Science.gov

Sample records for precious metals institute

  1. Catalysis Without Precious Metals

    SciTech Connect

    Bullock, R. Morris

    2010-11-01

    Written for chemists in industry and academia, this ready reference and handbook summarizes recent progress in the development of new catalysts that do not require precious metals. The research thus presented points the way to how new catalysts may ultimately supplant the use of precious metals in some types of reactions, while highlighting the remaining challenges. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  2. 41 CFR 109-45.1004 - Recovery and use of precious metals through the DOD Precious Metals Recovery Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... precious metals through the DOD Precious Metals Recovery Program. 109-45.1004 Section 109-45.1004 Public... PERSONAL PROPERTY 45.10-Recovery of Precious Metals § 109-45.1004 Recovery and use of precious metals through the DOD Precious Metals Recovery Program. DOE operates its own precious metals pool and...

  3. 41 CFR 109-45.1004 - Recovery and use of precious metals through the DOD Precious Metals Recovery Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... precious metals through the DOD Precious Metals Recovery Program. 109-45.1004 Section 109-45.1004 Public... PERSONAL PROPERTY 45.10-Recovery of Precious Metals § 109-45.1004 Recovery and use of precious metals through the DOD Precious Metals Recovery Program. DOE operates its own precious metals pool and...

  4. 41 CFR 109-45.1004 - Recovery and use of precious metals through the DOD Precious Metals Recovery Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... precious metals through the DOD Precious Metals Recovery Program. 109-45.1004 Section 109-45.1004 Public... PERSONAL PROPERTY 45.10-Recovery of Precious Metals § 109-45.1004 Recovery and use of precious metals through the DOD Precious Metals Recovery Program. DOE operates its own precious metals pool and...

  5. 41 CFR 109-45.1004 - Recovery and use of precious metals through the DOD Precious Metals Recovery Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precious metals through the DOD Precious Metals Recovery Program. 109-45.1004 Section 109-45.1004 Public... PERSONAL PROPERTY 45.10-Recovery of Precious Metals § 109-45.1004 Recovery and use of precious metals through the DOD Precious Metals Recovery Program. DOE operates its own precious metals pool and...

  6. 41 CFR 109-45.1004 - Recovery and use of precious metals through the DOD Precious Metals Recovery Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... precious metals through the DOD Precious Metals Recovery Program. 109-45.1004 Section 109-45.1004 Public... PERSONAL PROPERTY 45.10-Recovery of Precious Metals § 109-45.1004 Recovery and use of precious metals through the DOD Precious Metals Recovery Program. DOE operates its own precious metals pool and...

  7. 48 CFR 945.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Recovering precious metals... Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... the DOE precious metals pool. This includes all precious metals in any form, including shapes,...

  8. 48 CFR 945.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Recovering precious metals... Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... the DOE precious metals pool. This includes all precious metals in any form, including shapes,...

  9. 48 CFR 945.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Recovering precious metals... Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... the DOE precious metals pool. This includes all precious metals in any form, including shapes,...

  10. 41 CFR 109-27.5103 - Precious Metals Control Officer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Precious Metals Control... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5103 Precious Metals Control Officer. Each DOE organization and contractor holding precious metals shall designate in writing...

  11. 41 CFR 109-27.5103 - Precious Metals Control Officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Precious Metals Control... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5103 Precious Metals Control Officer. Each DOE organization and contractor holding precious metals shall designate in writing...

  12. 48 CFR 208.7304 - Refined precious metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Refined precious metals... Government-Owned Precious Metals 208.7304 Refined precious metals. See PGI 208.7304 for a list of refined precious metals managed by DSCP....

  13. 48 CFR 245.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Recovering precious metals... Disposal of Contractor Inventory 245.607-2 Recovering precious metals. (b) Precious metals are silver, gold... office with disposition instructions for certain categories of precious metals-bearing...

  14. 48 CFR 208.7304 - Refined precious metals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Refined precious metals... Government-Owned Precious Metals 208.7304 Refined precious metals. See PGI 208.7304 for a list of refined precious metals managed by DSCP....

  15. 48 CFR 208.7304 - Refined precious metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Refined precious metals... Government-Owned Precious Metals 208.7304 Refined precious metals. See PGI 208.7304 for a list of refined precious metals managed by DSCP....

  16. 41 CFR 109-27.5103 - Precious Metals Control Officer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Precious Metals Control... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5103 Precious Metals Control Officer. Each DOE organization and contractor holding precious metals shall designate in writing...

  17. 41 CFR 109-27.5103 - Precious Metals Control Officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Precious Metals Control... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5103 Precious Metals Control Officer. Each DOE organization and contractor holding precious metals shall designate in writing...

  18. 48 CFR 208.7304 - Refined precious metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Refined precious metals... Government-Owned Precious Metals 208.7304 Refined precious metals. See PGI 208.7304 for a list of refined precious metals managed by DSCP....

  19. 41 CFR 109-27.5103 - Precious Metals Control Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Precious Metals Control... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5103 Precious Metals Control Officer. Each DOE organization and contractor holding precious metals shall designate in writing...

  20. 48 CFR 208.7304 - Refined precious metals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Refined precious metals... Government-Owned Precious Metals 208.7304 Refined precious metals. See PGI 208.7304 for a list of refined precious metals managed by DSCP....

  1. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    This study investigated the effect of the combination of a dithiooctanoate monomer and an acidic adhesive monomer on adhesion to precious metals, precious and non-precious metal alloys. From a selection of four dithiooctanoate monomers and six acidic adhesive monomers, 14 experimental primers containing a combination of 5.0 wt% of a dithiooctanoate monomer and 1.0 wt% of an acidic adhesive monomer in acetone were prepared. Tensile bond strengths (TBSs) of MMA-PMMA/TBBO resin to nine kinds of precious metals, precious metal alloys, and non-precious metal alloys after 2,000 thermal cycles were measured. Results showed that there were no significant differences in TBS among the primers to all the precious and non-precious metal adherends tested (p>0.05). Highest TBS values (46.5-55.8 MPa) for bonding to Au alloy, Au-Ag-Pd alloy, Co-Cr alloy, and Ni-Cr alloy were achieved with the primer which contained 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). Therefore, 5.0 wt% 10-MDDT and 1.0 wt% 6-MHPA was determined as the optimal combination for bonding to precious metals, precious and non-precious metal alloys.

  2. 41 CFR 109-1.5108-4 - Precious metals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Precious metals. 109-1....51-Personal Property Management Standards and Practices § 109-1.5108-4 Precious metals. Perpetual inventory records are to be maintained for precious metals....

  3. 41 CFR 109-1.5108-4 - Precious metals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Precious metals. 109-1....51-Personal Property Management Standards and Practices § 109-1.5108-4 Precious metals. Perpetual inventory records are to be maintained for precious metals....

  4. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  5. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  6. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  7. 41 CFR 109-1.5108-4 - Precious metals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Precious metals. 109-1....51-Personal Property Management Standards and Practices § 109-1.5108-4 Precious metals. Perpetual inventory records are to be maintained for precious metals....

  8. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  9. 41 CFR 109-1.5108-4 - Precious metals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Precious metals. 109-1....51-Personal Property Management Standards and Practices § 109-1.5108-4 Precious metals. Perpetual inventory records are to be maintained for precious metals....

  10. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  11. 41 CFR 109-1.5108-4 - Precious metals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Precious metals. 109-1....51-Personal Property Management Standards and Practices § 109-1.5108-4 Precious metals. Perpetual inventory records are to be maintained for precious metals....

  12. Abundant Metals Give Precious Hydrogenation Performance

    SciTech Connect

    Bullock, R. Morris

    2013-11-29

    Homogeneous catalysts based on precious (noble) metals have had a profound influence on modern synthetic methods, enabling highly selective synthesis of organic compounds but typically require precious metal catalysts (Ru, Rh, Ir, Pt, and Pd). Increasing efforts have been devoted to the design and discovery of homogeneous catalysts using base metals (e.g., Mn, Fe, Co, Ni, Cu, Mo). Morris et al. report Fe catalysts for asymmetric hydrogenation of C=O bonds. Cobalt catalysts for asymmetric hydrogenation of C=C bonds are described by Chirik et al., and Beller et al. report new nanoscale iron catalysts for synthesis of functionalized anilines through hydrogenation of nitroarenes. The author’s work in this area is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. Biosorbents for recovery of precious metals.

    PubMed

    Won, Sung Wook; Kotte, Pratap; Wei, Wei; Lim, Areum; Yun, Yeoung-Sang

    2014-05-01

    Biosorption is a promising technology not only for the removal of heavy metals and dyes but also for the recovery of precious metals (PMs) from solution phases. The biosorptive recovery of PMs from waste solutions and secondary resources is recently getting paid attractive attention because their price is increasing or fluctuating, their available deposit is limited and maldistributed, and high-tech industries need more consumption of PMs. The biosorbents for recovery of PMs require specifications which differ from those for the treatment of wastewaters containing heavy metals and dyes. In this review, the previous works on biosorbents and biosorption for recovery of PMs were summarized. Especially, we discuss and suggest the required specifications of biosorbents for recovery of PMs and strategies to give the required properties to the biosorbents. We believe this review will provide useful information to scientists and engineers and hope to give insights into this research frontier.

  14. Precious Metal Recovery from Fuel Cell MEA's

    SciTech Connect

    Shore, Lawrence

    2004-04-27

    In 2003, Engelhard Corporation received a DOE award to develop a cost-effective, environmentally friendly approach to recover Pt from fuel cell membrane electrode assemblies (MEA’s). The most important precious metal used in fuel cells is platinum, but ruthenium is also added to the anode electrocatalyst if CO is present in the hydrogen stream. As part of the project, a large number of measurements of Pt and Ru need to be made. A low-cost approach to measuring Pt is using the industry standard spectrophotometric measurement of Pt complexed with stannous chloride. The interference of Ru can be eliminated by reading the Pt absorbance at 450 nm. Spectrophotometric methods for measuring Ru, while reported in the literature, are not as robust. These slides will discuss the options for measuring Pt and Ru using the method of UV-VIS spectrophotometry

  15. Pentannulation of Heterocycles by Virtue of Precious Metal Catalysis.

    PubMed

    Petrović, Martina; Occhiato, Ernesto G

    2016-03-04

    Pentannulated heterocycles are the key structural subunit of many natural and biologically active compounds. Over the last decades, many precious metal-assisted pentannulations have been described as a consequence of an extensive research. This Focus Review gives an overview of precious metal-catalyzed reactions applied to the synthesis of cyclopenta-fused heterocycles in the last five years.

  16. Recovery of precious metals from space

    NASA Technical Reports Server (NTRS)

    Freiser, Henry

    1991-01-01

    The overall objective is to develop efficient and economical separation and recovery methods for the platinum group and other precious metals. The separation of Pd(II) from Pt(II), Ir(III), and Rh(III) with trioctylphosphine oxide (TOPO) in heptane using centrifugal partition chromatography (CPC) was investigated. Activities to achieve this objective focussed on selection and evaluation of extraction systems for the PGM and modification of selected systems for multistage operation with a view to scaling up to desired macro levels. On the basis of preliminary evaluation of a series of simple metal complexing agents and chelating agents, the TOPO in heptane was selected as a likely system for isolating of Pd(II) and Pt(II) from the other PGM. A multistage apparatus capable of configuration as a simple rugged device, a centrifugal partition chromatograph (CPC), was shown to be effective. The extraction of Pd(II) was studied by CPC and batch solvent extraction. The distribution ratios for Pd(II) determined by both methods agree well. In low HCl concentrations (less than 0.1 M), the extracted species was PdCl2.(TOPO)2, irrespective of the chloride concentration, while at acid concentrations above 0.1 M, the Pd was extracted as the ion pair, 2(TOPO.H+).(PdCl4)2-. Base line separation of Pd(II) and Pt(II) in CPC was obtained under a variety of chloride and HCl concentration. It was demonstrated that the efficiency of CPC for metal separation was limited by chemical kinetic factors rather than instrumental factors, strongly suggesting that dramatic improvements can be achieved by studying reaction kinetics of formation and dissociation of the extractable metal complex.

  17. Concentration of precious metals during their recovery from electronic waste.

    PubMed

    Cayumil, R; Khanna, R; Rajarao, R; Mukherjee, P S; Sahajwalla, V

    2016-11-01

    The rapid growth of electronic devices, their subsequent obsolescence and disposal has resulted in electronic waste (e-waste) being one of the fastest increasing waste streams worldwide. The main component of e-waste is printed circuit boards (PCBs), which contain substantial quantities of precious metals in concentrations significantly higher than those typically found in corresponding ores. The high value and limited reserves of minerals containing these metals makes urban mining of precious metals very attractive. This article is focused on the concentration and recovery of precious metals during pyro-metallurgical recycling of waste PCBs. High temperature pyrolysis was carried out for ten minutes in a horizontal tube furnace in the temperature range 800-1350°C under Argon gas flowing at 1L/min. These temperatures were chosen to lie below and above the melting point (1084.87°C) of copper, the main metal in PCBs, to study the influence of its physical state on the recovery of precious metals. The heat treatment of waste PCBs resulted in two different types of solid products, namely a carbonaceous non-metallic fraction (NMFs) and metallic products, composed of copper rich foils and/or droplets and tin-lead rich droplets and some wires. Significant proportions of Ag, Au, Pd and Pt were found concentrated within two types of metallic phases, with very limited quantities retained by the NMFs. This process was successful in concentrating several precious metals such as Ag, Au, Pd and Pt in a small volume fraction, and reduced volumes for further processing/refinement by up to 75%. The amounts of secondary wastes produced were also minimised to a great extent. The generation of precious metals rich metallic phases demonstrates high temperature pyrolysis as a viable approach towards the recovery of precious metals from e-waste.

  18. Metalliferous asteroids as potential sources of precious metals

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.

    1994-10-01

    Recent discoveries of near-Earth asteroids (NEAs) and chemical analyses of fragments of asteroids (meteorites) suggest that there may be a gold mine, literally, in near-Earth space. Judged from meteorite analyses, two types of asteroids offer particularly bright prospects for recovery of large quantities of precious metals (defined as Au, Pt, Ir, Os, Pd, Rh, and Ru), the ordinary LL chondrites, which contain 1.2-5.3% Fe-Ni metal containing 50-220 ppm of precious metals, and metallic asteroids, which consist almost wholly of Fe-Ni phases and contain variable amounts of precious metals up to several hundred ppm. The pulverized regolith of LL chondrite asteroids could be electromagnetically raked to separate the metallic grains. Suitable metallic asteroids could be processed in their entirety. Statistically, there should be approximately six metallic NEAs larger than 1 km in diameter that contain over 100 ppm of precious metals. Successful recovery of 400,000 tons or more of precious metals contained in the smallest and least rich of these metallic NEAs could yield products worth $5.1 trillion (US) at recent market prices.

  19. Methods for recovering precious metals from industrial waste

    NASA Astrophysics Data System (ADS)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  20. 40 CFR 471.40 - Applicability; description of the precious metals forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... precious metals forming subcategory. 471.40 Section 471.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Precious Metals Forming Subcategory § 471.40...

  1. 40 CFR 471.40 - Applicability; description of the precious metals forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... precious metals forming subcategory. 471.40 Section 471.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Precious Metals Forming Subcategory § 471.40...

  2. Current advances in precious metal core–shell catalyst design

    PubMed Central

    Wang, Xiaohong; He, Beibei; Hu, Zhiyu; Zeng, Zhigang; Han, Sheng

    2014-01-01

    Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core–shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core–shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core–shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core–shell nanoparticles in this paper. The current research trends of these core–shell catalysts are also highlighted. PMID:27877695

  3. A precious-metal free micro fuel cell accumulator

    NASA Astrophysics Data System (ADS)

    Bretthauer, C.; Müller, C.; Reinecke, H.

    2011-05-01

    In recent years, integrated fuel cell (FC) type primary and secondary batteries attracted a great deal of attention as integrated on-chip power sources due to their high theoretical power densities. Unfortunately, the costs of these devices have been rather high. This is partially due to the involved clean-room processes, but also due to the fact that these devices generally rely on expensive precious-metals such as Pd and Pt. Therefore we developed a novel integrated FC type accumulator that is based on non-precious-metals only. The key component of the presented accumulator is its alkaline polymer electrolyte membrane that allows not only the usage of a low-cost AB5 type hydrogen storage electrode, but also the usage of La0.6Ca0.4CoO3 as a precious-metal free bifunctional catalyst for the air-breathing electrode. Additionally the presented design requires only comparatively few cleanroom processes which further reduces the overall production costs. Although abdicating precious-metals, the presented accumulator shows an open circuit voltage of 0.81 V and a maximum power density of 0.66 mW cm-2 which is comparable or even superior to former precious-metal based cells.

  4. Current advances in precious metal core-shell catalyst design.

    PubMed

    Wang, Xiaohong; He, Beibei; Hu, Zhiyu; Zeng, Zhigang; Han, Sheng

    2014-08-01

    Precious metal nanoparticles are commonly used as the main active components of various catalysts. Given their high cost, limited quantity, and easy loss of catalytic activity under severe conditions, precious metals should be used in catalysts at low volumes and be protected from damaging environments. Accordingly, reducing the amount of precious metals without compromising their catalytic performance is difficult, particularly under challenging conditions. As multifunctional materials, core-shell nanoparticles are highly important owing to their wide range of applications in chemistry, physics, biology, and environmental areas. Compared with their single-component counterparts and other composites, core-shell nanoparticles offer a new active interface and a potential synergistic effect between the core and shell, making these materials highly attractive in catalytic application. On one hand, when a precious metal is used as the shell material, the catalytic activity can be greatly improved because of the increased surface area and the closed interfacial interaction between the core and the shell. On the other hand, when a precious metal is applied as the core material, the catalytic stability can be remarkably improved because of the protection conferred by the shell material. Therefore, a reasonable design of the core-shell catalyst for target applications must be developed. We summarize the latest advances in the fabrications, properties, and applications of core-shell nanoparticles in this paper. The current research trends of these core-shell catalysts are also highlighted.

  5. Characterisation of the surface of freshly prepared precious metal catalysts.

    PubMed

    Parker, Stewart F; Adroja, Devashibhai; Jiménez-Ruiz, Mónica; Tischer, Markus; Möbus, Konrad; Wieland, Stefan D; Albers, Peter

    2016-07-14

    A combination of electron microscopy, X-ray and neutron spectroscopies and computational methods has provided new insights into the species present on the surface of freshly prepared precious metal catalysts. The results show that in all cases, at least half of the surface is metallic or nearly so, with the remainder covered by oxygen, largely as hydroxide. Water is also present and is strongly held; weeks of pumping under high vacuum is insufficient to remove it. The hydroxyls are reactive as shown by their reaction with or displacement by CO and can be removed by hydrogenation. This clearly has implications for how precious metal catalysts are activated after preparation.

  6. 40 CFR 421.260 - Applicability: Description of the secondary precious metals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary precious metals subcategory. 421.260 Section 421.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Precious Metals Subcategory § 421.260 Applicability: Description of the...

  7. 40 CFR 421.260 - Applicability: Description of the secondary precious metals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary precious metals subcategory. 421.260 Section 421.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Precious Metals Subcategory § 421.260 Applicability: Description of the...

  8. 40 CFR 421.260 - Applicability: Description of the secondary precious metals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary precious metals subcategory. 421.260 Section 421.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Precious Metals Subcategory § 421.260 Applicability: Description of the...

  9. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  10. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  11. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  12. 40 CFR 421.260 - Applicability: Description of the secondary precious metals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary precious metals subcategory. 421.260 Section 421.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Precious Metals Subcategory § 421.260 Applicability: Description of the...

  13. Precious-Metal Salt Coatings for Detecting Hydrazines

    NASA Technical Reports Server (NTRS)

    Dee, Louis A.; Greene, Benjamin

    2004-01-01

    Substrates coated with a precious-metal salt KAuCl4 have been found to be useful for detecting hydrazine vapors in air at and above a concentration of the order of 0.01 parts per million (ppm). Upon exposure to air containing a sufficient amount of hydrazine for a sufficient time, the coating material undergoes a visible change in color.

  14. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  15. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  16. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  17. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  18. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  19. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart...

  20. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart...

  1. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL... Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of precious metals subcategory. The provisions of this subpart apply to discharges of process...

  2. 41 CFR 109-45.1002-3 - Precious metals recovery program monitor.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Precious metals recovery program monitor. 109-45.1002-3 Section 109-45.1002-3 Public Contracts and Property Management Federal... Metals § 109-45.1002-3 Precious metals recovery program monitor. The DPMO shall be the precious...

  3. 41 CFR 109-45.1002-3 - Precious metals recovery program monitor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Precious metals recovery program monitor. 109-45.1002-3 Section 109-45.1002-3 Public Contracts and Property Management Federal... Metals § 109-45.1002-3 Precious metals recovery program monitor. The DPMO shall be the precious...

  4. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL... Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of precious metals subcategory. The provisions of this subpart apply to discharges of process...

  5. 41 CFR 109-45.1002-3 - Precious metals recovery program monitor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Precious metals recovery program monitor. 109-45.1002-3 Section 109-45.1002-3 Public Contracts and Property Management Federal... Metals § 109-45.1002-3 Precious metals recovery program monitor. The DPMO shall be the precious...

  6. 77 FR 50056 - Guides for the Jewelry, Precious Metals, and Pewter Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... CFR PART 23 Guides for the Jewelry, Precious Metals, and Pewter Industries AGENCY: Federal Trade... Jewelry, Precious Metals, and Pewter Industries. DATES: Comments must be received on or before September... Guides for the Jewelry, Precious Metals, and Pewter Industries (``Jewelry Guides'' or ``Guides).\\1\\...

  7. 41 CFR 109-45.1002-3 - Precious metals recovery program monitor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Precious metals recovery program monitor. 109-45.1002-3 Section 109-45.1002-3 Public Contracts and Property Management Federal... Metals § 109-45.1002-3 Precious metals recovery program monitor. The DPMO shall be the precious...

  8. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL... Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of precious metals subcategory. The provisions of this subpart apply to discharges of process...

  9. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL... Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of precious metals subcategory. The provisions of this subpart apply to discharges of process...

  10. 41 CFR 109-45.1002-3 - Precious metals recovery program monitor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Precious metals recovery program monitor. 109-45.1002-3 Section 109-45.1002-3 Public Contracts and Property Management Federal... Metals § 109-45.1002-3 Precious metals recovery program monitor. The DPMO shall be the precious...

  11. Chemistry of precious metal oxides relevant to heterogeneous catalysis.

    PubMed

    Kurzman, Joshua A; Misch, Lauren M; Seshadri, Ram

    2013-10-01

    The platinum group metals (PGMs) are widely employed as catalysts, especially for the mitigation of automotive exhaust pollutants. The low natural abundance of PGMs and increasing demand from the expanding automotive sector necessitates strategies to improve the efficiency of PGM use. Conventional catalysts typically consist of PGM nanoparticles dispersed on high surface area oxide supports. However, high PGM loadings must be used to counter sintering, ablation, and deactivation of the catalyst such that sufficient activity is maintained over the operating lifetime. An appealing strategy for reducing metal loading is the substitution of PGM ions into oxide hosts: the use of single atoms (ions) as catalytic active sites represents a highly atom-efficient alternative to the use of nanoparticles. This review addresses the crystal chemistry and reactivity of oxide compounds of precious metals that are, or could be relevant to developing an understanding of the role of precious metal ions in heterogeneous catalysis. We review the chemical conditions that facilitate stabilization of the notoriously oxophobic precious metals in oxide environments, and survey complex oxide hosts that have proven to be amenable to reversible redox cycling of PGMs.

  12. Recovery and separation of precious metals from space

    NASA Technical Reports Server (NTRS)

    Freiser, H.; Muralidharan, S.

    1992-01-01

    During the past year a viable procedure centered around centrifugal partition chromatography (CPC), a multistage liquid-liquid partitioning technique for the separation of precious metals (Pt, Pd, Rh, Ir, Os, Ru), was developed. Stable and inexpensive ligands that can be readily recycled to achieve the separations of the precious metals were identified. The separation methods developed so far yield three separate fractions: Pt, Pd, and Rh-Ir. The Rh-Ir pair can be separated in a subsequent run. The total amount of precious metals separated in a single experiment varied from 1 to 50 mg. The factors affecting the efficiencies of these separations were studied. The kinetics of the decomposition of the complex and the ion pair have a major bearing on these efficiencies, with slow kinetics resulting in poor efficiencies. The methods for the improvement of the efficiencies were also investigated. For example, significant improvement in the efficiencies and separation times for Pt and Pd were achieved by the use of chloride gradient in the mobile phase. Two papers were published and talks were presented on our work at the FACSS meeting in Anaheim, Oct. 1991, and at the Pittsburgh Conference in New Orleans, Mar. 1992.

  13. Phase Behavior of Pseudobinary Precious Metal-Carbide Systems

    SciTech Connect

    Gregoire, John M.; Tague, Michele E.; Smith, Eva H.; Dale, Darren; DiSalvo, Francis J.; Abruña, Héctor D.; Hennig, Richard G.; van Dover, R. Bruce

    2010-11-15

    Transition metal carbides exhibit a variety of interesting material properties, including electrochemical stability. When combined with precious metals, Ta and W carbides have shown promise as fuel cell electrode materials; yet, the phase behavior of these precious metal-carbide systems is largely unexplored. We investigated P-M-C phase behavior with P = Pt, Pd, and Ru and M = Ta and W using composition spread thin films. We attained limited control of the deposited carbide phase through variation of the sputter atmosphere and demonstrated decreased corrosion of W-C materials with increasing C content. A high-throughput X-ray diffraction and X-ray fluorescence experiment was employed for thin film characterization, which revealed solubility of Pt, Pd, and Ru in cubic WC. Density functional calculations of the lattice parameter dependence on carbon concentration enabled the determination of carbon concentration from the X-ray data as a function of transition metal stoichiometry. Our measurement of variations in the C stoichiometry and evolution of thin film texture with transition metal composition yielded surprising results. We detail how the combination of the composition spread technique, the high-throughput thin film characterization, and the density functional modeling of ternary carbide alloys provided a deep understanding of the chemical systems.

  14. 40 CFR 471.40 - Applicability; description of the precious metals forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precious metals forming subcategory. 471.40 Section 471.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Precious Metals Forming Subcategory § 471.40 Applicability; description of...

  15. 48 CFR 1845.607-2 - Recovering precious metals. (NASA supplements paragraph (b)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Recovering precious metals..., Redistribution, and Disposal of Contractor Inventory 1845.607-2 Recovering precious metals. (NASA supplements... bearing such metals; and items containing recoverable quantities of them shall be reported to the...

  16. 48 CFR 1845.607-2 - Recovering precious metals. (NASA supplements paragraph (b)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Recovering precious metals..., Redistribution, and Disposal of Contractor Inventory 1845.607-2 Recovering precious metals. (NASA supplements... bearing such metals; and items containing recoverable quantities of them shall be reported to the...

  17. 48 CFR 1845.607-2 - Recovering precious metals. (NASA supplements paragraph (b)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Recovering precious metals..., Redistribution, and Disposal of Contractor Inventory 1845.607-2 Recovering precious metals. (NASA supplements... bearing such metals; and items containing recoverable quantities of them shall be reported to the...

  18. 48 CFR 1845.607-2 - Recovering precious metals. (NASA supplements paragraph (b)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Recovering precious metals..., Redistribution, and Disposal of Contractor Inventory 1845.607-2 Recovering precious metals. (NASA supplements... bearing such metals; and items containing recoverable quantities of them shall be reported to the...

  19. 48 CFR 1845.607-2 - Recovering precious metals. (NASA supplements paragraph (b)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Recovering precious metals..., Redistribution, and Disposal of Contractor Inventory 1845.607-2 Recovering precious metals. (NASA supplements... bearing such metals; and items containing recoverable quantities of them shall be reported to the...

  20. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... metals as Government-furnished material. 252.208-7000 Section 252.208-7000 Federal Acquisition... precious metals as Government-furnished material. As prescribed in 208.7305(a), use the following clause: Intent To Furnish Precious Metals as Government-Furnished Material (DEC 1991) (a) The Government...

  1. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  2. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  3. Bio-extraction of precious metals from urban solid waste

    NASA Astrophysics Data System (ADS)

    Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng

    2017-01-01

    Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.

  4. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  5. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE PAGES

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; ...

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  6. Recovery processes for precious metals. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning the recovery and recycling of gold, silver, and other precious metals from industrial wastes. Procedures adapted to electroplating baths, anode sludges, mine tailings, electronic scrap, and photographic processing effluent are considered. Techniques are described, including precipitation, microbial leaching, ultrafiltration, and electrochemical processes. The citations examine the efficiency, operational difficulties, cost effectiveness, and optimization of specific precious metal recovery methods. (Contains a minimum of 62 citations and includes a subject term index and title list.)

  7. Effective and selective recovery of precious metals by thiourea modified magnetic nanoparticles.

    PubMed

    Lin, Tai-Lin; Lien, Hsing-Lung

    2013-05-08

    Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu) was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV), Au(III) and Pd(II), respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II)) at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.

  8. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles

    PubMed Central

    Lin, Tai-Lin; Lien, Hsing-Lung

    2013-01-01

    Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu) was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV), Au(III) and Pd(II), respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II)) at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed. PMID:23698770

  9. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  10. 78 FR 32477 - ASA Gold and Precious Metals Limited; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION ASA Gold and Precious Metals Limited; Notice of Application May 22, 2013. AGENCY: Securities and... Metals Limited (``ASA''), a Bermuda closed-end management investment company registered under section...

  11. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles.

    PubMed

    Yen, Chia-Hsin; Lien, Hsing-Lung; Chung, Jung-Shing; Yeh, Hund-Der

    2017-01-15

    Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  12. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE TREASURY United States Mint Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold--Excluding Commemorative Gold Coins AGENCY: United States Mint, Department of the...

  13. Mercury retorts for the processing of precious metals and hazardous wastes

    NASA Astrophysics Data System (ADS)

    Washburn, Charles; Hill, Eldan

    2003-04-01

    In this paper, the authors describe some of the considerations for the design and operation of mercury retort facilities. These retort facilities are used for precious metals processing and for the treatment of mercury-bearing hazardous wastes. The relevant properties and characteristics of mercury and mercury vapor are presented, as well as facility engineering with respect to industrial hygiene, area ventilation, and material handling.

  14. Non-precious metal catalysts prepared from precursor comprising cyanamide

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-10-27

    Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700.degree. C. to about 1100.degree. C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.

