Sample records for precipitation isotope spatial

  1. Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil.

    PubMed

    Gastmans, Didier; Santos, Vinícius; Galhardi, Juliana Aparecida; Gromboni, João Felipe; Batista, Ludmila Vianna; Miotlinski, Konrad; Chang, Hung Kiang; Govone, José Silvio

    2017-10-01

    Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ 18 O and δ 2 H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.

  2. Fine-Scale Spatial Variability of Precipitation, Soil, and Plant Water Isotopes

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Braun, S.; Romero, C.; Engbersen, N.; Gessler, A.; Siegwolf, R. T.; Schmid, L.

    2015-12-01

    Introduction: The measurement of stable isotope ratios of water has become fundamental in advancing our understanding of environmental patterns and processes, particularly with respect to understanding the movement of water within the soil-plant-atmosphere continuum. While considerable research has explored the temporal variation in stable isotope ratios of water in the environment, our understanding of the spatial variability of these isotopes remains poorly understood. Methods: We collected spatially explicit samples of throughfall and soil water (n=150 locations) from a 1 ha plot delineated in a mixed deciduous forest in the northern Alps of Switzerland. We complemented this with fully sunlit branch and leaf samples (n = 60 individuals) collected from Picea abies and Fagus sylvatica between 14:00 and 16:00 on the same day by means of a helicopter. Soil and plant waters were extracted using cryogenic vacuum distillation and all samples were analyzed for δ18O using an isotope ratio mass spectrometer. Results: The mean δ18O of throughfall (-3.3 ± 0.8‰) indicated some evaporative enrichment associated with passage through the canopy, but this did not significantly differ from the precipitation collected in nearby open sites (-4.05‰). However, soil was depleted (-7.0 ± 1.8‰) compared to throughfall and there was no significant relationship between the two, suggesting that the sampling for precipitation inputs did not capture all the sources (e.g. stream water, which was -11.5‰) contributing to soil water δ18O ratios. Evaporative enrichment of δ18O was higher in leaves of Fagus (14.8 ± 1.8‰) than in leaves of Picea (11.8 ± 1.7‰). Sampling within crowns of each species (n = 5 branches each from 5 individuals) indicated that variability in a single individual is similar to that among individuals. Discussion: Stable isotopes of water are frequently engaged for studies of ecohydrology, plant ecophysiology, and paleoclimatology. Our results help

  3. Connection between ENSO and Asian Summer Monsoon Precipitation Oxygen Isotope

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Tian, L.

    2016-12-01

    In an effort to understand the connection between El Niño Southern Oscillation (ENSO) and Asian Summer Monsoon (ASM) precipitation oxygen isotope, this study investigates the spatial and interannual patterns in summer (JJAS) monsoon precipitation δ18O and satellite water vapor isotope retrievals, especially those patterns associated with convection and vapor transport. Both precipitation and vapor isotope values exhibit a "V" shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along vapor transport routes. In order to understand interannual variations, an ASM precipitation δ18O index (ASMOI) is introduced to measure the temporal variations in regional precipitation δ18O; and these variations are consistent with central Indo-Pacific convection and cloud-top height. The counter variations in the ASMOI in El Niño and La Niña years confirm the existence of a positive isotope- ENSO response (e.g., high values corresponding to warm phases) over the eastern Indian Ocean and southeastern Asia (80°E-120°E/10°S-30°N) as a response to changes in convection. However, JJAS vapor δD over the western Pacific (roughly east of 120oE) varies in opposition, due to the influence of water vapor transport. This opposite variation does not support the interpretation of precipitation isotope-ENSO relationship as changing proportion of vapor transported from different regions, but rather condensation processes associated with convection. These findings are important for studying past ASM and ENSO activity from various isotopic archives and have implications for the study of the atmospheric water cycle.

