0}+H{sub XY})=(1.8{+-}6.0)x10{sup -23} GeV; and the 95% confidence level limits b{sub perpendicular}{sup {mu}{sup +}}< 1.4x10{sup -24} GeV and b{sub perpendicular}{sup {mu}{sup -}}<2.6x10{sup -24} GeV.
Whole heart magnetization-prepared steady-state free precession coronary vein MRI.
Stoeck, Christian T; Han, Yuchi; Peters, Dana C; Hu, Peng; Yeon, Susan B; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois; Manning, Warren J; Kozerke, Sebastian; Nezafat, Reza
2009-06-01
To compare two coronary vein imaging techniques using whole-heart balanced steady-state free precession (SSFP) and a targeted double-oblique spoiled gradient-echo (GRE) sequences in combination with magnetization transfer (MT) preparation sequence for tissue contrast improvement. Nine healthy subjects were imaged with the proposed technique. The results are compared with optimized targeted MT prepared GRE acquisitions. Both quantitative and qualitative analyses were performed to evaluate each imaging method. Whole-heart images were successfully acquired with no visible image artifact in the vicinity of the coronary veins. The anatomical features and visual grading of both techniques were comparable. However, the targeted small slab acquisition of the left ventricular lateral wall was superior to whole-heart acquisition for visualization of relevant information for cardiac resynchronization therapy (CRT) lead implantation. We demonstrated the feasibility of whole-heart coronary vein MRI using a 3D MT-SSFP imaging sequence. A targeted acquisition along the lateral left ventricular wall is preferred for visualization of branches commonly used in CRT lead implantation.
Modelling the light curves of ultraluminous X-ray sources as precession
NASA Astrophysics Data System (ADS)
Dauser, T.; Middleton, M.; Wilms, J.
2017-04-01
We present a freely available XSPEC model for the modulations seen in the long-term light curves of multiple ultraluminous X-ray sources (ULXs). By incorporating the physics of multiple electron scatterings (ray traced with a Monte Carlo routine), we go beyond analytical predictions and show that the geometrical beaming of radiation in the conical outflow can be more than a factor of 100 for opening angles smaller than 10°. We apply our new model to the long-term, well-sampled Swift light curve of the recently confirmed ULX pulsar NGC 5907 X-1 with an established period of 78 d. Our results suggest that geometrical beaming together with a slight precession of the conical wind can describe the light curve with a consistent set of parameters for the wind. The small opening angle of roughly 10° - 13° implies a highly supercritical flow and boosting factors of the order of B=60-90 that would yield a fairly low surface magnetic field strength of 2 × 1010 G.
Driben, R.; Konotop, V. V.; Meier, T.
2016-01-01
Nonlinearity is the driving force for numerous important effects in nature typically showing transitions between different regimes, regular, chaotic or catastrophic behavior. Localized nonlinear modes have been the focus of intense research in areas such as fluid and gas dynamics, photonics, atomic and solid state physics etc. Due to the richness of the behavior of nonlinear systems and due to the severe numerical demands of accurate three-dimensional (3D) numerical simulations presently only little knowledge is available on the dynamics of complex nonlinear modes in 3D. Here, we investigate the dynamics of 3D non-coaxial matter wave vortices that are trapped in a parabolic potential and interact via a repulsive nonlinearity. Our numerical simulations demonstrate the existence of an unexpected and fascinating nonlinear regime that starts immediately when the nonlinearity is switched-on and is characterized by a smooth dynamics representing torque-free precession with nutations. The reported motion is proven to be robust regarding various effects such as the number of particles, dissipation and trap deformations and thus should be observable in suitably designed experiments. Since our theoretical approach, i.e., coupled nonlinear Schrödinger equations, is quite generic, we expect that the obtained novel dynamical behavior should also exist in other nonlinear systems. PMID:26964759
Active edge control in the precessions polishing process for manufacturing large mirror segments
NASA Astrophysics Data System (ADS)
Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo
2014-09-01
The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.
Non-rigid Contributions to the Precession Rate of a Two-layers Earth Model
NASA Astrophysics Data System (ADS)
Ferrandiz, J. M.; Escapa, A.; Baenas, T.; Getino, J.; Navarro, J. F.
2015-12-01
The Earth's internal structure contributes to the precession rate in a non-negligible way considering current accuracies. These contributions come from a variety of sources, the most important being associated to the crossing effects of nutational terms and to the departures of the Earth rheology with respect to a perfect elastic model. To compute them we work out this problem in a unified way within the Hamiltonian framework developed in Getino and Ferrándiz (2001). It allows a consistent treatment of these effects, since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. These analytical expressions are constructed by considering a two layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. We discuss the origin and the magnitude of the different terms and determine their influence in the value of the Earth's dynamical ellipticity, as well as the related indirect effects on the nutation series.
Investigating relativity using lunar laser ranging - Geodetic precession and the Nordtvedt effect
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Newhall, X. X.; Williams, J. G.
1989-01-01
The emplacement of retroreflectors on the moon by Apollo astronauts and the Russian Lunakhod spacecraft marked the inception of lunar laser ranging (LLR) and provided a natural laboratory for the study of general relativity. Continuing acquisition of increasingly accurate LLR data has provided enhanced sensitivity to general relativity parameters. Two relativistic effects are investigated in this paper: (1) the Nordtvedt effect, yielding a test of the strong equivalence principle, would appear as a distortion of the geocentric lunar orbit in the direction of the sun. The inclusion of recent LLR data limits the size of any such effect to 3 + or - 4 cm. The sensitivities to the various PPN quantities are also highlighted. (2) the geodetic precession of the lunar perigee is predicted by general relativity as a consequence of the motion of the earth-moon system about the sun; its theoretical magnitude is 19.2 mas/yr. Analysis presented here confirms this value and determines this quality to a 2 percent level.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory
2017-01-01
Extracting astrophysical parameters and testing general relativity from gravitational wave observations of binary black hole mergers requires high-fidelity signal predictions. The effective-one-body model and phenomenological waveform models have been shown to work well for a subset of the possible parameter space. They could be insufficiently accurate for estimating the parameters of a loud gravitational wave detection in other regions of the parameter space. Numerical relativity (NR) surrogate models attempt to rapidly and accurately interpolate the waveforms from a set of NR simulations over a subset of parameter space. Using the Spectral Einstein Code (SpEC), we have built NR surrogate models for precessing binaries with a restricted spin direction on the smaller black hole, and are actively working on extending this to the full 7d parameter space of non-eccentric binaries. The NR surrogate models typically perform an order of magnitude better than other waveform models when compared to NR waveforms which were not included in the surrogate training set, and can be used in gravitational wave parameter estimation.
A precessing Be disc as a possible model for occultation events in GX 304-1
NASA Astrophysics Data System (ADS)
Kühnel, M.; Rothschild, R. E.; Okazaki, A. T.; Müller, S.; Pottschmidt, K.; Ballhausen, R.; Choi, J.; Kreykenbohm, I.; Fürst, F.; Marcu-Cheatham, D. M.; Hemphill, P.; Sagredo, M.; Kretschmar, P.; Martínez-Núñez, S.; Torrejón, J. M.; Staubert, R.; Wilms, J.
2017-10-01
We report on the RXTE detection of a sudden increase in the absorption column density, NH, during the 2011 May outburst of GX 304-1. The NH increased up to ∼16 × 1022 atoms cm-2, which is a factor of 3-4 larger than what is usually measured during the outbursts of GX 304-1 as covered by RXTE. Additionally, an increase in the variability of the hardness ratio as calculated from the energy resolved RXTE-Proportional Counter Array light curves is measured during this time range. We interpret these facts as an occultation event of the neutron star by material in the line of sight. Using a simple 3D model of an inclined and precessing Be disc around the Be-type companion, we are able to qualitatively explain the NH evolution over time. We are able to constrain the Be disc density to be of the order of 10-11 g cm-3. Our model strengthens the idea of inclined Be discs as origin of double-peaked outbursts as the derived geometry allows accretion twice per orbit under certain conditions.
The BANANA Project. V. Misaligned and Precessing Stellar Rotation Axes in CV Velorum
NASA Astrophysics Data System (ADS)
Albrecht, Simon; Winn, Joshua N.; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Triaud, Amaury; Queloz, Didier; Snellen, Ignas; Eggleton, Peter
2014-04-01
As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of βp = -52° ± 6° and βs = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i sstarf) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i sstarf. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under programme ID 084.C-1008 and under MPIA guaranteed time.
Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals
NASA Astrophysics Data System (ADS)
Lewis, Adam G. M.; Zimmerman, Aaron; Pfeiffer, Harald P.
2017-06-01
Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement with the leading order post-Newtonian prediction.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory; SXS Collaboration Collaboration
2016-03-01
We are now in the advanced detector era of gravitational wave astronomy, and the merger of two black holes (BHs) is one of the most promising sources of gravitational waves that could be detected on earth. To infer the BH masses and spins, the observed signal must be compared to waveforms predicted by general relativity for millions of binary configurations. Numerical relativity (NR) simulations can produce accurate waveforms, but are prohibitively expensive to use for parameter estimation. Other waveform models are fast enough but may lack accuracy in portions of the parameter space. Numerical relativity surrogate models attempt to rapidly predict the results of a NR code with a small or negligible modeling error, after being trained on a set of input waveforms. Such surrogate models are ideal for parameter estimation, as they are both fast and accurate, and have already been built for the case of non-spinning BHs. Using 250 input waveforms, we build a surrogate model for waveforms from the Spectral Einstein Code (SpEC) for a subspace of precessing systems.
NASA Astrophysics Data System (ADS)
Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration
2015-01-01
The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.
Investigating relativity using lunar laser ranging - Geodetic precession and the Nordtvedt effect
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Newhall, X. X.; Williams, J. G.
1989-01-01
The emplacement of retroreflectors on the moon by Apollo astronauts and the Russian Lunakhod spacecraft marked the inception of lunar laser ranging (LLR) and provided a natural laboratory for the study of general relativity. Continuing acquisition of increasingly accurate LLR data has provided enhanced sensitivity to general relativity parameters. Two relativistic effects are investigated in this paper: (1) the Nordtvedt effect, yielding a test of the strong equivalence principle, would appear as a distortion of the geocentric lunar orbit in the direction of the sun. The inclusion of recent LLR data limits the size of any such effect to 3 + or - 4 cm. The sensitivities to the various PPN quantities are also highlighted. (2) the geodetic precession of the lunar perigee is predicted by general relativity as a consequence of the motion of the earth-moon system about the sun; its theoretical magnitude is 19.2 mas/yr. Analysis presented here confirms this value and determines this quality to a 2 percent level.
Resonant neutrino spin-flavor precession and supernova nucleosynthesis and dynamics
Nunokawa, H.; Qian, Y.; Fuller, G.M.
1997-03-01
We discuss the effects of resonant spin-flavor precession (RSFP) of Majorana neutrinos on heavy element nucleosynthesis in neutrino-heated supernova ejecta and the dynamics of supernovae. In assessing the effects of RSFP, we explicitly include matter-enhanced (MSW) resonant neutrino flavor conversion effects where appropriate. We point out that for plausible ranges of neutrino magnetic moments and protoneutron star magnetic fields, spin-flavor conversion of {nu}{sub {tau}} (or {nu}{sub {mu}}) with a cosmologically significant mass (1{endash}100 eV) into a light {bar {nu}}{sub e} could lead to an enhanced neutron excess in neutrino-heated supernova ejecta. This could be beneficial for models of r-process nucleosynthesis associated with late-time neutrino-heated ejecta from supernovae. Similar spin-flavor conversion of neutrinos at earlier epochs could lead to an increased shock reheating rate and, concomitantly, a larger supernova explosion energy. We show, however, that such increased neutrino heating likely will be accompanied by an enhanced neutron excess which could exacerbate the problem of the overproduction of the neutron number N=50 nuclei in the supernova ejecta from this stage. In all of these scenarios, the average {bar {nu}}{sub e} energy will be increased over those predicted by supernova models with no neutrino mixings. This may allow the SN 1987A data to constrain RSFP-based schemes. {copyright} {ital 1997} {ital The American Physical Society}
NASA Technical Reports Server (NTRS)
Zhu, S. Y.; Mueller, I. I.
1982-01-01
The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.
Laboratory Simulation of the Effect of Rocket Thrust on a Precessing Space Vehicle
NASA Technical Reports Server (NTRS)
Alvarez, Oscar; Bausley, Henry; Cohen, Sam; Falcon-Martin, Miguel; Furumoto, Gary (Editor); Horio, Asikin; Levitt, David; Walsh, Amy
1990-01-01
Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide) which is trapped in the motor case, causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration, absent in the ground tests, estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built which incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various RPMs, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order of magnitude estimates of control authority needed to minimize the sloshing effect.
Palatinus, Lukáš; Petříček, Václav; Corrêa, Cinthia Antunes
2015-03-01
Accurate structure refinement from electron-diffraction data is not possible without taking the dynamical-diffraction effects into account. A complete three-dimensional model of the structure can be obtained only from a sufficiently complete three-dimensional data set. In this work a method is presented for crystal structure refinement from the data obtained by electron diffraction tomography, possibly combined with precession electron diffraction. The principle of the method is identical to that used in X-ray crystallography: data are collected in a series of small tilt steps around a rotation axis, then intensities are integrated and the structure is optimized by least-squares refinement against the integrated intensities. In the dynamical theory of diffraction, the reflection intensities exhibit a complicated relationship to the orientation and thickness of the crystal as well as to structure factors of other reflections. This complication requires the introduction of several special parameters in the procedure. The method was implemented in the freely available crystallographic computing system Jana2006.
Fast and accurate inference on gravitational waves from precessing compact binaries
NASA Astrophysics Data System (ADS)
Smith, Rory; Field, Scott E.; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia
2016-08-01
Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments, we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced-order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper, we construct the first reduced-order models of gravitational-wave signals that include the effects of spin precession, inspiral, merger, and ringdown in compact object binaries and that are valid for component masses describing binary neutron star, binary black hole, and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2." Our ROM enables the use of a fast reduced-order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed-up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to half a day for the longest duration and lowest mass signals. The ROM and ROQ rules are available with the main inference library of the LIGO Scientific Collaboration, LALInference.
NASA Technical Reports Server (NTRS)
Zhu, S. Y.; Mueller, I. I.
1982-01-01
The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.
Simple model of complete precessing black-hole-binary gravitational waveforms.
Hannam, Mark; Schmidt, Patricia; Bohé, Alejandro; Haegel, Leïla; Husa, Sascha; Ohme, Frank; Pratten, Geraint; Pürrer, Michael
2014-10-10
The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.