  15. Key factors in chemical reduction by hydrazine for recovery of precious metals.

    PubMed

    Chen, J Paul; Lim, L L

    2002-10-01

    Most of the commonly used metal waste treatment approaches only allow removal of metals which are ultimately discarded as sludge and do not permit the reuse of the metals, resulting in a waste of raw materials. In this study, the recovery of precious metals of sliver and copper in a synthesized wastewater in batch reactors was investigated using a reduction method by hydrazine as the reducing agent. Recovery of metal ions was greatest at pH > 11. The presence of humic acid did not have negative effects on the recovery process. Varying dissolved oxygen levels in the hydrazine solution did not significantly affect the recovery of both metals while seeding and ageing processes resulted in an increase in the particle size of the solid obtained. Under competitive conditions between Cu2+ and Ag+ ions, the recovery of silver remained the same, while that of copper was enhanced.

  16. Market value of asteroidal precious metals in an age of diminishing terrestrial resources

    USGS Publications Warehouse

    Kargel, Jeffrey S.; ,

    1996-01-01

    In the next century Mankind may have to choose from two options for our supply and usage of some nonrenewable natural resources, such as gold, platinum metals, and fossil fuels: learn to live with diminishing supplies of these materials obtained at ever increasing economic and environmental cost, or reach into difficult places and develop new technologies to give us what we need to sustain economic growth. Either prospect faces formidable technological and economic challenges. Exploitation of asteroids for precious and strategic metals is a possible environmentally friendly remedy for impending shortages of some resources. Certain types of asteroids could completely replace terrestrial sources of platinum metals. Asteroid metal mining may become a 21st-century space industry worth ten to fifty billion dollars annually (1995 dollars). Asteroids could make the United States and other countries self sufficient in many strategic metals, and it could usher new technologies and increase our applications of existing technologies that depend on these metals.

  17. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports

    SciTech Connect

    Li, Wei-Zhen; Kovarik, Libor; Mei, Donghai; Engelhard, Mark H.; Gao, Feng; Liu, Jun; Wang, Yong; Peden, Charles HF

    2014-09-02

    We recently discovered that MgAl2O4 spinel {111} nano-facets optimally stabilize the small sizes of platinum nanoparticles even after severe high temperature aging treatments. Here we report the thermal stabilities of other precious metals with various physical and chemical properties on the MgAl2O4 spinel {111} facets, providing important new insights into the stabilization mechanisms. Besides Pt, Rh and Ir can also be successfully stabilized as small (1-3 nm) nanoparticles and even as single atomic species after extremely severe (800 °C, 1 week) oxidative aging. However, other metals either aggregate (Ru, Pd, Ag, and Au) or sublimate (Os) even during initial catalyst synthesis. On the basis of ab initio theoretical calculations and experimental observations, we rationalize that the exceptional stabilization originates from lattice matching, and the correspondingly strong attractive interactions at interfaces between the spinel {111} surface oxygens and epitaxial metals\\metal oxides. On this basis, design principles for catalyst support oxide materials that are capable in stabilizing precious metals are proposed.

  18. Electrocatalytic hydrogenation using precious metal microparticles in redox-active polymer films

    SciTech Connect

    Coche, L.; Ehui, B.; Limosin, D.; Moutet, J.C. )

    1990-11-09

    Glassy carbon felt electrodes have been modified by electrodeposition of poly(pyrrole-viologen) films (derived from N,N{prime}-dialkyl-4,4{prime}-bipyridinium salts), followed by electroprecipitation of precious metal (Pt, Pd, Rh, or Ru) microparticles. The resulting electrodes have been proved to be active for the electrocatalytic hydrogenation of conjugated enones (2-cyclohexen-1-one, cryptone, carvone, isophorone), styrene, and benzonitrile in aqueous media (pH 1). Despite low loadings of metal catalysts, high electric and products yields and a long term stability of these cathodes have been observed. The influence of the metal loading and the polymer structure on the catalytic efficiency as well as the selectivity obtained according to the metal catalyst used have been studied. Comparison with results previously reported for other catalytic cathodes like Pt/Pt, Pd/C, or Raney nickel electrodes proves the high efficiency of these metal microparticles within redox polymer film based electrodes.

  19. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  20. The direct reduction of sulfide minerals for the recovery of precious metals

    NASA Astrophysics Data System (ADS)

    Szczygiel, Z.; Lara, C.; Escobedo, S.; Mendoza, O.

    1998-04-01

    A direct smelting method has been tested on a pilot-scale for the recovery of silver from sulfide minerals. The charge may be processed with iron as a reducing agent and soda as a fluxing agent or with soda ash as an oxidizer and carbon. Precious metals are gathered with lead, which can be added as metallic lead if it exists in the technological cycle or may be available in the form of battery powder or lead concentrate. The behavior of silver and its sulfides in the system are described, and some fluctuations observed in the short rotary furnace are explained. Further, the kinetics of metal removal, a thermodynamic analysis, metal-loss phenomena, and a coordinated mass balance are presented.

  1. A Novel Method for Depositing Precious Metal Films on Difficult Surfaces

    NASA Technical Reports Server (NTRS)

    Veitch, L. C.; Phillip, W. H.

    1994-01-01

    A guanidine-based vehicle was developed to deposit precious metal coatings on surfaces known to be difficult to coat. To demonstrate this method, a platinum coating was deposited on alumina fibers using a guanidine-platinum solution. X-ray diffraction confirmed that the only species present in the coating was platinum and that all of the carbon species had been removed upon heat treatment. SEM results showed that some porosity was present but that the coatings uniformly covered the fiber surface and adhered well to the finer.

  2. Photochemical changes in cyanide speciation in drainage from a precious metal ore heap

    USGS Publications Warehouse

    Johnson, C.A.; Leinz, R.W.; Grimes, D.J.; Rye, R.O.

    2002-01-01

    In drainage from an inactive ore heap at a former gold mine, the speciation of cyanide and the concentrations of several metals were found to follow diurnal cycles. Concentrations of the hexacyanoferrate complex, iron, manganese, and ammonium were higher at night than during the day, whereas weak-acid-dissociable cyanide, silver, gold, copper, nitrite, and pH displayed the reverse behavior. The changes in cyanide speciation, iron, and trace metals can be explained by photodissociation of iron and cobalt cyanocomplexes as the solutions emerged from the heap into sunlight-exposed channels. At midday, environmentally significant concentrations of free cyanide were produced in a matter of minutes, causing trace copper, silver, and gold to be mobilized as cyanocomplexes from solids. Whether rapid photodissociation is a general phenomenon common to other sites will be important to determine in reaching a general understanding of the environmental risks posed by routine or accidental water discharges from precious metal mining facilities.

  3. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    PubMed Central

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  4. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards.

    PubMed

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-08-28

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au(+) and Cu(2+) respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs.

  5. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-03-03

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.

  6. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect

    Lutz, J.D.; Wheelis, W.T.; Gundiler, I.H.

    1995-02-01

    Sandia National Laboratories (SNL) is tasked to support the Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials in discrete sub-components. SNL developed and demonstrated a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The remaining components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. The New Mexico Bureau of Mines & Mineral Resources assisted SNL in investigation of size-reduction and separation technologies and in the development of a conceptual design for a mechanical separation system.

  7. Antimicrobial precious-metal nanoparticles and their use in novel materials.

    PubMed

    Senior, Katharina; Müller, Stefanie; Schacht, Veronika J; Bunge, Michael

    2012-12-01

    Nanotechnology offers powerful new approaches to controlling unwanted microorganisms and other potential biohazards. Engineered nanoparticles with antifungal, antimicrobial, and antiviral properties are now being developed for a variety of applications, including manufacture and maintenance of sterile surfaces, prevention and control of biological contamination, food and water safety, and treatment of infectious diseases and cancer. The great potential of antimicrobial precious-metal nanoparticles is reflected by the high number of recent publications and patent applications, which is summarized, at least in part, in this paper. This review should provide an overview and offer guidance to the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology, and may also be of interest to a broader scientific audience. Furthermore, this review covers specific topics in research and development addressing the effects of nanoparticles on microorganisms as well as novel nanotechnology-based approaches for controlling potentially pathogenic microorganisms.

  8. Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions.

    PubMed

    Monier, M; Akl, M A; Ali, Wael M

    2014-05-01

    In this work, native cellulose cotton fibers were first modified through graft copolymerization of polyacrylonitrile (PAN) and then by insertion of phenyl thiosemicarbazide moieties to finally produce C-PTS chelating fibers, which were fully characterized using various instrumental techniques such as SEM, FTIR, EDX and XRD spectra. The obtained C-PTS were employed in removal and extraction of Au(3+), Pd(2+) and Ag(+) precious metal ions from their aqueous solutions using batch experiments. The kinetic studies showed that the pseudo-second-order model exhibited the best fit for the experimental data. In addition, the adsorption isotherm studies indicated that the adsorption follows the Langmuir model and the maximum adsorption capacities for Au(3+), Pd(2+) and Ag(+) were 198.31, 87.43 and 71.14 mg/g respectively.

  9. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  10. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts.

    PubMed

    Varnell, Jason A; Tse, Edmund C M; Schulz, Charles E; Fister, Tim T; Haasch, Richard T; Timoshenko, Janis; Frenkel, Anatoly I; Gewirth, Andrew A

    2016-08-19

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

  11. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-08-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

  12. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes

    SciTech Connect

    Sheng, WC; Bivens, AP; Myint, M; Zhuang, ZB; Forest, RV; Fang, QR; Chen, JG; Yan, YS

    2014-05-01

    A ternary metallic CoNiMo catalyst is electrochemically deposited on a polycrystalline gold (Au) disk electrode using pulse voltammetry, and characterized for hydrogen oxidation reaction (HOR) activity by temperature-controlled rotating disk electrode measurements in 0.1 M potassium hydroxide (KOH). The catalyst exhibits the highest HOR activity among all non-precious metal catalysts (e.g., 20 fold higher than Ni). At a sufficient loading, the CoNiMo catalyst is expected to outperform Pt and thus provides a promising low cost pathway for alkaline or alkaline membrane fuel cells. Density functional theory (DFT) calculations and parallel H-2-temperature programmed desorption (TPD) experiments on structurally much simpler model alloy systems show a trend that CoNiMo has a hydrogen binding energy (HBE) similar to Pt and much lower than Ni, suggesting that the formation of multi-metallic bonds modifies the HBE of Ni and is likely a significant contributing factor for the enhanced HOR activity.

  13. LEAD, TIN, AND PRECIOUS-METAL MINERALIZATION IN THE U. S. VIRGIN ISLANDS.

    USGS Publications Warehouse

    Alminas, H.V.; Tucker, R.E.

    1987-01-01

    This regional geochemical study of the U. S. Virgin Islands demonstrates the presence of a widespread base-metal (primarily Pb, Sn, Cu) and precious-metal (primarily Ag) mineralization on all three of the islands. The overall association: Au, Ag, Te, Sn, Pb, Cu, Zn, Sb, Bi, Mo, As and Ba shows a great similarity to that of the Bolivian silver-tin district. The single divergence from the Bolivian association is tungsten, which is totally lacking in the U. S. Virgin Islands. The delineated geochemical patterns transect all exposed rock types on the islands, including the Kingshill Marl of late Miocene age, on St. Croix. Some relationship between the geochemical patterns and the major mapped faults can be seen - especially on St. Croix. K-Ar age dating of rocks from St. Thomas and St. John indicates that they are of Tertiary rather than Cretaceous age. This and the apparent contemporaneity of the mineralization with the St. Croix graben infilling indicate a very late Miocene age for the mineralization.

  14. Iron Cycling in Low pH Environments - Potential Application for the Recovery of Precious Metals from Industrial Waste

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Helle, T.; Kappler, A.

    2014-12-01

    The use of many different precious metals (gold, platinum…) and Rare Earth Elements (lanthanum, neodymium…) in the production of electronic products is drastically increasing. To meet this demand, not only mining activities but recently also the recovery of these elements from industrial waste is in the focus of research. It has been shown that the application of extracting solutions with pH values lower than 4 lead to an economically feasible recovery of industrially precious metals. This abiotic extraction efficiency can potentially be increased by using microorganisms capable of dissolving more stable minerals at low pH. In collaboration with industry, a waste incineration plant, and governmental authorities, we investigate the extraction and recovery of strategically important metals and Rare Earth Elements from industrial waste. We optimize the (bio)-geochemical conditions for the extraction of these elements. To this end, a variety of microorganisms are evaluated for efficient metal extraction. We focus on known laboratory cultures capable of oxidizing and reducing Fe minerals and S compounds. Additionally, unknown microbial communities able to increase the efficiency of precious metal extraction from the industrial waste are enriched from environments with comparable geochemical conditions found in the extraction solutions.

  15. Effects of composition and age hardening on precious metal electrical contacts

    SciTech Connect

    Pope, L.E.; Peebles, D.E.

    1988-01-01

    Precious metal alloys are commonly used for wiper electrical contacts in electromechanical devices which operate in dry and inert atmospheres. A pin-on-plate experimental configuration has been used to evaluate two different palladium alloy pins (ASTM B540 and ASTM B563) sliding on a gold alloy plate (ASTM B541) age hardened at two temperatures. For all combinations of test conditions except the higher palladium content alloy (ASTM B563), two stages of wear were observed: (1) a prow of Au alloy was formed on the palladium alloy pin and (2) work hardening and roughening of the wear track occurred with transfer and backtransfer of Au alloy material. With the higher palladium alloy pin (ASTM B563) a friction polymer was formed for laboratory air testing. The prow formed on the pin was a mechanical mixture of gold alloy plate and palladium alloy pin materials; palladium was found in the wear track for this experimental condition, while no palladium was found in wear tracks for the other test conditions. Segregation of zinc, silver and copper in wear tracks occurred for all test conditions, but the extent of segregation was dependent on contact couple combination and heat treatment of the gold alloy plate. The least amount of segregation was observed when the gold alloy plate was age hardened at 426 /degree/C. More segregation occurred for testing in helium than for testing in vacuum with a low partial pressure of oxygen. The largest segregation of metallic elements occurred for laboratory air testing, but the total metallic content of wear tracks was low; the wear tracks consisted primarily of carbon. Segregation was slightly larger with the higher palladium alloy (ASTM B563) pin.

  16. Precious-metal-modified nickel-based superalloys: Motivation and potential industry applications

    NASA Astrophysics Data System (ADS)

    Bolcavage, A.; Helmink, R. C.

    2010-10-01

    Nickel-based superalloys are extensively used in the hot sections of gas turbine engines and other propulsive power machines because they possess an excellent combination of high-temperature strength and resistance to oxidation and hot corrosion degradation. The γ-γ' microstructure inherent in nickel-based superalloys is designed with respect to composition and morphology so as to achieve a balance of strength versus environmental resistance. Often, aluminide and platinum-modified aluminide coatings are applied to the component surface to further improve the resistance to environmental degradation by supporting the formation of a protective aluminum oxide scale. The potential exists to utilize alloying concepts from novel platinum and hafnium-modified γ-γ' diffusion coatings so as to create in-situ a new class of superalloy that combines enhanced environmental resistance while maintaining sufficient strength at high temperatures. This paper describes how precious-metal-modified superalloys can offer advantages for structural applications in gas turbine engines. Several examples that illustrate component performance benefits are also presented.

  17. Cross-sectional study of platinum salts sensitization among precious metals refinery workers.

    PubMed

    Baker, D B; Gann, P H; Brooks, S M; Gallagher, J; Bernstein, I L

    1990-01-01

    A cross-sectional medical evaluation was conducted to determine respiratory and dermatological effects of platinum salts sensitization among workers in a secondary refinery of precious metals. Fifteen of 107 current employees and eight (28%) of 29 former employees, who had been terminated from employment on average for 5 years because of respiratory symptoms, had positive skin reactivity to platinum salts. Platinum salts skin reactivity was significantly associated with average air concentrations of platinum salts in employees' present work area. Workers with positive platinum salts skin tests had significantly higher prevalences of reported rhinitis, asthma, and dermatitis than negative skin test workers. They also had increased bronchial response to cold air challenge and elevated levels of total serum IgE. Platinum salts sensitization was not associated with atopic tendency as measured by sensitivity to common aeroallergens, but was strongly associated with cigarette smoking status. The findings indicate that cigarette smoking may be a risk factor for the development of platinum salts allergy. The persistence of platinum salts sensitization and high prevalence of adverse health outcomes among former workers demonstrate the importance of regular medical monitoring so that sensitized workers can be removed from exposure before they develop long-term health problems.

  18. Autothermal reforming of dimethyl ether with CGO-based precious metal catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Seunghyeon; Bae, Joongmyeon

    2016-03-01

    In this paper, we investigated the DME ATR reaction with different types of precious metal (Pt, Rh, Ru)-supported CGO catalysts. We also evaluated the reaction characteristics of DME ATR reaction by modifying certain reforming conditions, including the temperature, the amount of air and water, and the flow rate. The Ru-added CGO catalyst showed the best performance in DME ATR. The operating condition that produced the greatest effect on conversion efficiency was temperature; however the amounts of steam and air were also important with regard to conversion efficiency and the reaction heat. In case higher GHSV conditions the methane yields are increased. To maximize conversion efficiency with thermal neutral operating conditions, we suggest an SCR of 1.5, OCR of 0.45, over temperature of 700 °C, and a GHSV of less than 20,000/h. Under harsh conditions, such as low temperature and high GHSV, the methane yield increases. Therefore, the high temperature DME ATR reaction seems to consist of two main steps: the DME decomposition to methane and the methane autothermal reforming reaction.

  19. A unique class of alternative catalysts for fuel cell applications that replace the need for precious metals

    SciTech Connect

    Bailey, P.G.

    1995-12-31

    A method has been found that allows the replacement of precious metals with nonmetallic alternative materials for use as the required catalysts in various fuel cell applications. The amount of the precious metal currently used for the catalyst per fuel cell is substantial, and is a significant fraction of the non-variable cost of the entire fuel cell unit. Through the use of a recently developed trade-secret process, a class of nonmetal materials can be manufactured into a metal-like polymer that behaves electrically in an similar manner as do the precious metals during normal fuel cell operation. Samples of these alternative catalysts have been manufactured using an inexpensive process developed and protected under trade secret agreements. Actual small-scale fuel cell demonstration tests have been successfully conducted that verify the operational capabilities of these low-cost alternative catalysts in place of platinum and rhodium. The cost savings of using these alternative catalysts within large scale fuel cell power units may be large.

  20. Precious-Metal-Free Heteroarylation of Azlactones: Direct Synthesis of α-Pyridyl, α-Substituted Amino Acid Derivatives.

    PubMed

    Johnson, Tarn C; Marsden, Stephen P

    2016-10-21

    A one-pot, three-component synthesis of α-pyridyl, α-substituted amino acid derivatives is described. The key transformation is a direct, precious-metal-free heteroarylation of readily available, amino acid derived azlactones with electrophilically activated pyridine N-oxides. The resulting intermediates can be used directly as efficient acylating agents for a range of nucleophiles, leading to the heteroarylated amino acid derivatives in a single vessel.

  1. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  2. Non-precious metal catalysis for proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Leonard, Nathaniel Dean

    Non-precious metal catalysts (NPMC) for proton exchange membrane fuel cells (PEMFC) are explored. Research into NPMCs is motivated by the growing need for cleaner, more efficient energy options. NPMCs are one option to make fuel cells more commercially viable. To this end, the present work studies and simulates the morphology and function of metal-nitrogen-carbon (MNC) oxygen reduction catalysts. A porosity study finds that mesoporosity is critical to high performance of autogenic pressure metal-nitrogen-carbon (APMNC) oxygen reduction catalysts. Various carbon materials are used as precursors to synthesis APMNC catalysts. The catalysts and the associated porous carbon materials are characterized morphologically, chemically, and electrochemically. The results indicated that substrates adsorbing the most nitrogen and iron show the highest activity. Furthermore, a relationship is found between mesoporosity and nitrogen content indicating the importance of transport to active site creation. A correlation is found between surface alkalinity and catalytic activity for APMNC catalysts. The basic site strength and quantity were calculated by two different methods, and it was shown that increased Bronsted- Lowry basicity correlates to more active catalysts. The relationship between alkalinity and catalytic activity could be the result of the impact of alkalinity on the electron density of the metal centers or basic sites could encourage active site formation. It is found that the oxygen reduction reaction (ORR) proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials on an APMNC catalyst. At higher potential, site availability inhibits peroxide generation causing the direct four-electron reduction pathway to dominate. Oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability around 0.6 V vs RHE. The net peroxide generation remains relatively low

  3. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Fujii, Toshihide; Negoro, Noriyuki; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    The effect of metal primers on adhesion of a resin composite to dental metal alloys was investigated. Experimental primers containing a dithiooctanoate monomer [10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) or 6-methacryloyloxyhexyl 6,8-dithiooctanoate (6-MHDT)] and a phosphonic acid monomer [6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) or 6-methacryloyloxyhexyl 3-phosphonopropionate (6-MHPP)] were prepared. After treating Au, Au alloy, Ag alloy, Au-Ag-Pd alloy, and Ni-Cr alloy with the experimental primers, their shear bond strengths (SBSs) with a prosthetic light-curing resin composite (Solidex, Shofu Inc., Japan) were measured after 1-day storage followed by 5,000 thermal cycles. The SBSs between Solidex and the primer-treated metals which were incubated in air at 50°C for 2 months were further measured. Results showed that the SBSs [mean (SD)] of all metal adherends treated with primer DT-PA-1 (5.0 wt% 10-MDDT, 1.0 wt% 6-MHPA) ranged between 31.2 (5.2) and 34.5 (5.8) MPa. The SBSs of the primer-treated metals did not degrade after 2-month incubation at 50°C. Therefore, a combined primer application consisting of a dithiooctanoate monomer and a phosphonic acid monomer provided efficacious bonding to Au as well as precious and non-precious metal alloys.

  4. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.

    PubMed

    Morf, Leo S; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Di Lorenzo, Fabian; Böni, Daniel

    2013-03-01

    In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.

  5. Deselenization and detellurization of precious-metal ore concentrates by swelling oxidizing roasting and successive alkaline leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-yuan; Zheng, Ya-jie; Peng, Guo-min

    2017-02-01

    A new technique of swelling oxidizing roasting and alkaline leaching was proposed for deselenization and detellurization of precious-metal ore concentrates. Alkali-metal and alkaline-earth-metal chlorides and carbonates were preliminarily selected as swelling agents. The roasting removal rate and alkaline leaching rate of selenium and tellurium were investigated, and NaCl was selected as an appropriate swelling agent. Furthermore, the effects of various factors on the selenium gasification rate and leaching rate of selenium and tellurium were investigated. The results show that the selenium gasification rate reaches 88.41% after swelling oxidizing roasting for 2 h at 510°C using an NaCl dosage coefficient of 100 and a sulfuric acid dosage coefficient of 1.3; the amorphous elemental tellurium is completely transformed into TiO2. The roasted product is subjected to alkaline leaching using a 100 g/L NaOH solution, which results in a selenium leaching rate of 10.51%, a total selenium removal rate of 98.92%, and a tellurium leaching rate of 97.64%. In the alkaline leaching residue, the contents of selenium, tellurium, gold, platinum, and palladium are 0.7825%, 5.492%, 8.333%, 0.2587%, and 1.113%, respectively; the precious metals are enriched approximately sixfold.

  6. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-07

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.

  7. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems.

    PubMed

    Tylus, Urszula; Jia, Qingying; Strickland, Kara; Ramaswamy, Nagappan; Serov, Alexey; Atanassov, Plamen; Mukerjee, Sanjeev

    2014-05-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e(-) × 2e(-) mechanism in alkaline media on the primary Fe(2+)-N4 centers and the dual-site 2e(-) × 2e(-) mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.

  8. Precious-metal deposits in relation to volcanic and sedimentary stratigraphy: Examples from the Oregon Plateau, U. S. A

    SciTech Connect

    Cummings, M.L. )

    1990-06-01

    Miocene to Recent volcanic and sedimentary rocks of the Oregon Plateau host precious-metal deposits. The deposits, formed within an extensional tectonic setting, illustrate the relation among volcanic and sedimentary stratigraphy, regional structural development, and hydrothermal systems. Gold deposits hosted in felsic volcaniclastic sediments in the Owyhee region formed during or shortly after sedimentation. Uniformly silicified tuffaceous mudstone and siltstone interbedded with siliceous and sulfide-rich sediments and bedded hydrathermal breccia, hydrothermal explosion craters infilled by breccia fragments, and stacked buried sinter deposits attest to mineralization near the time of sedimentation. The regional structures that controlled the distribution of volcanic activity and location of sedimentary basins changed through time. In the middle Miocene, basin-and range faults controlled the location of basalt and rhyolitic volcanism and fluvial and lacustrine basins. In the late Miocene and Pliocene, faults parallel to those of the Western Snake River Plain are more prominent and interfingering volcanic and volcaniclastic sedimentary deposits characterize the stratigraphic section. Fault-controlled mercury mineralization in quartz within opalized high-silica rhyolite flow-domes produces an obscure precious-metal prospect at Glass Buttes in the High Lava Plains. Glassy high-silica rhyolite flow-domes were erupted between 5.8 and 5.0 ma but alteration and mineralization occur along faults of the Brothers fault zone that cut the high-silica rhyolite sequence. Younger porphyritic rhyolite to dacite domes, spines, and intrusions controlled by faults of the Brothers fault zone are believed to be the heat source for the hydrothermal system. Precious-metal mineralization may occur in the subsurface where hydrothermal solutions boiled beneath the paleowater table.

  9. Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas

    NASA Astrophysics Data System (ADS)

    Hamlyn, Paul R.; Keays, Reid R.; Cameron, Warrington E.; Crawford, Anthony J.; Waldron, Helen M.

    1985-08-01

    Boninites and related magnesian low-Ti magmas are generally regarded as partial melts of a moderately to severely depleted peridotite source. Incompatible lithophile element abundances indicate that this source was variably enriched in LREE, Zr, Sr, Ba and alkalis by some mantle metasomatic process. Low-Ti lavas from the Bonin-Mariana arc system, Cape Vogel, New Caledonia, Cyprus, Newfoundland and SE Australia have been analysed for Pd, Ir, Au, Cu, S and Se. Comparison of fresh glassy material with variably altered samples suggests sporadic loss of Au and Cu and essentially inert behaviour for Pd, Ir and Se during seawater and subsequent alteration. They are uniformly enriched in Pd (mean 15 ppb) and depleted in Cu (mean 20 ppm), S (mean < 54 ppm) and Se (mean 53 ppb) compared to average MORB (<0.8 ppb Pd, 72 ppm Cu, 800 ppm S and 196 ppb Se) and exhibit incompatible-like behaviour for these elements and Au. The data are compatible with fractionation of the chalcophile elements during multi-stage mantle melting. Primary MORB liquids are S-saturated in their mantle source and an immiscible sulfide component is retained in the mantle residue. This results in the preferential removal of metals having low DS/L- values (base metals) and concentration of those metals with high DS/L values (precious metals) in the residual mantle sulfide fraction. Subsequent remelting of this refractory source produces S-deficient precious metal-enriched magmas, as exemplified by boninites. The absence of correlation between incompatible lithophile element enrichment and chalcophile element abundances suggests that the latter were not added to the source during mantle metasomatism. The constraints imposed by the nature of the source region result in two fundamentally contrasting patterns of behaviour for exclusively chalcophile elements. Magmas generated in mildly depleted to undepleted source regions by low to moderate degrees of partial melting (e.g. MORB) are S-saturated and become

  10. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    SciTech Connect

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  11. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-04-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In

  12. Methodology for the design of accelerated stress tests for non-precious metal catalysts in fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Sharabi, Ronit; Wijsboom, Yair Haim; Borchtchoukova, Nino; Finkelshtain, Gennadi; Elbaz, Lior

    2016-12-01

    In this work we propose systematic methods for testing non-precious group metal catalysts and support degradation alkaline fuel cell cathodes. In this case study, we used a cathode composed of a pyrolyzed non-precious metal catalyst (NPMC) on activated carbon. The vulnerabilities of the cathode components were studied in order to develop the methodology and design an accelerated stress test (AST) for NPMC-based cathode in alkaline environment. Cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were used to characterize the electrochemical behavior of the cathode and to follow the changes that occur as a result of exposing the cathodes to extreme operating conditions. Rotating ring disk electrode (RRDE) was used to study the cathodes kinetics; Raman spectroscopy and X-ray fluorescence (XRF) were used to study the structural changes in the electrode surface as well as depletion of the catalysts' active sites from the electrode. The changes in the composition of the electrode and catalyst were detected using X-ray diffraction (XRD). For the first time, we show that NPMC degrade rapidly at low operating potentials whereas the support degrades at high operating potentials and developed a tailor-made AST to take these into account.

  13. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    PubMed

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals.

  14. Bioreduction of Precious Metals by Microorganism: Efficient Gold@N-Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Zhou, Weijia; Xiong, Tanli; Shi, Chaohong; Zhou, Jian; Zhou, Kai; Zhu, Nengwu; Li, Ligui; Tang, Zhenghua; Chen, Shaowei

    2016-07-11

    The uptake of precious metals from electronic waste is of environmental significance and potential commercial value. A facile bioreductive synthesis is described for Au nanoparticles (ca. 20 nm) supported on N-doped carbon (Au@NC), which was derived from Au/Pycnoporus sanguineus cells. The interface and charge transport between Au and N-doped carbon were confirmed by HRTEM and XPS. Au@NC was employed as an electrocatalyst for the hydrogen evolution reaction (HER), exhibiting a small onset potential of -54.1 mV (vs. RHE), a Tafel slope of 76.8 mV dec(-1) , as well as robust stability in acidic medium. Au@NC is a multifunctional electrocatalyst, which demonstrates high catalytic activity in the oxygen reduction reaction (ORR), as evidenced by an onset potential of +0.97 V, excellent tolerance toward methanol, and long-term stability. This work exemplifies dual recovery of precious Au and fabrication of multifunctional electrocatalysts in an environmentally benign and application-oriented manner.

  15. Nuclear fuel and precious-metal occurrences in Precambrian rocks of southeast Wyoming

    SciTech Connect

    Graff, P.

    1986-08-01

    Studies done on Precambrian metasediments in southeast Wyoming show the occurrence of quartz-pebble conglomerates containing subeconomic amounts of uranium and thorium. These conglomerates were marginal deposits in the late 1970s when uranium prices reached $50/lb. Fuel minerals occur in silicate phases and complicate milling operations. Because of the additional cost of processing and underground mining, no attempt to develop these resources was made. Additional studies show a favorable comparison of the rocks in Wyoming to the auriferous Witwatersrand section of South Africa. Exploration for gold in the Wyoming conglomerates has been done in a preliminary manner, but assay values to 10 ppm are reported. Both fuel minerals and gold are deposited as fossil placers by fluvial systems operating in an anoxic environment. Lag gravel and meander deposits contain heavy-mineral suites formed of coffinite, pyrite, thorite, gold, and uraninite. Available studies have not considered producing fuel and precious minerals as coproducts of surface mining methods.