  4. Stable isotopic compositions in Australian precipitation

    NASA Astrophysics Data System (ADS)

    Liu, Jianrong; Fu, Guobin; Song, Xianfang; Charles, Stephen P.; Zhang, Yinghua; Han, Dongmei; Wang, Shiqin

    2010-12-01

    Stable deuterium (δD) and oxygen-18 (δ18O) isotopes in 1962 to 2002 precipitation from the seven Australian stations of the Global Network of Isotopes in Precipitation (GNIP) were used to investigate isotope characteristics including temporal and spatial distributions across different regions of Australia. On the basis of 1534 samples, the local meteoric water line (LMWL) was established as δD = 7.10δ18O + 8.21. δ18O showed a depletion trend from north and south to central Australia (a continental effect) and from west to east. Precipitation amount effects were generally greater than temperature effects, with quadratic or logarithmic correlations describing δ/T and δ/P better than linear relationships. Nonlinear stepwise regression was used to determine the significant meteorological control factors for each station, explaining about 50% or more of the δ18O variations. Geographical control factors for δ18O were given by the relationship δ18O (‰) = -0.005 longitude (°) - 0.034 latitude (°)-0.003 altitude (m) - 4.753. Four different types of d-excess patterns demonstrated particular precipitation formation conditions for four major seasonal rainfall zones. Finally, wavelet coherence (WTC) between δ18O and SOI confirmed that the influence of ENSO decreased from east and north to west Australia.

  5. Water Isotopes in Precipitation: Data/Model Comparison for Present-Day and Past Climates

    NASA Technical Reports Server (NTRS)

    Jouzel, J.; Hoffmann, G.; Masson, V.

    1998-01-01

    Variations of HDO and H2O-18 concentrations are observed in precipitation both on a geographical and on a temporal basis. These variations, resulting from successive isotopic fractionation processes at each phase change of water during its atmospheric cycle, are well documented through the IAEA/WMO network and other sources. Isotope concentrations are, in middle and high latitudes, linearly related to the annual mean temperature at the precipitation site. Paleoclimatologists have used this relationship to infer paleotemperatures from isotope paleodata extractable from ice cores, deep groundwater and other such sources. For this application to be valid, however, the spatial relationship must also hold in time at a given location as the location undergoes a series of climatic changes. Progress in water isotope modeling aimed at examining and evaluating this assumption has been recently reviewed with a focus on polar regions and, more specifically, on Greenland. This article was largely based on the results obtained using the isotopic version of the NASA/GISS Atmospheric General Circulation Model (AGCM) fitted with isotope tracer diagnostics. We extend this review in comparing the results of two different isotopic AGCMs (NASA/GISS and ECHAM) and in examining, with a more global perspective, the validity of the above assumption, i.e. the equivalence of the spatial and temporal isotope-temperature relationship. We also examine recent progress made in modeling the relationship between the conditions prevailing in moisture source regions for precipitation and the deuterium-excess of that precipitation.

  6. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Treesearch

    Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell

    2015-01-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...

  7. Comparing spatial and temporal patterns of river water isotopes across networks

    EPA Science Inventory

    A detailed understanding of the spatial and temporal dynamics of water sources across river networks is central to managing the impacts of climate change. Because the stable isotope composition of precipitation varies geographically, variation in surface-water isotope signatures ...

  8. Spatial analysis of annual mean stable isotopes in precipitation across Japan based on an intensive observation period throughout 2013.