NASA Astrophysics Data System (ADS)
Joannin, Sébastien; Bassinot, Franck; Nebout, Nathalie Combourieu; Peyron, Odile; Beaudouin, Célia
2011-02-01
The ODP leg 161 Site 976 (Alboran Sea) is a deep-sea section sampled at a water depth of 1108 m in the Western Mediterranean Sea. Pollen analysis provides a vegetation and climate record of the Mid Pleistocene Transition (MPT), roughly one million years ago. The age-model tied to biostratigraphic events was revised by aligning the pollen climate index (PCI) to Mediterranean (KC01b) and global (LR04) oxygen isotope records. The studied time slice spans the interval ˜1.09 Ma (MIS 31) to ˜0.90 Ma (MIS 23). Across this interval, past phytogeography of nowadays extinct taxa, which were rare, allows a successful application of the modern analogues technique (MAT) to quantitative climate reconstructions for the MPT. Five, long-term, obliquity-related vegetation successions (O1 to O5), and eight short-term, precession-related vegetation successions (P1 to P8) are observed within the studied interval. These vegetation successions, regardless of their duration, show the same pattern: the progressive replacement of temperate trees by mountainous taxa, and then by herbs and steppe maxima. Precession-related successions correspond, therefore, to as dramatic vegetation changes as those driven by obliquity, including a final steppe phase under deteriorated climate conditions. Wavelet analysis of the PCI record shows that the Western Mediterranean experienced a shift at 1.01 Ma from precession-dominated frequencies (1.05-1.01 Ma) to obliquity-dominated frequencies (1.01-0.9 Ma). There is, therefore, an apparent discrepancy between wavelet analysis results and vegetation dynamic analysis (which suggests that obliquity and precession are recorded throughout the entire studied interval). This discrepancy could result from the fact that the PCI record sums, somehow, similar vegetation changes (wet to dry) occurring at different periodicities. Such a complex vegetation dynamics is mathematically rendered through a single parameter (i.e. principal component), which does not
A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377?
NASA Astrophysics Data System (ADS)
Aalto, S.; Costagliola, F.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Dasyra, K.; Wada, K.; Combes, F.; García-Burillo, S.; Kristensen, L. E.; Martín, S.; van der Werf, P.; Evans, A. S.; Kotilainen, J.
2016-05-01
With high resolution (0.̋25 × 0.̋18) ALMA CO 3-2 (345 GHz) observations of the nearby (D = 21 Mpc, 1'' = 102 pc), extremely radio-quiet galaxy NGC 1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular jet with a projected length of ±150 pc. The launch region is unresolved and lies inside a radius r< 10 pc. Along the jet axis we find strong velocity reversals where the projected velocity swings from -150km s-1 to +150 km s-1. A simple model of a molecular jet precessing around an axis close to the plane of the sky can reproduce the observations. The velocity of the outflowing gas is difficult to constrain due to the velocity reversals but we estimate it to be between 240 and 850 km s-1 and the jet to precess with a period P = 0.3-1.1 Myr. The CO emission is clumpy along the jet and the total molecular mass in the high-velocity (±(60 to 150 km s-1)) gas lies between 2 × 106M⊙ (light jet) and 2 × 107M⊙ (massive jet). There is also CO emission extending along the minor axis of NGC 1377. It holds > 40% of the flux in NGC 1377 and may be a slower, wide-angle molecular outflow which is partially entrained by the molecular jet. We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a (faint) radio jet or by an accretion disk-wind similar to those found towards protostars. It seems unlikely that a massive jet could have been driven out by the current level of nuclear activity which should then have undergone rapid quenching. The light jet would only have expelled 10% of the inner gas and may facilitate nuclear activity instead of suppressing it. The nucleus of NGC 1377 harbours intense embedded activity and we detect emission from vibrationally excited HCN J = 4-3ν2 = 1f which is consistent with hot gas and dust. We find large columns of H2 in the centre of NGC 1377 which may be a sign of a high rate of recent gas infall. The dynamical age ofthe molecular jet is short
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Wellenzohn, M.
2016-02-01
We analyze a spin precession of slow neutrons in the Einstein-Cartan gravity with torsion, chameleon and magnetic field. For the derivation of the Heisenberg equation of motion of the neutron spin we use the effective low-energy potential, derived by Ivanov and Wellenzohn [Phys. Rev. D 92, 125004 (2015)] for slow neutrons, coupled to gravitational, chameleon, and torsion fields to order 1 /m , where m is the neutron mass. In addition to these low-energy interactions we switch on the interaction of slow neutrons with a magnetic field. We show that to linear order approximation with respect to gravitational, chameleon, and torsion fields the Dirac Hamilton operator for fermions (neutrons), moving in spacetimes created by rotating coordinate systems, contains the anti-Hermitian operators of torsion-fermion (neutron) interactions, caused by torsion scalar and tensor space-space-time and time-space-space degrees of freedom. Such anti-Hermitian operators violate C P and T invariance. In the low-energy approximation the C P and T violating torsion-fermion (neutron) interactions appear only to order O (1 /m ). One may assume that in the rotating Universe and galaxies the obtained anti-Hermitian torsion-fermion interactions might be an origin of (i) violation of C P and T invariance in the Universe and (ii) of baryon asymmetry. We show that anti-Hermitian torsion-fermion interactions of relativistic fermions, violating C P and T invariance, (i) cannot be removed by nonunitary transformations of the Dirac fermion wave functions and (ii) are conformal invariant. According to general requirements of conformal invariance of massive particle theories in gravitational fields [see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A. J. Silenko, Phys. Rev. D 91, 065012 (2015)], conformal invariance of anti-Hermitian torsion-fermion interactions is valid only if the fermion mass is changed by a conformal factor.
NASA Astrophysics Data System (ADS)
Yamazaki, T.
2014-12-01
The Western Pacific Warm Pool (WPWP) has highest water temperature in the global ocean, and its spatiotemporal variations have significant impacts on large-scale atmospheric circulation and global hydrology. An environmental magnetic study was conducted on sediment cores of late Pleistocene age taken from the West Caroline Basin (WCB) offshore northern New Guinea in order to constrain hydrological variability over the WPWP on orbital timescales. Magnetite dominates magnetic mineral assemblages of the sediments. This is evidenced by that IRM acquisition curves are mostly explained by a low-coercivity component, and that the Verwey transition was obvious in low-temperature measurements. Existence of the sharp central ridges on FORC diagrams and TEM images indicate the occurrence of biogenic magnetite. Compared with pelagic sediments from other regions, however, FORC diagrams show a larger contribution of an interacting PSD and MD component, and the ratios of ARM susceptibility to SIRM (kARM/SIRM) are lower, which suggests a larger proportion of the terrigenous component. This is probably due to a large terrigenous sediment input from nearby land, New Guinea, induced by high precipitation in the intertropical convergence zone. Magnetic susceptibility (k) and kARM/SIRM well correlate with northern-hemisphere summer insolation. Maxima in k and minima in kARM/SIRM correspond to insolation minima, which suggests a larger terrigenous input caused by higher precipitation at these times. Interestingly, in the western part of WCB, k variations are dominated by the eccentricity periodicity and mimic δ18O curves, but the precession periodicity prevails in kARM/SIRM. These cores were taken at depths close to the CCD, and thus the k variations cannot be explained by dilution with carbonates. Sedimentation influenced by global sea-level changes may control the k variations; this part of the basin is adjacent to a wider continental shelf compared with the eastern part of WCB.
Noninvasive assessment of blood flow based on magnetic resonance global coherent free precession.
Klem, Igor; Rehwald, Wolfgang G; Heitner, John F; Wagner, Anja; Albert, Timothy; Parker, Michele A; Chen, Enn-Ling; Kim, Raymond J; Judd, Robert M
2005-03-01
Magnetic resonance global coherent free precession (GCFP) is a new technique that produces cine projection angiograms directly analogous to those of x-ray angiography noninvasively and without a contrast agent. In this study, we compared GCFP blood flow with "gold standards" to determine the accuracy of noninvasive GCFP blood flow measurements. The relationship between GCFP blood flow and true blood flow defined by invasive ultrasonic flow probe and by phase contrast velocity encoded MRI (VENC) was studied in anesthetized dogs (n=6). Blood flow was controlled by use of a hydraulic occluder around the left iliac artery. GCFP images were acquired by selectively exciting the abdominal aorta and visualizing temporal blood flow into the iliac arteries. GCFP flow was similar to ultrasonic blood flow at baseline (131.3+/-44.8 versus 114.8+/-34.2 mL/min), during occlusion (10.8+/-5.1 versus 6.5+/-7.2 mL/min), during reactive hyperemia (191.4+/-100.7 versus 260.3+/-138.7 mL/min), during the new resting state (135.5+/-52.4 versus 117.8+/-24.1 mL/min), and during partial occlusion (61.4+/-36.4 versus 49.3+/-13.1 mL/min, P=NS for all). Results comparing GCFP flow with VENC were similar. Statistical analysis revealed that GCFP flow was related to mean blood flow assessed by the flow probe (P<0.0001) and by VENC (P<0.0001). In the control right iliac artery, conversely, GCFP measurements were unaffected throughout all left iliac interventions (P=NS). GCFP blood flow is linearly related to true blood flow for a straight, cylindrical blood vessel without branches. Although more complex geometries imply a qualitative rather than a quantitative relationship, the data nevertheless suggest that GCFP may serve as the basis for a new form of noninvasive stress testing.
Electronic spin transport and spin precession in single graphene layers at room temperature
NASA Astrophysics Data System (ADS)
Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.
2007-08-01
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The `non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2K, 77K and room temperature. We extract a spin relaxation length between 1.5 and 2μm at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.
3C 273 variability at 7 mm: evidence of shocks and precession in the jet
NASA Astrophysics Data System (ADS)
Beaklini, Pedro Paulo B.; Abraham, Zulema
2014-01-01
We report on four years of observations of 3C 273 at 7 mm obtained with the Itapetinga radio telescope, in Brazil, between 2009 and 2013. We detected a flare in 2010 March, when the flux density increased by 50 per cent and reached 35 Jy. After the flare, the flux density started to decrease and reached values lower than 10 Jy. We suggest that the 7-mm flare is the radio counterpart of the γ-ray flare observed by the Fermi Large Area Telescope in 2009 September, in which the flux density at high energies reached a factor of 50 of its average value. A delay of 170 d between the radio and γ-ray flares was revealed using the discrete correlation function (DCF) that can be interpreted in the context of a shock model, in which each flare corresponds to the formation of a compact superluminal component that expands and becomes optically thin at radio frequencies at latter epochs. The differences in flare intensity between frequencies and at different times are explained as a consequence of an increase in the Doppler factor δ, as predicted by the 16-yr precession model proposed by Abraham & Romero. This increase has a large effect on boosting at high frequencies while it does not affect the observed optically thick radio emission too much. We discuss other observable effects of the variation in δ, such as the increase in the formation rate of superluminal components, the variations in the time delay between flares and the periodic behaviour of the radio light curve that we have found to be compatible with changes in the Doppler factor.
MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-11-01
When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.
Improved dark blood imaging of the heart using radial balanced steady-state free precession.
Edelman, Robert R; Botelho, Marcos; Pursnani, Amit; Giri, Shivraman; Koktzoglou, Ioannis
2016-10-19
Dark blood imaging of the heart is conventionally performed using a breath-hold, dual-inversion Cartesian fast spin-echo pulse sequence. Our aim was to develop a faster, more flexible approach that would be less motion-sensitive and provide better image quality. For this purpose, we implemented a prototype radial balanced steady-state free precession (bSSFP) pulse sequence. The study was approved by the institutional review board. Six healthy volunteers and 27 subjects undergoing clinically-indicated cardiovascular magnetic resonance (CMR) were imaged using dark blood Cartesian fast spin-echo and radial bSSFP. For patient studies, overall image quality, fat suppression and blood nulling were scored on a 5-point Likert scale. The quality of visualization of the right and left ventricular free walls and septum were individually scored. Streaking and ghosting artifacts were noted, as well as signal dropout in the free wall of the left ventricle. In volunteer studies, radial bSSFP showed less degradation by cardiac or respiratory motion than fast spin-echo as indicated by visual analysis and calculation of the temporal signal-to-noise ratio. The least motion sensitivity and maximal imaging efficiency were achieved with a single-shot radial bSSFP acquisition using only 35 views (temporal resolution = 95 ms). In patient studies, radial bSSFP images showed fewer motion artifacts and were judged to provide better myocardial visibility, including depiction of the right ventricular free wall, than fast spin-echo. Dual-inversion radial bSSFP provides the benefits of diminished sensitivity to image artifacts from respiratory or cardiac motion, better myocardial visibility, and improved imaging efficiency compared with standard-of-care Cartesian fast spin-echo for dark blood imaging of the heart.
Coupling between corotation and Lindblad resonances in the presence of secular precession rates
NASA Astrophysics Data System (ADS)
El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan
2014-03-01
We investigate the dynamics of two satellites with masses and orbiting a massive central planet in a common plane, near a first order mean motion resonance ( m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles and , where and are the mean longitude and longitude of periapsis of , respectively, and where the primed quantities apply to . We consider the special case where (restricted problem). The symmetry between the two angles and is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance between the CER and LER, and a forcing parameter that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for the system is integrable, for of order unity, it exhibits prominent chaotic regions, while for large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.
Wuest, Wolfgang; Lell, Michael; May, Matthias; Scharf, Michael; Schlundt, Christian; Achenbach, Stephan; Uder, Michael; Schmid, Axel
2015-01-01
Purpose In cardiac MRI (cMRI) injection of contrast medium may be performed prior to the acquisition of cine steady-state free precession (SSFP) imaging to speed up the protocol and avoid delay before late Gadolinium enhancement (LGE) imaging. Aim of this study was to evaluate whether a condensed clinical protocol with contrast cine SSFP imaging is able to detect early microvascular obstruction (MO) and determine the infarct size compared to the findings of LGE inversion recovery sequences. Materials and Methods The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. 68 consecutive patients (14 females/54 males) with acute ST-elevation myocardial infarction (STEMI) treated by percutaneous coronary revascularization were included in this study. CMRI was performed 6.6±2 days after symptom onset and MO and infarct size in early contrast SSFP cine imaging were compared to LGE imaging. Results MO was detected in 47/68 (69%) patients on cine SSFP and in 41/68 (60%) patients on LGE imaging. In 6 patients MO was found on cine SSFP imaging but was not detectable on LGE imaging. Infarct size on cine SSFP showed a strong agreement to LGE imaging (intraclass correlation coefficient [ICC] of 0.96 for enddiastolic, p<0.001 and 0.96 for endsystolic, p<0.001 respectively). Significant interobserver agreement was found measuring enddiastolic and endsystolic infarct size on cine SSFP imaging (p<0.01). Conclusions In patients after STEMI infarct size and presence of MO can be detected with contrast cine SSFP imaging. This could be an option in patients who are limited in their ability to comply with the demands of a cMRI protocol. PMID:25793609
Moghari, Mehdi H; Komarlu, Rukmini; Annese, David; Geva, Tal; Powell, Andrew J
2015-04-01
To develop and validate a respiratory motion compensation method for free-breathing cardiac cine imaging. A free-breathing navigator-gated cine steady-state free precession acquisition (Cine-Nav) was developed which preserves the equilibrium state of the net magnetization vector, maintains the high spatial and temporal resolutions of standard breath-hold (BH) acquisition, and images entire cardiac cycle. Cine image data is accepted only from cardiac cycles occurring entirely during end-expiration. Prospective validation was performed in 10 patients by obtaining in each three complete ventricular image stacks with different respiratory motion compensation approaches: (1) BH, (2) free-breathing with 3 signal averages (3AVG), and (3) free-breathing with Cine-Nav. The subjective image quality score (1 = worst, 4 = best) for Cine-Nav (3.8 ± 0.4) was significantly better than for 3AVG (2.2 ± 0.5, P = 0.002), and similar to BH (4.0 ± 0.0, P = 0.13). The blood-to-myocardium contrast ratio for Cine-Nav (6.3 ± 1.5) was similar to BH (5.9 ± 1.6, P = 0.52) and to 3AVG (5.6 ± 2.5, P = 0.43). There were no significant differences between Cine-Nav and BH for the ventricular volumes and mass. In contrast, there were significant differences between 3AVG and BH in all of these measurements but right ventricular mass. Free-breathing cine imaging with Cine-Nav yielded comparable image quality and ventricular measurements to BH, and was superior to 3AVG. © 2014 Wiley Periodicals, Inc.
Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.
Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong
2016-03-01
Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lhotka, C.; Reimond, S.; Souchay, J.; Baur, O.
2016-02-01
The aim of this study is first to determine the gravity field of the comet 67P/Churyumov-Gerasimenko and second to derive the solar component of the precession rate and nutation coefficients of the spin-axis of the comet nucleus, i.e. without the direct, usually larger, effect of outgassing. The gravity field and related moments of inertia are obtained from two polyhedra, which are provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and NAVigation CAMera (NAVCAM) experiments on Rosetta, and are based on the assumption of uniform density for the comet nucleus. We also calculate the forced precession rate as well as the nutation coefficients on the basis of Kinoshita's theory of rotation of the rigid Earth and adapted it to be able to indirectly include the effect of outgassing on the rotational parameters. The second degree denormalized Stokes coefficients of comet 67P/C-G turn out to be (bracketed numbers refer to second shape model) C20 ≃ -6.74 [-7.93] × 10-2, C22 ≃ 2.60 [2.71] × 10-2, consistent with normalized principal moments of inertia A/MR2 ≃ 0.13 [0.11], B/MR2 ≃ 0.23 [0.22], with polar moment c = C/MR2 ≃ 0.25, depending on the choice of the polyhedron model. The obliquity between the rotation axis and the mean orbit normal is ε ≃ 52°, and the precession rate only due to solar torques becomes dot{ψ }in [20,30] arcsec yr^{-1}. Oscillations in longitude caused by the gravitational pull of the Sun turn out to be of the order of Δψ ≃ 1 arcmin, and oscillations in obliquity can be estimated to be of the order of Δε ≃ 0.5 arcmin.
Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV
NASA Astrophysics Data System (ADS)
Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.
2016-11-01
Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.
Light-induced magnetic precession in (Ga,Mn)As slabs: Hybrid standing-wave Damon-Eshbach modes
NASA Astrophysics Data System (ADS)
Wang, D. M.; Ren, Y. H.; Liu, X.; Furdyna, J. K.; Grimsditch, M.; Merlin, R.
2007-06-01
Coherent oscillations associated with spin precessions were observed in ultrafast optical experiments on ferromagnetic (Ga,Mn)As films. Using a complete theoretical description of the processes by which light couples to the magnetization, values for the anisotropy constants and the spin stiffness were unambiguously determined from the data. Estimates for the hole-Mn exchange coupling are significantly larger than those previously reported. Results also reveal an important negative contribution to the energy due to surface anisotropy leading to excitations that are a mixture of bulk waves and surface modes.
NASA Technical Reports Server (NTRS)
Souder, P. A.; Casperson, D. E.; Crane, T. W.; Hughes, V. W.; Lu, D. C.; Yam, M. H.; Orth, H.; Reist, H. W.; Zu Putlitz, G.
1975-01-01
Experiments are described in which it proved possible to form the muonic helium atom by stopping polarized negative muons in a helium gas with a 2% xenon admixture at a pressure of 14 atm. The observed Larmor precession amplitudes are plotted against the gyromagnetic ratio for both muons and antimuons stopped in He + 2% Xe. In addition, a non-zero residual polarization of 0.06 plus or minus 0.01 was measured for muons stopped in pure helium gas, which corresponds to a depolarization factor of 18 plus or minus 3.
NASA Astrophysics Data System (ADS)
Birkner, Bastian; Pachniowski, Daniel; Sandner, Andreas; Ostler, Markus; Seyller, Thomas; Fabian, Jaroslav; Ciorga, Mariusz; Weiss, Dieter; Eroms, Jonathan
2013-02-01
We present results of nonlocal and three-terminal (3T) spin precession measurements on spin injection devices fabricated on epitaxial graphene on SiC. The measurements were performed before and after an annealing step at 150 ∘C for 15 minutes in vacuum. The values of spin relaxation length Ls and spin relaxation time τs obtained after annealing are reduced by a factor 2 and 4, respectively, compared to those before annealing. An apparent discrepancy between spin diffusion constant Ds and charge diffusion constant Dc can be resolved by investigating the temperature dependence of the g factor, which is consistent with a model for paramagnetic magnetic moments.
NASA Technical Reports Server (NTRS)
Souder, P. A.; Casperson, D. E.; Crane, T. W.; Hughes, V. W.; Lu, D. C.; Yam, M. H.; Orth, H.; Reist, H. W.; Zu Putlitz, G.
1975-01-01
Experiments are described in which it proved possible to form the muonic helium atom by stopping polarized negative muons in a helium gas with a 2% xenon admixture at a pressure of 14 atm. The observed Larmor precession amplitudes are plotted against the gyromagnetic ratio for both muons and antimuons stopped in He + 2% Xe. In addition, a non-zero residual polarization of 0.06 plus or minus 0.01 was measured for muons stopped in pure helium gas, which corresponds to a depolarization factor of 18 plus or minus 3.
Wyttenbach, Rolf; Braghetti, Antonio; Wyss, Michael; Alerci, Mario; Briner, Lukas; Santini, Paolo; Cozzi, Luca; Di Valentino, Marcello; Katoh, Marcus; Marone, Claudio; Vock, Peter; Gallino, Augusto
2007-10-01
To prospectively assess the diagnostic accuracy of nonenhanced three-dimensional (3D) steady-state free precession (SSFP) magnetic resonance (MR) angiography for detection of renal artery stenosis (RAS), with breath-hold contrast material-enhanced MR angiography performed as the reference standard. The study was local ethics committee approved; all patients gave written informed consent. Fifty-three patients (30 male, 23 female; mean age, 58 years) with arterial hypertension and suspected of having RAS were examined with 1.5-T 3D SSFP renal MR angiography. Stenosis grade, maximal visible vessel length, and subjective image quality were compared. Sensitivity, specificity, accuracy, and negative predictive value (NPV) were calculated on artery-by-artery and patient-by-patient bases. The significance of the results was assessed with the paired two-sided t test for continuous variables and with the marginal homogeneity test for categorical variables. Cohen kappa statistics were used to estimate interobserver agreement. One hundred eight renal arteries with 20 significant (>or=50%) stenoses were detected with contrast-enhanced MR angiography. At artery-by-artery analysis, sensitivity, specificity, accuracy, and NPV of nonenhanced SSFP MR angiography for RAS detection were 100%, 93%, 94%, and 100%, respectively, for observer 1 and 95%, 95%, 95%, and 99%, respectively, for observer 2. Corresponding patient-by-patient values were 100%, 92%, 94%, and 100%, respectively, for observer 1 and 100%, 95%, 96%, and 100%, respectively, for observer 2. Overestimation of stenosis grade with SSFP MR angiography resulted in six and four false-positive findings for readers 1 and 2, respectively. Mean maximal visible lengths of the renal arteries were 69.9 mm at contrast-enhanced MR angiography and 61.1 mm at SSFP MR angiography (P<.001). Both techniques yielded good to excellent image quality. Slab-selective inversion-prepared 3D SSFP MR angiography had high sensitivity, specificity
GRBs by thin persistent precessing lepton Jets: the long life GRB110328 and the Neutrino signal
NASA Astrophysics Data System (ADS)
Fargion, D.
Gamma Ray Burst sources are apparently evolving around us in a harder and brighter samples at far and far redshift. The average output may range from a near Supernova (nearest events) output to a billion time that power for most distant events. Such a tuned evolution around us is not an anti-copernican signature. It is a clear imprint of a off-axis (nearest sources) beaming versus a rarest in-axis blazing (far redshift sources) by a thin relativistic beam (Lorentz factor up 104 or above, micro-nano steradian solid angle). The main consequence is the rarer and rarer presences of hardest gamma events (hundreds MeV, GeVs, tens GeVs), nearly one over a twenty, observed with difficulty at largest redshift inside their thinner beamed jets. For this reason these rarest tens GeV beamed events, even observed by EGRET and Fermi, are hardly seen at hundred GeV by Cherenkov telescope (Magic,Hess,Veritas) on Earth. For the same reason and because tens GeV neutrino energy is below Icecube thresholds (threshold to hundreds GeV) we have not been observed yet a neutrino GRB. However if the GRBs primaries contains tens GeV neutrino traces (at comparable GRB gamma rate) their presence may rise in few years at Deep Core (a more dense array inside ICECUBE) detector whose lower threshold, ranges just one or few tens GeV energy. Moreover the very recent X ray persistent GRB110328 or( J164449.3 transient event), whose understanding was first associated to a cannibal star AGN eating \\cite{Shao}, but now \\cite{Bloom},\\cite{Zauderer} , to a cannibal AGN feeding beamed jet, it is, more naturally consistent to our GRB (by few solar mass compact source, not an AGN) spinning, precessing and blazing model jet, whose geometry is more aligned and stable (than other GRBs) to us: its decay law and its average output is fully consistent with our earliest proposals.
Steady-state free precession with hyperpolarized 3He: Experiments and theory
NASA Astrophysics Data System (ADS)
Wild, Jim M.; Teh, Kevin; Woodhouse, Neil; Paley, Martyn N. J.; Fichele, Stan; de Zanche, Nicola; Kasuboski, Larry
2006-11-01
The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle ( α), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high α due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher α through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of α = 20°, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR ( α = 7.2°) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor ( Q = 250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (⩾1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sin( α/2) weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices close to the
Steady-state free precession with hyperpolarized 3He: experiments and theory.
Wild, Jim M; Teh, Kevin; Woodhouse, Neil; Paley, Martyn N J; Fichele, Stan; de Zanche, Nicola; Kasuboski, Larry
2006-11-01
The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle (alpha), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high alpha due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher alpha through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of alpha=20 degrees, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR (alpha=7.2 degrees) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor (Q=250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sinalpha/2 weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices
Cutsuridis, Vassilis; Hasselmo, Michael
2012-07-01
as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum.
Metal oxide growth, spin precession measurements and Raman spectroscopy of CVD graphene
NASA Astrophysics Data System (ADS)
Matsubayashi, Akitomo
The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp 2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of CVD grown graphene is crytical due to its scalability. In this thesis, a unique fabrication method of the metal oxide layers on CVD graphene is presented. This is motivated by theoretical work showing that an ultra thin metal oxide film used as a tunnel barrier improves the spin injection efficiency. Introducing a titanium seed layer prior to the aluminum oxide growth showed improved surface and film uniformity and resulted in a completely oxidized film. Utilizing this unique metal oxide film growth process, lateral spin valve devices using CVD graphene as a channel are successfully fabricated. Hanle spin precession measurements are demonstrated on these CVD graphene spin devices. A non-local Hanle voltage model based upon the diffusive spin transport in a solid is utilized to find the spin diffusion length and spin relaxation time of CVD graphene. The measured spin relaxation times in CVD graphene were compatible with the values found in the literature. However, they are an order of magnitude shorter than the theoretical values expected in graphene. To investigate possible origins of this order of magnitude shorter spin relaxation time in graphene, crystal and electrical modifications in CVD graphene are studied throughout the entire device fabrication process. Raman spectroscopy is utilized to track CVD graphene
Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi
2013-12-15
Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.
Kim, Ki Hwan; Park, Sung-Hong
2017-04-01
The balanced steady-state free precession (bSSFP) MR sequence is frequently used in clinics, but is sensitive to off-resonance effects, which can cause banding artifacts. Often multiple bSSFP datasets are acquired at different phase cycling (PC) angles and then combined in a special way for banding artifact suppression. Many strategies of combining the datasets have been suggested for banding artifact suppression, but there are still limitations in their performance, especially when the number of phase-cycled bSSFP datasets is small. The purpose of this study is to develop a learning-based model to combine the multiple phase-cycled bSSFP datasets for better banding artifact suppression. Multilayer perceptron (MLP) is a feedforward artificial neural network consisting of three layers of input, hidden, and output layers. MLP models were trained by input bSSFP datasets acquired from human brain and knee at 3T, which were separately performed for two and four PC angles. Banding-free bSSFP images were generated by maximum-intensity projection (MIP) of 8 or 12 phase-cycled datasets and were used as targets for training the output layer. The trained MLP models were applied to another brain and knee datasets acquired with different scan parameters and also to multiple phase-cycled bSSFP functional MRI datasets acquired on rat brain at 9.4T, in comparison with the conventional MIP method. Simulations were also performed to validate the MLP approach. Both the simulations and human experiments demonstrated that MLP suppressed banding artifacts significantly, superior to MIP in both banding artifact suppression and SNR efficiency. MLP demonstrated superior performance over MIP for the 9.4T fMRI data as well, which was not used for training the models, while visually preserving the fMRI maps very well. Artificial neural network is a promising technique for combining multiple phase-cycled bSSFP datasets for banding artifact suppression. Copyright Â© 2016 Elsevier Inc. All
SS 433: Total Coverage of 162-Day Precession Phase in Four Years
NASA Technical Reports Server (NTRS)
Band, David L.
1997-01-01
The observations prior to AO-4 covered a number of precession phases, leaving a gap at phase 0.8. In addition, ASCA and previous observations of SS 433 did not observe the spectrum above approx. 10 keV, and consequently the continuum underlying the spectral lines was poorly constrained. Therefore RXTE observations were scheduled for April 1997 to extend the observed spectrum to higher energies; these observations were planned to sample the X-ray lightcurve during the 13.08 day binary period, concentrating on the eclipse of the compact object which emits the jets. We proposed and were awarded ASCA observations simultaneous with the RXTE observations; the purpose of the ASCA observations was to provide greater spectral resolution at the low end of the spectrum observed by RXTE, and to complete the phase coverage of SS 433. As a result of scheduling difficulties early in the mission the RXTE observations were confined to a much shorter time range than originally planned, April 18-91 1997. Optical observations of SS 433 were performed at a number of observatories. The ASCA observations occurred from April 18 13:10 (UT) to April 21 13:20 (UT) for a total effective exposure of 120 ks. The continuum X-ray light curve shows that the ASCA observations started shortly before the ingress into the X-ray partial eclipse, and ended approximately at the time of the egress. Light curves were also obtained for the prominent Fe emission lines in the blue-shifted frame (approaching jet), red-shifted frame (receding jet), and the stationary frame (fluorescent line from the ambient matter). Through the eclipse mapping technique using the light curves, the parameters of the jet emission model were constrained, showing that the kinetic power in the jet exceeds 104? erg s-l. If the energy source is gravitational accretion, as is commonly believed, the derived l;inetic power implies extremely supercritical accretion even for a black; hole with 10M. These results will be described more
Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel
Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.
2016-06-16
Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standard FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be
Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel
Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.
2016-06-16
Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be
NASA Astrophysics Data System (ADS)
Shen, C. C.; Yi, L.; Lo, L.; Shi, Z.; Wei, K. Y.; Chou, C. J.; Chen, Y. C.; Chuang, C. K.; WU, C. C.; Mii, H. S.; Amakawa, H.; Burr, G.; Lee, S. Y.; DeLong, K. L.; Elderfield, H.