  16. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts

    PubMed Central

    Malko, Daniel; Kucernak, Anthony; Lopes, Thiago

    2016-01-01

    The economic viability of low temperature fuel cells as clean energy devices is enhanced by the development of inexpensive oxygen reduction reaction catalysts. Heat treated iron and nitrogen containing carbon based materials (Fe–N/C) have shown potential to replace expensive precious metals. Although significant improvements have recently been made, their activity and durability is still unsatisfactory. The further development and a rational design of these materials has stalled due to the lack of an in situ methodology to easily probe and quantify the active site. Here we demonstrate a protocol that allows the quantification of active centres, which operate under acidic conditions, by means of nitrite adsorption followed by reductive stripping, and show direct correlation to the catalytic activity. The method is demonstrated for two differently prepared materials. This approach may allow researchers to easily assess the active site density and turnover frequency of Fe–N/C catalysts. PMID:27796287

  17. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Kucernak, Anthony; Lopes, Thiago

    2016-10-01

    The economic viability of low temperature fuel cells as clean energy devices is enhanced by the development of inexpensive oxygen reduction reaction catalysts. Heat treated iron and nitrogen containing carbon based materials (Fe-N/C) have shown potential to replace expensive precious metals. Although significant improvements have recently been made, their activity and durability is still unsatisfactory. The further development and a rational design of these materials has stalled due to the lack of an in situ methodology to easily probe and quantify the active site. Here we demonstrate a protocol that allows the quantification of active centres, which operate under acidic conditions, by means of nitrite adsorption followed by reductive stripping, and show direct correlation to the catalytic activity. The method is demonstrated for two differently prepared materials. This approach may allow researchers to easily assess the active site density and turnover frequency of Fe-N/C catalysts.

  18. Manganese Oxide Nanorod-Decorated Mesoporous ZSM-5 Composite as a Precious-Metal-Free Electrode Catalyst for Oxygen Reduction.

    PubMed

    Cui, Xiangzhi; Hua, Zile; Chen, Lisong; Zhang, Xiaohua; Chen, Hangrong; Shi, Jianlin

    2016-05-10

    A precious-metal-free cathode catalyst, MnO2 nanorod-decorated mesoporous ZSM-5 zeolite nanocomposite (MnO2 / m-ZSM-5), has been successfully synthesized by a hydrothermal and electrostatic interaction approach for efficient electrochemical catalysis of the oxygen reduction reaction (ORR). The active MnOOH species, that is, Mn(4+) /Mn(3+) redox couple and Brønsted acid sites on the mesoporous ZSM-5 matrix facilitate an approximately 4 e(-) process for the catalysis of the ORR comparable to commercial 20 wt % Pt/C. Stable electrocatalytic activity with 90 % current retention after 5000 cycles, and more importantly, excellent methanol tolerance is observed. Synergetic catalytic effects between the MnO2 nanorods and the mesoporous ZSM-5 matrix are proposed to account for the high electrochemical catalytic performance.

  19. Oxidation of Aliphatic Alcohols by Using Precious Metals Supported on Hydrotalcite under Solvent- and Base-Free Conditions.

    PubMed

    He, Yufei; Feng, Junting; Brett, Gemma L; Liu, Yanan; Miedziak, Peter J; Edwards, Jennifer K; Knight, David W; Li, Dianqing; Hutchings, Graham J

    2015-10-12

    Precious metal nanoparticles supported on magnesium-aluminum hydrotalcite (HT), TiO2 , and MgO were prepared by sol immobilization and assessed for the catalytic oxidation of octanol, which is a relatively unreactive aliphatic alcohol, with molecular oxygen as the oxidant under solvent- and base-free conditions. Compared with the TiO2 - and MgO-supported catalysts, platinum HT gave the highest activity and selectivity towards the aldehyde. The turnover number achieved for the platinum HT catalyst was >3700 after 180 min under mild reaction conditions. Moreover, the results for the oxidation of different substrates indicate that a specific interaction of octanal with the platinum HT catalyst could lead to deactivation of the catalyst.

  20. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    SciTech Connect

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-11-16

    Rhodium is the most extensively used metal in catalytic applications; it occurs in mixed ores with platinum group metals (PGMs) in the earth’s crust in low concentrations (0.4 - 10 ppb). It is resistant to aerial oxidation and insoluble in all acids, including aqua regia, making classical purification methods time-consuming and inefficient. To ensure adequate purity, several precipitation and dissolution steps are necessary during separation. Low abundance, high demand, and extensive processing make rhodium the most expensive of all PGMs. From alternative sources, rhodium is also produced in sufficient quantities (0.47 kg per ton initial heavy metal (tIHM)) during the fission of U-235 in nuclear reactors along with other PGMs (i.e., Ag, Pd, Ru). A typical power water reactor operating with UO2 fuel after cooling can generate PGMs in quantities greater than found in the earth’s crust (0.5-2 kg/tIHM). This currently untapped supply of PGMs has the potential to yield $5,000-30,000/tIHM. It is estimated that by the year 2030, the amount of rhodium generated in reactors could exceed natural reserves. Typical SNF processing removes the heavier lanthanides and actinides and can leave PGMs at ambient temperatures in aqueous acidic (Cl⁻ or NO3⁻; pH < 1) solutions at various activities. While the retrieval of these precious metals from SNF would minimize waste generation and improve resource utilization, it has been difficult to achieve thus far. Two general strategies have been utilized to extract Rh(III) from chloride media: ion pairing and coordination complexation. Ion pairing mechanisms have been studied primarily with the tertiary and quaternary amines. Additionally, mixed mechanism extractions have been observed in which ion pairing is the initial mechanism, and longer extraction equilibrium time generated coordination complexes. Very few coordination complexation extraction ligands have been studied. This project approached this problem

  1. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify...

  2. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify...

  3. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify...

  4. 48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Offeror shall cite the type (silver, gold, platinum, palladium, iridium, rhodium, and ruthenium) and... metal* Quantity Deliverable item (NSN and nomenclature)!!rs *If platinum or palladium, specify...

  5. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).

    PubMed

    Newete, Solomon W; Erasmus, Barend F N; Weiersbye, Isabel M; Byrne, Marcus J

    2016-10-01

    The aim of this study was to investigate the overall root/shoot allocation of metal contaminants, the amount of metal removal by absorption and adsorption within or on the external root surfaces, the dose-response of water hyacinth metal uptake, and phytotoxicity. This was examined in a single-metal tub trial, using arsenic (As), gold (Au), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), uranium (U), and zinc (Zn). Iron and Mn were also used in low-, medium-, and high-concentration treatments to test their dose effect on water hyacinth's metal uptake. Water hyacinth was generally tolerant to metallotoxicity, except for Cu and Hg. Over 80 % of the total amount of metals removed was accumulated in the roots, of which 30-52 % was adsorbed onto the root surfaces. Furthermore, 73-98 % of the total metal assimilation by water hyacinth was located in the roots. The bioconcentration factor (BCF) of Cu, Hg, Au, and Zn exceeded the recommended index of 1000, which is used in selection of phytoremediating plants, but those of U, As, and Mn did not. Nevertheless, the BCF for Mn increased with the increase of Mn concentration in water. This suggests that the use of BCF index alone, without the consideration of plant biomass and metal concentration in water, is inadequate to determine the potential of plants for phytoremediation accurately. Thus, this study confirms that water hyacinth holds potential for a broad spectrum of phytoremediation roles. However, knowing whether these metals are adsorbed on or assimilated within the plant tissues as well as knowing their allocation between roots and shoots will inform decisions how to re-treat biomass for metal recovery, or the mode of biomass reduction for safe disposal after phytoremediation.

  6. Properties of low power spark ablation in aqueous solution for dissolution of precious metals and alloys

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.

    2006-07-01

    Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).

  7. Technological features of metal-ceramic prosthesis frameworks manufactured from domestic alloys of precious and base metals.

    PubMed

    Parunov, V A; Yurkovets, P V; Lebedenko, I Yu

    2016-01-01

    The aim of the study was to examine changes in physical and mechanical properties of dental alloys depending of the initial composition at re-casting. Russianc precious alloys: Plagodent (AuPtPd) and Palladent (PdAu) and base alloys: Vitiriy-N (NiCrMo) and Vitiriy-C (CoCrMo) were used as study samples, which were divided in three groups: a primary casting from the granules; 50% of re-casting; 100% of re-casting. We investigated the yield strength in bending, coefficient of thermal expansion and hardness. Changing in the composition of the alloys has led to changes of all physical and mechanical properties.

  8. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu

    2017-03-01

    The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.

  9. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central

    2015-01-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  10. Empirical Approach for Estimating Reference Material Heterogeneity and Sample Minimum Test Portion Mass for "Nuggety" Precious Metals (Au, Pd, Ir, Pt, Ru).

    PubMed

    Bédard, L Paul; Esbensen, Kim H; Barnes, Sarah-Jane

    2016-04-05

    Quantification of precious metal content is important for studies of ore deposits, basalt petrogenesis, and precious metal geology, mineralization, mining, and processing. However, accurate determination of metal concentrations can be compromised by microheterogeneity commonly referred to as the "nugget effect", i.e., spatially significant variations in the distribution of precious metal minerals at the scale of instrumental analytical beam footprints. There are few studies focused on the spatial distribution of such minerals and its detrimental effects on quantification of the existing suite of relevant reference materials (RM). In order to assess the nugget effect in RM, pressed powder pellets of MASS-1, MASS-3, WMS-1a, WMS-1, and KPT-1 (dominantly sulfides) as well as CHR-Pt+ and CHR-Bkg (chromite-bearing) were mapped with micro-XRF. The number of verified nuggets observed was used to recalculate an effective concentration of precious metals for the analytical aliquot, allowing for an empirical estimate of a minimum mass test portion. MASS-1, MASS-3, and WMS-1a did not contain any nuggets; therefore, a convenient small test portion could be used here (<0.1 g), while CHR-Pt+ would require 0.125 g and WMS-1 would need 23 g to be representative. For CHR-Bkg and KPT-1, the minimum test portion mass would have to be ∼80 and ∼342 g, respectively. Minimum test portions masses may have to be greater still in order to provide detectable analytical signals. Procedures for counteracting the detrimental manifestations of microheterogeneity are presented. It is imperative that both RM and pristine samples are treated in exactly the same way in the laboratory, lest powders having an unknown nugget status (in effect all field samples for analysis) can not be documented to be representing a safe minimum mass basis.

  11. Selenium, tellurium and precious metal mineralogy in Uchalinsk copper-zinc-pyritic district, the Urals

    NASA Astrophysics Data System (ADS)

    Vikentev, I.

    2016-04-01

    During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.

  12. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    NASA Astrophysics Data System (ADS)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and

  13. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts

    SciTech Connect

    Xie, Jiahan; Yin, Kehua; Serov, Alexey; Artyushkova, Kateryna; Pham, Hien N.; Sang, Xiahan; Unocic, Raymond R.; Atanassov, Plamen; Datye, Abhaya K.; Davis, Robert J.

    2016-12-15

    Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials for alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.

  14. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts

    DOE PAGES

    Xie, Jiahan; Yin, Kehua; Serov, Alexey; ...

    2016-12-15

    Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials for alcohol oxidationmore » catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.« less

  15. The Cuenca de Oro, a Pull-Apart Basin Hosting Precious Metal Deposits Along the Re- Activated Seri-Tahue Terrane Boundary

    NASA Astrophysics Data System (ADS)

    Feinstein, M. N.; Goodell, P. C.

    2007-05-01

    At the intersection of Chihuahua, Sonora, and Sinaloa a boundary between the Seri and Tahue terranes has been hypothesized, and further refined as the Sinforosa Lineament. Near the western termination of the Sinforosa Lineament lies a topographic basin. Part of this study will be to better define this pull-apart basin, informally named the Cuenca de Oro due to its numerous precious metal deposits. The intention of this study is to test that the Seri-Tahue terrane boundary was re-energized during the beginning of extension related to the opening of the Sea of Cortez (~30ma). It is probable that the precious metal occurrences are related to the initiation of extension(alunite at El Sauzal has been dated at ~30ma). Five field excursions totaling sixty days of field work have been completed and a first draft of a regional geologic map has been made. Large shear zones support the hypothesis of a pull-apart basin. A study of the alteration and lineament intersections determine the location of many known precious metal deposits. By creating multiple cross-sections the basin can be modeled in three dimensions and a tectonic history can be interpreted. This study will present a structural analysis of the Cuenca de Oro and develop a tectonic history related temporally with the epithermal mineralization events.

  16. Highly stable precious metal-free cathode catalyst for fuel cell application

    NASA Astrophysics Data System (ADS)

    Serov, Alexey; Workman, Michael J.; Artyushkova, Kateryna; Atanassov, Plamen; McCool, Geoffrey; McKinney, Sam; Romero, Henry; Halevi, Barr; Stephenson, Thomas

    2016-09-01

    A platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) catalyst engineered for stability has been synthesized using the sacrificial support method (SSM). This catalyst was comprehensively characterized by physiochemical analyses and tested for performance and durability in fuel cell membrane electrode assemblies (MEAs). This catalyst, belonging to the family of Fe-N-C materials, is easily scalable and can be manufactured in batches up to 200 g. The fuel cell durability tests were performed in a single cell configuration at realistic operating conditions of 0.65 V, 1.25 atmgauge air, and 90% RH for 100 h. In-depth characterization of surface chemistry and morphology of the catalyst layer before and after durability tests were performed. The failure modes of the PGM-free electrodes were derived from structure-to-property correlations. It is suggested that under constant voltage operation, the performance loss results from degradation of the electrode pore structure, while under carbon corrosion accelerated test protocols the failure mode is catalyst corrosion.

  17. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, clark county, Nevada

    USGS Publications Warehouse

    Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ?? precious metal-platinum group element (PGE) deposits, and gold ?? silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ??500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ??160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs-Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U-were also recovered. Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ?? Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (??34S values range from 2.5-13%), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ?? Cu ?? Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ?? precious metal- PGE and gold ?? silver deposits including fine-grained quartz replacement of carbonate minerals in

  18. Maps showing mineral resource assessment for vein and replacement deposits of base and precious metals, barite, and fluorspar, Dillon 1 degree by 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Pearson, R.C.; Trautwein, C.M.; Berger, B.R.; Hanna, W.F.; Jenson, S.K.; Loen, J.S.; Moll, S.H.; Purdy, T.L.; Rowan, L.C.; Ruppel, E.T.; Segal, D.B.

    1992-01-01

    This report is one of several that assess the mineral resources in the Dillon quadrangle. For the purpose of the assessment, the deposits that are known in the quadrangle, or suspected to be present from a knowledge of the geologic setting, have been grouped into 30 deposit types on the basis of the mineralogy or commodity in the ore and the structural or depositional setting of the deposit. The emphasis in these assessment reports is on metallic minerals, but some important nonmetallic minerals are also considered. Fossil fuels are beyond the scope of this investigation, phosphate and uranium have been investigated previously (Swanson, 1970; Wodzicki and Krason, 1981 ), and certain nonmetallic minerals, including bulk commodities such as sand and gravel, are in large supply and thus are not considered. The mineral resource assessment discussed in this report concentrates on a single deposit type (of the total of 30 types) that we call "vein and replacement deposits of base and precious metals." Base and precious metals produced from such deposits are copper, lead, zinc, gold, and silver. Vein deposits of barite and fluorspar are also discussed, but because they seem to be of minor importance, they are treated briefly. Vein and replacement deposits of base and precious metals are classified as a single deposit type rather than as numerous possible subordinate types that might be distinguished on the basis of mineralogy, metal content, or other factors, because the characteristics of the ore, the ore bodies, and the structural setting are not sufficiently well known to yield a consistent detailed classification for the entire quadrangle. Furthermore, the criteria used here to explain the localization of deposits are too general to allow discrimination among subordinate types at a scale of 1 :250,000 or smaller. In assessing mineral resources, we have adopted a general philosophy similar to that of Harrison and others ( 1986). We attempt to identify parts of the

  19. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries.

    PubMed

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-03-21

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.

  20. Mineral Deposit Data for Epigenetic Base- and Precious-metal and Uranium-thorium Deposits in South-central and Southwestern Montana and Southern and Central Idaho

    USGS Publications Warehouse

    Klein, T.L.

    2004-01-01

    Metal deposits spatially associated with the Cretaceous Boulder and Idaho batholiths of southwestern Montana and southern and central Idaho have been exploited since the early 1860s. Au was first discovered in placer deposits; exploitation of vein deposits in bedrock soon followed. In 1865, high-grade Ag vein deposits were discovered and remained economically important until the 1890s. Early high-grade deposits of Au, Ag and Pb were found in the weathered portions of the veins systems. As mining progressed to deeper levels, Ag and Pb grades diminished. Exploration for and development of these vein deposits in this area have continued until the present. A majority of these base- and precious-metal vein deposits are classified as polymetallic veins (PMV) and polymetallic carbonate-replacement (PMR) deposits in this compilation. Porphyry Cu and Mo, epithermal (Au, Ag, Hg and Sb), base- and precious-metal and W skarn, W vein, and U and Th vein deposits are also common in this area. The world-class Butte Cu porphyry and the Butte high-sulfidation Cu vein deposits are in this study area. PMV and PMR deposits are the most numerous in the region and constitute about 85% of the deposit records compiled. Several types of syngenetic/diagenetic sulfide mineral deposits in rocks of the Belt Supergroup or their equivalents are common in the region and they have been the source of a substantial metal production over the last century. These syngenetic deposits and their metamorphosed/structurally remobilized equivalents were not included in this database; therefore, deposits in the Idaho portion of the Coeur d'Alene district and the Idaho Cobalt belt, for example, have not been included because many of them are believed to be of this type.

  1. Recovery of precious metals from low-grade automobile shredder residue: A novel approach for the recovery of nanozero-valent copper particles.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2016-02-01

    The presence of precious metals (PMs) in low-grade automobile shredder residue (ASR) makes it attractive for recycling. This study investigated the leaching and recovery characteristics of two PMs (Cu and Ag) and two heavy metals (Mn and Co) from ASR. The effects of H2O2, leaching temperature, liquid to solid (L/S) ratio, and particle size on metal leaching were determined in an aqueous solution of 0.5M nitric acid. The metal leaching rate was increased with increasing nitric acid concentration, amount of H2O2, L/S ratio and temperature. The leaching kinetics was analyzed by using a second-order reaction model. In the analysis of leaching kinetics, the metal leaching data were well fitted (R(2)⩾0.99) with the second-order reaction model. The activation energy (kJ/mol) for metal leaching was 39.6 for Cu, 17.1 for Ag, 17.3 for Mn and 29.2 for Co. Metal recovery was carried out by fractional precipitation with the addition of advanced Fenton's regent. Metal recovery efficiency was increased to 99.95% for Cu, 99.8% for Mn, 90.0% for Ag and 96.46% for Co with the advanced Fenton's regent. In particular, a novel finding of the PM recovery is that Cu can also be recovered directly from the leachate of ASR in the form of zero-valent copper (ZVC) nanoparticles (NPs). Hydrometallurgical recovery of the metals from ASR using nitric acid is highly efficient.

  2. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-02-01

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a

  3. Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures

    NASA Astrophysics Data System (ADS)

    Guo, Chao-Zhong; Liao, Wen-Li; Chen, Chang-Guo

    2014-12-01

    The development of less expensive, more active, and more stable catalyst substitute for Pt/C catalysts for oxygen reduction has recently become a hot topic. In this paper, we report a new strategy to design nitrogen-doped non-precious metal catalysts via the copyrolysis of metallic iron, soybean biomass, and carbon support at high temperatures. The results show that the nitrogen in electrocatalysts is mainly in the form of pyridinic and pyrrolic N species. The metallic Fe in the precursor can facilitate the transformation of quaternary N with a three-dimensional structure to planar pyridinic and pyrrolic N inside carbon matrix during pyrolysis, thereby improving the electrocatalytic activity of the prepared catalysts. We suggest that the planar N species may be the catalytically active center structures and may contribute to the enhancement of oxygen reduction reaction performance in an alkaline electrolyte. The prepared catalyst has superior tolerance against methanol crossover effect and outstanding stability compared with commercial Pt/C catalysts.

  4. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Pei, Katie; Ozaki, Jun-ichi; Kishimoto, Takeaki; Imashiro, Yasuo

    2015-07-01

    A major hurdle to the widespread commercialization of proton exchange membrane fuel cells (PEMFCs) is the high loading of noble metal (Pt/Pt-alloy) catalyst at the cathode, which is necessary to facilitate the inherently sluggish oxygen reduction reaction (ORR). To eliminate the use of Pt/Pt-alloy catalysts at the cathode of PEMFCs and thus significantly reduce the cost, extensive research on non-precious metal catalysts (NPMCs) has been carried out over the past decade. Major advances in improving the ORR activity of NPMCs, particularly Fe- and Co-based NPMCs, have elevated these materials to a level at which they can start to be considered as potential alternatives to Pt/Pt-alloy catalysts. Unfortunately, the stability (performance loss following galvanostatic experiments) of these materials is currently unacceptably low and the durability (performance loss following voltage cycling) remains uncertain. The three primary mechanisms of instability are: (a) Leaching of the metal site, (b) Oxidative attack by H2O2, and (c) Protonation followed by possible anion adsorption of the active site. While (a) has largely been solved, further work is required to understand and prevent losses from (b) and/or (c). Thus, this review is focused on historical progress in (and possible future strategies for) improving the stability/durability of NPMCs.

  5. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew

    2016-01-01

    Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three

  6. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential.

    PubMed

    Charles, Rhys Gareth; Douglas, Peter; Hallin, Ingrid Liv; Matthews, Ian; Liversage, Gareth

    2017-02-01

    Precious metal (PM) and copper content of dynamic-RAM modules placed on the market during 1991-2008 has been analysed by AAS following comminution and acid digestion. Linear regression analysis of compositional data ordered according to sample chronology was used to identify historic temporal trends in module composition resulting from changes in manufacturing practices, and to project future trends for use in more accurate assessment of future recycling potential. DRAM was found to be 'high grade' waste with: stable levels of gold and silver over time; 80% reduction in palladium content during 1991-2008; and 0.23g/module/year increase in copper content with a 75% projected increase from 2008 by 2020. The accuracy of future recycling potential projections for WEEE using current methods based on static compositional data from current devices is questionable due to likely changes in future device composition. The impact on recycling potential projections of waste laptops, smart phones, cell phones and tablets arising in Europe in 2020 resulting from a 75% increase in copper content is considered against existing projections using static compositional data. The results highlight that failing to consider temporal variations in PM content may result in significant discrepancies between projections and future recycling potential.

  7. Non-Precious Metals Catalyze Formal [4 + 2] Cycloaddition Reactions of 1,2-Diazines and Siloxyalkynes under Ambient Conditions

    PubMed Central

    2015-01-01

    Copper(I) and nickel(0) complexes catalyze the formal [4 + 2] cycloaddition reactions of 1,2-diazines and siloxyalkynes, a reaction hitherto best catalyzed by silver salts. These catalysts based on earth abundant metals are not only competent, but the copper catalyst, in particular, promotes cycloadditions of pyrido[2,3-d]pyridazine and pyrido[3,4-d]pyridazine, enabling a new synthesis of quinoline and isoquinoline derivatives, as well as the formal [2 + 2] cycloaddition reaction of cyclohexenone with a siloxyalkyne. PMID:24911346

  8. Geology and K-Ar geochronology of the Paradise Peak Mine and the relationship of pre-Basin and Range extension to Early Miocene precious metal mineralization in west-central Nevada

    USGS Publications Warehouse

    John, D.A.; Thomason, R.E.; McKee, E.H.

    1989-01-01

    The Paradise Peak mine is a major gold-silver-mercury deposit located in the southwestern part of the Paradise Range near the eastern edge of the Walker Lane in the western Great Basin, Nevada. Regional stratigraphic relations and K-Ar ages indicate that volcanism changed from silicic ash-flow tuffs to intermediate lavas at about 20 to 19 Ma. Regionally extensive angular unconformities indicate that a period of "pre-Basin and Range' crustal extension occurred between about 22 to 19 Ma. This extension was penecontemporaneous with the shift in the style of volcanism and with gold-silver mineralization in the Paradise Peak mine and in the Goldfield and Tonopah districts of western Nevada. The close temporal and spatial relationships of precious metal mineralization with pre-Basin and Range extension suggest that extension was a major factor in the genesis of early Miocene precious metal deposits in the western Great Basin. -from Authors

  9. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal

  10. Homogeneous deposition-assisted synthesis of iron-nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Jin, Xiao-Jun; Dionysiou, Dionysios D.; Liu, Hong; Huang, Yu-Ming

    2015-03-01

    This work proposed a novel strategy for synthesizing highly efficient non-precious metal oxygen reduction reaction (ORR) electrocatalysts. Fe complexes were homogeneously deposited (HD) on graphene oxide through in situ hydrolysis of urea, followed by two-step pyrolysis under Ar and NH3 atmospheres, resulting in formation of Fe- and N-functionalized graphene (HD-FeN/G). The morphology, crystalline structure and elemental composition of HD-FeN/G were characterized. ORR activity was evaluated by using a rotary disk electrode (RDE) electrochemical system. HD improved the loading and distribution of the Fe-Nx composites on graphene. The ORR activity of the as-prepared HD-FeN/G in neutral medium was comparable to that of the state-of-the-art commercial Pt/C and significantly superior to a FeN/G counterpart produced via traditional approach. The ORR electron transfer number of HD-FeN/G was as high as 3.83 ± 0.08, which suggested that ORR catalysis proceeds through a four-electron pathway. HD-FeN/G was used as a cathodic electrocatalyst in microbial fuel cells (MFCs), and the resultant HD-FeN/G-MFC showed comparable voltage output and maximum power density to those of Pt/C-MFC. The HD-FeN/G-MFC achieved a maximum power density of 885 mW m-2, which was much higher than that of FeN/G-MFC (708 mW m-2). These findings demonstrate that HD-FeN/G produced through the novel synthesis strategy proposed in this work would be a good candidate as cathodic electrocatalyst in MFCs.

  11. Our Hidden Past: Precious Metals

    SciTech Connect

    Smith, Ray; Larson, Clarence E.; Banic, George M.; Keim, Chris P.

    2017-01-01

    Y-12's calutrons required electrical conductor material, but during the war, copper was in short supply. The U.S. Treasury loaned Y-12 14,700 tons of silver, valued at $600M. All but 67 tons was returned after the war, and those 67 tons remained in Building 9731 until 1970 for use in separating isotopes for medical research.

  12. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  13. Secondary precious metal enrichment by steam-heated fluids in the Crofoot-Lewis hot spring gold-silver deposit and relation to paleoclimate

    USGS Publications Warehouse

    Ebert, S.W.; Rye, R.O.

    1997-01-01

    controlled largely by basin and range fractures and a high geothermal gradient with H2S for Au complexing derived from organic matter in basin sediments. A wet climate resulted in the formation of a large inland lake which provided abundant recharge water for the hydrothermal system. A fluctuating water table controlled by changing climatic conditions enabled steam-heated acid sulfate fluids to overprint lower grade mineralization resulting in ore-grade precious metal enrichment.

  14. Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.

    SciTech Connect

    Ruby, Douglas Scott; Murphy, Brian; Meakin, David; Dominguez, Jason; Hacke, Peter

    2008-08-01

    Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistance power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.

  15. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.

    PubMed

    Mabbett, Amanda N; Sanyahumbi, Douglas; Yong, Ping; Macaskie, Lynne E

    2006-02-01

    The complete and continuous reduction of 1 mM Cr(VI) to Cr(III) was achieved in a flow-through reactor using a novel bioinorganic catalyst ("MM-bio-Pd(0)"), which was produced by single-step reduction of platinum group metals (PGM) from industrial waste solution onto biomass of Desulfovibrio desulfuricans ATCC 29577. Two flow-through reactor systems were compared using both "MM-bioPd(0)" and chemically reduced Pd(0). Reactors containing the latter removed Cr(VI) for 1 week only at the expense of formate as the electron donor, whereas the former gave complete Cr(VI) removal for 3 months of continuous operation. Mass balance analysis showed 100% reduction of Cr(VI) to soluble Cr(III) in the bioreactor exit solution. With the use of electron paramagnetic resonance (EPR) no intermediate Cr(V) species could be detected. Pd(0) was biodeposited similarly using Escherichia coliMC4100 and "bio-Pd(0)". The latter was used to recover Pd(II) from two acidic industrial waste leachates to generate two types of "MM-bio-Pd(0)": "SI-bio-Pd(0)" and "SII-bio-Pd(0)", respectively. The biomaterial composition was comparable in both cases, and the catalytic activity was related inversely to the amount of chloride in the waste leachate from which it was derived.

  16. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific

    USGS Publications Warehouse

    Rytuba, J.J.; Miller, W.R.

    1990-01-01

    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  17. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system.