    PubMed

    Ichiyanagi, Kimpei; Tanoue, Masahiro

    2016-01-01

    Spatial distribution of annual mean stable isotopes in precipitation (δ(18)O, δ(2)H) was observed at 56 sites across Japan throughout 2013. Annual mean δ(18)O values showed a strong latitude effect, from -12.4 ‰ in the north to -5.1 ‰ in the south. Annual mean d-excess values ranged from 8 to 21 ‰, and values on the Sea of Japan side in Northern and Eastern Japan were relatively higher than those on the Pacific Ocean side. The local meteoric water line (LMWL) and isotope effects were based on the annual mean values from all sites across Japan as divided into distinct regions: the Sea of Japan side to the Pacific Ocean side and Northeastern to Southwestern Japan. Slopes and intercepts of LMWL ranged from 7.4 to 7.8 and 9.8 to 13.0, respectively. Slopes for latitude, altitude, and temperature effects ranged from -0.27 to -0.48 ‰/°N, -0.0034 to -0.0053 ‰/m, and 0.36 to 0.46 ‰/°C, respectively, with statistically significance at the 99 % level. However, there was no precipitation amount effect. From the result of a multiple regression analysis, the empirical formula of annual mean δ(18)O in precipitation from latitude and altitude for all sites across Japan was determined to be δ(18) O = -0.348 (LAT) - 0.00307 (ALT) + 4.29 (R(2) = 0.59). Slopes for latitude and altitude ranged from - 0.28 to - 0.51, and - 0.0019 to - 0.0045, respectively. Even though site distribution was uneven, these equations are the first trial estimation for annual mean stable isotopes in precipitation across Japan. Further research performed on the monthly basis is required to elucidate factors controlling the spatiotemporal variability of stable isotopes in precipitation across Japan.

  9. Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores

    NASA Astrophysics Data System (ADS)

    Miller, Martin F.

    2018-01-01

    The relative abundance of 17O in meteoric precipitation is usually reported in terms of the 17O-excess parameter. Variations of 17O-excess in Antarctic precipitation and ice cores have hitherto been attributed to normalised relative humidity changes at the moisture source region, or to the influence of a temperature-dependent supersaturation-controlled kinetic isotope effect during in-cloud ice formation below -20 °C. Neither mechanism, however, satisfactorily explains the large range of 17O-excess values reported from measurements. A different approach, based on the regression characteristics of 103 ln (1 +δ17 O) versus 103 ln (1 +δ18 O), is applied here to previously published isotopic data sets. The analysis indicates that clear-sky precipitation ('diamond dust'), which occurs widely in inland Antarctica, is characterised by an unusual relative abundance of 17O, distinct from that associated with cloud-derived, synoptic snowfall. Furthermore, this distinction appears to be largely preserved in the ice core record. The respective mass contributions to snowfall accumulation - on both temporal and spatial scales - provides the basis of a simple, first-order explanation for the observed oxygen triple-isotope ratio variations in Antarctic precipitation, surface snow and ice cores. Using this approach, it is shown that precipitation during the last major deglaciation, both in western Antarctica at the West Antarctic Ice Sheet (WAIS) Divide and at Vostok on the eastern Antarctic plateau, consisted essentially of diamond dust only, despite a large temperature differential (and thus different water vapour supersaturation conditions) at the two locations. In contrast, synoptic snowfall events dominate the accumulation record throughout the Holocene at both sites.

  10. Mapping the Spatial and Temporal Distribution of N and O Isotopes in Precipitation Nitrate Across the Northeastern and Mid-Atlantic United States

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Kendall, C.; Harlin, K.; Butler, T.; Carlton, R.; Wankel, S.

    2004-12-01

    Atmospheric deposition of N is a universally important pathway by which ecosystems receive fixed, bioavailable N. Since the 1880s, atmospheric deposition of N has become increasingly important, as NOx emissions from fossil fuel combustion have steadily increased. In particular, the Northeastern and Mid-Atlantic U.S. receive some of the highest rates of nitrate wet deposition in the country, causing a cascade of detrimental effects. In order to effectively mediate the impacts of nitrate deposition, it is critical to understand the dynamics among NOx sources, atmospheric chemical transformations and transport, and the characteristics of the nitrate that is ultimately deposited. To address this need, this research takes advantage of recent methodological improvements, coupled with national networks (NADP, AIRMoN) of archived precipitation, to characterize N and O isotopic composition of nitrate in precipitation across the Northeastern and Mid-Atlantic U.S. We investigate the critical question of whether variations in \\delta15N and \\delta18O of nitrate wet deposition are mainly a function of atmospheric processes (e.g., seasonal variations in reaction pathways) or variable NOx source contributions (e.g., power plant emissions, vehicle exhaust). Spatial and seasonal variability of \\delta15N and \\delta18O is investigated using bimonthly archived samples from 2000. Furthermore, a high resolution record of daily precipitation from a single site is used to highlight within-season isotopic variability. Potential correlations between isotopic values and major NOx sources are explored using EPA datasets for monthly county-level emissions from two major NOx sources, electric generating units and on-road vehicles. Analysis of samples for \\Delta17O is in progress. A key concern regarding analysis of archived samples is nitrate preservation. We tested the stability of nitrate concentrations, and hence potential isotopic fractionations, by reanalyzing filtered, refrigerated