2015-12-01
The Intertropical convergence Zone (ITCZ) encompasses the heaviest rain belt on Earth. Few direct long-term records, especially in the Pacific, limit our understanding of long-term natural variability necessary to predict future ITCZ changes. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred from of rare earth elements (REEs) to Ca ratios in the planktonic foraminifer Globigerinoides ruber shell calcite, of a marine sedimentary core MD05-2925 (9o20.60'S, 151o27.54'E; water depth 1661 m), collected off the eastern coast of Papua New Guinea. Unlike the precession paradigm expressed in its East Asian counterpart, our record shows that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. This obliquity forcing could be primarily delivered by a cross-hemispherical thermal/pressure contrast, resulting from the asymmetric continental configuration between Asia and Australia in a coupled East Asian-Australian circulation system, supported by model simulations. Our finding suggests that the obliquity forcing may play a more important role in global hydroclimate cycles than previously thought.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Nagaosa, Naoto; Nikolić, Branislav K.
2014-09-01
Using the charge-conserving Floquet-Green function approach to open quantum systems driven by an external time-periodic potential, we analyze how spin current pumped by the precessing magnetization of a ferromagnetic (F) layer is injected laterally into the interface with strong spin-orbit coupling (SOC) and converted into charge current flowing in the same direction. In the case of a metallic interface with the Rashba SOC used in recent experiments [J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané, J. M. De Teresa, C. Magén, and A. Fert, Nat. Commun. 4, 2944 (2013), 10.1038/ncomms3944], both spin ISα and charge I current flow within the interface where I /ISα≃ 2-8% (depending on the precession cone angle), while for a F/topological-insulator (F/TI) interface employed in related experiments [Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, arXiv:1312.7091] the conversion efficiency is greatly enhanced (I /ISα≃ 40-60%) due to perfect spin-momentum locking on the surface of a TI. The spin-to-charge conversion occurs also when spin current is pumped vertically through the F/TI interface with smaller efficiency (I /ISα˜0.001%), but with the charge current signal being sensitive to whether the Dirac fermions at the interface are massive or massless.
NASA Technical Reports Server (NTRS)
Neigh, Christopher S. R.; McCorkel, Joel; Campbell, Petya K. E.; Ong, Lawrence; Ly, Vuong; Landis, David; Middleton, Elizabeth M.
2016-01-01
Spaceborne spectrometers require spectral-temporal stability characterization to aid in validation of derived data products. Earth Observation 1 (EO-1) began orbital precession in 2011 after exhausting onboard fuel resources. In the Libya-4 pseudo-invariant calibration site (PICS), this resulted in a progressive shift from a mean local equatorial crossing time of approximately10:00 A.M. in 2011 to approximately 8:30 A.M. in late 2015. Here, we studied precession impacts to Hyperion surface reflectance products using three atmospheric correction approaches from 2004 to 2015. Combined difference estimates of surface reflectance were less than 5 percent in the visible near infrared (VNIR) and less than 10 percent for most of the shortwave infrared (SWIR). Combined coefficient of variation estimates in the VNIR ranged from 0.025 to 0.095, and in the SWIR it ranged from 0.025 to 0.06, excluding bands near atmospheric absorption features. Reflectances produced with different atmospheric models were correlated (R squared) in VNIR from 0.25 to 0.94 and in SWIR from 0.12 to 0.88 (p value (calculated probability) less than 0.01). The uncertainties in all the models increased with a terrain slope up to 15 degrees and selecting dune flats could reduce errors. We conclude that these data remain a valuable resource over this period for sensor intercalibration despite orbital decay.
Vigouroux, M. P.; Delaye, V.; Bernier, N.; Lafond, D.; Audoit, G.; Bertin, F.; Cipro, R.; Baron, T.; Martin, M.; Rouvière, J. L.; Chenevier, B.
2014-11-10
Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10{sup −4} with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.
Evidence for a precession of the nucleus of comet 67P/C-G from ROSETTA/OSIRIS images
NASA Astrophysics Data System (ADS)
Jorda, Laurent; Gutierrez, Pedro; Davidsson, Bjoern; Gaskell, Robert; Hviid, Stubbe; Keller, Horst Uwe; Maquet, Lucie; Mottola, Stefano; Preusker, Frank; Scholten, Frank
2015-11-01
The retrieval of the rotational parameters of comet 67P/C-G is part of the shape reconstruction process conducted from data collected by the OSIRIS imaging system aboard ROSETTA. Among other parameters, this includes the reconstruction of the (RA,Dec) direction of the Z axis of the body-fixed frame and that of the angular momentum vector. The stereophotogrammetric solution (Preusker et al., A&A 2015, in press) obtained in Aug-Sep 2014 already showed evidence for a complex rotation of comet 67P/C-G. A subsequent analysis of the rotational data obtained using the stereophotoclinometry method (Gaskell et al., MP&S 43, 1049, 2008) up to April 2015 also revealed a precession with a likelihood greater than 99.99 %. The amplitude and period of the (RA,Dec) variations measured with both methods are fully compatible.We propose an interpretation of the measured period as a combination of torque free motions: a rotation combined with a precession of small amplitude. The modeling of this motion has implications on the value of the moments of inertia, from which it is possible to constrain the internal density distribution of comet 67P/C-G.
NASA Astrophysics Data System (ADS)
Foucart, F.; Desai, D.; Brege, W.; Duez, M. D.; Kasen, D.; Hemberger, D. A.; Kidder, L. E.; Pfeiffer, H. P.; Scheel, M. A.
2017-02-01
Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers.
NASA Technical Reports Server (NTRS)
Borsody, J.
1976-01-01
Equations are derived by using branched trajectory optimization techniques and the maximum principle to maximize the payload capability of a reusable tug/expendable kickstage vehicle configuration for planetary missions. The two stages and the payload are launched into a low earth orbit by a single space shuttle. The analysis includes correction for precession of the orbit. This correction is done by the tug. The tug propels the payload and the kickstage to an energy beyond earth escape and returns within a specified time to the precessed orbit. After separating from the tug, the kickstage accelerates the payload to the required injection conditions. Planetary injection conditions are specified by the mission energy and a fixed declination and right ascension of the outgoing asymptote. The multipoint boundary value problem resulting from the analysis is solved by a Newton-Raphson iteration technique. Partial derivatives of the boundary conditions are obtained by perturbing the initial conditions one at a time, integrating the trajectory and adjoint equations, and observing the changes in boundary conditions. Maximum payload capability is derived for two typical mission energies. In addition, the variations of several mission and stage parameters are also examined.
D'Albis, Tiziano; Jaramillo, Jorge; Sprekeler, Henning; Kempter, Richard
2015-08-01
A place cell is a neuron that fires whenever the animal traverses a particular location of the environment-the place field of the cell. Place cells are found in two regions of the rodent hippocampus: CA3 and CA1. Motivated by the anatomical connectivity between these two regions and by the evidence for synaptic plasticity at these connections, we study how a place field in CA1 can be inherited from an upstream region such as CA3 through a Hebbian learning rule, in particular, through spike-timing-dependent plasticity (STDP). To this end, we model a population of CA3 place cells projecting to a single CA1 cell, and we assume that the CA1 input synapses are plastic according to STDP. With both numerical and analytical methods, we show that in the case of overlapping CA3 input place fields, the STDP learning rule leads to the formation of a place field in CA1. We then investigate the roles of the hippocampal theta modulation and phase precession on the inheritance process. We find that theta modulation favors the inheritance and leads to faster place field formation whereas phase precession changes the drift of CA1 place fields over time.
NASA Astrophysics Data System (ADS)
Harry, Ian W.; Nitz, Alexander H.; Brown, Duncan A.; Lundgren, Andrew P.; Ochsner, Evan; Keppel, Drew
2014-01-01
The first direct detection of neutron-star- black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star- black-hole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum when the system is emitting gravitational waves in Advanced LIGO's and Advanced Virgo's sensitive band. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black hole's angular momentum is not aligned with the orbital angular momentum, it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black hole's angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of (10+1.4)M⊙ neutron-star- black-hole systems with isotropic spin distributions would be reduced by 33%-37% in comparison to a hypothetical perfect search at a fixed signal-to-noise ratio threshold. The error in this measurement is due to uncertainty in the post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star- black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has nonzero angular momentum that is aligned with the orbital angular momentum. With this bank we find that the detection rate of (10+1.4)M⊙ neutron-star- black-hole systems would be reduced by 26%-33%. Systems that will not be detected are ones where the precession of the orbital
Malkus, W V
1968-04-19
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.
Barnes, Jason W.; Van Eyken, Julian C.; Jackson, Brian K.; Ciardi, David R.
2013-09-01
PTFO 8-8695b represents the first transiting exoplanet candidate orbiting a pre-main-sequence star (van Eyken et al. 2012, ApJ, 755, 42). We find that the unusual lightcurve shapes of PTFO 8-8695 can be explained by transits of a planet across an oblate, gravity-darkened stellar disk. We develop a theoretical framework for understanding precession of a planetary orbit's ascending node for the case when the stellar rotational angular momentum and the planetary orbital angular momentum are comparable in magnitude. We then implement those ideas to simultaneously and self-consistently fit two separate lightcurves observed in 2009 December and 2010 December. Our two self-consistent fits yield M{sub p} = 3.0 M{sub Jup} and M{sub p} = 3.6 M{sub Jup} for assumed stellar masses of M{sub *} = 0.34 M{sub Sun} and M{sub *} = 0.44 M{sub Sun} respectively. The two fits have precession periods of 293 days and 581 days. These mass determinations (consistent with previous upper limits) along with the strength of the gravity-darkened precessing model together validate PTFO 8-8695b as just the second hot Jupiter known to orbit an M-dwarf. Our fits show a high degree of spin-orbit misalignment in the PTFO 8-8695 system: 69 Degree-Sign {+-} 2 Degree-Sign or 73. Degree-Sign 1 {+-} 0. Degree-Sign 5, in the two cases. The large misalignment is consistent with the hypothesis that planets become hot Jupiters with random orbital plane alignments early in a system's lifetime. We predict that as a result of the highly misaligned, precessing system, the transits should disappear for months at a time over the course of the system's precession period. The precessing, gravity-darkened model also predicts other observable effects: changing orbit inclination that could be detected by radial velocity observations, changing stellar inclination that would manifest as varying vsin i, changing projected spin-orbit alignment that could be seen by the Rossiter-McLaughlin effect, changing transit shapes
Makishima, K; Enoto, T; Hiraga, J S; Nakano, T; Nakazawa, K; Sakurai, S; Sasano, M; Murakami, H
2014-05-02
Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching ∼ 10(11) T. The magnetar 4 U 0142+61, one of the prototypes of this class, was studied in broadband x rays (0.5-70 keV) with the Suzaku observatory. In hard x rays (15-40 keV), its 8.69 sec pulsations suffered slow phase modulations by ± 0.7 sec, with a period of ∼ 15 h. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ∼ 1.6 × 10(-4) in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, ∼ 10(12) T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.
NASA Astrophysics Data System (ADS)
Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming
2016-04-01
The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.
NASA Astrophysics Data System (ADS)
Makishima, K.; Enoto, T.; Hiraga, J. S.; Nakano, T.; Nakazawa, K.; Sakurai, S.; Sasano, M.; Murakami, H.
2014-05-01
Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching ˜1011 T. The magnetar 4U 0142+61, one of the prototypes of this class, was studied in broadband x rays (0.5-70 keV) with the Suzaku observatory. In hard x rays (15-40 keV), its 8.69 sec pulsations suffered slow phase modulations by ±0.7 sec, with a period of ˜15 h. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ˜1.6×10-4 in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, ˜1012 T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.
NASA Astrophysics Data System (ADS)
van den Berg, J. J.; Kaverzin, A.; van Wees, B. J.
2016-12-01
Hanle spin precession measurements are a common method to extract the spin transport properties of graphene. In epitaxial graphene on silicon carbide, these measurements show unexpected behavior, due to presumed localized states in the carbon buffer layer that is present between the channel and the substrate. As a consequence, the Hanle curve narrows in its magnetic field dependence and can show an unconventional shape, which has been experimentally observed and modeled in previous studies. Here, we extend the previously developed model by assuming that the localized states are charge traps, that have a power-law distribution of trapping times. Our simulations show that the energy dependence of these trapping times can be extracted from the temperature evolution of the Hanle curve, which was previously observed in experiments. Our extended model gives better insight into what processes play a role when a spin channel is coupled to localized states and their relation to the experimental observations.
FRAME DRAGGING, DISK WARPING, JET PRECESSING, AND DIPPED X-RAY LIGHT CURVE OF Sw J1644+57
Lei, Wei-Hua; Zhang, Bing; Gao, He E-mail: zhang@physics.unlv.edu
2013-01-10
The X-ray transient source Sw J1644+57 recently discovered by Swift is believed to be triggered by tidal disruption of a star by a rapidly spinning supermassive black hole (SMBH). For such events, the outer disk is very likely misaligned with respect to the equatorial plane of the spinning SMBH, since the incoming star before disruption most likely has an inclined orbital plane. The tilted disk is subject to the Lense-Thirring torque, which tends to twist and warp due to the Bardeen-Petterson effect. The inner disk tends to align with the SMBH spin, while the outer region tends to remain in the stellar orbital plane, with a transition zone around the Bardeen-Petterson radius. The relativistic jet launched from the spinning SMBH would undergo precession. The 5-30 day X-ray light curve of Sw J1644+57 shows a quasi-periodic (2.7 day) variation with noticeable narrow dips. We numerically solve a warped disk and propose a jet-precessing model by invoking a Blandford-Znajek jet collimated by a wind launched near the Bardeen-Petterson radius. Through simulations, we show that the narrow dips in the X-ray light curve can be reproduced for a range of geometric configurations. From the data we infer that the inclination angle of the initial stellar orbit is in the range of 10 Degree-Sign -20 Degree-Sign from the SMBH equatorial plane, that the jet should have a moderately high Lorentz factor, and that the inclination angle, jet opening angle, and observer's viewing angle are such that the duty cycle of the line of sight sweeping the jet cone is somewhat less than 0.5.
NASA Astrophysics Data System (ADS)
Maslin, M. A.; Brierley, C. M.
2015-12-01
The Early-Middle Pleistocene Transition (EMPT) is the term used to describe the prolongation and intensification of glacial-interglacial climate cycles that initiated after 900,000 years ago. During the transition glacial-interglacial cycles shift from lasting 41,000 years to an average of 100,000 years. The structure of these glacial-interglacial cycles shifts from smooth to more abrupt 'saw-toothed' like transitions. In fact we argue there is shift from a bimodal climate to a tripartite climate system (see Figure). Despite eccentricity having by far the weakest influence on insolation received at the Earth's surface of any of the orbital parameters; it is often assumed to be the primary driver of the post-EMPT 100,000 years climate cycles because of the similarity in duration. The traditional solution to this is to call for a highly nonlinear response by the global climate system to eccentricity. This 'eccentricity myth' is due to an artefact of spectral analysis which means that the last 8 glacial-interglacial average out at about 100,000 years in length despite ranging from 80,000 to 120,000 years. With the realisation that eccentricity is not the major driving force a debate has emerged as to whether precession or obliquity controlled the timing of the most recent glacial-interglacial cycles. Some argue that post-EMPT deglaciations occurred every four or five precessional cycle while others argue it is every second or third obliquity cycle. We review these current theories and suggest that though phase-locking between orbital forcing and global ice volume may occur and seem to primarily driven by the timing of precession; the chaotic nature of the climate system response means the relationship is not consistent through the last 900,000 years.