    PubMed

    Al-ShaikhAli, Anaam H; Jedidi, Abdesslem; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-08-21

    Methylcyclohexane (MCH)-toluene (TOL) chemical hydride cycles as hydrogen carrier systems are successful with the selective dehydrogenation of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  18. 3D textural evidence for the formation of ultra-high tenor precious metal bearing sulphide microdroplets in offset reefs: An extreme example from the Platinova Reef, Skaergaard Intrusion, Greenland

    NASA Astrophysics Data System (ADS)

    Holwell, David A.; Barnes, Stephen J.; Le Vaillant, Margaux; Keays, Reid R.; Fisher, Louise A.; Prasser, Richard

    2016-07-01

    The Platinova Reef in the Skaergaard Intrusion, east Greenland, is an example of a type of layered-intrusion-hosted, precious metal-enriched, stratiform, disseminated sulphide deposit referred to as "offset reefs". These typically show platinum-group element (PGE) enrichment immediately below a major increase in the abundance of Cu-rich sulphides, with a prominent peak in Au enrichment exactly at that transition between the PGE-rich and the Cu-sulphide-rich zones. The reasons for the relative sequence of offsets in metal peaks, and the occasionally very high metal tenors have been subject to great debate. Here we use an integrated approach of high-resolution X-ray computed tomography (HRXCT), SEM, synchrotron and desktop microbeam XRF mapping, and thin section petrography to comprehensively classify the textural relations of the precious metal-bearing sulphides of the Platinova Reef as an extreme end member example of an exceedingly high tenor offset deposit. Our results show that in the zones of PGE enrichment, precious metal minerals (PMMs) are intimately associated with Cu sulphide globules, mostly located at, or close to, silicate and oxide boundaries. The textures are identical in zones enriched in Pd and Au, and thus we do not see any evidence for different processes forming the different zones. The PMM:Cu sulphide ratio in each globule varies significantly but overall the size of the globules increases from the Pd-rich, through the Au-rich, and into the Cu zone, with a significant corresponding decrease in PM tenor. As such, this records a progression of exceedingly high tenor, microdroplets of sulphide, which progressively get larger up through the section, and decrease in tenor proportionally to their size. Cumulus droplets of Cu sulphide became enriched in metals, and were trapped in situ without significant transport from their point of nucleation. The transition to larger sulphides represents a change from sulphides nucleated and trapped in situ, to

  19. Use of urchin-like NixCo3-xO4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Manivasakan, Palanisamy; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-01

    Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X-ray diffraction patterns showed that the NixCo3-xO4 crystallized in a cubic spinel phase. The electrochemical performance of the catalysts was investigated using a conventional cyclic voltammetry technique. The electrocatalytic behaviour of the NixCo3-xO4 hierarchical nanostructures was compared with the behaviour of Co3O4 and Co0.33Ni0.67O. The synergistic behaviour of the Ni in the NixCo3-xO4 nanostructures was established with respect to the Ni content. NixCo3-xO4 hierarchical nanostructures show a better catalytic behaviour than Co3O4 and Co0.33Ni0.67O. Although the NixCo3-xO4 compositions all showed good catalytic behaviour, Ni1Co2O4 was identified as a superior bifunctional electrocatalyst for the oxygen reduction and methanol oxidation reactions in alkaline media. The effect of the Ni content on the electrocatalytic properties of the NixCo3-xO4 hierarchical nanostructures was clearly shown. The use of these electrocatalysts based on non-precious metals could have a commercial impact on the development of non-platinum electrocatalysts for application in AEM alkaline alcohol fuel cells.Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X

  20. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Arunchander, A.; Sahu, A. K.

    2016-07-01

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ~110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and

  1. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  2. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  3. Accumulation of the precious metals platinum, palladium and rhodium from automobile catalytic converters in Paratenuisentis ambiguus as compared with its fish host, Anguilla anguilla.

    PubMed

    Zimmermann, S; von Bohlen, A; Messerschmidt, J; Sures, B

    2005-03-01

    The platinum group metals (PGM) Pt, Pd and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars. As PGM accumulate in sediments of aquatic ecosystems, the study was focused on the uptake of the noble metals by European eels, Anguilla anguilla infected with the acanthocephalan Paratenuisentis ambiguus. Eels were exposed to ground catalytic converter material for six weeks. After exposure Pt and Pd were detected in the liver and kidney of the eels and in the parasites. Palladium was also found in fish muscle and intestine. No Rh uptake by the eel tissues and the parasites occurred. Paratenuisentis ambiguus contained the highest levels of both metals with 40 times higher Pt concentrations and four times higher Pd concentrations than the liver of its host. Due to its accumulation capacity for PGM, P. ambiguus can be applied as a sensitive accumulation indicator in field studies to assess the degree of environmental PGM contamination in aquatic ecosystems.

  4. Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M.

    2004-01-01

    Slag collected from smelter sites associated with historic base-metal mines contains elevated concentrations of trace elements such as Cu, Zn and Pb. Weathering of slag piles, many of which were deposited along stream banks, potentially may release these trace elements into the environment. Slags were sampled from the Ely and Elizabeth mines in the Vermont copper belt, from the copper Basin mining district at Ducktown, Tennessee and from the Clayton silver mine in the Bayhorse mining district, Idaho, in the USA. Primary phases in the slags include: olivine-group minerals, glass, spinels, sulfide minerals and native metals for Vermont samples; glass, sulfide minerals and native metals for the Ducktown sample; and olivine-group minerals, clinopyroxenes, spinels, sulfide minerals, native metals and other unidentified metallic compounds for Clayton slag. Olivine-group minerals and pyroxenes are dominantly fayalitic and hedenbergitic in composition, respectively and contain up to 1.25 wt.% ZnO. Spinel minerals range between magnetite and hercynite in composition and contain Zn (up to 2.07 wt.% ZnO), Ti (up to 4.25 wt.% TiO2) and Cr (up to 1.39 wt.% Cr2O3). Cobalt, Ni, Cu, As, Ag, Sb and Pb occur in the glass phase, sulfides, metallic phases and unidentified metallic compounds. Bulk slag trace-element chemistry shows that the metals of the Vermont and Tennessee slags are dominated by Cu (1900-13,500 mg/kg) and Zn (2310-10,200 mg/kg), whereas the Clayton slag is dominated by Pb (63,000 mg/kg), Zn (19,700 mg/kg), Cu (7550 mg/kg), As (555 mg/kg), Sn (363 mg/kg) and Ag (200 mg/kg). Laboratory-based leach tests indicate metals can be released under simulated natural conditions. Leachates from most slags were found to contain elevated concentrations of Cu and Zn (up to 1800 and 470 ??g/l, respectively), well in excess of the acute toxicity guidelines for aquatic life. For the Idaho slag, the concentration of Pb in the leachate (11,000 ??g/l) is also in excess of the acute

  5. Comparative anatomy of epithermal precious- and base-metal districts hosted by volcanic rocks: A talk presented at the GAC/MSC/GGU Joint Annual Meeting, May 11-13, 1983, Victoria, British Columbia

    USGS Publications Warehouse

    Heald-Wetlaufer, Pamela; Hayba, Daniel O.; Foley, Nora K.; Goss, J.A.

    1983-01-01

    In order to distinguish dissimilar from similar features of epithermal districts, lithotectonic, mineralogical and geochemical traits are compiled for 15 such districts. The districts occur in structurally complex settings associated with silicic to intermediate volcanics. Affiliation with subduction environments on a continental scale and caldera settings on a regional scale is common but is not demonstrable for all districts. Most deposits formed near the end of major volcanism, but some formed considerably later. Paleodepth to the top of the ore is 300-600m for most districts, although Au-rich districts appear to be shallower. The lateral extent of the ore zone is highly variable and far exceeds the limited vertical range (300-800m). Most ore was deposited from dominantly meteoric fluids ranging in temperature from 220°-290°C. Salinities ranged from 0-13 wt% NaCl equiv., and typical values were 1-3 wt%. Although noted for eight deposits, boiling is clearly associated with precious-metal deposition in only two deposits. Four districts, typified by Goldfield, Nev., are characterized by a highly sulfidized mineral assemblage, advanced argillic alteration, and ore deposition closely following emplacement of the host rock. The remaining eleven districts highlight a second, discrete type of deposit. They contain adularia, exhibit sericitic ± argillic alteration, and were mineralized significantly after emplacement of the host rock. The latter category includes two subgroups: Ag- and base-metal-rich deposits (e.g., Creede, Colo.), and Au-rich, base-metal-poor deposits (e.g., Round Mtn., Nev.).

  6. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota

    USGS Publications Warehouse

    Clark, Robert J.; Meier, A.L.; Riddle, G.; ,

    1990-01-01

    One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential

  7. Surface-Specific Nucleation and Deposition (?) of Heavy and Precious Metals on Minerals and Fibers Exposed to Fumarole Gas - FESEM/EDS Studies

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Poelt, P.; Reichmann, A.

    2004-12-01

    Mineral grains, glass fibers and diatoms had been exposed to the F0 fumarole at Vulcano (Italy) between 2001 and 2004. On quartz grains patches of Pb-(Tl)-Cl (max.l=50 µm), Tl-(Fe)-(Br)-Cl, Al-S-Cl-(O), Al-Cl-(F)-(S)-(Mg)-(K)-(Ca)-(Fe) and needle-like Ca sulphate (+Cl-F) are growing. Pb-S nucleated on K feldspar, Ba-S-O and As-S on the surface of diatoms. Desert dust interacting with volcanic gases might transport heavy metals to environments far away from volcanoes. Si-rich glass fibers are the substratum for Tl-Cl, Hg-, As-, Tl- and Pb-bearing and Al-(S)-(O) crystals. Au-Ag alloys (l= ca. 3 µm) are detected on Si-rich fibers. These anhedral grains are embedded in an Al-O-(S)-(Ca) matrix. Available data do not indicate if deposition or nucleation are the responsible processes. Ba-S-O particles nucleated on borosilicate glass fibers. Rock wool of basaltic composition (Na-Mg-Al-Si-K-Ca-Ti-Fe-O) collected only S and shows surface modification. These preliminary results indicate that Si-rich surfaces might be useful in i.e. air conditioning systems to detoxicate volcanically polluted air. Quartz sand deployed on top of lava flows might reduce the release of heavy metals to the environment. According to the experiments utilizing glass fibers of different composition the eruptions of basaltic magma should release more heavy metals to the atmosphere relatively compared to the eruptions of rhyolitic magma.

  8. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Day, James M. D.; Pernet-Fisher, John F.; Goodrich, Cyrena A.; Pearson, D. Graham; Luo, Yan; Ryabov, Viktor V.; Taylor, Lawrence A.

    2017-04-01

    Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2 metal and cohenite) and sulfide, for all three known global occurrences of native Fe bearing basalt. Total HSE abundances in metal grains, obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are lowest in the Bühl basalt, (∼0.05 ppm), intermediate in the Disko Island basalts (4-8 ppm), and highest the Siberian Khungtukun and Dzhaltul intrusions (10-30 ppm). These differences demonstrate that, while native Fe formation is the result of carbonaceous crustal assimilation, HSE enrichment is not ubiquitous during this process. The Siberian occurrences are characterized by Pt PGE (PPGE: Pt, Pd) enrichment relative to the Ir PGE (IPGE: Rh, Ru, Ir, Os), consistent with models of early stage fractionation of olivine, chromite and metallic IPGE in staging magma reservoirs, prior to the addition of C-rich crustal materials in the shallow crust. Relative to Noril'sk Ni-Cu-PGE sulfide ores

  9. Simulation of substrate erosion and sulphate assimilation by Martian low-viscosity lava flows: implications for the genesis of precious metal-rich sulphide mineralisation on Mars

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco

    2016-04-01

    On Earth, high temperature mafic to ultramafic lava flows, such as komatiites and ferropicrites of the Archean and Proterozic eons, can be hosts to Ni-Cu-PGE sulphide mineralisation. Mechanical/thermo-mechanical erosion and assimilation of sulphur-rich crustal rocks is ascribed as the principal mechanism that leads to sulphide supersaturation, batch segregation and subsequent accumulation of metal-enriched magmatic sulphides (e.g., Bekker et al., Science, 2009). In order to investigate the likelihood of the occurrence of similar sulphide mineralisation in extraterrestrial magmatic systems, we numerically modelled erosion and assimilation during the turbulent emplacement of Martian lavas, some of which display chemical and rheological analogies with terrestrial komatiites and ferropicrites, on a variety of consolidated sedimentary sulphate-rich substrates. The modelling approach relies on the integration of i) mathematical lava erosion models for turbulent flows (Williams et al., J. Geophys. Res., 1998), ii) thermodynamic volatile degassing models (Gaillard et al., Space Sci. Rev., 2013), and iii) formulations on the stability of sulphides (Fortin et al., Geochim. Cosmochim. Acta, 2015). A series of scenarios are examined in which various Martian mafic to ultramafic mantle-derived melts emplace over, and assimilate consolidated sulphate-rich substrates, such as the sedimentary lithologies (i.e., conglomerates, sandstones and mudstones) recently discovered at the Gale Crater landing site. Our modellings show that lavas emplacing over consolidated sedimentary substrate rather than stiff basaltic crust, are governed by relatively high cooling and substrate erosion rates. The rapid assimilation of sulphate, which serves as a strongly oxidising agent, could result in dramatic sulphur loss due to increased volatile degassing rates at fO2 ≳QFM-1. This effect is further enhanced with increased temperature. Nevertheless, sulphide supersaturation in the way of sulphate

  10. SEDIMENT-HOSTED PRECIOUS METAL DEPOSITS.

    USGS Publications Warehouse

    Bagby, W.C.; Pickthorn, W.J.; Goldfarb, R.; Hill, R.A.

    1984-01-01

    The Dee mine is a sediment-hosted, disseminated gold deposit in the Roberts Mountains allochthon of north central Nevada. Soil samples were collected from the C-horizon in undisturbed areas over the deposit in order to investigate the usefulness of soil geochemistry in identifying this type of deposit. Each sample was sieved to minus 80 mesh and analyzed quantitatively for Au, Ag, As, Sb, Hg, Tl and semi-quantitative data for an additional 31 elements. Rank sum analysis is successful for the Au, Ag, As, Sb, Hg, Tl suite, even though bedrock geology is disregarded. This method involves data transformation into a total element signature by ranking the data in ascending order and summing the element ranks for each sample. The rank sums are then divided into percentile groups and plotted. The rank sum plot for the Dee soils unequivocally identifies three of four known ore zones.

  11. 78 FR 33064 - Silicon Metal From Russia; Institution of a Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... COMMISSION Silicon Metal From Russia; Institution of a Five-Year Review AGENCY: United States International... whether revocation of the antidumping duty order on silicon metal from Russia would be likely to lead to... order on imports of silicon metal from Russia (68 FR 14578). Following the five-year reviews by...

  12. The Administration of Tibetan Precious Pills

    PubMed Central

    Czaja, Olaf

    2016-01-01

    Precious pills represent a special kind of Tibetan drug that once was, and still is, highly sought after by Tibetan, Chinese, and Mongolian patients. Such pills are generally taken as a potent prophylactic remedy, and can be used to cure various diseases. The present study seeks to discuss the dispensation and efficacy of precious pills according to the presentations of historical Tibetan medical scholars. Several treatises dealing with these instructions will be analysed, thereby revealing their underlying concepts, and highlighting their points of both general consensus and disagreement. The analysis of these detailed instructions will reveal the fact that these precious pills were not merely given to a patient but, in order to ensure their full efficacy, involved an elaborate regimen concerning three chronological periods: (1) the time of preparation, (2) the time of dispensation, and (3) the time after dispensation. Thus the present study surveys not only the ritual empowerment of drugs in Tibetan medicine, but also the importance of social relationships between doctors and patients in Tibetan medical history. PMID:27980504

  13. The myth of the precious baby.

    PubMed

    Minkoff, Howard L; Berkowitz, Richard

    2005-09-01

    Each year tens of thousands of pregnancies are conceived through assisted reproductive technologies, and increasing numbers of pregnant women are aged older than 40 years. The obstetric management of these pregnancies, including more liberal recourse to cesarean delivery, has at times reflected the belief of providers that they are dealing with "precious babies". A leitmotif in discussions of the "precious child" is the concept that precious equates to irreplaceable (ie, mother who has tried harder to conceive may well have less chance to succeed again in the future). We believe that the obstetrician who decides to modify obstetric care because of these factors is, in fact, substituting physician assumption for patient autonomy. Although it is not counterintuitive to believe that a woman who has gone through assisted reproductive technologies would willingly (perhaps even eagerly) undergo cesarean delivery to avoid even remote risks, it is not safe to assume that women who conceived naturally would not. It is our contention that ultimately all women are best served if every pregnancy were treated as although it had preeminent value.

  14. 76 FR 67476 - Silicon Metal From China; Institution of a Five-Year Review Concerning the Antidumping Duty Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... COMMISSION Silicon Metal From China; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Silicon Metal From China AGENCY: United States International Trade Commission. ACTION: Notice... antidumping duty order on silicon metal from China would be likely to lead to continuation or recurrence...

  15. 77 FR 59975 - Certain Folding Metal Tables and Chairs From China; Institution of a Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... COMMISSION Certain Folding Metal Tables and Chairs From China; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Certain Folding Metal Tables and Chairs From China AGENCY: United States... determine whether revocation of the antidumping duty order on certain folding metal tables and chairs...

  16. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii precious coral fisheries. 665.260... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.260 Hawaii precious coral fisheries....

  17. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii precious coral fisheries. 665.260... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.260 Hawaii precious coral fisheries....

  18. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii precious coral fisheries. 665.260... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.260 Hawaii precious coral fisheries....

  19. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii precious coral fisheries. 665.260... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.260 Hawaii precious coral fisheries....

  20. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.24 Misuse...

  1. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.24 Misuse...

  2. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.24 Misuse...

  3. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.24 Misuse...

  4. 16 CFR 23.24 - Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Misuse of the words âreal,â âgenuine,â ânatural,â âprecious,â etc. 23.24 Section 23.24 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.24 Misuse...

  5. Incorporation of platinum-group elements and cobalt into subsidiary pyrite in alkalic Cu-Au porphyry deposits: significant implications for precious metal distribution in felsic magmatic-hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; MacKenzie, M. K.

    2009-05-01

    Certain alkalic porphyry Cu-Au systems contain significant concentrations of the platinum-group elements (PGE) Pd and Pt, and may serve as important unconventional resources for these metals. Bulk rock analyses of ore styles from these deposits show no correlation between the PGE and Cu-Au abundance, suggesting that the timing/mechanisms of introduction and precipitation for the PGE and Cu-Au were not the same. To elucidate some uncertainties concerning PGE enrichment, we have performed a mineralogical evaluation of two PGE-bearing porphyry systems in British Columbia (the Afton and Mount Milligan deposits) with the aid of a variety of microanalytical techniques (LA-ICPMS, SEM, EMP). Discrete PGE mineralogy in these systems is predominantly represented by Hg-rich Pd-Pt-As-Sb species (naldrettite-stibiopalladinite-sperrylite) and Pd-Te-Hg species (kotulskite-temagamite). However, these mineral phases are unambiguously late- stage (with carbonate-chlorite alteration) and contribute insignificantly (<5-10%) to the total Pd+Pt grade based on mass balance calculations. Similarly, LA-ICPMS analyses of chalcopyrite, bornite, oxides and various common sulfosalts show that these do not contribute any Pd+Pt to the bulk grades. Suprisingly, pyrite is the predominant carrier of PGE. It occurs in trace to minor abundances and predates both the Cu-Au mineralising event and the late stage carbonate-chlorite alteration. LA-ICPMS analyses of pyrite show that at least 90% of the bulk Pd+Pt occurs within this atypical host mineral. The PGE are highly enriched in the cores of the pyrite grains (up to 90 ppm and 20 ppm, respectively) and their abundance correlates well with Co (up to 4 wt%). The rims of the pyrite grains are Co-PGE-poor but Ni-rich. Early Co- PGE enrichment in these deposits may implicate a mafic contributor to the PGE tenor of the deposits, but also a potential crystallographic (substitutional) control on Pd partitioning into pyrite. At Afton, the former is supported

  6. Mineral resource of the month: platinum-group metals

    USGS Publications Warehouse

    Hilliard, Henry

    2003-01-01

    The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.

  7. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  8. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC...

  9. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Pacific...

  10. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    SciTech Connect

    MJ Lambert

    2005-11-18

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  11. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction.

    PubMed

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-07-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co(2+) chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.

  12. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    PubMed Central

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-01-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials. PMID:26130371

  13. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-07-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.

  14. National Metal Casting Research Institute final report. Volume 4, Plan for technology transfer

    SciTech Connect

    Griffee, W.B.; Davis, S.

    1994-04-01

    This project was developed because of growing concern over the decline of the US metal casting industry; it springs from the Public Law 101-425 ``Department of Energy Metal Casting Competitiveness Research Act of 1990.`` The project sought the opinion of two groups in the metal casting industry: the operating users (foundries, other producers), and information purveyors. They were asked what was working, what was not, and what were some promising, innovative programs that are taking place or should be tried. Results and recommendations are given.

  15. 31 CFR 1027.210 - Anti-money laundering programs for dealers in precious metals, precious stones, or jewels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... laundering and the financing of terrorist activities through the purchase and sale of covered goods. The program must be approved by senior management. A dealer shall make its anti-money laundering program... intergovernmental group or organization of which the United States is a member and with which designation the...

  16. 31 CFR 103.140 - Anti-money laundering programs for dealers in precious metals, precious stones, or jewels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... laundering and the financing of terrorist activities through the purchase and sale of covered goods. The program must be approved by senior management. A dealer shall make its anti-money laundering program... intergovernmental group or organization of which the United States is a member and with which designation the...

  17. 31 CFR 1027.210 - Anti-money laundering programs for dealers in precious metals, precious stones, or jewels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... laundering and the financing of terrorist activities through the purchase and sale of covered goods. The program must be approved by senior management. A dealer shall make its anti-money laundering program... intergovernmental group or organization of which the United States is a member and with which designation the...

  18. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  19. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Barakat, Nasser A. M.; El-Newehy, Mohamed; Al-Deyab, Salem S.; Kim, Hak Yong

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  20. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation.

    PubMed

    Barakat, Nasser A M; El-Newehy, Mohamed; Al-Deyab, Salem S; Kim, Hak Yong

    2014-01-03

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  1. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  2. Mimicking Catalytic Properties of Precious Metals by Using Common Metal Nanostructured Particles

    DTIC Science & Technology

    2011-12-19

    Professor Renzo Rosei Consorzio per la Fisica Department of Physics Strada Costiera 11 Trieste, Italy 34151 EOARD Grant 10-3060...3060 Grant 10-3060 61102F Prof Renzo Rosei Consorzio per la Fisica Department of Physics Strada Costiera 11 Trieste, Italy 34151 N/A European Office...Physics Department, University of Trieste, Trieste, Italy and Consorzio per la Fisica , Trieste, Italy 1. Project motivation and Synopsis of

  3. Fundraising for Student Affairs at Comprehensive Institutions

    ERIC Educational Resources Information Center

    Arminio, Jan; Folmer Clinton, Leslie; Harpster, George

    2010-01-01

    Continued competition for precious resources in higher education, along with the simultaneous increasing expectations of higher education by parents, students, and other stakeholders, has forced institution administrators to look for significant alternatives for funding. In conjunction with these pressures, the U.S. Congress is pressing colleges…

  4. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  5. Zinc: A precious trace element for oral health care?

    PubMed

    Fatima, Tayyaba; Haji Abdul Rahim, Zubaidah Binti; Lin, Chai Wen; Qamar, Zeeshan

    2016-08-01

    This review will discuss the importance of Zinc in the maintenance of oral health. Zinc (Zn) is a trace element of valuable importance. In the oral cavity, it is naturally present at various sites such as dental plaque, dental hard tissues and saliva. It is proven to be effective against common prevalent oral health problems such as dental caries, gingivitis, periodontitis and malodour. It is being used in various oral health care products to control the formation of dental plaque and inhibiting the formation of dental calculus. It has the potential to sustain and maintain its elevated concentrations for a longer time particularly in the dental plaque and saliva on delivery from the mouth rinses and toothpastes. It has been reported that low concentrations of zinc have the capability to reduce dissolution and promote remineralization under caries simulating conditions. Most importantly low Zn2+ levels in the serum are useful as a tumour marker. Thus taking a note of its potentials, it can be concluded that zinc is a precious element for the maintenance of oral health.

  6. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE PAGES

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; ...

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  7. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    SciTech Connect

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchical porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  8. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-01-01

    A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. In addition, the hierarchical porosity of the nanoporous copper-titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface. PMID:25910892

  9. Leadership and Strategic Management: Keys to Institutional Priorities and Planning

    ERIC Educational Resources Information Center

    Taylor, James S.; de Lourdes Machado, Maria; Peterson, Marvin W.

    2008-01-01

    Allocating and managing resources have always been important cornerstones of institutional leadership. Institutional resources include financial, physical and human components. Even in the best of times, it is a challenge to do this effectively. In times of diminished and shrinking resources, distributing these precious commodities across the…

  10. Highly Dispersed Metal Catalyst for Fuel Cell Electrodes

    SciTech Connect

    2009-03-01

    This factsheet describes a study that will bring industrial catalyst experience to fuel cell research. Specifically, industrial catalysts, such as those used in platforming, utilize precious metal platinum as an active component in a finely dispersed form.

  11. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  12. Characterization of the proteinaceous skeletal organic matrix from the precious coral Corallium konojoi.

    PubMed

    Rahman, M Azizur; Karl, Kristian; Nonaka, Masanori; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu; Wörheide, Gert

    2014-11-01

    The Japanese red and pink corals are known to be precious because of their commercial value resulting from their use in ornaments, jewelry, and medicine. Precious corals are very interesting models for biomineralization studies and possess two different skeletal structures: an axial skeleton and an endoskeleton (sclerites). Although it has long been known that the organic matrix proteins existing in coral skeletons are critical for the oriented precipitation of CaCO3 crystals, these proteins in moderate deep-sea Japanese precious corals remain uncharacterized. Therefore, in this study, we performed skeletal whole proteome analyses using 1D and 2D electrophoresis, nano-LC, and MALDI-TOF-TOF MS. We identified a total of 147 functional coral skeletal organic matrix proteins (120 from the sclerites and 36 from the axial skeleton), including two calcium-binding calmodulin. Among the organic matrix proteins identified, nine key proteins are highly typical and common in both skeletons. Strong glycosylation activity, which is essential for skeletal formation in calcifying organisms, was detected in both skeletons. This work demonstrates unique biomineralization-related proteins in precious corals and provides the first description of the major proteinaceous components of CaCO3 minerals in precious corals, enabling the comparative investigation of biocalcification in other octocorals.

  13. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  14. Metal, mineral waste processing and secondary recovery

    SciTech Connect

    Reddy, R.G.

    1987-04-01

    Approximately 40 million tons of precious metals chemical wastes are produced in the United States every year. An estimated five percent of these wastes are being reused/recycled to recover the precious and critical metals they contain. The rest of these chemical wastes are disposed of by the methods incineration, dumping at sea and dumping on land. In this paper, an attempt is made to review the research work published during 1985-1986 on metal, mineral waste processing, secondary recovery and safe disposal.

  15. Metallurgical recovery of metals from electronic waste: a review.

    PubMed

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  16. IFLA General Conference, 1986. Collections and Services Division. Section: Rare and Precious Books. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    Papers on rare and precious books which were presented at the 1986 International Federation of Library Associations (IFLA) conference include: (1) "Compiling of 'The Union Catalogue of Japanese Old Books'--Investigating and Research of Old Books of Japanese Literature and Its Microfilming" (Yasuo Honda, Japan); (2) "The Rare and…

  17. 50 CFR 665.160 - American Samoa precious coral fisheries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false American Samoa precious coral fisheries. 665.160 Section 665.160 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN...

  18. Effects of repeated baking on the mechanical and physical properties of metal-ceramic systems.

    PubMed

    Nagasawa, Sakae; Yoshida, Takamitsu; Mizoguchi, Toshihide; Terashima, Nobuyoshi; Kamijyo, Kuni; Ito, Michio; Oshida, Yoshiki

    2004-06-01

    This study evaluates effects of repeated baking processes on the mechanical and physical properties of single and triple applications of opaque, body and enamel porcelains fused to three different metal substrates (precious metal, semi-precious metal and non-precious metal). The vintage halo porcelain system was employed and fused to metals. Fused samples were subjected to three-point bend tests to evaluate bend strength and modulus of elasticity. It was found that, by increasing repeated baking cycles, (1) body and enamel porcelains increased bend strengths but opaque porcelain did not show any changes, (2) all triple-layered porcelains fired to metals increased bend strengths, and (3) all three porcelains and metal substrates did not exhibit changes in thermal expansion percentage. It was concluded that repeating baking procedures up to 10 cycles did not exhibit any adverse effects on the final properties of porcelain-fired to metals, rather it was noticed that mechanical strengths increased by increasing cycles.

  19. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  20. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks.

    PubMed

    Zhao, Dan; Shui, Jiang-Lan; Grabstanowicz, Lauren R; Chen, Chen; Commet, Sean M; Xu, Tao; Lu, Jun; Liu, Di-Jia

    2014-02-01

    A facile synthesis of non-PGM ORR electrocatalysts through thermolysis of one-pot synthesized ZIF is demonstrated. The electrocatalysts exhibit excellent activity, with a maximum volumetric current density of 88.1 A cm(-3) measured at 0.8 V in PEFC tests. This approach not only makes ZIFs-based electrocatalysts easy to scale up, but also paves the way for the tailored synthesis of electrocatalysts.

  1. Excavation of Precious-Metal-Based Alloy Nanoparticles for Efficient Catalysis.

    PubMed

    Tao, Franklin Feng

    2016-12-05

    Methods have recently been developed for the synthesis of excavated alloy nanoparticles. However, various challenges still need to be overcome for a broad range of excavated nanoparticles with different sizes, surface structures, compositions, and constituent elements to be available for chemical and energy transformations through thermal catalysis and electrocatalysis.

  2. Stable Te isotope fractionation in tellurium-bearing minerals from precious metal hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Fornadel, Andrew P.; Spry, Paul G.; Haghnegahdar, Mojhgan A.; Schauble, Edwin A.; Jackson, Simon E.; Mills, Stuart J.

    2017-04-01

    The tellurium isotope compositions of naturally-occurring tellurides, native tellurium, and tellurites were measured by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) and compared to theoretical values for equilibrium mass-dependent isotopic fractionation of representative Te-bearing species estimated with first-principles thermodynamic calculations. Calculated fractionation models suggest that 130/125Te fractionations as large as 4‰ occur at 100 °C between coexisting tellurates (Te VI) and tellurides (Te -II) or or native tellurium Te(0), and smaller, typically <1‰, fractionations occur between coexisting Te(-I) or Te(-II) (Au,Ag)Te2 minerals (i.e., calaverite, krennerite) and (Au,Ag)2Te minerals (i.e., petzite, hessite). In general, heavyTe/lightTe is predicted to be higher for more oxidized species, and lower for reduced species. Tellurides in the system Au-Ag-Te and native tellurium analyzed in this study have values of δ130/125Te = -1.54‰ to 0.44‰ and δ130/125Te = -0.74‰ to 0.16‰, respectively, whereas those for tellurites (tellurite, paratellurite, emmonsite and poughite) range from δ130/125Te = -1.58‰ to 0.59‰. Thus, the isotopic composition for both oxidized and reduced species are broadly coincident. Calculations of per mil isotopic variation per amu for each sample suggest that mass-dependent processes are responsible for fractionation. In one sample of coexisting primary native tellurium and secondary emmonsite, δ130/125Te compositions were identical. The coincidence of δ130/125Te between all oxidized and reduced species in this study and the apparent lack of isotopic fractionation between native tellurium and emmonsite in one sample suggest that oxidation processes cause little to no fractionation. Because Te is predominantly transported as an oxidized aqueous phase or as a reduced vapor phase under hydrothermal conditions, either a reduction of oxidized Te in hydrothermal liquids or deposition of Te from a reduced vapor to a solid is necessary to form the common tellurides and native tellurium in ore-forming systems. Our data suggest that these sorts of reactions during mineralization may account for a ∼3‰ range of δ130/125Te values. Based on the data ranges for Te minerals from various ore deposits, the underpinning geologic processes responsible for mineralization seem to have primary control on the magnitude of fractionation, with tellurides in epithermal gold deposits showing a narrower range of isotope values than those in orogenic gold and volcanogenic massive sulfide deposits.