  11. Assessing Precipitation Isotope Variations during Atmospheric River Events to Reveal Dominant Atmospheric/Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, S. E.; Johnson, K. R.; Yoshimura, K.; Buenning, N. H.; Welker, J. M.

    2015-12-01

    Extreme precipitation events across the Western US commonly associated with atmospheric rivers (ARs), whereby extensive fluxes of moisture are transported from the subtropics, can result in major damage and are projected by most climate models to increase in frequency and severity. However, they are difficult to project beyond ~ten days and the location of landfall and topographically induced precipitation is even more uncertain. Water isotopes, often used to reconstruct past rainfall variability, are useful natural tracers of atmospheric hydrologic processes. Because of the typical tropical and sub-tropical origins, ARs can carry unique water isotope (δ18O and δ2H, d-excess) signatures that can be utilized to provide source and process information that can lead to improving AR predictions. Recent analysis of the top 10 weekly precipitation total samples from Sequoia National Park, CA, of which 9 contained AR events, shows a high variability in the isotopic values. NOAA Hysplit back trajectory analyses reveals a variety of trajectories and varying latitudinal source regions contributed to moisture delivered to this site, which may explain part of the high variability (δ2H = -150.03 to -49.52 ‰, δ18O = -19.27 to -7.20 ‰, d-excess = 4.1 to 25.8). Here we examine the top precipitation totals occurring during AR events and the associated isotopic composition of precipitation samples from several sites across the Western US. We utilize IsoGSM, an isotope-enabled atmospheric general circulation model, to characterize the hydrologic processes and physical dynamics contributing to the observed isotopic variations. We investigate isotopic influences from moisture source location, AR speed, condensation height, and associated temperature. We explore the dominant controls on spatial and temporal variations of the isotopic composition of AR precipitation which highlights different physical processes for different AR events.

  12. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  13. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  14. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  15. Observation and modelling of stable isotopes in precipitation for midlatitude weather systems in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Barras, Vaughan; Simmonds, Ian

    2010-05-01

    The application of stable water isotopes as tracers of moisture throughout the hydrological cycle is often hindered by the relatively coarse temporal and spatial resolution of observational data. Intensive observation periods (IOPs) of isotopes in precipitation have been valuable in this regard enabling the quantification of the effects of vapour recycling, convection, cloud top height and droplet reevaporation (Dansgaard, 1953; Miyake et al., 1968; Gedzelman and Lawrence, 1982; 1990; Pionke and DeWalle, 1992; Risi et al., 2008; 2009) and have been used as a basis to develop isotope models of varying complexity (Lee and Fung, 2008; Bony et al., 2008). This study took a unified approach combining observation and modelling of stable isotopes in precipitation in an investigation of three key circulation types that typically bring rainfall to southeastern Australia. The observational component of this study involved the establishment of the Melbourne University Network of Isotopes in Precipitation (MUNIP). MUNIP was devised to sample rainwater simultaneously at a number of collection sites across greater Melbourne to record the spatial and temporal isotopic variability of precipitation during the passage of particular events. Samples were collected at half-hourly intervals for three specific rain events referred to as (1) mixed-frontal, (2) convective, and (3) stratiform. It was found that the isotopic content for each event varied over both high and low frequencies due to influences from local changes in rain intensity and large scale rainout respectively. Of particular note was a positive relationship between deuterium excess and rainfall amount under convective conditions. This association was less well defined for stratiform rainfall. As a supplement to the data coverage of the observations, the events were simulated using a version of NCAR CAM3 running with an isotope hydrology scheme. This was done by periodically nudging the model dynamics with data from the