NASA Astrophysics Data System (ADS)
Favrel, A.; Landry, C.; Müller, A.; Yamamoto, K.; Avellan, F.
2014-03-01
Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro
Gurney-Champion, Oliver J; Nederveen, Aart J; Klaassen, Remy; Engelbrecht, Marc R; Bel, Arjan; van Laarhoven, Hanneke W M; Stoker, Jaap; Goncalves, Sonia I
2016-09-01
The aim was to investigate the value of optimized 3-dimensional alternating repetition time balanced steady-state free precession (ATR-SSFP), as an alternative to conventional segmented balanced steady-state free precession (bSSFP) with fat suppression prepulse (FS-bSSFP), in single breath-hold abdominal magnetic resonance imaging at 3 T. Bloch simulations were performed to determine the optimal flip angle (FA = 1-90 degrees) and τ (1-3) with respect to signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between abdominal organs for ATR-SSFP. These were corroborated by phantom measurements for different T1/T2 values (5-47) as well as in a healthy volunteer. In addition, fat suppression efficiency was studied using phantom and volunteer measurements. The effect of resolution on image quality was studied in a healthy volunteer. Using the optimal settings, ATR-SSFP images as well as FS-bSSFP images were obtained in 15 pancreatic cancer patients. For 10 structures of interest, the signal ratio with respect to the pancreas was computed and compared between both sequences. Finally, 10 items on image quality (fat suppression, artifacts, and sharpness) and tissue conspicuity (ducts, vessels, and duodenum) were scored by 2 abdominal radiologists for both image sequences. The results of simulations, phantom measurements, and volunteer measurements showed that, considering scan time, fat suppression, and clinical relevance, the ideal settings for ATR-SSFP were as follows: τ = 3; TR1 = 3.46 milliseconds; radiofrequency phase cycling 0, 180, 180, 0 degrees; and FA = 13-16 degrees (highest SNR) and 24-26 degrees (highest CNR). The optimized feasible additional settings implemented for patient scans were FA = 18 degrees and resolution = 1.4 × 1.4 × 1.4 mm. In patients, the signal ratios of both ATR-SSFP and FS-bSSFP were comparable and had a T2-like contrast behavior, although more accentuated in ATR-SSFP. The ATR-SSFP scored significantly higher than FS-bSSFP for 9
NASA Astrophysics Data System (ADS)
Mayser, Jan Peter; Flecker, Rachel; Marzocchi, Alice; Kouwenhoven, Tanja J.; Lunt, Dan J.; Pancost, Rich D.
2017-03-01
Eastern Mediterranean sediments over the past 12 Myr commonly show strongly developed precessional cyclicity, thought to be a biogeochemical response to insolation-driven freshwater input from run-off. The Mediterranean's dominant freshwater source today and in the past, is the Nile, which is fed by North African monsoon rain; other, smaller, circum-Mediterranean rivers also contribute to Mediterranean hydrology. Crucially, run-off through all of these systems appears to vary with precession, but there is no direct evidence linking individual water sources to the biogeochemical response recorded in Mediterranean sediments. Consequently, it is not clear whether the North African monsoon is entirely responsible for the Mediterranean's sedimentary cyclicity, or whether other, precessional signals, such as Atlantic storm precipitation, drive it. Organic matter in sediments derives from both marine and terrestrial sources and biomarker analysis can be used to discriminate between the two, thereby providing insight into sedimentary and ecological processes. We analysed a wide range of lipids from the Late Miocene (6.6-5.9 Ma) Pissouri section, southern Cyprus, and reconstructed the vegetation supplied to this region by measuring the carbon isotopes of the terrestrial component to identify its geographic source. BIT (Branched-Isoprenoidal-Tetraether) indices reflect changes in the relative abundance of marine vs terrestrial (soil) organic matter inputs, and with the exception of records from the last deglaciation, this work is the first application of the BIT approach to the reconstruction of orbital impacts on sedimentological processes. BIT indices show that the organic matter supplied to Cyprus changed over the course of each precession cycle and was dominantly terrestrial during insolation maxima when North African run-off was enhanced. The δ13C values from these intervals are compatible with tropical North African vegetation. However, the δ13C record indicates that
Liu, Xianyin; Zhu, Qiyuan; Zhang, Senfu; Liu, Qingfang E-mail: wangjb@lzu.edu.cn; Wang, Jianbo E-mail: wangjb@lzu.edu.cn
2015-08-15
An interesting type of skyrmion-like spin texture, 2π-vortex, is obtained in a thin nano-disk with Dzyaloshinskii-Moriya interaction. We have simulated the existence of 2π-vortex by micromagnetic method. Furthermore, the spin polarized current is introduced in order to drive the motion of 2π-vortex in a nano-disk with diameter 2 R = 140 nm. When the current density matches with the current injection area, 2π-vortex soon reaches a stable precession (3∼4 ns). The relationship between the precession frequency of 2π-vortex and the current density is almost linear. It may have potential use in spin torque nano-oscillators.
Precession electron diffraction of Mn2O3 and PbMnO2.75: solving structures where X-rays fail.
Klein, Holger
2011-05-01
The structure solutions of the two phases Mn(2)O(3) and PbMnO(2.75) by precession electron diffraction (PED) are presented. In the powder samples used these structures could not be solved by X-ray diffraction because Mn(2)O(3) is a minority phase in an MnO(2) powder and the complex structure of PbMnO(2.75) leads to severe peak overlap in the powder diffraction pattern. The influence of different parameters on the structure solution is studied, i.e. the number of reflections measured, precession angle, resolution limit and Lorentz-type correction. It is shown that the number of reflections is the most important parameter for successful structure solution from PED data.
NASA Astrophysics Data System (ADS)
Kupryaev, N. V.
2016-07-01
The precession of the perihelion of Mercury's orbit for 100 years in the gravitational field of the Sun and the planets has been numerically modeled within the framework of a generalized law of universal gravitation with refined data on the parameters of the orbits of the planets (including the asteroid belt and Pluto), and also the gravitational constant and with a smaller iteration step (0.0002 s). The calculations were performed with enhanced computational accuracy. It has been shown that the average precession of Mercury's orbit in 100 years within the framework of the generalized law of universal gravitation comprises ~565.3''. This is less than the observed shift of the perihelion by about 8.8''. The observed shift of the perihelion, as is well known, comprises ~574.1''. It is not ruled out that inside Mercury's orbit some unknown undetected object (or several such objects) of small size remains to be found.
Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.
2015-01-26
The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.
NASA Astrophysics Data System (ADS)
Getino, J.; Escapa, A.
2015-08-01
This is the mid-term report of the Sub-WG1 of the IAU/IAG Joint Working Group on Theory of Earth Rotation (JWG ThER). The main objectives are (1) to provide some feasible enhancements of current precession/nutation model; (2) to give a list of potential future improvements of that model provided by the contributors of the subgroup, and (3) to raise out some open questions which should be discussed within the JWG ThER.
Arai, Mamiko; Brandt, Vicky; Dabaghian, Yuri
2014-01-01
Learning arises through the activity of large ensembles of cells, yet most of the data neuroscientists accumulate is at the level of individual neurons; we need models that can bridge this gap. We have taken spatial learning as our starting point, computationally modeling the activity of place cells using methods derived from algebraic topology, especially persistent homology. We previously showed that ensembles of hundreds of place cells could accurately encode topological information about different environments (“learn” the space) within certain values of place cell firing rate, place field size, and cell population; we called this parameter space the learning region. Here we advance the model both technically and conceptually. To make the model more physiological, we explored the effects of theta precession on spatial learning in our virtual ensembles. Theta precession, which is believed to influence learning and memory, did in fact enhance learning in our model, increasing both speed and the size of the learning region. Interestingly, theta precession also increased the number of spurious loops during simplicial complex formation. We next explored how downstream readout neurons might define co-firing by grouping together cells within different windows of time and thereby capturing different degrees of temporal overlap between spike trains. Our model's optimum coactivity window correlates well with experimental data, ranging from ∼150–200 msec. We further studied the relationship between learning time, window width, and theta precession. Our results validate our topological model for spatial learning and open new avenues for connecting data at the level of individual neurons to behavioral outcomes at the neuronal ensemble level. Finally, we analyzed the dynamics of simplicial complex formation and loop transience to propose that the simplicial complex provides a useful working description of the spatial learning process. PMID:24945927
Farris, Samantha G.; Leventhal, Adam M.; Schmidt, Norman B.; Zvolensky, Michael J.
2015-01-01
Objective: Anxiety sensitivity appears to be relevant in understanding the nature of emotional symptoms and disorders associated with smoking. Negative-reinforcement smoking expectancies and motives are implicated as core regulatory processes that may explain, in part, the anxiety sensitivity–smoking interrelations; however, these pathways have received little empirical attention. Method: Participants (N = 471) were adult treatment-seeking daily smokers assessed for a smoking-cessation trial who provided baseline data; 157 participants provided within-treatment (pre-cessation) data. Anxiety sensitivity was examined as a cross-sectional predictor of several baseline smoking processes (nicotine dependence, perceived barriers to cessation, severity of prior withdrawal-related quit problems) and pre-cessation processes including nicotine withdrawal and smoking urges (assessed during 3 weeks before the quit day). Baseline negative-reinforcement smoking expectancies and motives were tested as simultaneous mediators via parallel multiple mediator models. Results: Higher levels of anxiety sensitivity were related to higher levels of nicotine dependence, greater perceived barriers to smoking cessation, more severe withdrawal-related problems during prior quit attempts, and greater average withdrawal before the quit day; effects were indirectly explained by the combination of both mediators. Higher levels of anxiety sensitivity were not directly related to pre-cessation smoking urges but were indirectly related through the independent and combined effects of the mediators. Conclusions: These empirical findings bolster theoretical models of anxiety sensitivity and smoking and identify targets for nicotine dependence etiology research and cessation interventions. PMID:25785807
Farris, Samantha G; Leventhal, Adam M; Schmidt, Norman B; Zvolensky, Michael J
2015-03-01
Anxiety sensitivity appears to be relevant in understanding the nature of emotional symptoms and disorders associated with smoking. Negative-reinforcement smoking expectancies and motives are implicated as core regulatory processes that may explain, in part, the anxiety sensitivity-smoking interrelations; however, these pathways have received little empirical attention. Participants (N = 471) were adult treatment-seeking daily smokers assessed for a smoking-cessation trial who provided baseline data; 157 participants provided within-treatment (pre-cessation) data. Anxiety sensitivity was examined as a cross-sectional predictor of several baseline smoking processes (nicotine dependence, perceived barriers to cessation, severity of prior withdrawal-related quit problems) and pre-cessation processes including nicotine withdrawal and smoking urges (assessed during 3 weeks before the quit day). Baseline negative-reinforcement smoking expectancies and motives were tested as simultaneous mediators via parallel multiple mediator models. Higher levels of anxiety sensitivity were related to higher levels of nicotine dependence, greater perceived barriers to smoking cessation, more severe withdrawal-related problems during prior quit attempts, and greater average withdrawal before the quit day; effects were indirectly explained by the combination of both mediators. Higher levels of anxiety sensitivity were not directly related to pre-cessation smoking urges but were indirectly related through the independent and combined effects of the mediators. These empirical findings bolster theoretical models of anxiety sensitivity and smoking and identify targets for nicotine dependence etiology research and cessation interventions.
O’Halloran, R; Aksoy, M; Aboussouan, E; Peterson, E; Van, A; Bammer, R
2014-01-01
Purpose Diffusion contrast in diffusion-weighted steady state free precession MRI is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a 3D navigator-based real-time correction of the rigid-body-motion-induced phase errors is developed for diffusion-weighted steady state free precession MRI. Methods The efficacy of the real-time prospective correction method in preserving phase coherence of the steady-state is tested in 3D phantom experiments and 3D scans of healthy human subjects. Results In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects the mean magnitude signal in the data was up to 30 percent higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. Conclusions The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. PMID:24715414
NASA Technical Reports Server (NTRS)
Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry
1993-01-01
Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.
NASA Astrophysics Data System (ADS)
Ruangsri, Uchupol; Vigeland, Sarah J.; Hughes, Scott A.
2016-08-01
A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self-force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Spin-curvature coupling drives a precession of the small body, and introduces a "force" (relative to the geodesic) which shifts the small body's worldline. These effects scale with the small body's spin at leading order. In this paper, we show that the equations which govern spin-curvature coupling can be analyzed with a frequency-domain decomposition, at least to leading order in the small body's spin. We show how to compute the frequency of precession along generic orbits, and how to describe the small body's precession and motion in the frequency domain. We illustrate this approach with a number of examples. This approach is likely to be useful for understanding spin coupling effects in the extreme mass ratio limit, and may provide insight into modeling spin effects in the strong field for nonextreme mass ratios.
O'Halloran, Rafael; Aksoy, Murat; Aboussouan, Eric; Peterson, Eric; Van, Anh; Bammer, Roland
2015-02-01
Diffusion contrast in diffusion-weighted steady-state free precession magnetic resonance imaging (MRI) is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a three-dimensional (3D) navigator-based real-time correction of the rigid body motion-induced phase errors is developed for diffusion-weighted steady-state free precession MRI. The efficacy of the real-time prospective correction method in preserving phase coherence of the steady state is tested in 3D phantom experiments and 3D scans of healthy human subjects. In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects, the mean magnitude signal in the data was up to 30% higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady-state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. © 2014 Wiley Periodicals, Inc.
Characterizing the Jet Precession of Quasar 3C273 at 1.3mm with the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Calzadilla, Michael; Fish, Vincent L.; Lu, Rusen; Akiyama, Kazunori; Doeleman, Sheperd
2015-01-01
The Event Horizon Telescope (EHT) is an array of millimeter-wavelength telescopes that observe the nearest supermassive black holes using the technique of very long baseline interferometry (VLBI). The EHT is uniquely capable of resolving structures on angular scales of tens of microarcseconds, corresponding to a few Schwarzschild radii around nearby black holes such as the one in our galactic center, Sgr A*. One of the goals of the EHT is to better understand relativistic outflow processes around black holes, which can be achieved due to its extremely high spatial resolution. To that end, here we present the first high-resolution VLBI observations of 3C273 at 1.3mm. We successfully detected non-zero closure phases, which indicate asymmetric structure that we then fit using simple geometric models. The orientation between model components varied over the range of years that 3C273 was observed, in agreement with multi-epoch data at lower frequencies. Our results suggest that precession can be observed even at sub-parsec scales in 3C273. Furthermore, we demonstrate that polarimetric ratios can be used for relative astrometry between flaring components and discuss the implications of that for future research.
Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J
2017-06-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1(+) ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Muntean, S.; Tănasă, C.; Bosioc, A. I.; Moş, D. C.