  3. The Replacement of Precious Metal Thick Film Inks Using Conductive Polymer Technology

    DTIC Science & Technology

    1985-02-28

    materials investigated: Material Source Lab Form Intercalated Graphite Intercal Corporation Powder Pyrolyzed Polyacrylonitrile (PPAN) University of Florida...e.g. ethyl cellulose/ terpineol ), screen printed per standard practice, and cured. A summary of the application methods is given in Table II. The PPV

  4. Use of Precious Metal-Modifed Nickel-Base Superalloys for Thin Gage Applications (Preprint)

    DTIC Science & Technology

    2011-04-01

    surface in the intermediate and final rolled products. Future work will include evaluating alloys with a combination of rhenium and tantalum (up to 2...final rolled products. Future work will include evaluating alloys with a combination of rhenium and tantalum (up to 2 atomic % total) in place of

  5. 75 FR 81443 - Guides for the Jewelry, Precious Metals, and Pewter Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ..., palladium, ruthenium, rhodium, and osmium. 16 CFR 23.7(a). I. Background A. The Platinum Section of the...,'' ``iridium,'' ``palladium,'' ``ruthenium,'' ``rhodium,'' and ``osmium,'' or any abbreviation to mark or...'' characteristics. For example, it compared two platinum rings, one containing 95% platinum and 5% ruthenium...

  6. 78 FR 26289 - Guides for the Jewelry, Precious Metals, and Pewter Industries: Public Roundtable

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... not only gold and silver, but also platinum, palladium, rhodium, and ruthenium. Commenters stated the... approach that expressly covers surface applications of platinum, iridium, palladium, ruthenium, rhodium..., palladium, iridium, rhodium, ruthenium, or osmium)? (a) If so, why? What guidance would be necessary...

  7. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    SciTech Connect

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  8. Self-Assembled Coral-like Hierarchical Architecture Constructed by NiSe2 Nanocrystals with Comparable Hydrogen-Evolution Performance of Precious Platinum Catalyst.

    PubMed

    Yu, Bo; Wang, Xinqiang; Qi, Fei; Zheng, Binjie; He, Jiarui; Lin, Jie; Zhang, Wanli; Li, Yanrong; Chen, Yuanfu

    2017-03-01

    For the first time, self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals has been synthesized via a facile one-pot DMF-solvothermal method. Compared with hydrothermally synthesized NiSe2 (H-NiSe2), the DMF-solvothermally synthesized nanocrystalline NiSe2 (DNC-NiSe2) exhibits superior performance of hydrogen evolution reaction (HER): it has a very low onset overpotential of ∼136 mV (vs RHE), a very high cathode current density of 40 mA/cm(2) at ∼200 mV (vs RHE), and an excellent long-term stability; most importantly, it delivers an ultrasmall Tafel slope of 29.4 mV dec(-1), which is the lowest ever reported for NiSe2-based catalysts, and even lower than that of precious platinum (Pt) catalyst (30.8 mV dec(-1)). The superior HER performance of DNC-NiSe2 is attributed to the unique self-assembled coral-like network, which is a benefit to form abundant active sites and facilitates the charge transportation due to the inherent high conductivity of NiSe2 nanocrystals. The DNC-NiSe2 is promising to be a viable alternative to precious metal catalysts for hydrogen evolution.

  9. Galvanic corrosion between dental precious alloys and magnetic stainless steels used for dental magnetic attachments.

    PubMed

    Takahashi, Noriko; Takada, Yukyo; Okuno, Osamu

    2008-03-01

    In this study, we examined the corrosion behavior of dental precious alloys and magnetic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, used for dental magnetic attachments. Their galvanic corrosion behavior was evaluated from the viewpoint of corrosion potentials when they were in contact with each other. Rest potentials of the precious alloys were constantly higher than those of magnetic stainless steels. Since most gold alloys raised the corrosion potential more significantly than silver alloys did, silver alloys seemed to be better suited than gold alloys for combination with magnetic stainless steels. However, all corrosion potential values were sufficiently lower than the breakdown potentials of the stainless steels and existed within their passive regions. Based on the findings of this study, SUS XM27 and SUS 447J1--which exhibited higher breakdown potentials than SUS 444--emerged as the preferred choices for combination with gold alloys.

  10. The Administration of Tibetan Precious Pills: Efficacy in Historical and Ritual Contexts.

    PubMed

    Czaja, Olaf

    2015-01-01

    Precious pills represent a special kind of Tibetan drug that once was, and still is, highly sought after by Tibetan, Chinese, and Mongolian patients. Such pills are generally taken as a potent prophylactic remedy, and can be used to cure various diseases. The present study seeks to discuss the dispensation and efficacy of precious pills according to the presentations of historical Tibetan medical scholars. Several treatises dealing with these instructions will be analysed, thereby revealing their underlying concepts, and highlighting their points of both general consensus and disagreement. The analysis of these detailed instructions will reveal the fact that these precious pills were not merely given to a patient but, in order to ensure their full efficacy, involved an elaborate regimen concerning three chronological periods: (1) the time of preparation, (2) the time of dispensation, and (3) the time after dispensation. Thus the present study surveys not only the ritual empowerment of drugs in Tibetan medicine, but also the importance of social relationships between doctors and patients in Tibetan medical history.

  11. Development of an Automated All-Teflon HPLC System for the Analysis of Precious Geological and Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Dauphas, N.; Tissot, F. L. H.

    2012-03-01

    We outline the development and progress toward building an automated all-Teflon HPLC system for the analysis of precious geological and extraterrestrial samples. Our system has several traits that distinguish it from traditional column setups.

  12. Challenges in metal recycling.

    PubMed

    Reck, Barbara K; Graedel, T E

    2012-08-10

    Metals are infinitely recyclable in principle, but in practice, recycling is often inefficient or essentially nonexistent because of limits imposed by social behavior, product design, recycling technologies, and the thermodynamics of separation. We review these topics, distinguishing among common, specialty, and precious metals. The most beneficial actions that could improve recycling rates are increased collection rates of discarded products, improved design for recycling, and the enhanced deployment of modern recycling methodology. As a global society, we are currently far away from a closed-loop material system. Much improvement is possible, but limitations of many kinds--not all of them technological--will preclude complete closure of the materials cycle.

  13. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  14. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, B.A.; McDowell, W.J.

    1987-10-23

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  15. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    PubMed

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater.

  16. The Radial Growth Rate of Japanese Precious Corals Using Pb-210 Dating Method

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Iwasaki, N.; Suzuki, A.; Aono, T.

    2014-12-01

    Precious corals belong to the subclass Octocorallia of the class Anthozoa. Its major component is calcium carbonate and the crystal structure is high-Mg calcite. Their skeletal axes are used for jewellery, rosary, amulet, etc. They are found mainly in the Japanese coast, the Mediterranean and off the Midway Islands and they are distributed at a depth of 100 m to 1500m. The growing skeletons of precious corals have potential for recording environmental change. Pb-210 is a naturally occurring radionuclide with a half-life of 22.3 years. Pb-210 is a natural sediment marker suitable for dating events that have occurred over the past 100 years and has been used to measure the sedimentation rates of lake and coastal marine sediments. The objectives of this study were to measure the Pb-210 concentration in the skeletons of Japanese red coral, pink coral and white coral and to estimate the radial growth rate using Pb-210 dating method. The radial growth rate of the skeleton can be estimated by the gradual decrease in Pb-210 concentrations measured from the surface inwards. The radial growth rate of the pink coral skeleton (Corallium elatius), collected at depths of 200 to 300 m off the coast of the Ryukyu Islands, Japan, was 0.15 mm/year, so slow that it would take as long as 50 years for a colony to grow to 15 mm in diameter.

  17. Hydrothermal fluids responsible for the formation of precious minerals in the Nigerian Younger Granite Province

    NASA Astrophysics Data System (ADS)

    Abaa, S. I.

    1991-04-01

    Preliminary investigations in the Younger Granite Province of Nigeria have revealed that precious and semi-precious minerals like rubies, sapphires, emeralds, aquamarine, zircon and fluorite can be found in the region. The gem minerals are shown to have been produced either by direct deposition along fissures, veins and greisens by hydrothermal fluids or as a result of hydrothermal fluids reacting with wall-rocks. These wall rocks are either biotite granites from which the hydrothermal fluids originated or basement rocks or any other rocks which the biotite granites intrude and their residual hydrothermal fluids have invaded. The hydrothermal fluids appear to have been rich in alkalis (Na+, K+, etc.), rare elements (Be, Zr, F, REE, etc.) and siliceous. As these fluids rose through fractures and channel ways through the rocks, they either deposited the gem minerals in the fractures at the appropriate stability conditions or reacted with the wall-rocks producing the gem minerals at the expense of elements like Ca and A1 in the minerals of these rocks.

  18. Highly durable and active non-precious air cathode catalyst for zinc air battery

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Choi, Ja-Yeon; Wang, Haijiang; Li, Hui; Chen, Zhongwei

    The electrochemical stability of non-precious FeCo-EDA and commercial Pt/C cathode catalysts for zinc air battery have been compared using accelerated degradation test (ADT) in alkaline condition. Outstanding oxygen reduction reaction (ORR) stability of the FeCo-EDA catalyst was observed compared with the commercial Pt/C catalyst. The FeCo-EDA catalyst retained 80% of the initial mass activity for ORR whereas the commercial Pt/C catalyst retained only 32% of the initial mass activity after ADT. Additionally, the FeCo-EDA catalyst exhibited a nearly three times higher mass activity compared to that of the commercial Pt/C catalyst after ADT. Furthermore, single cell test of the FeCo-EDA and Pt/C catalysts was performed where both catalysts exhibited pseudolinear behaviour in the 12-500 mA cm -2 range. In addition, 67% higher peak power density was observed from the FeCo-EDA catalyst compared with commercial Pt/C. Based on the half cell and single cell tests the non-precious FeCo-EDA catalyst is a very promising ORR electrocatalyst for zinc air battery.

  19. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    SciTech Connect

    Kozusko, Shana

    2003-12-01

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of

  20. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  1. Peculiarities of the irisation in precious opals in view of their mosaic-cluster (frustumation) inner fabric

    NASA Astrophysics Data System (ADS)

    Povarennykh, M. Yu.; Knot'ko, A. V.; Matvienko, E. N.; Plechov, P. Yu.; Burmistrov, A. A.; Luksha, V. L.

    2016-04-01

    A direct correlation was shown for the first time between mosaic irisation patterns in synthetic and natural precious opals (from Australia, Ethiopia, Honduras, Slovakia, and Russia) and their frustumational (lump or mosaic-cluster) inner structure by means of photoluminescence, X-ray phase analysis, IR and Raman spectroscopy, and scanning electron microscopy.

  2. IFLA General Conference, 1985. Division on Collections and Services. Section on Rare and Precious Books and Documents. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on rare books and precious documents which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "The Planned Census of Incunabula in Libraries in the FRG (Federal Republic of Germany): A Contribution to Retrospective Bibliographic Control" (Franz Georg Kaltwasser, West…

  3. Population Genetic Structure of the Deep-Sea Precious Coral Corallium secundum from the Hawaiian Archipelago Based on Microsatellites.

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.

    2006-12-01

    Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.

  4. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  5. Formation of the metal and energy-carrier price clusters on the world market of nonferrous metals in the postcrisis period

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Shevelev, I. M.; Chernyi, S. A.

    2016-06-01

    The laws of formation of price clusters are revealed upon statistical processing of the data on changing the quotation prices of nonferrous and precious metals, oil, black oil, gasoline, and natural gas in the postcrisis period from January 1, 2009 to November 1, 2013. It is found that the metal prices entering in the price cluster of nonferrous metals most strongly affect the formation of the nonferrous metal price and that the prices of precious metals and energy carriers correct the exchange price of the metal to some extent but do not determine its formation. Equations are derived to calculate the prices. The results of calculation by these equations agree well with the real nonferrous metal prices in the near future.

  6. Institution Closures.

    ERIC Educational Resources Information Center

    Hayden, Mary F., Ed.; And Others

    1995-01-01

    This newsletter theme issue focuses on the need to accelerate the closing of institutions for people with mental retardation. Articles are by both current and former residents of institutions and by professionals, and include: "The Realities of Institutions" (Tia Nelis); "I Cry Out So That I Won't Go Insane" (Mary F. Hayden); "Trends in…

  7. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  8. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  9. Ornamental Stones and Gemstones: The limits of heritage stone designation: The case for and against Australian Precious Opal

    NASA Astrophysics Data System (ADS)

    Cooper, Barry

    2015-04-01

    When the international designation of natural stone types was first mooted in 2007, stones that were utilised in building and construction were the primary focus of attention. However following public discussion it soon became apparent that sculptural stones, stone used for utilitarian purposes such as millstones, as well as archaeological materials including stones used by early man could all be positively assessed as a potential Global Heritage Stone Resource (GHSR). Over the past 2 years it has been realised there is also a range of ornamental and semi-precious stones that may also be considered in the same international context. Examples in this respect include Imperial Porphyry sourced from Egypt that was much prized in the ancient world and "Derbyshire Blue John" a variety of fluorspar from central England that was used for vases, chalices, urns, candle sticks, jars, bowls door, jewellery and fire-place surrounds, especially in the 18th and 19th centuries. It is at this point that rock materials, sometimes used as gemstones, impinge on the domain of typical heritage stones. In Australia, the gemstone most identifiable with the country is precious opal formed by sedimentary processes in the Great Artesian Basin. In this paper the question is asked whether "Australian Precious Opal" could be or should be considered as a heritage stone of international significance. Immediately Australian Precious Opal satisfies several GHSR criteria including historic use for more than 50 years and wide-ranging utilisation for prestige jewellery around the world. It is also recognised as a cultural icon including association with national identity in Australia as it is legally defined as Australia's "National Gemstone" as well as being the "Gemstone Emblem" for the State of South Australia. Opal continues to be mined. Designation of Australian Precious Opal as a Global Heritage Stone Resource would likely involve formal international recognition of Australian opal in the

  10. Biogenic metals in advanced water treatment.

    PubMed

    Hennebel, Tom; De Gusseme, Bart; Boon, Nico; Verstraete, Willy

    2009-02-01

    Microorganisms can change the oxidation state of metals and concomitantly deposit metal oxides and zerovalent metals on or into their cells. The microbial mechanisms involved in these processes have been extensively studied in natural environments, and researchers have recently gained interest in the applications of microbe-metal interactions in biotechnology. Because of their specific characteristics, such as high specific surface areas and high catalytic reactivity, biogenic metals offer promising perspectives for the sorption and (bio)degradation of contaminants. In this review, the precipitation of biogenic manganese and iron species and the microbial reduction of precious metals, such as palladium, platinum, silver and gold, are discussed with specific attention to the application of these biogenic metals in innovative remediation technologies in advanced water treatment.

  11. The Role of Silica in Precious Metal Supported Titania Hybrid Mesoporous Materials for Remediation and Energy Production

    NASA Astrophysics Data System (ADS)

    Kibombo, Harrison S.

    Semiconductor photocatalysis is an advanced oxidation process (AOP) that continues to show promise for the concomitant mineralization of non--biodegradable noxious and persistent organic pollutants (POPs) to environmentally benign products, and the splitting of water. This work examined the use of sol--gel chemistry as a viable approach for the incorporation of transparent silica (SiO2) matrix and/or platinum onto titania (TiO2) so as to optimize physico-chemical properties such as charge separation, crystallinity, surface area, and particle size. It was determined that crystallinity of anatase in the mixed oxide photocatalyst can be improved by the addition of simple non-polar aromatic co-solvents in the sol-gel route, and subsequently enhance the photocatalytic degradation of phenol under UV--light irradiation. The Pt of smaller particle sizes in Pt--TiO2--SiO 2 resulted in higher phenol degradation efficiencies under solar simulated conditions, irrespective of the synthesis method employed. The presence of Pt in the lowest oxidation state, Pt0, is crucial for enhanced phenol degradation whereas PtO2 (Pt4+) serves as a mild recombination center for photogenerated charge carriers rather than demonstrating total inactivity. The production of ·OH radicals was shown to be imperative for sustaining the degradation process. In the water splitting reaction for hydrogen production, the role of the crystallinity of anatase is reaffirmed when TiO2--SiO2 is used, as the surface defects present in the silica phase seem to serve as recombination centers. However, in Pt--TiO2 photocatalysts, the presence of Pt 0 or PtO2 in close contact with TiO2 (heterojunction) allows for more efficient electron propagation and facilitates minimization of electron--hole recombination, hence improved solar simulated photocatalytic hydrogen evolution. Extensive characterization of the photocatalysts were carried out by powder X--ray Diffraction (XRD), Nitrogen Physisorption Studies, Diffuse Reflectance Spectroscopy (DRS), Fourier Transform Infrared (FT--IR), Raman spectroscopy, CO-pulse chemisorption, X--ray Photoelectron Microscopy (XPS), Transmission Electron Microscopy (TEM), Electron Paramagnetic Resonance (EPR), and Energy Dispersive X--ray (EDX) spectroscopy. These techniques proved vital for establishing structure activity relationships, and as such provide insight to practitioners with simple techniques for the preparation of improved and economically viable photocatalysts for energy and environmental sustainability.

  12. Non-Precious Metal Catalysts Prepared By Zeolitic Imidazolate Frameworks: The Ligand Influence to Morphology and Performance

    SciTech Connect

    Barkholtz, H. M.; Chong, L.; Kaiser, Z. B.; Liu, D. -J

    2016-08-01

    A new, “one-pot” synthesis to produce highly active non-PGM electrocatalysts for PEM fuel cells was previously developed by pyrolyzing Fe doped zeolitic imidazolate framework (ZIF) materials prepared by solid-state interaction. Excellent catalytic oxygen reduction reaction (ORR) activities were found through rotating ring-disk electrode (RRDE) and single fuel cell tests. In this study, we compared the ORR activities and structural properties of two catalysts derived from ZIFs containing imidazole and methyl imidazole ligands, respectively. Our results indicate that alkyl group substitution in the imidazolate ligand has a profound effect on the final catalyst performance.

  13. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Vein-related alteration consisting of quartz-sericite-pyrite, chloritic, argillic, and silicic halos was superimposed on broad zones of pervasive silicic, potassic, and argillic alteration that surrounds the rhyolite intrusive body. Quartz-sericite-pyrite alteration associated with the earliest stage of mineralization was followed by broad, pervasive, stratigraphically controlled potassic alteration. Subsequent mineralization was accompanied by quartz-sericitepyrite alteration and was followed by the main stage of mineralization that formed strong chloritic alteration halos. Development of broad zones and halos of argillic alteration also may have been related to the main stage of mineralization. Development of silicic halos was characteristic of the late stages of mineralization. Broad, pervasive propylitic alteration was then superimposed on all alteration types and represents cooling and inward encroachment of the hydrothermal system. All alteration, except the early silicic alteration is interpreted to have been related to circulating meteoric fluids heated by the rhyolite.

  14. AGE AND ORIGIN OF BASE- AND PRECIOUS-METAL VEINS OF THE COEUR D'ALENE MINING DISTRICT, IDAHO

    SciTech Connect

    Fleck, R J; Criss, R E; Eaton, G F; Cleland, R W; Wavra, C S; Bond, W D

    2000-11-07

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield {sup 87}Sr/{sup 86}Sr ratios of 0.74 to >1.60 for low-Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high-Rb/Sr rocks of the Belt Supergroup. Stable-isotope and fluid-inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary {sup 87}Sr/{sup 86}Sr ratios require accumulation of radiogenic {sup 87}Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the veins by hydrothermal processes. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed within the last 200 Ma from components scavenged from sedimentary and metasedimentary rocks of the Belt Supergroup, the primary host-rocks of the district. These results are consistent with a Cretaceous or Early Tertiary age for these veins. Pb-Zn deposits that yield Pb isotope, K-Ar, and Ar-Ar results indicative of a Proterozoic age probably formed during deposition or diagenesis of the Belt Supergroup at 1350-1500 Ma, possibly as Sullivan-type syngenetic deposits. K-Ar and Rb-Sr apparent ages and {delta}{sup 18}O values of Belt Supergroup rocks decrease southward from the Coeur d'Alene district toward the Idaho batholith, normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 Ma and 45 Ma, but no similar combination of events is recognized for Late Proterozoic time. Combined with Sr results from the veins, the evidence strongly favors formation of the ore-bearing carbonate veins of the district by fluids related to a complex metamorphic-hydrothermal system during Cretaceous and/or early Tertiary time. Proterozoic Pb-Zn deposits were probably deformed, remobilized along younger structures, and incorporated into the younger hydrothermal deposits during this event.

  15. Paragenesis and tectonic significance of base and precious metal occurrences along the San Andreas fault at Point Delgada, California.

    USGS Publications Warehouse

    McLaughlin, R.J.; Sorg, D.H.; Morton, J.L.; Theodore, T.G.; Meyer, C.E.; Delevaux, M.H.

    1985-01-01

    The mineralogy, geochemistry and origin of sulphide veins along cross faults in the San Andreas fault system are described and cited for a natural history of local plate tectonics and for 'a detailed understanding of the role of major strike-slip faults in the formation and tectonic translation of hydrothermal ore deposits'. -G.J.N.

  16. Potential precious and strategic metals as by-products of uranium mineralized breccia pipes in northern Arizona

    SciTech Connect

    Wenrich, K.J.; Silberman, M.L.

    1984-07-01

    The development of caves within the Mississippian Redwall Limestone, accompanied by later upward stoping of overlying Paleozoic and Triassic rock, resulted in the formation of breccia pipes. Despite the depressed uranium market, some of these pipes are presently being mined for uranium. No brecciated rock within pipes has been observed above its normal stratigraphic position, nor is any volcanic rock associated in space or time with these pipes. Mineralized rock transects any strata from the Redwall Limestone to the Triassic Chinle Formation. Over 400 collapse structures, believed to represent breccia pipes (many with exposed breccia), have been mapped. Those with gamma radiation exceeding 2.5 times background (57 pipes) have been sampled (155 samples). Of these oxidized surface samples collected solely on the basis of radioactivity, 30% have Ag exceeding 10 ppm, some with up to 1150 ppm. Two samples of brecciated, oxidized sandstone with radioactivity exceeding 20 and 40 times background from this adit, and another sample of hematite-, malachite-, and chalcocite-impregnated sandstone from a higher level adit contained high concentrations of Au, Hg, Cd, and W, along with many elements commonly anomalous in mineralized breccia pipes from northern Arizona: Ag, As, Co, Cu, Mo, Ni, and Pb. The potential for economic recovery from breccia pipes of elements other than U, such as Ag, Au, Co, and Ni, should not be ignored as their concentrations are even more enhanced in unoxidized samples.

  17. NGR, XRD and TEM/SAED investigations on waste dumps materials with a view to recover precious metals

    NASA Astrophysics Data System (ADS)

    Udubasa, S. S.; Constantinescu, S.; Popescu-Pogrion, N.; Feder, M.; Udubasa, G.

    2010-03-01

    Two types of ores were selected for the investigation of the fate of the ore minerals during relatively long time of residence in the waste dumps (active mining: 25 years ago in the Badeanca Valley and some 50 years ago in the Valea lui Stan area). The pentametallic ores (Co-Ni-Bi-Ag-U) in the Leaota Mts. contain a great number of primary minerals of Cu, As etc. Although the waste dumps materials have whitish-yellowish colors their NGR spectra show the presence of iron minerals very finely dispersed. In the gold ores of Valea lui Stan deposit numerous minerals were identified, such as arsenopyrite, pyrite, pyrrhotite, etc., as major gold bearing sulfides. The waste dumps materials naturally show different mineral constituents, with clay minerals as major phases. Detailed NGR investigations show however Mössbauer spectra pointing out the presence of finely dispersed iron or iron-bearing minerals. Under supergene conditions gold is commonly sequestrated by iron hydroxydes; further TEM/SAED and XRD investigations are contributing to localize the gold. In some samples Mössbauer spectra resembling those of greigite have been obtained. Greigite is also a principal concentrator of gold under supergene conditions.

  18. Effect of market factors on the short-time pricing of stock-exchange metals

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Shevelev, I. M.; Chernyi, S. A.

    2016-12-01

    The open trade on the world market is estimated using information of one-day exchange prices of nonferrous and precious metals, oil, reduced crude, and gasoline and the main world stock indices in the time period from January 1, 2009 to December 31, 2015. It is found that the short-term changes in the prices of nonferrous metals are determined by the prices on the metal market. The changes in the prices of energy carriers and the stock trade on the stock market weakly influence the pricing of nonferrous and precious metals. The prices of metals depend on the situation during trade on commodity exchanges, and the stock market indirectly influences the exchange prices of metals through changes in the share prices of the companies that produce copper, aluminum, and zinc.

  19. Preparing Future Geoscientists at the Critical High School-to-College Junction: Project METALS and the Value of Engaging Diverse Institutions to Serve Underrepresented Students

    NASA Astrophysics Data System (ADS)

    White, L. D.; Maygarden, D.; Serpa, L. F.

    2015-12-01

    Since 2010, the Minority Education Through Traveling and Learning in the Sciences (METALS) program, a collaboration among San Francisco State Univ., the Univ. of Texas at El Paso, the Univ. of New Orleans, and Purdue Univ., has created meaningful, field-based geoscience experiences for underrepresented minority high school students. METALS activities promote excitement about geoscience in field settings and foster mutual respect and trust among participants of different backgrounds and ethnicities. These gains are strengthened by the collective knowledge of the university partners and by faculty, graduate and undergraduate students, scientists, and science teachers who guide the field trips and who are committed to encouraging diversity in the geosciences. Through the student experiences it provides, METALS has helped shape and shift student attitudes and orientation toward geoscience, during and beyond their field experience, just as these students are poised at the critical juncture from high school to college. A review of the METALS findings and summative evaluation shows a distinct pattern of high to moderately high impact on most students in the various cohorts of the program. METALS, overall, was perceived by participants as a program that: (1) opens up opportunities for individuals who might not typically be able to experience science in outdoor settings; (2) offers high-interest geology content in field contexts, along with social and environmental connections; (3) promotes excitement about geology while encouraging the development of mutual respect, interdependence, and trust among individuals of different ethnicities; (4) influences the academic choices of students, in particular their choice of major and course selection in college. Summative data show that multiple aspects of this program were highly effective. Cross-university collaborations create a dynamic forum and a high-impact opportunity for students from different backgrounds to meet and develop

  20. Recycling metal scrap. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling metal scrap. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries is considered. Analyses of the current global scrap metal recycling trends are included. (Contains 250 citations and includes a subject term index and title list.)

  1. A Study of the Transformation of Xinjiang Higher Education Institutions from the Minority-Han Dual-Track System to the Minority-Han Unification Model

    ERIC Educational Resources Information Center

    Simayi, Zuliyati

    2015-01-01

    "Minority-Han unified education" has already made some progress in the reform and practice of higher education in Xinjiang and accumulated precious experience. But presently minority-Han unified education in Xinjiang higher education institutions is still stuck in the trial stage in which there are many Han students and few minority…

  2. Safe disposal of metal values in slag

    SciTech Connect

    Halpin, P.T.; Zarur, G.L.

    1982-10-26

    The method of safely disposing of sludge containing metal values capable of displaying toxic ecological properties includes the steps of deriving from an organic or inorganic sludge an intermediate product such as a dewatered sludge or an incinerated ash, and adding this intermediate product to a metal smelting step of a type producing a slag such that most of the metal values become encapsulated in the slag. Some precious metal values may be recovered with the metal being smelted, and may be subsequently separated therefrom by appropriate metal winning steps. The sludge product brings to the smelting process certain additives needed therein such as silica and phosphates for the slag, alumina and magnesium to lower the viscosity of the molten slag, and organic matter serving as reducing agents.

  3. Inclusions in precious Australian opals offer a unique access to Martian-like weathering processes

    NASA Astrophysics Data System (ADS)

    Roberts, Gemma; Rey, Patrice; Carter, Elizabeth

    2015-04-01

    Spectral signatures of the surface of Mars indicate a variety of hydrated minerals, including Al- and Fe/Mg-rich phyllosilicates, iron oxides, sulfates, and opaline silica. Their formation has been attributed to a long-lived low-temperature aqueous weathering history (e.g. Bishop et al., 2008; Ehlmann et al., 2013) followed by a period of intense acidic oxidative weathering (e.g. Carter et al., 2013). Very acidic weathering, driven by volcanic-derived sulfuric acid, is possible on a regional scale on Mars because of the lack of carbonate. On Earth, however, low-pH weathering on a regional scale is unusual because of the abundance of carbonate. Finding regional-scale Martian analogues on Earth is therefore a challenge. The Great Artesian Basin (GAB) in central Australia formed during the Early Cretaceous from the deposition of pyrite-rich volcaniclastic sediments in a cold, muddy, anoxic and shallow continental sea. Following mid-Cretaceous sea regression, a deep (~100 m) weathering profile recorded a protracted episode (~from 97 to 60 Ma) of oxidative weathering during continuous uplift and denudation, which stopped 60 myr ago. Since then, the weathering profile, which consists of Al- and Fe-rich phyllosilicates, iron oxides, and sulfates, has been constantly reworked. Interestingly, this profile hosts the bulk of the world's precious opal deposits. Since no opal deposit can be found in post-60 Ma rock formations, it is most likely that opal is part of the weathering profile developed during the drying out of central Australia. We analysed the mineral inclusions from six opal samples from the GAB to better document the early oxidative weathering. Using VNIR and Raman spectroscopy we were able to identify a variety of minerals including ferrihydrite, barite, gypsum and alunite replaced by goethite. This mineralogical assemblage is indicative of acidic oxidative conditions that points to Martian-like acidic weathering. We propose that acidity was derived from the

  4. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.

    PubMed

    Prabaharan, G; Barik, S P; Kumar, B

    2016-06-01

    A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution. Overall recovery for base metals and precious metals are 95% and 92%, respectively. Based on the results of the present study, a process flow diagram was proposed for commercial application.