  16. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    NASA Astrophysics Data System (ADS)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  17. Slovenian Network of Isotopes in Precipitation (SLONIP) - a review of activities in the period 1981-2015

    NASA Astrophysics Data System (ADS)

    Vreča, Polona; Kanduč, Tjaša; Kocman, David; Lojen, Sonja; Štrok, Marko; Robinson, Johanna Amalia

    2017-04-01

    The importance of collecting data on the water isotope composition of precipitation in the frame of the Global Network of Isotopes in Precipitation (GNIP) has been steadily increasing since it was initiated by the IAEA and the WMO in 1958, particularly in the last decade (Terzer et al., 2013). GNIP provides an important database for water resources management, verifying and improving atmospheric circulation models, studying climates and the interactions between water in the atmosphere and the biosphere, providing baseline information for the authentication of commodities, etc. Geographical diversity of Slovenia influences the climate and also the water cycle considerably, therefore monitoring of isotopes in precipitation is of particular interest. A review on monitoring of isotopes in precipitation was performed and information about sampling, analytical methods, available data and their evaluation was collected for the period 1981-2015. The first regular and systematic monitoring began in 1981 in Ljubljana (Pezdič, 1999). Later, a programme of collecting new data at a higher spatial density and temporal frequency in different parts of the country by different research groups has been initiated and was extended several times. Consequently, the number of sampling locations has grown within Slovenian Network of Isotopes in Precipitation (SLONIP) and altogether isotopes were monitored at more than 30 different locations countrywide (Vreča and Malenšek, 2016). However, the network is still not a part of a national monitoring programme, such as that operating in some European countries, for example, in Switzerland (Schürch et al., 2003). Only part of Slovenian data is available in GNIP database. Based on the collected data, we identified gaps in the research and made recommendations for future monitoring in the frame of the SLONIP. The list of main gaps includes limited information about sampling (e.g. missing coordinates, type of collector, period, frequency

  18. Cenozoic climate evolution in Asian region and its influence on isotopic composition of precipitation

    NASA Astrophysics Data System (ADS)

    Botsyun, Svetlana; Donnadieu, Yannick; Sepulchre, Pierre; Risi, Camille; Fluteau, Frédéric

    2015-04-01

    The evolution of Asian climate during the Cenozoic as well as the onset of monsoon systems in this area is highly debated. Factors that control climate include the geographical position of continents, the land-sea distribution and altitude of orogens. In tern, several climatic parameters such as air temperature, precipitation amount and isotopic fractionation through mass-dependent processes impact precipitation δ18O lapse rate. Stable oxygen paleoaltimetry is considered to be a very efficient and widely applied technique, but the link between stable oxygen composition of precipitation and climate is not well established. To quantify the influence of paleogeography changes on climate and precipitation δ18O over Asia, the atmospheric general circulation model LMDZ-iso, with embedded stable oxygen isotopes, was used. For more realistic experiments, sea surface temperatures were calculated with the fully coupled model FOAM. Various scenarios of TP growth have been applied together with Paleocene, Eocene, Oligocene and Miocene boundary conditions. The results of our numerical modelling show a significant influence of paleogeography changes on the Asian climate. The retreat of the Paratethys ocean, the changes in latitudinal position of India, and the height of the Tibetan Plateau most likely control precipitation patterns over Asia and cause spatial and temporal isotopic variations linked with the amount effect. Indian Ocean currents restructuring during the Eocene induces a substantial warming over Asian continent. The adiabatic and non-adiabatic temperature effects explain some of δ18O signal variations. We highlight the importance of these multiple factor on paleoelevations estimates derived using oxygen stable isotopes.

  19. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  20. Key drivers of precipitation isotopes in Windhoek, Namibia (2012-2016)

    NASA Astrophysics Data System (ADS)

    Kaseke, K. F.; Wang, L.; Wanke, H.