2016-11-01
The paper investigates an unexpected feature of the unsteady pressure field resulting from the self-induced instability of the decelerated swirling flow in a straight diffuser. Firstly, the self-induced instability is experimentally investigated on the swirl generator test rig. As a result, the asynchronous (rotating) pressure pulsation associated with the rotating vortex rope of 15 Hz and it second harmonic are discriminated. Also, a low frequency synchronous (plunging) pulsation around of 2.5 Hz is identified based on unsteady pressure field measured at the wall and LDV measurement of the velocity components in the flow. The low frequency plunging pressure fluctuations is superimposed on the rotating pressure pulsations associated with the vortex rope. The numerical simulations are performed to explore the vortex rope dynamics. The numerical results are compared against experimental data to assess the accuracy of the models. Next, the pressure pulsation dynamics is correlated with the time evolution of the vortex rope. The main conclusion emerging from the analysis of the vortex rope evolution in time is that the cycle with low frequency is responsible for the plunging (synchronous) pressure fluctuations superimposed over the rotating (asynchronous) pressure field associated with the precession of the vortex rope.
Martay, Hugo E. L.; England, Duncan G.; McCabe, David J.; Walmsley, Ian A.
2011-04-15
The complexity of ultrafast molecular photoionization presents an obstacle to the modeling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long-range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline of two proposed feasible experiments and the calculation of their outcomes. Both of these proposals use Feshbach {sup 87}Rb{sub 2} molecules. We show that long-range molecular pump-probe experiments should observe spin-orbit precession given a suitable pump pulse, and that the associated high-frequency beat signal in the ionization probability decays after a few tens of picoseconds. If the molecule was to be excited to only a single fine-structure state, then a low-frequency oscillation in the internuclear separation would be detectable through the time-dependent ionization cross section, giving a mechanism that would enable observation of coherent vibrational motion in this molecule.
FIESTA-ET: high-resolution cardiac imaging using echo-planar steady-state free precession.
Slavin, Glenn S; Saranathan, Manojkumar
2002-12-01
This work describes a technique that combines multishot echo-planar imaging (EPI) with steady-state free precession (SSFP, also known as TrueFISP, FIESTA, and balanced FFE) for multislice, cine MR imaging of the heart. Unlike recently reported methods, the technique presented here (FIESTA-ET) is high-resolution and does not require offline reconstruction or postprocessing. It is therefore suitable for use on standard clinical scanners. FIESTA-ET was compared with conventional FIESTA imaging in 10 volunteers and quantitative analyses of myocardial signal-to-noise ratios (SNR) and ventricular volumes were performed. While providing comparable image quality, FIESTA-ET required half the acquisition time per slice of conventional FIESTA. Because multiple slices could be imaged in a single breathhold, the entire heart could be scanned in less than 2 min. Although the FIESTA-ET images exhibited an unexpected increase (P < 0.0005) in myocardial SNR of 16% over FIESTA, the volumetric measurements showed excellent correlation.
Precession of Fast S0 Stars in the Vicinity of Supermassive Black Hole in the Galactic Center
NASA Astrophysics Data System (ADS)
Dokuchaev, V. I.; Eroshenko, Yu. N.; Klimkov, K. S.
2015-09-01
We elaborate the model of the influence of the diffuse dark matter, invisible stars or stellar mass black holes on the motion of the observed fast moving S0 stars [1-4] around the supermassive black hole SgrA* in the Galactic center with a mass MBH = 4×10^6 Full-size image (<1 K). We will call all this invisible mass as a dark matter. The additional mass perturbs the elliptical orbits of the S0 mass resulting in the so called Newtonian precession of the elliptical orbits. The major aim of our research is the fitting of the published dates on the observed orbital positions of the S0 stars by the theoretically modeling orbit with a power-law profile of the additional (dark matter) mass. Nowadays the observational data provide only the upper limit on the additional mass. In the nearest years the observations of the S0 stars may provide the real weighing of the dark matter inside the orbits of these S0 stars in the Galactic center. This method is a very perspective for the elucidation of the formation and evolution of the dark matter in the Galactic nucleus.
NASA Astrophysics Data System (ADS)
Li, Lin-Jia; Qian, Sheng-Bang
2013-12-01
We determined forty-two new times of light maximum from our photometry observations and WASP project, and collected all times of light maximum observed between 1961 and 2013 in order to calculate the orbital elements of the SZ Lyncis system and the secular change of the pulsation period with the classical O - C method. We confirmed the decrease of the longitude of the periastron passage with a rate of (-1.˚15 ±0.˚25) yr-1 , and discussed the causative mechanism. The results show that the precession of the star's orbit might be due to a close binary system, which means that the companion of SZ Lyncis is actually a binary system. We used the Hipparcos Intermediate Astrometric Data to obtain the complete orbital elements of the SZ Lyncis system, and found that the inclination, i, and parallax, πt , are 39.˚5 ± 17.˚7 and 2.61 ± 0.98 mas (corresponds to 380 ± 140 pc), respectively. We reanalyzed the mean radial velocities of SZ Lyncis given by Bardin and Imbert (1984), and noticed a weak variation existing in the residuals from a single-Keplerian fit. We suggest that more detailed high-precision spectroscopic observations are definitely needed in the future to check this short periodic change.
NASA Astrophysics Data System (ADS)
Alomar, M. I.; Serra, Llorenç; Sánchez, David
2016-08-01
We investigate the transmission properties of a spin transistor coupled to two quantum point contacts acting as a spin injector and detector. In the Fabry-Pérot regime, transport is mediated by quasibound states formed between tunnel barriers. Interestingly, the spin-orbit interaction of the Rashba type can be tuned in such a way that nonuniform spin-orbit fields can point along distinct directions at different points of the sample. We discuss both spin-conserving and spin-flipping transitions as the spin-orbit angle of orientation increases from parallel to antiparallel configurations. Spin precession oscillations are clearly seen as a function of the length of the central channel. Remarkably, we find that these oscillations combine with the Fabry-Pérot motion, giving rise to quasiperiodic transmissions in the purely one-dimensional case. Furthermore, we consider the more realistic case of a finite width in the transverse direction and find that the coherent oscillations become deteriorated for moderate values of the spin-orbit strength. Our results then determine the precise role of the spin-orbit intersubband coupling potential in the Fabry-Pérot-Datta-Das intermixed oscillations.
Li, A E; Wilkinson, M D; McGrillen, K M; Stoodley, M A; Magnussen, J S
2015-12-01
The purpose of this article is to review the physiology of normal brain and spinal cord motion in the subarachnoid space, principles of cine balanced steady-state free precession (bSSFP) magnetic resonance imaging (MRI), clinical applications, and the pitfalls encountered with this technique. The brain and spinal cord are dynamic structures that move with each heartbeat due to transmitted arterial pulse waves. Conventional MRI sequences do not allow anatomic evaluation of the pulsatile movement of the neural structures in the subarachnoid space due to limitations in temporal resolution. Cine bSSFP MRI uses cardiac gating to evaluate dynamically the brain and spinal cord with high contrast and temporal resolution.Cine bSSFP can be used in the evaluation of idiopathic syringomyelia to assess an underlying treatable cause, including arachnoid bands, which are usually not well visualized with conventional MR sequences due to motion artifact. This MRI technique is also useful in the evaluation of intraspinal and intracranial arachnoid cysts and the degree of mass effect on the cord. Other applications include preoperative and postoperative evaluation of Chiari I malformation and the evaluation of lateral ventricular asymmetry. The major limitation of cine bSSFP is the presence of banding artifacts, which can be reduced by shimming and modifying other scan parameters.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Axt, V. M.
2015-08-01
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.
NASA Astrophysics Data System (ADS)
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Zhou, Xiangzhi; Tsaftaris, Sotirios A; Liu, Ying; Tang, Richard; Klein, Rachel; Zuehlsdorff, Sven; Li, Debiao; Dharmakumar, Rohan
2010-04-01
To minimize image artifacts in long TR cardiac phase-resolved steady state free precession (SSFP) based blood-oxygen-level-dependent (BOLD) imaging. Nine healthy dogs (four male, five female, 20-25 kg) were studied in a clinical 1.5 Tesla MRI scanner to investigate the effect of temporal resolution, readout bandwidth, and motion compensation on long repetition time (TR) SSFP images. Breath-held 2D SSFP cine sequences with various temporal resolutions (10-204 ms), bandwidths (239-930 Hz/pixel), with and without first-order motion compensation were prescribed in the basal, mid-ventricular, and apical along the short axis. Preliminary myocardial BOLD studies in dogs with controllable coronary stenosis were performed to assess the benefits of artifact-reduction strategies. Shortening the readout time by means of increasing readout bandwidth had no observable reduction in image artifacts. However, increasing the temporal resolution in the presence of first-order motion compensation led to significant reduction in image artifacts. Preliminary studies demonstrated that BOLD signal changes can be reliably detected throughout the cardiac cycle. Artifact-reduction methods used in this study provide significant improvement in image quality compared with conventional long TR SSFP BOLD MRI. It is envisioned that the methods proposed here may enable reliable detection of myocardial oxygenation changes throughout the cardiac cycle with long TR SSFP-based myocardial BOLD MRI. (c) 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Pan, Yi
This thesis deals with the detection of gravitational-wave signals from the inspiral of precessing, compact binaries using interferometric gravitational- wave detectors (e.g., LIGO), and the design of the signal-recycling cavity for Advanced LIGO (the second generation LIGO). The detection of complicated signals from the inspiral of precessing binaries using the standard matched filter technique requires a computational cost far exceeding what is available with current technology. Alessandra Buonanno, Yanbei Chen, and Michele Vallisneri (BCV) proposed the use of detection template families (DTFs)---phenomenological templates capable of mimicking inspiral waveforms while having simpler functional forms. In Chapter 2 (in collaboration with BCV, and Hideyuki Tagoshi), a BCV2 DTF suggested by BCV is studied. We show a good signal-matching performance of this DTF, propose a template-placement strategy, and estimate that the computational cost required by this DTF is feasible. We also propose a BCV2P DTF to estimate binary parameters. In Chapters 3 and 4 (in collaboration with BCV), I investigate a physical template family (PTF) suggested by BCV. This PTF uses the most accurate known waveforms for inspiraling, precessing binaries with one spinning component, formulated using a new precessing convention to reduce computational cost. PTF has the obvious advantages of a perfect signal snatching, a lower false-alarm rate, and direct estimates of binary parameters. We show how this PTF can be used to detect inspiral waveforms from general precessing binaries. The second part of this thesis concerns a potential problem in the current design of the signal-recycling cavity (SRC) for Advanced LIGO: The SRC is nearly degenerate. In Chapter 5, I show with a numerical simulation that if the current design is used, there will be a serious constraint on the magnitude of mirror deformations, in order to keep the reduction of the signal-to-noise ratio below a few percent. This
NASA Astrophysics Data System (ADS)
PICHAT, S.; DOUCHET, C.; ALBAREDE, F.
2001-12-01
Zinc participates in multiple biological processes, notably as cofactor in enzymatic photosynthetic reactions. It has been argued that fractionation between light and heavy isotopes of Zn in sinking particles is stronger after biological blooms (Maréchal et al., 2000). Considering that calcareous nannofossils, principally coccolithophoridae, deposit CaCO3 with O and C at or near equilibrium with surface seawater (Margolis et al., 1975), we have assumed a similar behavior for Zn. Using multiple-collector ICP-MS which allows high precision (40 ppm) measurements of isotopic ratios, we have investigated Zn isotope variation in the carbonate fraction, dominated by coccoliths and foraminifer fragments, of a deep-sea core (ODP 849, leg 138) located in the eastern equatorial Pacific. Results show δ 66Zn values ranging from 0.13 to 0.64 ‰ over the last 175 kyr, with several marked peaks. The range of variation is a factor of thirteen larger than the overall analytical precision (0.04 ‰ ). The average δ 66Zn value for ODP 849 (0.45 ‰ ) markedly departs from that of terrigenous material (0.24 ‰ ). Temperature induced Zn isotopic fractionation is probably insignificant since the SST variations are small (3-5° C) and the δ 66Zn pattern lacks a glacial/interglacial signal. A periodogram of the δ 66Zn record reveals a dominant peak at 21.3 kyr, most likely indicative of forcing by precession. The strong zonal Zn isotopic variations observed in ferromanganese nodules have been ascribed (Maréchal et al., 2000) to the amplitude of seasonal variations in biological productivity. The lighter Zn isotopes in high latitude surface waters become depleted by biological processes as a result of the development of a seasonal thermocline that prevents the Zn replenishment of the euphotic zone by deep water. On this basis, we hypothesize that the δ 66Zn variability in the carbonate fraction of deep-sea sediment reflects the steepness of the thermocline. In tropical regions
Lucic, Milos A; Koprivsek, Katarina; Kozic, Dusko; Spero, Martina; Spirovski, Milena; Lucic, Silvija
2014-08-16
The aim of the study was to determine the possibilities of two differently acquired two-dimensional fast imaging with steady-state precession (FISP 2D) magnetic resonance sequences in estimation of the third ventricle floor fenestration patency after endoscopic third ventriculostomy (ETV) in the subjects with aqueductal stenosis/obstruction.Fifty eight subjects (37 males, 21 females, mean age 27 years) with previously successfully performed ETV underwent brain MRI on 1.5T MR imager 3-6 months after the procedure. Two different FISP 2D sequences (one included in the standard vendor provided software package, and the other, experimentally developed by our team) were performed respectively at two fixed slice positions: midsagittal and perpendicular to the ETV fenestration, and displayed in a closed-loop cinematographic format in order to estimate the patency. The ventricular volume reduction has been observed as well.Cerebrospinal fluid (CSF) flow through the ETV fenestration was observed in midsagittal plane with both FISP 2D sequences in 93.11% subjects, while in 6.89% subjects the dynamic CSF flow MRI was inconclusive. In the perpendicular plane CSF flow through the ETV fenestration was visible only by use of experimentally developed FISP 2D (TR30/FA70) sequence. Postoperative volume reduction of lateral and third ventricle was detected in 67.24% subjects.Though both FISP 2D sequences acquired in midsagittal plane may be used to estimate the effects of performed ETV, due to achieved higher CSF pulsatile flow sensitivity, only the use of FISP 2D (TR30/FA70) sequence enables the estimation of the treatment effect in perpendicular plane in the absence of phase-contrast sequences.
NASA Astrophysics Data System (ADS)
Matsuda, T.; Munekata, H.
2016-02-01
In order to investigate the mechanism of photoexcited precession of magnetization in ferromagnetic G a1 -xM nxAs , magneto-optical (MO) and differential reflectivity (Δ R /R ; DR) temporal profiles are studied at relatively long (picosecond to nanosecond) and ultrashort (1 ps or less) time scales for samples with different Mn content (x =0.01 -0.11 ) . As to the oscillatory MO profiles observed in the long time scale, simulation based on the Landau-Lifshitz-Gilbert equation combined with two different MO effects confirms photoinducement of the perpendicular anisotropy component Δ Heff ,⊥ . As for the profiles observed in the ultrashort time scale, they are consistently explained in terms of the dynamics of photogenerated carriers, but not by the sudden reduction in magnetization (the ultrafast demagnetization). In light of these experimental results and analyses, a mechanism that accounts for the photoinduced Δ Heff ,⊥ is addressed: namely, photoionizationlike excitation of M n2 + , M n2 ++h ν →M n2 +,*=M n3++e- . That such excitation tips magnetic anisotropy toward the out-of-plane direction through the inducement of orbital angular momentum and the gradient ∂ (M n2 +,* )/∂ z is discussed. The validity of the proposed mechanism is examined by estimating the efficiency of excitation on the basis of the Lambert-Beer law and the experimental Δ Heff ,⊥ values, through which an efficiency of 1-10 ppm with a nominal optical cross section of around 5 ×10-12m2 is obtained.