  5. Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany.

    PubMed

    Lottermoser, Bernd G

    2012-02-01

    This study aimed to determine whether >110 years of sewage application has led to recognizable changes in the metal chemistry of soils from former sewage farms, Berlin, Germany. Background concentrations of soils and element enrichment factors were used for the evaluation of possible perturbations of natural element abundances in sewage farm soils. Calculations verify that precious metals (Ag, Au) as well as P, C(org), and heavy metals (Cd, Cu, Ni, Pb, Sn, and Zn) are invariably enriched in sewage farm topsoils (0-0.1 m depth) compared to local and regional background soils. Long-term irrigation of soils with municipal wastewater has caused significant heavy metal contamination as well as a pronounced enrichment in precious metals. Leaching of metals including Ag into underlying aquifers may impact on the quality of drinking water supplies.

  6. Institutional Censorship

    ERIC Educational Resources Information Center

    Burke, John Gordon; Bowers, H. Paxton

    1970-01-01

    The difficulty an individual who has been denied access to library material faces in obtaining a remedy in the courts dictates that the library profession go on record against all forms of institutional censorship or unreasonable restrictions on use of library materials. (Author/JS)

  7. Institutional betrayal.

    PubMed

    Smith, Carly Parnitzke; Freyd, Jennifer J

    2014-09-01

    A college freshman reports a sexual assault and is met with harassment and insensitive investigative practices leading to her suicide. Former grade school students, now grown, come forward to report childhood abuse perpetrated by clergy, coaches, and teachers--first in trickles and then in waves, exposing multiple perpetrators with decades of unfettered access to victims. Members of the armed services elect to stay quiet about sexual harassment and assault during their military service or risk their careers by speaking up. A Jewish academic struggles to find a name for the systematic destruction of his people in Nazi Germany during the Holocaust. These seemingly disparate experiences have in common trusted and powerful institutions (schools, churches, military, government) acting in ways that visit harm upon those dependent on them for safety and well-being. This is institutional betrayal. The purpose of this article is to describe psychological research that examines the role of institutions in traumatic experiences and psychological distress following these experiences. We demonstrate the ways in which institutional betrayal has been left unseen by both the individuals being betrayed as well as the field of psychology and introduce means by which to identify and address this betrayal.

  8. Institution Morphisms

    NASA Technical Reports Server (NTRS)

    Goguen, Joseph; Rosu, Grigore; Norvig, Peter (Technical Monitor)

    2001-01-01

    Institutions formalize the intuitive notion of logical system, including both syntax and semantics. A surprising number of different notions of morphisim have been suggested for forming categories with institutions as objects, and a surprising variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is both uniform and informative to replace the current rather chaotic nomenclature. Another goal is to investigate the properties and interrelations of these notions. Following brief expositions of indexed categories, twisted relations, and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the 'plain maps' of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories; because of this duality, we prefer the name 'comorphism' over 'plain map.' We next consider 'theoroidal' morphisms and comorphisims, which generalize signatures to theories, finding that the 'maps' of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We then introduce 'forward' and 'semi-natural' morphisms, and appendices discuss institutions for hidden algebra, universal algebra, partial equational logic, and a variant of order sorted algebra supporting partiality.

  9. Recycling metal scrap. June 1970-January 1990 (A Bibliography from the COMPENDEX database). Report for June 1970-January 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning the processes, techniques, and benefits of recycling metal scrap. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries is considered. Analyses of the current global scrap metal recycling trends are included. (This updated bibliography contains 362 citations, 21 of which are new entries to the previous edition.)

  10. Iron-copper metallization for flexible solar/cell arrays

    NASA Technical Reports Server (NTRS)

    Lavendel, H. W.

    1983-01-01

    The feasibility of a copper-base metallization for shallow-junction cells applied in flexible solar arrays in space is discussed. This type of metallization will reduce usage of precious metals (such as silver), increase case of bonding (by welding or by soldering) and eliminate heavy high Z interconnects (such as molybdenum). The main points of concern are stability against thermally induced diffusion of copper into silicon which causes degradation of shallow cell junctions, and low series resistance of the contact with semiconductor which promotes cell efficiency.

  11. Bioelectrochemical metal recovery from wastewater: a review.

    PubMed

    Wang, Heming; Ren, Zhiyong Jason

    2014-12-01

    Metal contaminated wastewater posts great health and environmental concerns, but it also provides opportunities for precious metal recovery, which may potentially make treatment processes more cost-effective and sustainable. Conventional metal recovery technologies include physical, chemical and biological methods, but they are generally energy and chemical intensive. The recent development of bioelectrochemical technology provides a new approach for efficient metal recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. While dozens of recent studies demonstrated the feasibility of the bioelectrochemical metal recovery concept, the mechanisms have been different and confusing. This study provides a review that summarizes and discusses the different fundamental mechanisms of metal conversion, with the aim of facilitating the scientific understanding and technology development. While the general approach of bioelectrochemical metal recovery is using metals as the electron acceptor in the cathode chamber and organic waste as the electron donor in the anode chamber, there are so far four mechanisms that have been reported: (1) direct metal recovery using abiotic cathodes; (2) metal recovery using abiotic cathodes supplemented by external power sources; (3) metal conversion using bio-cathodes; and (4) metal conversion using bio-cathodes supplemented by external power sources.

  12. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  13. 31 CFR 597.307 - Financial institution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... orders, or similar instruments, credit card system operators, insurance companies, dealers in precious... money, telegraph companies, businesses engaged in vehicle sales, including automobile, airplane or...

  14. 31 CFR 597.307 - Financial institution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... orders, or similar instruments, credit card system operators, insurance companies, dealers in precious... money, telegraph companies, businesses engaged in vehicle sales, including automobile, airplane or...

  15. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  16. Institute news

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Joining the team A new member of staff has recently joined the Institute of Physics Education Department (Schools and Colleges) team. (Dr) Steven Chapman will have managerial responsibility for physics education issues in the 11 - 16 age range, particularly on the policy side. He will work closely with Mary Wood, who spends much of her time out and about doing the practical things to support physics education pre-16. Catherine Wilson will be spending more of her time working to support the Post-16 Physics Initiative but retains overall responsibility for the department. Steven graduated in Physics and Astronomy and then went on to do his doctorate at Sussex University. He stayed in the research field for a while, including a period at NPL. Then, having decided to train as a teacher, he taught for the last five years, most recently at a brand new school in Sutton where he was Head of Physics. Physics update Dates for `Physics Update' courses in 2000, intended for practising science teachers, are as follows: 1 - 3 April: Malvern College 9 - 10 June: Stirling University 8 - 10 July: York University 8 - 10 December: Oxford University The deadline for applications for the course to be held on 11 - 13 December 1999 at the School of Physics, Exeter University, is 12 November, so any late enquiries should be sent to Leila Solomon at The Institute of Physics, 76 Portland Place, London W1N 3DH (tel: 020 7470 4821) right away. Name that teacher! Late nominations are still welcome for the Teachers of Physics/Teachers of Primary Science awards for the year 2000. Closing date for nominations is `the last week in November'. Further details can be obtained from Catherine Wilson or Barbara Hill in the Institute's Education Department. Forward and back! The Education Group's one-day meeting on 13 November is accepting bookings until almost the last minute, so don't delay your application! The day is entitled `Post-16 physics: Looking forward, learning from the past' and it aims to

  17. Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces

    PubMed Central

    Jadhav, U.; Hocheng, H.

    2015-01-01

    The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h. PMID:26415827

  18. Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces

    NASA Astrophysics Data System (ADS)

    Jadhav, U.; Hocheng, H.

    2015-09-01

    The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h.

  19. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    PubMed Central

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-01-01

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871

  20. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction.

    PubMed

    Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam

    2016-06-10

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

  1. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    NASA Astrophysics Data System (ADS)

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-06-01

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

  2. Metal-free heterogeneous catalysis for sustainable chemistry.

    PubMed

    Su, Dang Sheng; Zhang, Jian; Frank, Benjamin; Thomas, Arne; Wang, Xinchen; Paraknowitsch, Jens; Schlögl, Robert

    2010-02-22

    The current established catalytic processes used in chemical industries use metals, in many cases precious metals, or metal oxides as catalysts. These are often energy-consuming and not highly selective, wasting resources and producing greenhouse gases. Metal-free heterogeneous catalysis using carbon or carbon nitride is an interesting alternative to some current industrialized chemical processes. Carbon and carbon nitride combine environmental acceptability with inexhaustible resources and allow a favorable management of energy with good thermal conductivity. Owing to lower reaction temperatures and increased selectivity, these catalysts could be candidates for green chemistry with low emission and an efficient use of the chemical feedstock. This Review highlights some recent promising activities and developments in heterogeneous catalysis using only carbon and carbon nitride as catalysts. The state-of-the-art and future challenges of metal-free heterogeneous catalysis are also discussed.

  3. Institute Study Report

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann; Steadman, Jackie; Little, Sally; Underwood, Debra; Blackman, Mack; Simonds, Judy

    1997-01-01

    This report documents a study conducted by the MSFC working group on Institutes in 1995 on the structure, organization and business arrangements of Institutes at a time when the agency was considering establishing science institutes. Thirteen institutes, ten science centers associated with the state of Georgia, Stanford Research Institute (SRI), and IIT Research Institute (IITRI), and general data on failed institutes were utilized to form this report. The report covers the working group's findings on institute mission, structure, director, board of directors/advisors, the working environment, research arrangements, intellectual property rights, business management, institute funding, and metrics.

  4. A Precious Moment

    ERIC Educational Resources Information Center

    Kelner, Lenore Blank

    2005-01-01

    After twenty-three years of being a Teaching Artist, there is one residency that has continually haunted the author. It was an experience that reinforced the value of her work, validated the power of the arts in the classroom, and provoked deep personal reflection. The residency took place in 1999 at Park Street Elementary in a large Southern…

  5. Hawaii Natural Energy Institute: Annual report, 1992

    SciTech Connect

    Not Available

    1992-01-01

    This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

  6. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-08-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.

  7. Hydrogen evolution by a metal-free electrocatalyst.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Du, Aijun; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

  8. Challenges to achievement of metal sustainability in our high-tech society

    SciTech Connect

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil; Moyer, Bruce A

    2014-01-01

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.

  9. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  10. Effects of metal combinations on cytotoxicity evaluation using a dynamic extraction method.

    PubMed

    Takeda, S; Akiyama, M; Sakane, K; Sakai, T; Nakamura, M

    2000-12-01

    The effects of metal combinations on cytotoxicity were examined following dynamic extraction by freely gyrating two spherical metals in a glass vessel. The cell viabilities of an Au alloy, a Ag-Pd-Au alloy and Ti were little affected by combinations among three metals. Cell viability ranged between 60 and 80% when precious alloys were in combination with Co-Cr or Ni-Cr alloys. Ti showed a clear difference in cell viability either in combination with Co-Cr or Ni-Cr alloys. The cell viability of the Ti/Co-Cr alloy combination was the same as that of precious alloys/Co-Cr or Ni-Cr alloy combinations. However, in an analogy with Co-Cr alloy/Ni-Cr alloy combination, the Ti/Ni-Cr alloy combination depressed the cell viability below 20%. This suggested that when new metals are to be used in combination with dissimilar metals, the cytotoxicity of the metals could be evaluated in extraction conditions using the mutual dynamic contact of dissimilar metals.

  11. Innovative approach for the valorization of useful metals from waste electric and electronic equipment (WEEE)

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Dumitrescu, D. V.; Constantin, I.; Soare, V.; Popescu, A.-M. J.; Carcea, I.

    2016-08-01

    Waste electric and electronic equipment are an important secondary source of rare and precious metals and their processing through ecological technologies constitutes a major concern in the European Union and significantly contributes to the reduction of environmental pollution and to the preservation of valuable resources of nonferrous metals. The paper presents an innovative approach for the complex valorization of useful metals contained in WEEE. The method consists in the melting of WEEE in a furnace in a microwave field at temperatures of 1000 ÷1200°C, for the complete separation of the metallic fraction from the organic components. The gases resulting from the melting process were also treated/neutralized in a microwave environment and the obtained metallic bulk (multi-component alloy) was processed through combined hydrometallurgical and electrochemical methods. The major elements in the metallic bulk (Cu, Sn, Zn, Pb) were separated/recovered by anodic dissolution, respectively by leaching in nitric acid followed by cementation using various agents, or by electrodeposition. Depending on the electrochemical parameters, cathodic deposits consisting of Cu, with a purity higher than 99.9%, or of Cu-Sn and Cu-Sn-Zn alloys were obtained. Silver was valorized by leaching/precipitation with NaCl and the gold concentrated in the anodic slime will be recovered by thiourea extraction. The experiments performed demonstrate the possibility of ecological and efficient processing of WEEE in a microwave field and the recovery of nonferrous and precious metals through combined hydrometallurgical and electrochemical methods.

  12. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  13. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation.

    PubMed

    Behnamfard, Ali; Salarirad, Mohammad Mehdi; Veglio, Francesco

    2013-11-01

    A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5M HCl, 1V% H2O2, 10V% NaClO at 336K for 3h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed.

  14. Remote sensing and GIS prospectivity mapping for magmatic-hydrothermal base- and precious-metal deposits in the Honghai district, China

    NASA Astrophysics Data System (ADS)

    Wang, Gongwen; Du, Wenhui; Carranza, Emmanuel John M.

    2017-04-01

    In this paper, we constructed an exploration target model for volcanogenic massive sulfide and hydrothermal deposits in Honghai district (China) using moderate resolution ETM+, ASTER, and hyperspectral Hyperion images and high resolution ZY-3 images, and weights-of-evidence (WofE) analysis and concentration-area (C-A) fractal modeling. The methodology and mapping steps were: (1) ETM + images were used to extract hydroxyl and iron-oxide alterations for identification of linear and ring fault structures and prospective zones in regional scale; (2) ASTER images were used to extract SiO2 index, kaolinite, chlorite, propylite, potassium, carbonate, and limonite alterations for identification of mineralization zones in district scale; (3) hyperspectral Hyperion images were analyzed to identify mineral components for identification of Cusbnd Au deposit zones in district scale; (4) high resolution ZY-3 images were used to extract geological objects (e.g., volcanic rocks, integration, and linear and ring fault structures) and cross-validate multiple type alterations and their associations with lithological strata based on interpretation of ETM+ and ASTER images; (5) alteration/structural factors and geological objects were integrated for mineral prospectivity mapping by WofE analysis, and mineral prospectivity was classified by (C-A) fractal modeling. Ring faults, iron-oxide alteration, chlorite alteration and silicification are important exploration factors, whereas carbonate alteration, potassic alteration, and linear faults are secondary exploration factors. Ten exploration targets were recognized in the Honghai district.

  15. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.

    PubMed

    Sun, Zhi; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2015-07-07

    In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.e., copper and precious metals, from an industrially processed information and communication technology waste. A two-stage leaching design of this process was adopted in order to selectively extract copper and enrich precious metals. It was found that the recovery efficiency and extraction selectivity of copper both reached more than 95% by using ammonia-based leaching solutions. A new electrodeposition process has been proven feasible with 90% current efficiency during copper recovery, and the copper purity can reach 99.8 wt %. The residue from the first-stage leaching was screened into coarse and fine fractions. The coarse fraction was returned to be releached for further copper recovery. The fine fraction was treated in the second-stage leaching using sulfuric acid to further concentrate precious metals, which could achieve a 100% increase in their concentrations in the residue with negligible loss into the leaching solution. By a combination of different leaching steps and proper physical separation of light materials, this process can achieve closed-loop recycling of the waste with significant efficiency.

  16. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation.

    PubMed

    Lo, Yung-Chung; Cheng, Chieh-Lun; Han, Yin-Lung; Chen, Bor-Yann; Chang, Jo-Shu

    2014-05-01

    Generation of geothermal energy is associated with a significant amount of geothermal fluids, which may be abundant in high-value metals, such as lithium, cesium, rubidium, and other precious and rare earth metals. The recovery of high-value metals from geothermal fluids would thus have both economic and environmental benefits. The conventional technologies applied to achieve this are mostly physicochemical, which may be energy intensive, pose the risk of secondary pollution whilst being inefficient in recovering metals from dilute solutions. Biological methods, based on biosorption or bioaccumulation, have recently emerged as alternative approaches, as they are more environmentally friendly, cost effective, and suitable for treating wastewater with dilute metal contents. This article provides a comprehensive review of the related biological technologies used to recover the high-value metals present in geothermal fluids as well as critical discussion on the key issues that are often used to evaluate the effectiveness of those methods.

  17. Swimmer-Training Institutions

    ERIC Educational Resources Information Center

    O'Donnell, R. W.

    1972-01-01

    This satirical essay proposes an institution of higher learning that would prepare students to become swimmers" and swimming instructors. Curriculum, teaching methods, student selection and evaluation are modelled on certain contemporary teacher-training institutes. (PD)

  18. Canadian institute honours Hawking

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2009-11-01

    The Perimeter Institute for Theoretical Physics in Waterloo, Canada, has announced that a major new extension to its campus will be known as the Stephen Hawking Centre. The extension, which is currently being built, is due to open in 2011 and will double the size of the institute. It will also provide a home for the institute's Masters students, the first of whom joined the Perimeter Institute this autumn as part of its Perimeter Scholars international programme.

  19. Astronomical Institute of Athens

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Astronomical Institute of Athens is the oldest research institute of modern Greece (it faces the Parthenon). The Astronomical Institute (AI) of the National Observatory of Athens (NOA) started its observational projects in 1847. The modern computer and research center are housed at the Penteli Astronomical Station with major projects and international collaborations focused on extragalactic ...

  20. Herzberg Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Herzberg Institute of Astrophysics (HIA) is the Institute within the NATIONAL RESEARCH COUNCIL of Canada responsible for providing astronomical facilities, and developing related instrumentation and software for Canadian researchers. The Institute was established in 1975, and now operates 1.8 m and 1.2 m optical telescopes at the DOMINION ASTROPHYSICAL OBSERVATORY close to Victoria, BC, as we...

  1. Implementing Institutional Research Findings.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Although many agree that institutional research in higher education has come of age and is accepted as a part of institutional management, great variations exist in the extent to which institutional research findings are synthesized and utilized in management decision-making. A number of reasons can be identified as accounting for this phenomenon,…

  2. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  3. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources.

    PubMed

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods were suggested for equipment types that currently have no specific collection systems in Japan, particularly for video games, notebook computers, and mid-size ICT and audio/video equipment.

  4. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  5. Study of a brittle and precious medieval rose-window by means of the integration of GPR, stress wave tests and infrared thermography

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Masini, N.; Rizzo, E.

    2009-04-01

    The correct management and restoration of architectural monuments of high cultural interest requires a comprehensive understanding of their status of preservation, the detection of the building features, the localization of damages and possibly the identification of their causes, nature and extent. To this aim, in recent times there is a growing interest on non-destructive and non-invasive geophysical methods as an invaluable tool for correlating spatially the information gained through destructive tests, which are restricted to a few locations of the investigated structure, and to optimize the choice of their position in order to minimize their impact on the monument structural stability. Moreover, the integration of the classical geophysical techniques with emerging surface and subsurface sensing techniques (acoustics, thermography) provides a suitable methodology for a multi-scale assessment of the monument state of preservation and its material and building components, which is vital for addressing maintenance and restoration issues. The present case study focuses on the application of Ground Penetrating Radar (GPR), infrared thermography (IRT), sonic and ultrasonic tests to analyze a 13th century precious rose window in Southern Italy, affected by widespread decay and instability problems. The Cathedral of Troia (Apulia, Italy) is the masterpiece of the Apulian Romanesque architecture. Its façade is adorned with an astonishing 6 m diameter rose window consisting of 11 twin columns, in various stone and reused marbles, connected to a central oculus and to a ring of trapezoidal elements decorated with arched ribworks. Between the twin columns there are 11 triangular carved panels with different and strongly symbolic geometrical patterns. According to visual inspection, mineralogical and petrographic studies, different materials have been used for the different architectural elements: fine grained limestone for the central oculus, medium-fine grained calcarenite

  6. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  7. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  8. Noble metal-free hydrogen evolution catalysts for water splitting.

    PubMed

    Zou, Xiaoxin; Zhang, Yu

    2015-08-07

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  9. Texas Heart Institute

    MedlinePlus

    ... Texas Heart Institute, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center, and The University of Houston. Held most ... for Physicians Fellowships & Residencies School ...

  10. Metals Sector

    EPA Pesticide Factsheets

    Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.

  11. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  12. Institutional Inbreeding Reexamined.

    ERIC Educational Resources Information Center

    Wyer, Jean C.; Conrad, Clifton F.

    1984-01-01

    Data from the 1977 Survey of the American Professoriate were used to examine the relationship among institutional origin, productivity, and institutional rewards. When an adjustment was made for time allocation, inbred faculty were found to be more productive but are paid significantly less than noninbred faculty. (Author/BW)

  13. What Is Institutional Research?

    ERIC Educational Resources Information Center

    Lyons, Paul R.

    Institutional research (IR), defined as inquiry "directed toward data useful or necessary [for] intelligent decisions and/or for the successful maintenance, operation and/or improvement of a given collegiate institution," can be directly applied to soaring enrollment, greater administrative complexity, rising costs. The junior college…

  14. Engagement and Institutional Advancement

    ERIC Educational Resources Information Center

    Weerts, David; Hudson, Elizabeth

    2009-01-01

    Research suggests that institutional commitment to community engagement can be understood by examining levels of student, faculty, and community involvement in engagement; organizational structure, rewards, and campus publications supporting engagement; and compatibility of an institution's mission with this work (Holland, 1997). Underlying all of…

  15. Educational Institutions: Terminology. Turkey.

    ERIC Educational Resources Information Center

    Council for Cultural Cooperation, Strasbourg (France).

    Prepared from interviews with personnel of the Turkish Ministry of National Education, and other educational administrators in that country, this publication provides a guide to the terminology used to name the types of public educational institutions found in Turkey. Private educational institutions, military schools, higher schools attached to…

  16. Guiding Institutional Change.

    ERIC Educational Resources Information Center

    Adams, Frank G.

    1997-01-01

    Looks at several ways that change comes about over which the institution has little or no control: by mandate, through legislation, or through the accreditation process. Offers the CAP method (Communication, Alternatives selection, and Participation) to guide the institution through the change process. (JOW)

  17. Binding and catalytic reduction of NO by transition metal aluminosilicates

    SciTech Connect

    Klier, K.; Herman, R.G.; Hou, Shaolie.

    1991-09-01

    The objective of this research is to provide the scientific understanding of processes that actively and selectively reduce NO in dilute exhaust streams, as well as in concentrated streams, to N{sub 2}. Experimental studies of NO chemistry in transition metal-containing aluminosilicate catalysts are being carried out with the aim of determining the chemical rules for NO reduction on non-precious metals. The catalyst supports chosen for this investigation are A and Y zeolites, mordenite, and monoliths based on cordierite. The supported transition metal cations that were examined are principally the first row redox metals, e.g. Cr(2), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Cu(I). The reactions of interest are the reductions of NO by H{sub 2}, CO, and CH{sub 4}, as well as the disproportionation of NO. Rare earth cations that possess redox properties were placed in the more shielded sites, e.g. Site I in Y zeolite, prior to or simultaneously with the exchange procedure with the transition metal cations. Theoretical calculations of the electronic structure of the transition metal cations in zeolitic sites were carried out by ab initio methods. The aim of this part of the research is to find the best match between the metal-based antibonding orbitals and the antibonding orbitals of the NO molecule such that the N-O bond is weakened and is readily broken. 9 refs., 4 figs., 3 tabs.

  18. Coinage Metal Complexes of Bis-Alkynyl-Functionalized N-Heterocyclic Carbenes: Reactivity, Photophysical Properties, and Quantum Chemical Investigations.

    PubMed

    Kiefer, Claude; Bestgen, Sebastian; Gamer, Michael T; Kühn, Michael; Lebedkin, Sergei; Weigend, Florian; Kappes, Manfred M; Roesky, Peter W

    2017-01-31

    Bis-phenylpropynyl-functionalized imidazolium salts and their corresponding gold and copper N-heterocyclic carbene (NHC) complexes were prepared in order to investigate their potential application for the synthesis of heterometallic coinage metal compounds. By transmetalation reactions with different precious metal sources, including copper and silver phenylacetylides [MCCPh]n (M=Cu, Ag), polynuclear compounds were obtained, which were further investigated for their photoluminescence properties. Additionally, one gold NHC complex was post-functionalized by autocatalytic hydration of the alkynyl side chains. Time-dependent DFT investigations of singlet electronic excitations in representative complexes revealed excited states of diverse character, as determined by the specific complex structure and metallophilic interactions.

  19. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  20. Energy and institution size

    PubMed Central

    2017-01-01

    Why do institutions grow? Despite nearly a century of scientific effort, there remains little consensus on this topic. This paper offers a new approach that focuses on energy consumption. A systematic relation exists between institution size and energy consumption per capita: as energy consumption increases, institutions become larger. I hypothesize that this relation results from the interplay between technological scale and human biological limitations. I also show how a simple stochastic model can be used to link energy consumption with firm dynamics. PMID:28178339

  1. FPG Child Development Institute

    MedlinePlus

    ... and 'alternative facts,' science can reliably inform policy. Child development research advises that a sense of security provided ... Development, Teaching, and Learning The Frank Porter Graham Child Development Institute will partner with Zero to Three to ...

  2. National Cancer Institute News

    MedlinePlus

    ... events from NCI-funded research and programs News & Events Featured News Studies Identify Potential Treatments for DIPG ... the National Cancer Institute. Latest blog posts Subscribe Events Scientific Meetings and Lectures Conferences Social Media Events ...

  3. Minority Innovation Challenges Institute

    NASA Video Gallery

    Do you want to learn more about how to compete in NASA’s technical challenges for both prestige and significant cash prizes? NASA’s Minority Innovation Challenges Institute trains and mentors mino...

  4. Critical Materials Institute

    ScienceCinema

    Alex King

    2016-07-12

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  5. Critical Materials Institute

    SciTech Connect

    Alex King

    2013-01-09

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  6. Mechanical failure of metal-polyethylene sandwich liner in metal-on-metal total hip replacement.

    PubMed

    Oshima, Yasushi; Fetto, Joseph F

    2015-01-01

    Metal-on-metal had been proposed as an optimal articulation in THRs, however, many monoblock prostheses have been recalled in the USA because of significant high rates of early failure. Metal-on-metal prostheses had been implanted in our institution, and this is a case history of a single patient, in whom metal-on-metal THRs with different femoral sizes of heads were implanted. A 57-year-old female patient underwent bilateral total hip replacements with metal-on-metal prostheses using metal-polyethylene "sandwich" liners 9 years ago on the right side and 7 years ago on the left side respectively. The only difference in both sides was the femoral head diameter of 28 mm in right and 34 mm in left. Seven years after the left surgery, the acetabular liner was dissociated, however, metallosis was not detected. Although the larger femoral head was thought to increase hip joint stability, it dictated a reduction in polyethylene thickness in this prosthesis design, and it was 4 mm in the left hip. Recently, metal-on-metal articulations are thought not to be optimal for hip joint bearing surface, however, this clinical failure was due to the polyethylene thickness and quality.

  7. National Cancer Institute Perspectives

    SciTech Connect

    Wong, Rosemary S.L. . E-mail: rw26f@nih.gov; Brechbiel, Martin W.

    2006-10-01

    The National Cancer Institute (NCI) Perspectives this year presented information on the systemic targeted radionuclide therapy (STaRT) research projects: (1) being investigated at the NCI's Intramural Center for Cancer Research; (2) funded by NCI's Radiation Research Program and other extramural programs; and (3) the appropriate National Institutes of Health/NCI funding mechanisms applicable to researchers for obtaining funds for STaRT projects.

  8. Institutional Transformation Model

    SciTech Connect

    2015-10-19

    Reducing the energy consumption of large institutions with dozens to hundreds of existing buildings while maintaining and improving existing infrastructure is a critical economic and environmental challenge. SNL's Institutional Transformation (IX) work integrates facilities and infrastructure sustainability technology capabilities and collaborative decision support modeling approaches to help facilities managers at Sandia National Laboratories (SNL) simulate different future energy reduction strategies and meet long term energy conservation goals.

  9. Great Lakes Energy Institute

    SciTech Connect

    Alexander, J. Iwan

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  10. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides.

    PubMed

    Esposito, Daniel V; Hunt, Sean T; Kimmel, Yannick C; Chen, Jingguang G

    2012-02-15

    This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W(2)C) and molybdenum carbide (Mo(2)C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces. It is found that WC and W(2)C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements. The findings of excellent stability and HER activity of the ML Pt-WC and Pt-W(2)C surfaces may be explained by the similar bulk electronic properties of tungsten carbides to Pt, as is supported by density functional theory calculations. These results are further extended to other metal overlayers (Pd and Au) and supports (Mo(2)C), which demonstrate that the metal ML-supported transition metal carbide surfaces exhibit HER activity that is consistent with the well-known volcano relationship between activity and hydrogen binding energy. This work highlights the potential of using carbide materials to reduce the costs of hydrogen production from water electrolysis by serving as stable, low-cost supports for ML amounts of precious metals.

  11. NIOSH (National Institute for Occupational Safety and Health) testimony to Department of Labor on the Mine Safety and Health Administration proposed rule: ionizing radiation standards for metal and nonmetal mines, August 13, 1987 by R. Niemeier

    SciTech Connect

    Not Available

    1987-08-13

    Recommendations were offered for protecting workers against the health effects of ionizing radiation in metal and nonmetal mines. Available data demonstrating such health effects was reviewed and evidence supporting the technical feasibility of reducing the current Mine Safety and Health Administration (MSHA) standard was presented. Five recent studies indicated a significant increase in lung cancer rates associated with radon progeny exposure in underground mines. Additional studies indicated an exposure/response relationship in uranium miners. The influence of smoking on the association between radon progeny exposure and lung cancer was cited. Evidence has indicated that exposure to radon progeny carries a potential risk of developing occupationally induced lung cancer. Risk-assessment data supported the conclusion that miners with the same characteristics as the United States Public Health Service uranium miners cohort and who accrue a cumulative occupational exposure of 120 working level months, would have a lung cancer excess lifetime risk of about 35 to 40 lung cancer deaths per 1000 exposed miners. Modern mining methods using dilution ventilation as well as bulkheading and backfilling techniques make it possible to achieve substantial reductions in the cumulative exposure to radon progeny. Information was provided on sampling strategy, control technology, ventilation systems, respirators, and medical surveillance programs.