Mensel, Birger; Kühn, Jens-Peter; Schneider, Tobias; Quadrat, Alexander; Hegenscheid, Katrin
2013-08-01
To assess the validity and reliability of measuring mean aortic wall thickness (MAWT) of the ascending and descending aorta using cine steady-state free precession (SSFP) imaging compared to dark blood (DB) imaging. DB and SSFP images of the thoracic aorta acquired at 1.5 T in 50 volunteers (26 women, 24 men; mean age: 50.2 ± 13.1 years) were used. MAWT was calculated on DB and SSFP images for the ascending and descending aorta at the level of the right pulmonary artery by two independent observers. Validity was assessed using Bland-Altman analysis, Passing-Bablok regression, and Spearman correlation. Reliability was assessed using Bland-Altman analysis and intraclass coefficients (ICCs). The mean MAWT of the ascending aorta on DB and SSFP images was 1.89 ± 0.21 mm and 1.87 ± 0.20 mm. The measurements for the descending aorta were 1.60 ± 0.22 and 1.63 ± 0.20 mm, respectively. Comparison of DB and SSFP measurements revealed a mean bias of 1.3% (95% limits of agreement (LOA): -7.9, 10.5%) for the ascending and of -2.1% (LOA: -10.5, 6.3%) for the descending aorta. The corresponding regression equation was y = 0.042 + 0.960 × (r = 0.91; P < .0001) and y = 0.118 + 0.939 × (r = 0.95; P < .0001), respectively. Intra- and interobserver variability showed a mean bias of less than 2.0% and LOA of less than ±15.0%. ICCs were greater than or equal to 0.85. MAWT determination in the ascending and descending aorta using cine SSFP sequences is highly valid and reliable compared to DB imaging. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Gang; Ni, Wei-Tou
2015-05-01
ASTROD-GW (ASTROD [astrodynamical space test of relativity using optical devices] optimized for gravitational wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirals (EMRIs) and galactic compact binaries together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4, and L5. The 3 spacecrafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD-GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about the ecliptic plane in source position determination, we have changed the basic formation into slightly inclined formation with half-year precession-period. In this paper, we optimize a set of 10-year inclined ASTROD-GW mission orbits numerically using ephemeris framework starting at June 21, 2035, including cases of inclination angle with 0° (no inclination), 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0°. We simulate the time delays of the first and second generation TDI configurations for the different inclinations, and compare/analyse the numerical results to attain the requisite sensitivity of ASTROD-GW by suppressing laser frequency noise below the secondary noises. To explicate our calculation process for different inclination cases, we take the 1.0° as an example to show the orbit optimization and TDI simulation.
Variabilidade óptica de longo período e precessão de jato: o caso de BL Lacertae
NASA Astrophysics Data System (ADS)
Caproni, A.; Abraham, Z.
2003-08-01
Variabilidade é tipicamente uma característica de AGNs, sendo observada em toda a faixa eletromagnética. Em relação às escalas de tempo, variações desde horas até de algumas décadas foram encontradas por vários autores. Em alguns casos, análises temporais de curvas de luz mostram a existência de periodicidade nas variações observadas. Um exemplo de objeto que preenche as características mencionadas acima é BL Lacertae, o protótipo da classe BL Lac dos AGNs. Neste trabalho, nós interpretamos a variabilidade periódica de longo período detectada na curva de luz na banda B (~7,5 anos) como o resultado da periodicidade na amplificação da radiação oriunda do jato relativístico. Neste cenário, a amplificação periódica seria induzida pela precessão, que muda o ângulo entre o jato e a linha de visada. Com esta abordagem e vínculos adicionais fornecidos por observações em altas energias, nós podemos impor limites para os parâmetros do modelo de precessão, tais como o fator de Lorentz associado ao movimento global do jato, o ângulo de abertura do cone de precessão e o ângulo entre o eixo do cone e a linha de visada.
NASA Astrophysics Data System (ADS)
Barker, Adrian J.
2016-08-01
The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 d. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.
NASA Astrophysics Data System (ADS)
Petit, A.; Souchay, J.; Lhotka, C.
2014-05-01
Context. Several asteroids have recently been visited by spacecrafts that give us precious information and new constraints on their physical and rotational properties. In parallel, there are already several well-established theories to model the rotational motion of a rigid body, but accurate models of the rotational motion of asteroids have been poorly investigated so far. Aims: We aim to model the rotational motion of the asteroids (1) Ceres, (4) Vesta, (433) Eros, (2867) Steins, and (25143) Itokawa with high precision. Their physical parameters have been or will be (in the case of Ceres) better constrained by data from space missions. We concentrate in particular on the motion of their spin axis in space, a component that is generally not studied. Methods: We used Kinoshita's theory, based on a Hamiltonian approach for the rotation of a rigid body. We deduced an analytical model for determining the precession rate and the nutation coefficients for the set of five asteroids selected above. Results: For each asteroid considered we make a summary of the rotational and physical characteristics necessary for our calculations, and we give both the precession rate and accurate tables of nutation. Results show a very high precession rate for (25143) Itokawa, of more than one degree per decade (˙ψ = - (461.52 ± 6.57)'' /yr), and rather high ones for (433) Eros and (2867) Steins. We present the complete tables of nutation for both (1) Ceres and (4) Vesta, and give the peak-to-peak amplitudes for the five asteroids. At last, we show the curves described by the spin axis in space. Results agree with previous ones for (4)Vesta and (433) Eros. Conclusions: In this paper we show that it is possible to accurately compute the combined precession-nutation motion of asteroids that are well constrained by observational data as we do for a set of five asteroids. This enables one to understand the rotational behavior of their spin axis in space and constitutes an interesting step
NASA Astrophysics Data System (ADS)
Sentyabov, A. V.; Gavrilov, A. A.; Dekterev, A. A.; Minakov, A. V.
2014-12-01
Numerical modeling of the unsteady flow in the draft tube of the test bench hydro turbine is conducted. The hybrid RANS-LES methods for modeling turbulent flows are compared. The intensity and frequency of pressure fluctuations, which are induced by the vortex core precession under the runner, and the integral characteristics are considered. An analysis of the synchronous and asynchronous parts of pressure fluctuations is done; the generating and influence of the synchronous component of fluctuations are considered. The vortex core interaction with the draft tube elbow is considered.
NASA Technical Reports Server (NTRS)
Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra
2017-01-01
Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration
Phase imaging with multiple phase-cycled balanced steady-state free precession at 9.4 T.
Kim, Jae-Woong; Kim, Seong-Gi; Park, Sung-Hong
2017-02-10
While phase imaging with a gradient echo (GRE) sequence is popular, phase imaging with balanced steady-state free precession (bSSFP) has been underexplored. The purpose of this study was to investigate anatomical and functional phase imaging with multiple phase-cycled bSSFP, in expectation of increasing spatial coverage of steep phase-change regions of bSSFP. Eight different dynamic 2D pass-band bSSFP studies at four phase-cycling (PC) angles and two TE /TR values were performed on rat brains at 9.4 T with electrical forepaw stimulation, in comparison with dynamic 2D GRE. Anatomical and functional phase images were obtained by averaging the dynamic phase images and mapping correlation between the dynamic images and the stimulation paradigm, and were compared with their corresponding magnitude images. Phase imaging with 3D pass-band and 3D transition-band bSSFP was also performed for comparison with 3D GRE phase imaging. Two strategies of combining the multiple phase-cycled bSSFP phase images were also proposed. Contrast between white matter and gray matter in bSSFP phase images significantly varied with PC angle and became twice as high as that of GRE phase images at a specific PC angle. With the same total scan time, the combined bSSFP phase images provided stronger phase contrast and visualized neuronal fiber-like structures more clearly than the GRE phase images. The combined phase images of both 3D pass-band and 3D transition-band bSSFP showed phase contrasts stronger than those of the GRE phase images in overall brain regions, even at a longer TE of 20 ms. In contrast, phase functional MRI (fMRI) signals were weak overall and mostly located in draining veins for both bSSFP and GRE. Multiple phase-cycled bSSFP phase imaging is a promising anatomical imaging technique, while its usage as fMRI does not seem desirable with the current approach.
Srinivasan, Subashini; Ennis, Daniel B
2014-03-01
Cardiac cine balanced steady-state free precession (bSSFP) imaging uses a high flip angle (FA) to obtain high blood-myocardium signal-to-noise and contrast-to-noise ratios (CNR). Use of high FAs, however, results in substantially increased SAR. Our objective was to develop a variable FA bSSFP cardiac cine imaging technique with: (1) low SAR and blood-myocardium CNR similar to conventional constant FA bSSFP (CFA-bSSFP) or (2) increased blood-myocardium CNR compared to CFA-bSSFP with similar SAR. Variable FA bSSFP cardiac cine imaging was achieved using an asynchronous k-space acquisition, which is asynchronous to the cardiac cycle (aVFA-bSSFP). Bloch simulations and phantom experiments were performed to compare the signal, resolution, and frequency response of the variable FA bSSFP and CFA-bSSFP schemes. Ten volunteers were imaged with different aVFA-bSSFP and asynchronous CFA-bSSFP schemes and compared to conventional segmented CFA-bSSFP. The SAR of aVFA-bSSFP is significantly decreased by 36% compared to asynchronous CFA-bSSFP (1.9 ± 0.2 vs. 3.0 ± 0.2 W/kg, P < 10(-10)) for similar blood-myocardium CNR (34 ± 6 vs. 35 ± 9, P = 0.5). Alternately, the CNR of the aVFA-bSSFP is improved by 28% compared to asynchronous CFA-bSSFP (49 ± 9 vs. 38 ± 8, P < 10(-4)) with similar SAR (3.2 ± 0.5 vs. 3.3 ± 0.5 W/kg, P = 0.6). aVFA-bSSFP can be used for lower SAR or higher contrast cardiac cine imaging compared to the conventional segmented CFA-bSSFP imaging. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Erb, M. P.; Jackson, C. S.; Broccoli, A. J.; Lea, D. W.
2015-12-01
We present a detection and attribution approach to interpret the forcings and feedbacks that shaped Quaternary climate stemming from known variations in Earth's obliquity, precession, greenhouse gases, and ice sheet extent. Because future climate changes will be driven largely by only one forcing, CO2, it is important to better separate and understand the individual contributions of different forcings in producing past recorded changes. We use idealized equilibrium GCM simulations to fingerprint the annual mean and seasonal responses to individual changes in obliquity, precession, CO2, and ice sheets. These idealized "fingerprint" simulations are scaled by time series of past forcings and summed together to create a time-varying linear reconstruction of past climate that can be compared against proxy records. A multiple linear regression is conducted using Bayesian inference between the components of the linear reconstruction and long proxy time series, such as temperature from deuterium in Antarctic ice cores, to determine whether the modeled response to each forcing needs to be stronger or weaker to better match the data. This methodology offers a simple framework for exploring uncertainties affecting the interpretation of long time series of Quaternary climate variability and a way to use proxy data to test climate response processes relevant to future climate change.
NASA Astrophysics Data System (ADS)
van Doesburgh, Marieke; van der Klis, Michiel
2017-03-01
We analyse all available RXTE data on a sample of 13 low-mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency νLT of a test-particle orbit whose orbital frequency is the upper kHz QPO frequency νu. Contrary to the most prominent previous studies, we find two different oscillations in the range predicted for νLT that are simultaneously present over a wide range of νu. Additionally, one of the low-frequency noise components evolves into a (third) QPO in the νLT range when νu exceeds 600 Hz. The frequencies of these QPOs all correlate to νu following power laws with indices between 0.4 and 3.3, significantly exceeding the predicted value of 2.0 in 80 per cent of the cases (at 3 to >20σ). Also, there is no evidence that the neutron star spin frequency affects any of these three QPO frequencies, as would be expected for frame dragging. Finally, the observed QPO frequencies tend to be higher than the νLT predicted for reasonable neutron star specific moment of inertia. In the light of recent successes of precession models in black holes, we briefly discuss ways in which such precession can occur in neutron stars at frequencies different from test-particle values and consistent with those observed. A precessing torus geometry and other torques than frame dragging may allow precession to produce the observed frequency correlations, but can only explain one of the three QPOs in the νLT range.
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Yseboodt, Marie; Van Hoolst, Tim; Rivoldini, Attilio
2016-10-01
Mercury's spin axis occupies the Cassini state 1, in which the orbit normal and spin axis precess together with a long period of about 300 000 years. An accurate model of the Cassini state is needed to get a reliable estimate of its polar moment of inertia from the measured orientation of its spin axis. The polar moment of inertia provides a strong constraint on the interior structure. For long, it has been assumed that Mercury precesses as a solid body, meaning that the estimate of the polar moment of inertia may be inaccurate. Recently, there has been renewed interest for the topic, because of the recent determination of Mercury's rotation state (Earth-based radar observations, MESSENGER data), as well as the possibility of future more accurate measurements with the BepiColombo mission.Here, we revisit the influence of the liquid outer core, solid inner core, and precession of the pericenter (period of about 127 000 years). Previous studies have concluded that those effects may have an influence above or up to about an order of magnitude below the present uncertainty on the obliquity. We consider three-layer interior models with a mantle (including the crust), a liquid outer core and a solid inner core. Those models are constrained by the mass, radius, second-degree gravity field coefficients and libration amplitude. We adapt to Mercury a Cassini state model previously developed for synchronous satellites, in which we express the spin axis motion in a frame based on the Laplace plane. We take into account the solar gravitational torque exerted on each layer, the internal gravitational torques between the internal layers and the pressure torques as well as the dissipative viscous torques exerted at the interfaces. We reassess the effect of tidal periodic deformations on the torques, currently thought to be two orders of magnitude below the present uncertainty on the spin orientation determination. Finally, we use the current rotation data to constrain Mercury
Klein, Antoine; Jetzer, Philippe; Sereno, Mauro
2009-09-15
Gravitational waves emitted by binary systems in the inspiral phase carry a complicated structure, consisting in a superposition of different harmonics of the orbital frequency, the amplitude of each of them taking the form of a post-Newtonian series. In addition to that, spinning binaries experience spin-orbit and spin-spin couplings which induce a precession of the orbital angular momentum and of the individual spins. With one exception, previous analyses of the measurement accuracy of gravitational wave experiments for comparable-mass binary systems have neglected either spin-precession effects or subdominant harmonics and amplitude modulations. Here we give the first explicit description of how these effects combine to improve parameter estimation. We consider supermassive black hole binaries as expected to be observed with the planned space-based interferometer LISA, and study the measurement accuracy for several astrophysically interesting parameters obtainable taking into account the full 2PN waveform for spinning bodies, as well as spin-precession effects. We find that for binaries with a total mass in the range 10{sup 5}M{sub {center_dot}}
NASA Astrophysics Data System (ADS)
Klein, Antoine; Jetzer, Philippe; Sereno, Mauro
2009-09-01
Gravitational waves emitted by binary systems in the inspiral phase carry a complicated structure, consisting in a superposition of different harmonics of the orbital frequency, the amplitude of each of them taking the form of a post-Newtonian series. In addition to that, spinning binaries experience spin-orbit and spin-spin couplings which induce a precession of the orbital angular momentum and of the individual spins. With one exception, previous analyses of the measurement accuracy of gravitational wave experiments for comparable-mass binary systems have neglected either spin-precession effects or subdominant harmonics and amplitude modulations. Here we give the first explicit description of how these effects combine to improve parameter estimation. We consider supermassive black hole binaries as expected to be observed with the planned space-based interferometer LISA, and study the measurement accuracy for several astrophysically interesting parameters obtainable taking into account the full 2PN waveform for spinning bodies, as well as spin-precession effects. We find that for binaries with a total mass in the range 105M⊙
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Yseboodt, Marie; Rivoldini, Attilio; Van Hoolst, Tim
2017-06-01
Mercury’s spin axis nearly occupies the Cassini state 1, in which the orbit normal and spin axis precess together with a long period of about 300 000 years. Mercury slightly deviates from that state which is defined for a uniformly precessing rigid planet. Variations in obliquity and deviation from the coplanarity between the spin axis, the normal to the orbit and the normal to the Laplace plane are induced by the slow precession of the pericenter. Moreover, the short-periodic tidal deformations induce a constant shift over time in mean obliquity and deviation, characterized by the tidal love number k2 and by the ratio k2/Q of the tidal Love number over the tidal quality factor, respectively. Including theses effects, we analytically develop a new Cassini state model and reinterpret recent determination of Mercury's orientation in terms of parameters of Mercury's interior. We also show explicitly that Peale's equation is sometimes wrongly cited in the literature, resulting in wrong estimates of the polar moment of inertia.From the orientation of Stark et al. (2015, Planetary and Space Science, Vol. 117), we find C/MR2=0.3433+/-0.0134, which is 0.9% smaller than the estimate by Stark et al. (2015) themselves, because of our refinements of the Cassini state model (0.1%) and their wrong use of Peale's equation (0.8%). That difference is below the actual precision (3-4%) on the polar moment of inertia but may be of the order of precision that can be reached with BepiColombo mission (<0.3%). Given the actual precision on the spin axis orientation, we place an upper limit of about 0.02 on the ratio k2/Q and of about 350 on Q (assuming k2=0.5) at the 1 sigma level. The parameter k2 cannot be estimated from the spin axis orientation, because of its correlation with the polar moment of inertia. In the future, the relative precision on the determination of k2/Q from the spin axis orientation could be as good as 30% with BepiColombo, so that the non-elastic parameter of
Shea, Steven M; Fieno, David S; Schirf, Brian E; Bi, Xiaoming; Huang, Jie; Omary, Reed A; Li, Debiao
2005-08-01
To assess the ability of a T2-prepared steady-state free precession blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging sequence to depict changes in myocardial perfusion during stress testing in a dog stenosis model. Study was approved by the institutional Animal Care and Use Committee. A hydraulic occluder was placed in the left circumflex coronary artery (LCX) in 10 dogs. Adenosine was administered intravenously to increase coronary blood flow, and stenosis was achieved in the LCX with the occluder. A T2-prepared two-dimensional steady-state free precession sequence was used for BOLD imaging at a spatial resolution of 1.5 x 1.2 x 5.0 mm3, and first-pass perfusion images were acquired for visual comparison. Microspheres were injected to provide regional perfusion information. Mixed-effect regression analysis was performed to assess normalized MR signal intensity ratios and microsphere-measured perfusion differences. For the same data, 95% prediction intervals were calculated to determine the smallest perfusion change detectable. Means +/- standard deviations were calculated for myocardial regional comparison data. A two-tailed Student t test was used to determine if significant differences (P < .01) existed between different myocardial regions. Under maximal adenosine stress, MR clearly depicted stenotic regions and showed regional signal differences between the left anterior descending coronary artery (LAD)-fed myocardium and the stenosed LCX-fed myocardium. Visual comparisons with first-pass images were also excellent. Regional MR signal intensity differences between LAD and LCX-fed myocardium (1.24 +/- 0.08) were significantly different (P < .01) from differences between LAD and septal-fed myocardium (1.02 +/- 0.07), which was in agreement with microsphere-measured flow differences (LAD/LCX, 3.38 +/- 0.83; LAD/septal, 1.26 +/- 0.49). The linear mixed-effect regression model showed good correlation (R = 0.79) between MR differences and
NASA Astrophysics Data System (ADS)
Hu, Yanhui; Liu, Xuejing; Li, Yang; Yao, Han; Dai, Lingling; Yang, Biyao; Ding, Ming
2017-07-01
We present an ultrahigh-sensitivity electro-optic modulator (EOM) detection method for detecting the atomic Larmor precession in an all-optical K-Rb hybrid atomic magnetometer operating in the spin-exchange relaxation-free regime. A magnetic field sensitivity of ~10 f T Hz-1/2 has been achieved by optimizing the probe laser parameters and the EOM modulation conditions, which is comparable to that with the Faraday modulation method and has a better performance than the balanced polarimetry method in the low frequency range. The EOM detection method in the atomic magnetometer presents several advantages, such as simple structure, no extra magnetic noise, moderate thermal effect, high measurement sensitivity and reliable stability. It is demonstrated to be feasible for the improved compactness and simplicity of atomic magnetic field measurement devices in the future.
Cooper, David; Bernier, Nicolas; Rouvière, Jean-Luc
2015-08-12
Precession electron diffraction has been used to provide accurate deformation maps of a device structure showing that this technique can provide a spatial resolution of better than 2 nm and a precision of better than 0.02%. The deformation maps have been fitted to simulations that account for thin specimen relaxation. By combining the experimental deformation maps and simulations, we have been able to separate the effects of the stressor and recessed sources and drains and show that the Si3N4 stressor increases the in-plane deformation in the silicon channel from 0.92 to 1.52 ± 0.02%. In addition, the stress in the deposited Si3N4 film has been calculated from the simulations, which is an important parameter for device design.
NASA Astrophysics Data System (ADS)
Kavanagh, Chris; Bini, Donato; Damour, Thibault; Hopper, Seth; Ottewill, Adrian C.; Wardell, Barry
2017-09-01
In this work we present an analytical gravitational self-force calculation of the spin-orbit precession along an eccentric orbit around a Schwarzschild black hole, following closely the recent prescription of Akcay, Dempsey, and Dolan, giving results to six post-Newtonian orders expanded in small eccentricity through e2. We then transcribe this quantity within the effective-one-body (EOB) formalism, thereby determining several new, linear-in-mass-ratio contributions in the post-Newtonian expansion of the spin-orbit couplings entering the EOB Hamiltonian. Namely, we determine the second gyrogravitomagnetic ratio gS *(r ,pr,pϕ) up to order pr2/r4 included.
NASA Astrophysics Data System (ADS)
Rodríguez-Tovar, F. J.; Sánchez-Almazo, I.; Pardo-Igúzquiza, E.; Braga, J. C.; Martín, J. M.
2013-09-01
Spectral analysis of the Messinian Abad marls in the Cariatiz section (Sorbas Basin, south-eastern Spain) reveals three relevant orders of cyclicity. The most significant cycle is in the lowest frequency (average thickness of 365 cm, 4-5 cycles in the section). It is recorded in the composition of planktic foraminiferal assemblages indicative of surface-water temperature, planktic and benthic stable isotope signals, and carbonate proportions. The planktic assemblages, isotope values and carbonate proportions also record a middle-frequency cycle with an average of 177 cm (9-10 cycles in the section). The highest frequency cycle (average of 132 cm, 12-13 cycles in the section) is mainly reflected in siliciclastic and calcite proportions. Age constraints and cycle patterns suggest that the lowest frequency cycle was forced by orbital obliquity, whereas the two higher-frequency ones are related to precession. Obliquity seems to have controlled major changes in surface-water temperature in the Sorbas Basin during the early Messinian. Surface-water temperature was also affected by precession, with changes in weathering and run-off. Spectral analysis has also been applied to vertical shifts of reef facies throughout the progradation of the Cariatiz reef. This reef is coeval with the Cariatiz section. Vertical shifts of reef talus breccias point to the existence of 4-5 major cycles of sea-level change, whereas 7-9 higher-frequency cycles are reflected in the repeated occurrence of lowstand, non-reefal deposits. Correlation with the cycles observed at the Cariatiz section suggests that obliquity forced glacio-eustatic sea-level oscillations in the western Mediterranean during the Late Miocene.
NASA Astrophysics Data System (ADS)
Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen
2017-04-01
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.
NASA Astrophysics Data System (ADS)
Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen
2017-04-01
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.
Roussel, Pascal; Palatinus, Lukas; Belva, Frédéric; Daviero-Minaud, Sylvie; Mentre, Olivier; Huve, Marielle
2014-04-01
The crystal structure of Sr{sub 4}Ru{sub 6}ClO{sub 18}, a new Ru{sup 4+/5+} oxo-chloride, has been determined from Precession Electron Diffraction (PED) data acquired on a nanocrystal in a transmission electron microscope using the technique of electron diffraction tomography. This approach is described in details following a pedagogic route and a systematic comparison is made of this rather new method with other experimental methods of electron diffraction, and with the standard single crystal X-ray diffraction technique. Both transport and magnetic measurements, showed a transition at low temperature that may be correlated to Ru{sup 4+}/Ru{sup 5+} charge ordering. - Graphical abstract: Structure of Sr{sub 4}Ru{sub 6}ClO{sub 18}, determined using Precession Electron Diffraction data. - Highlights: • Structure of Sr{sub 4}Ru{sub 6}ClO{sub 18} was solved ab initio using precession electron diffraction. • This was done both on a nanometric sample and on a micrometric one. • Different type of experimental methods of electron diffraction are compared. • Single crystal X-ray diffraction was used to confirm the results. • Transport properties were characterized and show “exotic” behavior.
NASA Astrophysics Data System (ADS)
Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E.; Vinogradov, Elena
2017-02-01
Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.
Zhou, Xiangzhi; Tang, Richard; Klein, Rachel; Li, Debiao; Dharmakumar, Rohan
2010-02-01
Myocardial blood oxygen level dependent, balanced steady-state free precession (bSSFP) imaging is a relatively new technique for evaluating myocardial oxygenation changes in the presence of coronary artery stenosis. However, the dependence of myocardial bSSFP blood oxygen level dependent signal on imaging parameters has not been well studied. In this work, modeling capillaries as cylinders that act as magnetic perturbers, the Monte Carlo method was used to simulate spin relaxation via diffusion in a field variation inside and outside blood vessels. bSSFP signal changes at various levels of capillary blood oxygen saturation, for a range of pulse repetition times, flip angle, capillary blood volume fraction, vessel wall permeability, water diffusion coefficient, vessel angle to static magnetic field, and the impact of bulk frequency shifts were studied. The theoretical dependence of bSSFP blood oxygen level dependent contrast on pulse repetition times and flip angle was confirmed by experiments in an animal model with controllable coronary stenosis. Results showed that, with the standard bSSFP acquisition, optimum bSSFP blood oxygen level dependent contrast could be obtained at pulse repetition times = 6.0 ms and flip angle = 70 degrees . Additional technical improvements that preserve the image quality may be necessary to further increase the myocardial bSSFP blood oxygen level dependent sensitivity at 1.5 T through even longer pulse repetition times.
Manganaro, L; Savelli, S; Di Maurizio, M; Francioso, A; Fierro, F; Tomei, A; Coratella, F; Ballesio, L; Ventriglia, F
2009-09-01
This study aimed to evaluate the feasibility of fetal magnetic resonance imaging (MRI) with steady-state free precession (SSFP) sequences to visualise the normal and pathological appearances of the cardiovascular system. This is a prospective observational study of 83 pregnant women who underwent fetal cardiac MRI: 43 patients (cases) had echocardiographic suspicion of congenital heart disease; 40 patients (controls) did not. Fetal cardiac MRI consisted of a static phase with multiplanar SSFP sequences and a dynamic phase with real-time SSFP sequences. Two radiologists evaluated the diagnostic quality of the SSFP images in both the controls and cases, the MRI morphological and functional features in the controls and the MRI signs of congenital heart disease in the cases. In both groups, SSFP sequences produced goodquality MR images and good visualisation of morphological features. Functional data appeared to be unavailable due to the current small temporal resolution and the technical impossibility of fetal cardiac triggering. MRI detected direct signs of congenital heart disease in 21 fetuses, indirect signs in six and both signs in 15. SSFP sequences are effective in demonstrating the morphological features of the cardiovascular system, whereas dynamic SSFP cine-MRI sequences may provide adjunctive albeit suboptimal functional information.
Peters, Dana C; Ennis, Daniel B; Rohatgi, Pratik; Syed, Mushabbar A; McVeigh, Elliot R; Arai, Andrew E
2004-09-01
To develop and validate a three-dimensional (3D) single breath-hold, projection reconstruction (PR), balanced steady state free precession (SSFP) method for cardiac function evaluation against a two-dimensional (2D) multislice Fourier (Cartesian) transform (FT) SSFP method. The 3D PR SSFP sequence used projections in the x-y plane and partitions in z, providing 70-80 msec temporal resolution and 1.7 x 1.7 x 8-10 mm in a 24-heartbeat breath hold. A total of 10 volunteers were imaged with both methods, and the measurements of global cardiac function were compared. Mean signal-to-noise ratios (SNRs) for the blood and myocardium were 114 and 42 (2D) and 59 and 21 (3D). Bland-Altman analysis comparing the 2D and 3D ejection fraction (EF), left ventricular end diastolic volume (LVEDV) and end systolic volume (LVESV), and end diastolic myocardial mass (LVEDM) provided values of bias +/-2 SD of 0.6% +/- 7.7 % for LVEF, 5.9 mL +/- 20 mL for LVEDV, -2.8 mL +/- 12 mL for LVESV, and -0.61 g +/- 13 g for LVEDM. 3D interobserver variability was greater than 2D for LVEDM and LVESV. In a single breath hold, the 3D PR method provides comparable information to the standard 2D FT method, which employs 10-12 breath holds. Copyright 2004 Wiley-Liss, Inc.
Amano, Yasuo; Takahama, Katsuya; Kumita, Shinichiro
2008-03-01
To assess the usefulness of non-contrast-enhanced MR angiography using cardiac and navigator-gated magnetization-prepared three-dimensional (3D) steady-state free precession (SSFP) imaging for the diagnosis of diseases of the thoracic aorta. Twenty-two patients with diseases of the thoracic aorta were examined using a 1.5 Tesla unit. Non-contrast-enhanced MR angiography was done using parasagittal 3D SSFP combined with cardiac-gating and k-space weighted navigator-gating techniques, using T2-prepared and fat-suppression pulses. Imaging quality and the diagnostic capability of this technique were compared with the imaging quality of 2D SSFP or contrast-enhanced 3D MR angiography and with final diagnoses. Non-contrast-enhanced 3D MR angiography provided signal-to-noise and contrast-to-noise ratios of the thoracic aorta comparable to non-contrast-enhanced 2D or contrast-enhanced 3D MR angiography (P > 0.17). This imaging technique gave accurate diagnoses in 19 of the 22 patients. Non-contrast-enhanced MR angiography using cardiac and navigator-gated magnetization-prepared 3D SSFP technique was useful for the diagnosis of diseases of the thoracic aorta.