  12. Metal inks

    DOEpatents

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  13. Development and application of biotechnologies in the metal mining industry.

    PubMed

    Johnson, D Barrie

    2013-11-01

    Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.

  14. Japanese research and development on metallic biomedical, dental, and healthcare materials

    NASA Astrophysics Data System (ADS)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  15. Institutional Policy and Its Abuses

    ERIC Educational Resources Information Center

    Bogue, E. G.; Riggs, R. O.

    1974-01-01

    Reviews the role of institutional policy, cites frequent abuses of institutional policy, and delineates several principles of policy management (development, communication, execution and evaluation). (Author/PG)

  16. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    SciTech Connect

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-09-15

    Highlights: > End-of-life electrical and electronic equipment (EEE) as secondary metal resources. > The content and the total amount of metals in specific equipment are both important. > We categorized 21 EEE types from contents and total amounts of various metals. > Important equipment types as secondary resources were listed for each metal kind. > Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods

  17. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  18. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  19. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  20. Electronic Waste: DOD Is Recovering Materials, but Several Factors May Hinder Near-Term Expansion of These Efforts

    DTIC Science & Technology

    2016-06-01

    waste diverted to precious metals recovery also were sufficiently reliable for reporting the amount of precious metal- bearing material shipped for...recovery and reuse of precious metals from excess and surplus precious metal- bearing material. The recovered metals are refined and made available to the...metal recycling costs plus a cost recovery fee.23 DLA uses a precious metal recovery contractor to process precious metal- bearing scrap material

  1. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...

    2016-06-10

    In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase in current densitymore » and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less

  2. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    SciTech Connect

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-06-10

    In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

  3. Mechanochemical Reactions of Elastomers with Metals.

    DTIC Science & Technology

    1984-09-01

    34i neeeeewy a"md&tf by week nmbo) Elastomers, Fracture, Free-radical reactions, Mechanochemistry , Metals , Macromolecular rupture, Organic radicals...from metallic grey to red-brown, indicating the formation of an increased amount of iron oxide . When this oxidized powder was mixed into SBR and the...Project NR 092-555In ID Technical Report No. 33 MECHANOCHEMICAL REACTIONS OF ELASTOMERS WITH METALS by A. N. Gent and W. R. Rodgers Institute of

  4. Summer Youth Forestry Institute

    ERIC Educational Resources Information Center

    Roesch, Gabrielle E.; Neuffer, Tamara; Zobrist, Kevin

    2013-01-01

    The Summer Youth Forestry Institute (SYFI) was developed to inspire youth through experiential learning opportunities and early work experience in the field of natural resources. Declining enrollments in forestry and other natural resource careers has made it necessary to actively engage youth and provide them with exposure to careers in these…

  5. The Francis Crick Institute.

    PubMed

    Peters, Keith; Smith, Jim

    2017-04-01

    The Francis Crick Institute Laboratory, opened in 2016, is supported by the Medical Research Council, Cancer Research UK, the Wellcome Trust, and University College London, King's College London and Imperial College London. The emphasis on research training and early independence of gifted scientists in a multidisciplinary environment provides unique opportunities for UK medical science, including clinical and translational research.

  6. Personnel Management Institutes, 1975.

    ERIC Educational Resources Information Center

    Hinman, Stanley B., Jr., Comp.

    This publication is a compilation of five papers presented at the 1975 Personnel Management Institutes held by the New York State School Boards Association. Although the meeting was intended to provide useful information about personnel matters specifically for school board members and school administrators from New York, much of the content of…

  7. Institute Born of Gratitude.

    ERIC Educational Resources Information Center

    McLellan, Vin

    1980-01-01

    The Wang Institute of Graduate Studies plans to offer a master's degree in software engineering. The development of an academic program to produce superior, technically qualified managers for the computer industry's software production is discussed. (Journal availability: Datamation, 666 Fifth Ave., New York, NY 10103.) (MLW)

  8. The Gesell Institute Responds.

    ERIC Educational Resources Information Center

    Young Children, 1987

    1987-01-01

    Responding to Dr. Meisels' article concerning the uses and abuses of the Gesell readiness tests, the Gesell Institute of Child development maintains that the Gesell series of assessments are used by schools to gain a fuller developmental understanding of the child and have been predictive of school success. (BB)

  9. Implementing Sustainable Institutional Practices

    ERIC Educational Resources Information Center

    Shepard, Joseph; Johnson, Lewis

    2009-01-01

    Recent research has found that few institutions of higher education implemented the necessary strategies to make their campuses sustainable (Thompson and Green 2005). Ironically, universities are the segment of society with the most access to the intellectual capital needed to provide sound sustainable practices and measurements. Having top…

  10. Institution-Sponsored Internships.

    ERIC Educational Resources Information Center

    Ard, Anne K.

    1994-01-01

    Colleges can use institutionally-sponsored internships, in-house opportunities to participate in the daily activities of leadership, to let employees learn the culture of leadership and interact with staff currently in such positions. Administrative internships at Pennsylvania State University, Eastern Illinois University, and Arizona State…

  11. Personnel Management Institutes 1974.

    ERIC Educational Resources Information Center

    Hinman, Stanley B., Jr.

    This report is a compilation of presentations made at the Personnel Management Institutes held by the New York State School Boards Association in the fall of 1974. Included are the following six presentations: "New Laws Affecting School Boards and School Administration," by Bernard T. McGivern; "How to Prepare for Tenure Hearings,…

  12. Managing Institutional Image.

    ERIC Educational Resources Information Center

    Melchiori, Gerlinda S.

    1990-01-01

    A managerial process for enhancing the image and public reputation of a higher education institution is outlined. It consists of five stages: market research; data analysis and market positioning; communication of results and recommendations to the administration; development of a global image program; and impact evaluation. (MSE)

  13. The Institutes of Nations

    ERIC Educational Resources Information Center

    Barnett, Franklyn M.

    1972-01-01

    During the past ten years, the Institutes have presented a series of living and learning summer sessions in an outdoor setting among the redwoods near San Francisco. Young people from 16 to 20 have participated in the cross cultural studies, some involving foreign scholars studying in the United States. (Author)

  14. Model Reading Institute.

    ERIC Educational Resources Information Center

    Dworkin, Nancy; Dworkin, Yehoash

    The 1978 Summer Reading Institute, which served 58 Washington, D.C., elementary school children, is described in this paper. Major characteristics of the program model are first identified, along with elements that were added to the model in the preplanning stage. Numerous aspects of the program are then described, including the make-up of the…

  15. Defense Language Institute.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    Discussed in this Defense Language Institute (DLI) brochure are its intensive language programs' history, and its four schools, which are located in Monterey, California, Washington, D.C., Lackland Air Force Base, and Fort Bliss, Texas. Proficiency levels determined by the DLI and utilization of the audiolingual method are also described.…

  16. Leadership in Educational Institutions

    ERIC Educational Resources Information Center

    Sunko, Esmeralda

    2012-01-01

    Many questions concerning quality of functioning and effectiveness are connected with the management of education as a professional field in educational organizations. The role of educational leadership in an educational organization raises many questions related to legislative regulations of activities, issues of institutional placement,…

  17. A Contested Institutional Culture

    ERIC Educational Resources Information Center

    Morin, Stephanie A.

    2010-01-01

    The College of William and Mary (Williamsburg, Virginia) found itself at a crossroads in 2005. Their long-popular president Timothy J. Sullivan was retiring after 13 years at the helm of the world's second oldest institution of higher education (Petkofsky, 2004). Long known as a bastion of conservatism, William and Mary could now change their…

  18. Instituting the Greater Good

    ERIC Educational Resources Information Center

    Matthews, Frank

    2011-01-01

    Teachers, higher education administrators and financial planners are well acquainted with the work of TIAA-CREF. The insurance and investment company has been a central player in teacher retirement and financial planning for nearly a century. Twelve years ago, the organization spawned the TIAA-CREF Institute, a research-focused arm that brings…

  19. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  20. Assessment and 2-Year Institutions.

    ERIC Educational Resources Information Center

    Bradley, Jama L.; And Others

    1994-01-01

    Describes a national study of the current availability and use of commercially and institutionally developed educational assessment instruments. Indicates that two-year institutions reported less activity than four-year institutions in assessing the major fields of study but that 77% of all two-year institutions assessed basic skills. (MAB)

  1. Collectors on illicit collecting: Higher loyalties and other techniques of neutralization in the unlawful collecting of rare and precious orchids and antiquities.

    PubMed

    Mackenzie, Simon; Yates, Donna

    2016-08-01

    Trafficking natural objects and trafficking cultural objects have been treated separately both in regulatory policy and in criminological discussion. The former is generally taken to be 'wildlife crime' while the latter has come to be considered under the auspices of a debate on 'illicit art and antiquities'. In this article we study the narrative discourse of high-end collectors of orchids and antiquities. The illicit parts of these global trades are subject to this analytical divide between wildlife trafficking and art trafficking, and this has resulted in quite different regulatory structures for each of these markets. However, the trafficking routines, the types and levels of harm involved, and the supply-demand dynamics in the trafficking of orchids and antiquities are actually quite similar, and in this study we find those structural similarities reflected in substantial common ground in the way collectors talk about their role in each market. Collectors of rare and precious orchids and antiquities valorize their participation in markets that are known to be in quite considerable degree illicit, appealing to 'higher loyalties' such as preservation, appreciation of aesthetic beauty and cultural edification. These higher loyalties, along with other techniques of neutralization, deplete the force of law as a guide to appropriate action. We propose that the appeal to higher loyalties is difficult to categorize as a technique of neutralization in this study as it appears to be a motivational explanation for the collectors involved. The other classic techniques of neutralization are deflective, guilt and critique reducing narrative mechanisms, while higher loyalties drives illicit behaviour in collecting markets for orchids and antiquities in ways that go significantly beyond the normal definition of neutralization.

  2. Collectors on illicit collecting: Higher loyalties and other techniques of neutralization in the unlawful collecting of rare and precious orchids and antiquities

    PubMed Central

    Mackenzie, Simon; Yates, Donna

    2015-01-01

    Trafficking natural objects and trafficking cultural objects have been treated separately both in regulatory policy and in criminological discussion. The former is generally taken to be ‘wildlife crime’ while the latter has come to be considered under the auspices of a debate on ‘illicit art and antiquities’. In this article we study the narrative discourse of high-end collectors of orchids and antiquities. The illicit parts of these global trades are subject to this analytical divide between wildlife trafficking and art trafficking, and this has resulted in quite different regulatory structures for each of these markets. However, the trafficking routines, the types and levels of harm involved, and the supply–demand dynamics in the trafficking of orchids and antiquities are actually quite similar, and in this study we find those structural similarities reflected in substantial common ground in the way collectors talk about their role in each market. Collectors of rare and precious orchids and antiquities valorize their participation in markets that are known to be in quite considerable degree illicit, appealing to ‘higher loyalties’ such as preservation, appreciation of aesthetic beauty and cultural edification. These higher loyalties, along with other techniques of neutralization, deplete the force of law as a guide to appropriate action. We propose that the appeal to higher loyalties is difficult to categorize as a technique of neutralization in this study as it appears to be a motivational explanation for the collectors involved. The other classic techniques of neutralization are deflective, guilt and critique reducing narrative mechanisms, while higher loyalties drives illicit behaviour in collecting markets for orchids and antiquities in ways that go significantly beyond the normal definition of neutralization. PMID:28066153

  3. Challenges to achievement of metal sustainability in our high-tech society.

    PubMed

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  4. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2012-11-01

    These days, electronic waste needs to be taken into consideration due to its materials content, but due to the heterogeneity of the metals present, reprocessing of electronic waste is quite limited. The bioleaching of metals from electronic waste was investigated by using cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens). A two-step bioleaching process was followed under cyanide-forming conditions for maximum metals mobilization. Both single and mixed cultures of cyanogenic bacteria were able to mobilize metals from electronic waste with different efficiencies. In all the flasks in which high metal mobilizations were observed, the consequent biomass productions were also high. Pseudomonas aeruginosa was applied in the bioleaching process for the first time and this achieved its bioleaching ability of mobilization of metals from electronic waste. Chromobacterium violaceum as a single culture and a mixture of C. violaceum and P. aeruginosa exhibited maximum metal mobilization. Chromobacterium violaceum was capable of leaching more than 79, 69, 46, 9 and 7% of Cu, Au, Zn, Fe and Ag, respectively at an electronic waste concentration of 1% w/v. Moreover, the mixture of C. violaceum and P. aeruginosa exhibited metals leaching of more than 83, 73, 49, 13 and 8% of total Cu, Au, Zn, Fe, and Ag, respectively. Precious metals were mobilized through bioleaching which might be considered as an industrial application for recycling of electronic waste in the near future.

  5. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  6. Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering has the objectives of supporting in Canada the following activities: improvement of vehicles, propulsion systems, and transportation-related facilities and services; improvements in the design and operation of maritime engineering works; protection of the environment; enhancement of energy flexibility; advancement of firms engaged in manufacturing and resource extraction; and related programs of other government departments and agencies. In 1990-91 the Institute, which had changed its name that year from the Division of Mechanical Engineering, consolidated its research activities from nine laboratories to six programs. Activities in these six programs are described: Advanced Manufacturing Technology, Coastal Zone Engineering, Cold Regions Engineering, Combustion and Fluids Engineering, Ground Transportation Technology, and Machinery and Engine Technology.

  7. Institutions and poverty.

    PubMed

    Tebaldi, Edinaldo; Mohan, Ramesh

    2010-01-01

    This study utilises eight alternative measures of institutions and the instrumental variable method to examine the impacts of institutions on poverty. The estimates show that an economy with a robust system to control corruption, an effective government, and a stable political system will create the conditions to promote economic growth, minimise income distribution conflicts, and reduce poverty. Corruption, ineffective governments, and political instability will not only hurt income levels through market inefficiencies, but also escalate poverty incidence via increased income inequality. The results also imply that the quality of the regulatory system, rule of law, voice and accountability, and expropriation risk are inversely related to poverty but their effect on poverty is via average income rather than income distribution.

  8. Transportation Institutional Plan

    SciTech Connect

    Not Available

    1986-08-01

    This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

  9. The Townes Laser Institute

    NASA Astrophysics Data System (ADS)

    Richardson, Martin

    2009-06-01

    The State of Florida has recently established a new center of excellence in advanced core laser technologies, associated with the College of Optics & Photonics. This center, dedicated in 2007 in tribute to the pioneering work of Charles Townes, whose insight lead to the development of the maser and the laser, will invest in next generation laser technologies for applications to medicine, advanced manufacturing and defense. It joins the cluster of photonics-related centers at UCF, adding a focused national center for the education and training of scientists and engineers in laser technology. This paper describes the mission and objectives of the Townes Institute, the educational and training programs it is creating, its current investments and opportunities, and the future institutional and industrial partnerships and global reach it hopes to create.

  10. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts.

    PubMed

    Han, Fu-She

    2013-06-21

    In the transition-metal-catalyzed cross-coupling reactions, the use of the first row transition metals as catalysts is much more appealing than the precious metals owing to the apparent advantages such as cheapness and earth abundance. Within the last two decades, particularly the last five years, explosive interests have been focused on the nickel-catalyzed Suzuki-Miyaura reactions. This has greatly advanced the chemistry of transition-metal-catalyzed cross-coupling reactions. Most notably, a broad range of aryl electrophiles such as phenols, aryl ethers, esters, carbonates, carbamates, sulfamates, phosphates, phosphoramides, phosphonium salts, and fluorides, as well as various alkyl electrophiles, which are conventionally challenging, by applying palladium catalysts can now be coupled efficiently with boron reagents in the presence of nickel catalysts. In this review, we would like to summarize the progress in this reaction.

  11. 41 CFR 109-27.5106-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... precious metals pool is to recycle, at a minimum cost to pool participants, DOE-owned precious metals... of the precious metals through the disposal process specified in subchapter H of the FPMR and...

  12. Generation of copper rich metallic phases from waste printed circuit boards

    SciTech Connect

    Cayumil, R.; Khanna, R.; Ikram-Ul-Haq, M.; Rajarao, R.; Hill, A.; Sahajwalla, V.

    2014-10-15

    Highlights: • Recycling and material recovery from waste printed circuit boards is very complex. • Thermoset polymers, ceramics and metals are present simultaneously in waste PCBs. • Heat treatment of PCBs was carried out at 1150 °C under inert conditions. • Various metallic phases could be segregated out as copper based metallic droplets. • Carbon and ceramics residues can be further recycled in a range of applications. - Abstract: The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the

  13. Water: Too Precious to Waste.

    ERIC Educational Resources Information Center

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  14. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  15. Institutional Repositories in Indian Universities and Research Institutes: A Study

    ERIC Educational Resources Information Center

    Krishnamurthy, M.; Kemparaju, T. D.

    2011-01-01

    Purpose: The purpose of this paper is to report on a study of the institutional repositories (IRs) in use in Indian universities and research institutes. Design/methodology/approach: Repositories in various institutions in India were accessed and described in a standardised way. Findings: The 20 repositories studied covered collections of diverse…

  16. International Security Institutions, Domestic Politics, and Institutional Legitimacy

    ERIC Educational Resources Information Center

    Chapman, Terrence L.

    2007-01-01

    Scholars have devoted considerable attention to the informational role of international institutions. However, several questions about the informational aspects of institutional behavior remain underexplored: What determines how audiences respond to institutional decisions? Through what channels does information provision affect foreign policy? To…

  17. Institutional Repositories at Small Institutions in America: Some Current Trends

    ERIC Educational Resources Information Center

    Nykanen, Melissa

    2011-01-01

    The research reported in this article was undertaken to determine the level of implementation of institutional repositories (IRs) at small institutions enrolling fewer than 10,000 students. The study analyzed quantitative and qualitative data from IRs at a number of small institutions with the aim of observing relevant patterns and trends that may…

  18. Metal-on-Metal Hip Resurfacing Arthroplasty

    PubMed Central

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  19. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  20. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  1. A case in support of implementing innovative bio-processes in the metal mining industry.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery.

  2. Spaceborne Photonics Institute

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  3. Institute for Sustainable Energy

    SciTech Connect

    Agrawal, Ajay

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  4. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis

    PubMed Central

    West, Julian G.; Huang, David; Sorensen, Erik J.

    2015-01-01

    The dehydrogenation of unactivated alkanes is an important transformation both in industrial and biological systems. Recent efforts towards this reaction have revolved around high temperature, organometallic C–H activation by noble metal catalysts that produce alkenes and hydrogen gas as the sole products. Conversely, natural desaturase systems proceed through stepwise hydrogen atom transfer at physiological temperature; however, these transformations require a terminal oxidant. Here we show combining tetra-n-butylammonium decatungstate (TBADT) and cobaloxime pyridine chloride (COPC) can catalytically dehydrogenate unactivated alkanes and alcohols under near-UV irradiation at room temperature with hydrogen as the sole by-product. This noble metal-free process follows a nature-inspired pathway of high- and low-energy hydrogen atom abstractions. The hydrogen evolution ability of cobaloximes is leveraged to render the system catalytic, with cooperative turnover numbers up to 48 and yields up to 83%. Our results demonstrate how cooperative base metal catalysis can achieve transformations previously restricted to precious metal catalysts. PMID:26656087

  5. Metallic three-coordinated carbon networks with eight-membered rings showing high density of states at the Fermi level.

    PubMed

    Noda, Yusuke; Ono, Shota; Ohno, Kaoru

    2014-04-21

    Using a density functional method to study the electronic structure of various three-coordinated sp(2) carbon nanostructures, we find that the presence of an eight-membered ring adjoined to two five-membered rings in a unit cell brings about the simultaneous occurrence of flat and dispersive bands, quite similar to the band structure of precious metals. These bands are parts of an anisotropic Dirac cone tilted from an isotropic one. We reveal that in-phase and out-of-phase oscillations in the sign of the phase of the Kohn-Sham orbital contribute to the appearance of the unique band structures.

  6. Career Development in Institutional Research.

    ERIC Educational Resources Information Center

    Johnson, Mark D.

    1982-01-01

    The background, skills, and views of 20 distinguished professionals were surveyed to provide information about career development in institutional research and to provide ideas about program development. The respondents were members of the Association for Institutional Research and they included seven institutional researchers and planners, three…

  7. A Profile of TAFE Institutes

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2006

    2006-01-01

    This report presents a profile of Australian technical and further education (TAFE) institutes for the 2003 calendar year. The project was undertaken to illustrate the extent of variation in the sector. The report also provides data on TAFE institutes that can be used by the institutes for planning, performance monitoring and marketing purposes.…

  8. Institutional Effectiveness and Student Success.

    ERIC Educational Resources Information Center

    Kreider, Paul E.; And Others

    Since the early 1980's, the primary institutional mission of Mount Hood Community College (MHCC) in Gresham, Oregon, has been identified as student success. Toward that end, the college has instituted an ongoing systematic review of instructional program improvement and implemented institutional strategic planning directly linked to budget…

  9. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  10. Improving Institutional Report Card Indicators

    ERIC Educational Resources Information Center

    McGowan, Veronica

    2016-01-01

    Institutional report cards are increasingly being used by higher educational institutions to present academic outcomes to external audiences of prospective students and parents, as well as program and institutional evaluators. While some prospective students are served by national transparency measures most users mine information from the…

  11. Draft Transportation Institutional Plan

    SciTech Connect

    Not Available

    1985-09-01

    The Department of Energy recognizes that the success of its program to develop and implement a national system for nuclear waste management and disposal depends on broad-based public understanding and acceptance. While each program element has its particular sensitivity, the transportation of the waste may potentially affect the greatest number of people, and accordingly is highly visible and potentially issue-laden. Therefore, the Office of Civilian Radioactive Waste Management has developed this Transportation Institutional Plan to lay the foundation for interaction among all interested parties for the purpose of identifying and resolving issues of concern. The Plan is divided into four chapters. Chapter 1 provides bachground information and discusses the purpose of the Plan and the policy guidance for establishing the transportation system. Chapter 2 introduces the major participants who must interact to build both the system itself and the consensus philosophy that is essential for effective operations. Chapter 3 suggests mechanisms for interaction that will ensure wide participation in program planning and implementation. And, finally, Chapter 4 suggests a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. The Plan's appendices provide supporting material to assist the reader in understanding the roles of the involved institutions. 4 figs., 1 tab.

  12. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  13. 76 FR 174 - NIJ Draft Metal Detector Standards for Public Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... of Justice Programs NIJ Draft Metal Detector Standards for Public Safety AGENCY: National Institute of Justice. ACTION: Notice and request for comments on the Draft Metal Detector Standards for Public... the following draft standards for metal detectors: 1. Walk-through Metal Detector Standard for...

  14. Transition metals

    PubMed Central

    Rodrigo-Moreno, Ana; Poschenrieder, Charlotte; Shabala, Sergey

    2013-01-01

    Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested. PMID:23333964

  15. 31 CFR 1027.100 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR DEALERS IN PRECIOUS METALS, PRECIOUS STONES, OR... metals (as defined in paragraph (d) of this section); (3) Precious stones (as defined in paragraph (e) of... antiques), that derive 50 percent or more of their value from jewels, precious metals, or precious...

  16. Institutional analysis for energy policy

    SciTech Connect

    Morris, F.A.; Cole, R.J.

    1980-07-01

    This report summarizes principles, techniques, and other information for doing institutional analyses in the area of energy policy. The report was prepared to support DOE's Regional Issues Identification and Assessment (RIIA) program. RIIA identifies environmental, health, safety, socioeconomic, and institutional issues that could accompany hypothetical future scenarios for energy consumption and production on a regional basis. Chapter 1 provides some theoretical grounding in institutional analysis. Chapter 2 provides information on constructing institutional maps of the processes for bringing on line energy technologies and facilities contemplated in RIIA scenarios. Chapter 3 assesses the institutional constraints, opportunities, and impacts that affect whether these technologies and facilities would in fact be developed. Chapters 4 and 5 show how institutional analysis can support use of exercises such as RIIA in planning institutional change and making energy policy choices.

  17. Metals 2000

    SciTech Connect

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  18. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  19. The Karst Waters Institute

    NASA Astrophysics Data System (ADS)

    The Karst Waters Institute (KWI) is a U.S. research organization that was formed to combine the skills of academic, governmental, and private sector specialists to solve existing karst water problems and anticipate future problems. KWI has been incorporated as a not-for-profit corporation in West Virginia to provide the human expertise and database needed to assist the nation in the preservation and utilization of its water resources. KWI plans to develop a core of resident and visiting scientists from across the nation and overseas, technicians, support staff, and graduate students. Its mission is to conduct research to improve our understanding of karst phenomena, to develop techniques to prevent environmental problems from occurring in karst areas, to assist in rectifying existing environmental problems, and to provide education and training for professionals and the general public on the risks and benefits of karst areas.

  20. Metallic fuel development

    SciTech Connect

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising.

  1. Impact of metals on the environment due to technical accident at Aurul Baia Mare, Romania.

    PubMed

    Michnea, A; Gherheş, I

    2001-01-01

    The S.C. Aurul S.A. is a joint venture company owned by the Esmeralda from Australia and the "Remin" National Company of Precious and Non-ferrous Metals in Romania, established in 1992. The design concept was to transport the mining waste away from the city, while the gold and silver in the tailings could be recovered, using efficient and modern technology that was not available at the time the dam was established. On 30 January, 2000, at 22.00, the dam burst and released 100,000 cubic meters of tailing pulp, heavily contaminated with cyanide and cyanide complexes, especially with copper, into the Lapus and Somes tributaries of the river Tisa. The paper deals with the impact of metals on the environment associated with their presence in surface waters, river sediments and soils.

  2. Flexible, Luminescent Metal-Organic Frameworks Showing Synergistic Solid-Solution Effects on Porosity and Sensitivity.

    PubMed

    Liu, Si-Yang; Zhou, Dong-Dong; He, Chun-Ting; Liao, Pei-Qin; Cheng, Xiao-Ning; Xu, Yan-Tong; Ye, Jia-Wen; Zhang, Jie-Peng; Chen, Xiao-Ming

    2016-12-23

    Mixing molecular building blocks in the solid solution manner is a valuable strategy to obtain structures and properties in between the isostructural parent metal-organic frameworks (MOFs). We report nonlinear/synergistic solid-solution effects using highly related yet non-isostructural, phosphorescent Cu(I) triazolate frameworks as parent phases. Near the phase boundaries associated with conformational diversity and ligand heterogeneity, the porosity (+150 %) and optical O2 sensitivity (410 times, limit of detection 0.07 ppm) can be drastically improved from the best-performing parent MOFs and even exceeds the records hold by precious-metal complexes (3 ppm) and C70 (0.2 ppm).

  3. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges.

    PubMed

    Kärkäs, Markus D; Åkermark, Björn

    2016-10-07

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  4. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum.

    PubMed

    Bruix, Albert; Lykhach, Yaroslava; Matolínová, Iva; Neitzel, Armin; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Stetsovych, Vitalii; Ševčíková, Klára; Mysliveček, Josef; Fiala, Roman; Václavů, Michal; Prince, Kevin C; Bruyère, Stéphanie; Potin, Valérie; Illas, Francesc; Matolín, Vladimír; Libuda, Jörg; Neyman, Konstantin M

    2014-09-22

    Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst's surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria "nanopocket", which binds Pt(2+) so strongly that it withstands sintering and bulk diffusion. On model catalysts we experimentally confirm the theoretically predicted stability, and on real Pt-CeO2 nanocomposites showing high Pt efficiency in fuel-cell catalysis we also identify these anchoring sites.

  5. A study of the abrasive resistance of metal alloys with applications in dental prosthetic fixators.

    PubMed

    Gil, F J; Fernández, E; Manero, J M; Planell, J A; Sabrià, J; Cortada, M; Giner, L

    1995-01-01

    Wear is one of the main surface failure mechanisms in materials and it will play a leading role in substitutive dental biomaterials. The aim of the present study is to compare the abrasive wear of different metallic materials used in dental applications. The results show that the abrasive wear of alloys based on precious metals such as Pt, Pd, Au and Ag is higher than for Ti and Ti based alloys. The alloy with the highest wear resistance is the Co-Cr which exhibits as well the highest hardness and Young's modulus. Since the method corresponds to a well-established abrasive wear standard, the behaviour of the different materials can be easily compared.

  6. Transition Metal-Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction.

    PubMed

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Chen, Qian; Wang, Jinlan

    2016-11-01

    Developing alternatives to precious Pt for hydrogen production from water splitting is central to the area of renewable energy. This work predicts extremely high catalytic activity of transition metal (Fe, Co, and Ni) promoted two-dimensional MXenes, fully oxidized vanadium carbides (V2CO2), for hydrogen evolution reaction (HER). The first-principle calculations show that the introduction of transition metal can greatly weaken the strong binding between hydrogen and oxygen and engineer the hydrogen adsorption free energy to the optimal value ≈0 eV by choosing the suitable type and coverage of the promoters as well as the active sites. Strain engineering on the performance of transition metal promoted V2CO2 further reveals that the excellent HER activities can maintain well while those poor ones can be modulated to be highly active. This study provides new possibilities for cost-effective alternatives to Pt in HER and for the application of 2D MXenes.

  7. Metals--Endangered Resources.

    ERIC Educational Resources Information Center

    Crowder, William W.

    1979-01-01

    Suggests activities for elementary teachers to use in teaching about metals and their use. Specific areas addressed include: history of metals, metal use, consumption statistics, beauty of metals, sources of metals, conservation, and other projects. (JMB)

  8. Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Cai, Qiran; Vasileff, Anthony; Li, Lu Hua; Han, Yu; Chen, Ying; Qiao, Shi-Zhang

    2017-03-08

    Organometallic complexes with metal-nitrogen/carbon (M-N/C) coordination are the most important alternatives to precious metal catalysts for oxygen reduction and evolution reactions (ORR and OER) in energy conversion devices. Here, we designed and developed a range of molecule-level graphitic carbon nitride (g-C3N4) coordinated transition metals (M-C3N4) as a new generation of M-N/C catalysts for these oxygen electrode reactions. As a proof-of-concept example, we conducted theoretical evaluation and experimental validation on a cobalt-C3N4 catalyst with a desired molecular configuration, which possesses comparable electrocatalytic activity to that of precious metal benchmarks for the ORR and OER in alkaline media. The correlation of experimental and computational results confirms that this high activity originates from the precise M-N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER activity trend for a wide variety of M-C3N4 complexes has been constructed to provide guidance for the molecular design of this promising class of catalysts.

  9. Three-dimensional metal-organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen.

    PubMed

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Zhang, Dingke; Chen, Shijian

    2017-01-18

    Developing low-cost and highly-efficient non-precious metal bifunctional electrocatalysts towards the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an attractively alternative strategy to solve the environmental pollution problems and energy demands. In this study, metal-organic framework (MOF) derived porous cobalt poly-phosphide (CoP3) concave polyhedrons are prepared and explored as superior bifunctional electrocatalysts for the HER and OER. The prepared MOF derived CoP3 concave polyhedrons show excellent electrocatalytic activity and stability towards the HER and OER in both acidic and alkaline media, with the Tafel slopes of 53 mV dec(-1) and 76 mV dec(-1) and a current density of 10 mA cm(-2) at the overpotentials of -78 and 343 mV for the HER and OER, respectively, which are remarkably superior to those of the transition metal phosphides (TMPs) and comparable to those of the commercial precious metal catalysts. In addition, they also offer efficient catalytic activities and durabilities under neutral and basic conditions for the HER. The results of our study may shed light on the direction towards highly efficient bifunctional TMP electrocatalysts with high phosphorous component.

  10. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  11. Teacher Enhancement Institute

    NASA Technical Reports Server (NTRS)

    Marshall-Bradley, Tina

    1994-01-01

    During the 1980's, a period of intense concern over educational quality in the United States, few indicators of U.S. student achievement garnered the interest of policy makers and pundits as successfully as the results of international testing in mathematics and science. This concern was so great that as a part of the Goals 2000 initiative, President George Bush indicated that 'By the year 2000, U.S. students should be first in the world in mathematics and science.' The Clinton Administration is placing a major emphasis, not only on rigorous academic standards and creating a new system for assessing students' progress, but also including professional development as a major focus. The argument being that teachers need more sustained, intensive training to prepare them to teach to higher standards. Executive order 12821 mandates that national laboratories 'assist in the mathematics and science education of our Nation's students, teachers, parents and the public by establishing programs at their agency to provide for training elementary and secondary school teachers to improve their knowledge of mathematics and science'. These and other issues led to the development of ideas for a project that addresses the need for excellence in mathematics, science and technology instruction. In response to these initiatives the NASA/LaRC Teacher Enhancement Institute was proposed. The TEI incorporated systemic reform perspectives, enhanced content knowledge for teachers, and teacher preparation. Emphasis was also placed on recruiting those educators who teach in impoverished urban school districts with at-risk student populations who have been traditionally under represented in science, mathematics, technology and engineering. Participants in the Teacher Enhancement Institute were 37 teachers from grades K-8, teaching in Region 2 in the state of Virginia, as well as 2 preservice teachers from Norfolk State University and one teacher from Dublin, Virginia, where a Science

  12. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  13. NEWS: Institute news

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Recognition for teachers The Institute of Physics has continued its programme of recognition for inspiring teachers with nine Teachers Awards in 2000, one at primary level and eight at secondary. The quality and quantity of nominations for secondary awards was very encouraging, especially those nominations made by students, but the number of nominations for teachers in the primary sector was disappointing. The award winners are: Teacher of Primary Science Graham Tomlinson, Cockermouth School, Cumbria Gill Stafford, Greens Norton Church of England Primary School, Towcester, Northants Teachers of Physics (Secondary) John Allen, All Hallows High School, Penwortham, Preston Tim Gamble, Lings Upper School, Northampton Denise Gault, Dalriada School, Ballymoney, Co Antrim Ian Lovat, Ampleforth College, North Yorkshire David Smith, Highgate School, North London Clive Thomas, Newcastle Emlyn Comprehensive School Graham Tomlinson, Cockermouth School, Cumbria Mark Travis, Cape Cornwall School, St Just, Cornwall If you know a teacher in a local primary school who is doing an exceptional job in motivating youngsters and colleagues in the teaching and learning of science, why not consider nominating them for an award? Further details can be obtained from the Institute's Education Department (Steven Chapman) by post or e-mail (schools.education@iop.org .) Annual Congress More details are now available on the various activities at this event taking place on 27 - 30 March 2000 at the Brighton Conference Centre. Among those organized by the Education Department are general science and technology hands-on activities for pupils aged 10 to 12 and more specific physics activities on Static Electricity for older students: * A series of short talks with hands-on demonstrations of music and musical instruments given by musicians, manufacturers and physicists. * A chance for students in years 9 to 13 to experience music making from the professionals' perspective. Mornings, 28 to 30 March

  14. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  15. The California Hazards Institute

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  16. Molten Metal Explosions are Still Occurring

    DTIC Science & Technology

    2009-02-01

    recycling plant. Another recent 665 Light Metals 2009 Edited by: Geoff Bearne TMS (The Minerals, Metals & Materials Society), 2009 catastrophic...occurred recently in a recycling plant casting small ingots over a water tank. An explosion occurred that extensively damaged the machine and...have been held in Europe as a joint activity with the European Aluminium Association (EAA) and the International Aluminium Institute (IAI). These

  17. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    PubMed

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-21

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2.

  18. Integrative Bioengineering Institute

    SciTech Connect

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  19. Institutional Review Boards

    PubMed Central

    2015-01-01

    Institutional review boards (IRBs) or research ethics committees provide a core protection for human research participants through advance and periodic independent review of the ethical acceptability of proposals for human research. IRBs were codified in US regulation just over three decades ago and are widely required by law or regulation in jurisdictions globally. Since the inception of IRBs, the research landscape has grown and evolved, as has the system of IRB review and oversight. Evidence of inconsistencies in IRB review and in application of federal regulations has fueled dissatisfaction with the IRB system. Some complain that IRB review is time-consuming and burdensome without clear evidence of effectiveness at protecting human subjects. Multiple proposals have been offered to reform or update the current IRB system, and many alternative models are currently being tried. Current focus on centralizing and sharing reviews requires more attention and evidence. Proposed changes to the US federal regulations may bring more changes. Data and resourcefulness are needed to further develop and test review and oversight models that provide adequate and respectful protections of participant rights and welfare and that are appropriate, efficient, and adaptable for current and future research. PMID:26042632

  20. Coburning in institutional incinerators

    SciTech Connect

    Green, A.; Prine, G.; Yost, R.; Green, B.; Williams, D.; Schwartz, J.; Wagner, J.; Clauson, D.; Proctor, B.; Feinberg, A.

    1987-01-01

    Our program, initiated in 1980, originally sought to replace imported oil by coburning coal and natural gas in oil designed boilers. Success came in 1986 with the co-combustion of coal water slurries (CWS) and natural gas (G) in a 20 MMBtu/hr watertube oil designed boiler. We achieved stable flames over broad load levels, good boiler efficiencies, low emissions, benign ash and--by increasing the G/CWS ratio--full power rating. Our biomass-waste co-combustion experiments will utilize a two chamber ram fed incinerator. Advanced analytical techniques will be used to measure available energy and stack emissions from various waste-biomass-fossil fuel combinations. Heating values, H/C ratios, percent moisture, emissions, prices and tipping fees are discussed. Locally grown annual dry biomass yields of napiergrass and leucaena, energetically equivalent to 30-50 barrels of oil per acre, are reported. Abundant local sources of waste biomass are identified. Together community waste and cultivated and waste biomass constitute a substantial source of renewable energy of use in forested and agricultural regions. Modular waste to energy systems are available in the 10-100 ton per day range. With aggressive recycling and hazardous waste reduction measures and good combustion management and emission controls, emissions should be maintained at low levels. The results from our system, a small modular waste-biomass to energy system, should be applicable to many institutions and small communities. 41 refs., 8 figs., 4 tabs.

  1. Psychology's dilemma: an institutional neurosis?

    PubMed

    Katzko, Michael W

    2004-12-01

    The term psychology refers both to an institutional discipline and to a subject matter. Henriques, in his article "Psychology Defined" (this issue) , emphasizes the second reference, and its focus can be sharpened by taking into account the first reference. On the one hand, epistemic progress in science is a dynamic process, which, as often as not, cuts across institutional divisions. However, on the other hand there are some problems of disunity that solely concern the institution. That the latter falls within the scope of the Tree of Knowledge is illustrated in how Henriques' "Justification Hypothesis" sheds light on the nature of institutional disunity.

  2. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts.

  3. Education in Young Offender Institutions and Secure Youth Care Institutions

    ERIC Educational Resources Information Center

    Smeets, Ed

    2014-01-01

    The main goal of this study was to gain a better insight into efforts made to provide optimum education to juveniles in young offender institutions and in secure youth care institutions, and into barriers with which educators are confronted in this process. Results show that for a substantial number of juveniles insufficient information is…

  4. Accredited Postsecondary Institutions and Programs. Including Institutions Holding Preaccredited Status.

    ERIC Educational Resources Information Center

    Ross, Leslie, W.; Green, Yvonne W.

    This is the fifth edition of a list of postsecondary educational institutions and programs that are accredited by, or that have preaccredited status awarded by, the regional and national accrediting agencies formally recognized by the Secretary of Education. In addition to the lists of postsecondary specialized and vocational institutions and…

  5. NEWS: Institute news

    NASA Astrophysics Data System (ADS)

    2000-07-01

    When Mary took up her appointment in the Institute's Education Department in June 1997, she indicated that she wished to return to teaching in two or three years. We have just heard that in September she will be joining the staff of the Science Department at Camden Girls' School, London. Mary's departure from the Institute is a great loss to the Department, where she has worked tirelessly, and with great imagination, to support those who teach physics at all secondary levels - and at primary level too when the opportunity presented itself. She has made tremendous contributions to the careers side of the Department's work, supporting careers events, providing informal training for others willing to do the same, helping to develop new careers materials and identifying people whom the Institute could use as role models or as the subject of case studies in print or electronic publications. Mary has been equally happy and willing to support pupils, students and teachers, and has been a wonderful role model herself, coming from an industrial research background, training for teaching after a career break and willing and able to teach biology, chemistry and design technology as well as physics. Mary has also written and edited Phases virtually single-handed. We are delighted to hear that Mary will continue to support the department's work as one of its teacher `volunteers'. Ilya Eigenbrot We are pleased to report that Ilya Eigenbrot, who will be known to some through his work at the Royal Institution and his appearances at the Christmas Lectures in a technical support role, has agreed to give the IOP Schools (touring) Lecture next year. The subject will be Lasers and this will follow nicely on to Zbig's lecture this year. Resources (print) Physics on Course The tenth issue of the Institute's popular guide to higher education, Physics on Course 2001, will be published early in July and distributed to all schools and colleges in the United Kingdom and the Republic of

  6. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  7. Canadian Institute for Historical Microreproductions.

    ERIC Educational Resources Information Center

    Ingles, Ernest B.; Montague, Robert J.

    1983-01-01

    Discusses preservation microfilming of pre-1900 Canadiana (works published in Canada, by Canadians, or about Canada) by the Canadian Institute for Historical Microreproductions, noting William J. Barrow's studies on paper deterioration, the formation of the institute, the working methodology, and future projects. Thirty-one references are listed.…

  8. Institutional Advertising in Higher Education.

    ERIC Educational Resources Information Center

    Kittle, Bart

    2000-01-01

    An exploratory study surveyed 59 colleges and universities concerning their advertising practices, specifically media usage, importance of communication objectives for institutional messages, and the importance of audiences targeted for advertising. All major media were used by most of the institutions. Communication objectives mentioned most…

  9. Africanizing Our Historically Black Institutions

    ERIC Educational Resources Information Center

    Hill, Pamela Safisha Nzingha

    2004-01-01

    "The Blacker the College the Sweeter the Knowledge," is a common saying heard among students who attend Black institutions, as well as many proud alumni. These institutions have, from their inception, served a unique mission in educating the masses of Black folk, thus creating the Black middle class. They have done much with little and have…

  10. Protocological Rhetoric: Intervening in Institutions

    ERIC Educational Resources Information Center

    Johnson, Nathan R.

    2014-01-01

    This article describes protocological rhetoric as a conceptual tool for exploring and changing institutions. Protocological rhetoric is an extension of two lines of thought: Porter, Sullivan, Blythe, Grabill, and Miles's institutional critique and Science & Technology Studies's (STS) concept of information infrastructure. As a result,…

  11. Lotka's Law and Institutional Productivity.

    ERIC Educational Resources Information Center

    Kumar, Suresh; Sharma, Praveen; Garg, K. C.

    1998-01-01

    Examines the applicability of Lotka's Law, negative binomial distribution, and lognormal distribution for institutional productivity in the same way as it is to authors and their productivity. Results indicate that none of the distributions are applicable for institutional productivity in engineering sciences. (Author/LRW)

  12. Managing the Public Service Institution

    ERIC Educational Resources Information Center

    Drucker, Peter F.

    1976-01-01

    Important factors in managing a public service institution include knowing the publics served, phasing out an old program when introducing a new one, defining the roles of administrators and professionals, integrating individuals and the institution, and making the public aware of the value of the service performed. (PF)

  13. Recommendations for Institutional Prematriculation Immunizations

    ERIC Educational Resources Information Center

    Journal of American College Health, 2006

    2006-01-01

    The "Recommendations for Institutional Prematriculation Immunizations" described in this article are provided to colleges and universities to facilitate the implementation of a comprehensive institutional prematriculation immunization policy. In response to changing epidemiology and the introduction of new vaccines, the American College Health…

  14. Journalism and Institutional Review Boards

    ERIC Educational Resources Information Center

    Dash, Leon

    2007-01-01

    The author opposes any Institutional Review Boards (IRBs) overseeing the work of journalism professors and journalism students in any academic institution. He argues that the tendency for IRBs to require anonymity for persons interviewed immediately reduces the credibility of any journalistic story. The composition of an IRB is questioned on…

  15. Assessing and Improving Institutional Effectiveness.

    ERIC Educational Resources Information Center

    Cameron, Kim S.

    Information to promote assessment of organizational effectiveness in colleges and universities is presented, along with an exercise to rank the effectiveness of 10 institutions. The exercise uses three types of criteria to indicate effectiveness: subjective ratings, data about students and activities, and institutional capacity and financial…

  16. One Institution's Quest for Community.

    ERIC Educational Resources Information Center

    Dyer, Barbara A.; McClellan, Melanie A.

    2002-01-01

    This article describes one institution's efforts to improve the sense of campus community. Two years ago, the institution determined that this was a key to achieving the campus's goal of improving retention. The article details the planning process, examples of projects, and assessments. The report discusses how goals were achieved or not…

  17. Faculty Perceptions of Institutional Effectiveness

    ERIC Educational Resources Information Center

    LoCascio, Susan H.

    2010-01-01

    This study examined (a) the differences in perceptions of faculty, full-time versus part-time, at a community college in northern Alabama on the importance of institutional effectiveness activities; (b) the factors that affect perceptions of the importance of institutional effectiveness activities; and (c) the effect of academic discipline,…

  18. Institutional Climate and Minority Achievement.

    ERIC Educational Resources Information Center

    Richardson, Richard C.

    This paper discusses ways that institutions can change the higher education system and environment to accommodate more minority students. The first section, "Institutional Climate and Minority Achievement," presents an overview of the problems facing colleges and universities with respect to recruiting and retaining minority students. In the…

  19. Budgetary Control Procedures for Institutions.

    ERIC Educational Resources Information Center

    Powell, Ray M.

    Budgetary control procedures for not-for-profit institutions are presented in this compilation of budgetary materials and ideas gathered at the Program for Institutional Administrators at the University of Notre Dame. Budgetary reporting and control are suggested as the most effective tools for coordinating and controlling the acquisition and use…

  20. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga; Noked, Ori; Salamat, Ashkan; Zaghoo, Mohamed

    2017-04-01

    One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5-6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1-2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid-liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

  1. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  2. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  3. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  4. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  5. Performance Assessment Institute-NV

    SciTech Connect

    Lombardo, Joesph

    2012-12-31

    The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical national and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.

  6. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  7. Institutional computing (IC) information session

    SciTech Connect

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  8. Institutional plan -- Institute of Nuclear Power Operations, 1993

    SciTech Connect

    Not Available

    1993-12-31

    The US nuclear electric utility industry established the Institute of Nuclear Power Operations (INPO) in 1979 to promote the highest levels of safety and reliability -- to promote excellence -- in the operation of its nuclear plants. After its formation, the Institute grew from a handful of on-loan personnel in late 1979 to an established work force of more than 400 permanent and on-loan personnel. INPO`s early years were marked by growth and evolution of its programs and organization. The Institute now focuses primarily on the effectiveness and enhancement of established programs and activities. For INPO to carry out its role, it must have the support of its members and participants and a cooperative but independent relationship with the NRC. A basis for that support and cooperation is an understanding of INPO`s role. This Institutional Plan is intended to provide that understanding by defining the Institute`s role and its major programs. This plan considers the existing and projected needs of the industry and the overall environment in which INPO and its members and participants operate.

  9. Thermochemistry and Reactivity of Metals Engaged in Chemiionization

    DTIC Science & Technology

    2015-12-03

    AFRL-AFOSR-VA-TR-2015-0411 THERMOCHEMISTRY AND REACTIVITY OF METALS ENGAGED IN CHEMIIONIZATION Peter Armentrout UNIVERSITY OF UTAH SALT LAKE CITY...TITLE AND SUBTITLE THERMOCHEMISTRY AND REACTIVITY OF METALS ENGAGED IN CHEMIIONIZATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0357 5c...Project Title: THERMOCHEMISTRY AND REACTIVITY OF METALS ENGAGED IN CHEMIIONIZATION Institution: University of Utah, Department of

  10. Materials research institute annual report FY98

    SciTech Connect

    Radousky, H

    1999-11-02

    The Materials Research Institute (MRI) is the newest of the University/LLNL Institutes and began operating in March 1997. The MRI is one of five Institutes reporting to the LLNL University Relations Program (URP), all of which have as their primary goal to facilitate university interactions at LLNL. This report covers the period from the opening of the MRI through the end of FY98 (September 30, 1998). The purpose of this report is to emphasize both the science that has been accomplished, as well as the LLNL and university people who were involved. The MRI is concentrating on projects, which highlight and utilize the Laboratory's unique facilities and expertise. Our goal is to enable the best university research to enhance Laboratory programs in the area of cutting-edge materials science. The MRI is focusing on three primary areas of materials research: Biomaterials (organic/inorganic interfaces, biomemetic processes, materials with improved biological response, DNA materials science); Electro/Optical Materials (laser materials and nonlinear optical materials, semiconductor devices, nanostructured materials); and Metals/Organics (equation of state of metals, synthesis of unique materials, high explosives/polymers). In particular we are supporting projects that will enable the MRI to begin to make a distinctive name for itself within the scientific community and will develop techniques applicable to LLNL's core mission. This report is organized along the lines of these three topic areas. A fundamental goal of the MRI is to nucleate discussion and interaction between Lab and university researchers, and among Lab researchers from different LLNL Directorates. This is accomplished through our weekly seminar series, special seminar series such as Biomaterials and Applications of High Pressure Science, conferences and workshops, our extensive visitors program and MRI lunches. We are especially pleased to have housed five graduate students who are performing their thesis

  11. An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.; Stone, R. S.; Paradis, S.; Fajber, R.; Reid, H. M.; Grattan, K.

    2014-12-01

    Handheld (portable) X-ray fluorescence (pXRF) instruments are designed for use in the exploration for base metals, precious metals, and specialty metals (e.g. rare earth elements (REE), Ta, and Nb) and allow rapid decision-making directly in the field. This paper evaluates the technical merits and limitations of pXRF technology in the exploration for specialty metals using data generated from the analysis of three geochemical standards and a silica blank: Standard Reference Material NIST 2780 from the National Institute of Standards and Technology, Gaithersburg; the Certified Reference Material "TRLK" Rare Earth Ore "CGL 124" from the Mongolia Central Geological Laboratory; the Reference Niobium Ore OKA-1 (CANMET); and a silica blank described as Si (IV) oxide (99.8 % on metal basis) from Alpha Aesar (Ward Hill, MA, USA). The data was acquired over a period of nearly 2 years as a by-product of several distinct specialty metal-related projects using the same pXRF instrument and the same settings. Instrumental analytical accuracy was determined using the percent difference (%diff) between the average concentrations of the pXRF instrument readings and the reported certified values of the standard. Percent relative standard deviation (%RSD) was used as a measure of precision. Smaller %diff and %RSD indicate more accurate and precise data, and the accuracy and precision of the pXRF depended strongly on the elemental concentrations in the standards used. Box and whisker diagrams were used to illustrate characteristics of pXRF data sets (mean, lower and upper quartiles, and range) corresponding to individual standards. The bias of the pXRF determinations (under/overestimation) relative to certified values of individual standards are also depicted on these diagrams. This study indicates that the pXRF was capable of producing readings for Si, K, Al, Fe, Ca, Ti, Pb, Zn, Sr, Ag, Cd, Th, Sb, P, S, Mo, Mn, Mg, As, Nb, Rb, La, Ce, Pr, Nd, and Y within 10 %RSD of the reported

  12. The Institutional Tour: Some Reflections.

    ERIC Educational Resources Information Center

    LeUnes, Arnold

    1984-01-01

    A rationale for using field trips to correctional institutions in an abnormal psychology class is presented. Also discussed are reasons why, over the years, student interest in these field trips has declined. (RM)

  13. Using Microcomputers for Institutional Research.

    ERIC Educational Resources Information Center

    Suttle, J. Lloyd

    1984-01-01

    Many institutional researchers will find that the microcomputer leads to greater efficiency in everything that they do, especially in the two most critical elements of their jobs: thinking and communicating. (Author/MLW)

  14. Governors' Institute on Community Design

    EPA Pesticide Factsheets

    This page describes the Governors' Institute on Community Design, which helps governors and their staff make informed decisions about investments and policy decisions that influence the economic health and physical development of their states.

  15. Commercial and Institutional Case Studies

    EPA Pesticide Factsheets

    Throughout the country, commercial and institutional (CI) building owners and facility managers are taking actions to reduce their water use, implementing many of the operations and maintenance, retrofit, and replacement projects.

  16. Clad metal joint closure

    SciTech Connect

    Siebert, O.W.

    1985-04-09

    A plasma arc spray overlay of cladding metals is used over joints between clad metal pieces to provide a continuous cladding metal surface. The technique permits applying an overlay of a high melting point cladding metal to a cladding metal surface without excessive heating of the backing metal.

  17. Theory institute appoints new head

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2008-06-01

    The cosmologist Neil Turok has been appointed as the next executive director of the Perimeter Institute for Theoretical Physics in Waterloo, Canada. Turok, who is currently chair of mathematical physics at the University of Cambridge in the UK, will take over the reins in October. The 50- year-old cosmologist described the move as the "opportunity of a lifetime" and says he plans to make the institute "the leading centre in the world for theoretical physics".

  18. The Appeal of For-Profit Institutions

    ERIC Educational Resources Information Center

    Howard-Vital, Michelle

    2006-01-01

    The characteristics that students like in for-profit postsecondary institutions are present in many more traditional institutions as well. Yet most students who attend for-profit institutions are not convinced that they can fit into traditional institutions. In this article, the author examines the reasons why for-profit institutions appeal more…

  19. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.

    PubMed

    Liu, Hui-ling; Nosheen, Farhat; Wang, Xun

    2015-05-21

    Noble metal nanocrystals have been extensively utilized as promising catalysts for chemical transformations and energy conversion. One of their significant applications lies in electrode materials in fuel cells (FCs) due to their superior electrocatalytic performance towards the reactions both on anode and cathode. Nowadays, tremendous efforts have been devoted to improve the catalytic performance and minimize the usage of precious metals. Constructing multicomponent noble metal nanocrystals with complex structures provides the opportunity to reach this goal due to their highly tunable compositions and morphologies, leading to the modification of the related electrochemical properties. In this review, we first highlight the recent advances in the controllable synthesis of noble metal alloy complex nanostructures including nanoframes/nanocages, branched structures, concave/convex structures, core-shell structures and ultrathin structures. Then the effects of the well-defined nanocrystals on the modified and improved electrochemical properties are outlined. Finally, we make a conclusion with the points on the challenges and perspectives of the controllable synthesis of noble metal alloy complex nanostructures and their electrocatalytic performance.

  20. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  1. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGES

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; ...

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  2. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  3. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  4. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  5. Base Metal Cycling in a Tropical Montane Forest in Ecuador

    NASA Astrophysics Data System (ADS)

    Wilcke, W.; Boy, J.; Knuth, J.; Valarezo, C.

    2007-05-01

    Earlier work had shown that Ca and Mg deposited from the atmosphere were partly taken up by the canopy of an Ecuadorian mountain forest at the western rim of the Amazon basin and that both elements were immobilized during incubation of acid soil organic layer material. We therefore determined all base metal fluxes from atmospheric input through the forest ecosystem to output with surface runoff in three small catchments under tropical montane forest between 1850 and 2200 m above sea level. We found a large interannual variation in the deposition of Ca and Mg from the atmosphere. This variation was related with the ENSO cycle. During La Nina conditions, Saharan dust was transported via the Amazon basin to our study site. Our ecosystem responded by accumulation of base metals likely because of nutrient accretion by increased growth. During strong forest fires in the Amazon basin, increased acid input was observed at our study site. This resulted in the export of base metals and counteracted the base metal accumulation during years of high base metal input. Base metal loss was promoted by fast near-surface flow flushing the base metal-enriched surface layers of the soil (particularly the organic layer) during rainstorms. Base metal loss during baseflow conditions was attributed to the weathering of the Ca- and Mg-poor bedrock and an unavoidable leaching of Ca and Mg with a similar size as weathering. The low availability of Ca and Mg in the studied ecosystem and the positive response of the studied forest to Ca and Mg inputs suggests that at this probably neither N- nor P-limited site base metals played a key role for forest performance. As the Ca and Mg cycles seem to be linked to large-scale events such as the ENSO phenomenon, forest burning in the Amazon basin, and climatic changes (particularly those influencing the storm frequency and intensity and thus the importanc of near-surface flow), future environmental change might have an impact on the stability of the

  6. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6‐Diisopropyl‐N‐(trimethylsilyl)anilino Ligand

    PubMed Central

    Fuentes, M. Ángeles; Zabala, Andoni; Kennedy, Alan R.

    2016-01-01

    Abstract Bulky amido ligands are precious in s‐block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n‐butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3)(Dipp)]− (Dipp=2,6‐iPr2‐C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s‐block metal amides. Solvation by N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) or N,N,N′,N′‐tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi‐solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ‐nBu)]∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies. PMID:27573676

  7. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilino Ligand.

    PubMed

    Fuentes, M Ángeles; Zabala, Andoni; Kennedy, Alan R; Mulvey, Robert E

    2016-10-10

    Bulky amido ligands are precious in s-block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3 )(Dipp)](-) (Dipp=2,6-iPr2 -C6 H3 ). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) or N,N,N',N'-tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3 )(Dipp)}2 (μ-nBu)]∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies.

  8. 78 FR 64228 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... personal privacy. Name of Committee: National Institute of Environmental Health Sciences Special...

  9. 78 FR 8153 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request: Recipient... Blood Institute (NHLBI), the National Institutes of Health (NIH) has submitted to the Office...

  10. 75 FR 71134 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute; Notice of Closed Meeting..., Cancer Control, National Institutes of Health, HHS) Dated: November 16, 2010. Jennifer S....

  11. 75 FR 6044 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Notice... and projects conducted by the National Institute of Environmental Health Sciences,...

  12. 78 FR 24427 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; 60-Day Comment Request; Genomics and... Research Institute (NHGRI), National Institutes of Health (NIH), will publish periodic summaries...

  13. 78 FR 55751 - National Institutes of Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Institute, National Institutes of Health Bethesda, MD 20892, (301) 451-2020, mcnicoll@nei.nih.gov . Any... Nos. 93.867, Vision Research, National Institutes of Health, HHS) Dated: September 5, 2013. Melanie...

  14. 75 FR 61220 - Massachusetts Institute of Technology: Massachusetts Institute of Technology Research Reactor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... COMMISSION Massachusetts Institute of Technology: Massachusetts Institute of Technology Research Reactor... Massachusetts Institute of Technology (MIT, the licensee), which would authorize continued operation of the Massachusetts Institute of Technology Research Reactor (MITR-II, the facility), located in Cambridge,...

  15. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  16. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva.

    PubMed

    Bilhan, H; Bilgin, T; Cakir, A F; Yuksel, B; Von Fraunhofer, J A

    2007-11-01

    The corrosion of dental alloys has biological, functional, and aesthetic consequences. Various studies have shown that protein solutions can inhibit the corrosion of alloys. This study is planned to determine the relationship of organic constituents of saliva and the corrosion of dental alloys. The organic constituents are IgA, mucine, urea, and lysozyme which are encountered in the highest amounts in saliva and the dental materials are titanium (Ti), Co-Cr-Mo and Ni-Cr-Mo alloys, and dental amalgam, the most often used metallic components in dentistry. In particular, the interactions between the commonest salivary proteins, IgA, mucine, urea and lysozyme, and Ti, Co-Cr-Mo, Ni-Cr-Mo and dental amalgam were investigated. Each alloy was evaluated by cyclic polarization in each medium. The general anodic and cathodic behavior during forward and reverse cycles, the corrosion and passivation current densities (muA/cm2 ), and the corrosion and the pitting potentials (mV) were determined. The results have shown that Ni-Cr-Mo and dental amalgam alloys are highly susceptible to corrosion in all the investigated media. The Co-Cr-Mo alloy has shown high passive current densities in the solution of mucine and lysozyme in artificial saliva. Titanium instead, has shown a high resistance to corrosion and a stable passive behavior in all media, especially in a solution of mucine and IgA in synthetic saliva. Mucine and IgA, as well as urea and lysozyme, appeared to enhance the formation of a passive film layer on the Ti metal surface, thus inhibiting the corrosion. Based on the study findings, and especially considering the problem of nickel allergy and toxicity of mercury released from dental amalgam, the use of Co-Cr-Mo alloys and Ti to Ni-Cr-Mo alloys is recommended and alternatives to dental amalgam should be sought for patients with impaired salivary flow.

  17. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  18. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  19. Ecological economics and institutional change.

    PubMed

    Krall, Lisi; Klitgaard, Kent

    2011-02-01

    Ecological economics remains unfinished in its effort to provide a framework for transforming the economy so that it is compatible with biophysical limits. Great strides have been made in valuing natural capital and ecosystem services and recognizing the need to limit the scale of economic activity, but the question of how to effectively transform the economy to limit the scale of economic activity remains unclear. To gain clarity about the institutional changes necessary to limit the scale of economic activity, it is essential that ecological economics understands the limitations of its neoclassical roots and expands its theoretical framework to include how markets are embedded in social and institutional structures. This has long been the domain of institutional economics and heterodox political economy.

  20. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.