    2017-12-01

    Southern African climate is characterized by large variability with precipitation model estimates varying by as much as 70% during summer. This difference between model estimates is partly because most models associate precipitation over Southern Africa with moisture inputs from the Indian Ocean while excluding inputs from the Atlantic Ocean. However, growing evidence suggests that the Atlantic Ocean may also contribute significant amounts of moisture to the region. This four-year (2012-2016) study investigates the isotopic composition (δ18O, δ2H and δ17O) of event-scale precipitation events, the key drivers of isotope variations and the origins of precipitation experienced in Windhoek, Namibia. Results indicate large storm-to-storm isotopic variability δ18O (25‰), δ2H (180‰) and δ17O (13‰) over the study period. Univariate analysis showed significant correlations between event precipitation isotopes and local meteorological parameters; lifted condensation level, relative humidity (RH), precipitation amount, average wind speed, surface and air temperature (p < 0.05). The number of significant correlations between local meteorological parameters and monthly isotopes was much lower suggesting loss of information through data aggregation. Nonetheless, the most significant isotope driver at both event and monthly scales was RH, consistent with the semi-arid classification of the site. Multiple linear regression analysis suggested RH, precipitation amount and air temperature were the most significant local drivers of precipitation isotopes accounting for about 50% of the variation implying that about 50% could be attributed to source origins. HYSLPIT trajectories indicated that 78% of precipitation originated from the Indian Ocean while 21% originated from the Atlantic Ocean. Given that three of the four study years were droughts while two of the three drought years were El Niño related, our data also suggests that δ'17O-δ'18O could be a useful tool to

  1. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  2. [Variations and simulation of stable isotopes in precipitation in the Heihe River basin].

    PubMed

    Wu, Jin-Kui; Yang, Qi-Yue; Ding, Yong-Jian; Ye, Bai-Sheng; Zhang, Ming-Quan

    2011-07-01

    To study the variations of deltaD and delta18O in precipitation, 301 samples were sampled during 2002-2004 in 6 sites in the Heihe River basin, Northwestern China. The deltaD and delta18O values ranged from 59 per thousand to -254 per thousand and 6.5 per thousand to -33.4 per thousand, respectively. This wide range indicated that stable isotopes in precipitation were controlled by different condensation mechanisms as a function of air temperature and varying sources of moisture. delta18O in precipitation had a close positive relationship with the air temperature, i. e., a clear temperature effect existed in this area. At a monthly scale, no precipitation effect existed. On the other hand, a weak precipitation effect still accrued at precipitation events scale. The spatial variation of delta18O showed that the weighted average delta18O values decreased with the increasing altitude of sampling sites at a gradient of -0. 47 per thousand/100m. A regional Meteoric Water Line, deltaD = 7.82 delta18O + 7.63, was nearly identical to the Meteoric Water Line in the Northern China. The results of backward trajectory of each precipitation day at Xishui showed that the moisture of the precipitation in cold season (October to March) mainly originated from the west while the moisture source was more complicated in warm season (April to September). The simulation of seasonal delta18O variation showed that the stable isotope composition of precipitation tended to a clear sine-wave seasonal variation.

  3. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    NASA Astrophysics Data System (ADS)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  4. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  5. [Temporal and spatial variations of hydrogen and oxygen isotopes in Tuojia River and its influencing factors.

    PubMed

    Wu, Hong Bao; Zhao, Qiang; Qin, Xiao Bo; Gao, Qing Zhu; Lyu, Cheng Wen

    2018-05-01

    The characteristics of hydrogen and oxygen stable isotopes in river is important for regional hydrologic cycle research. To uncover water supply sources in subtropical agricultural basin from a perspective of stable isotopes, field measurements were conducted in four reaches (S 1 , S 2 , S 3 and S 4 ) of Tuojia River from April to August 2017. We analyzed the spatial and temporal variations in hydrogen and oxygen isotopes and deuterium excess parameters and their relationship with precipitation, altitude and water quality. Results showed that hydrogen and oxygen isotopes and deuterium excess values ranged from -43.17‰ to -26.43‰ (-35.50‰±5.44‰), -7.94‰ to -5.70‰ (-6.86‰±0.74‰), and 16.77‰ to 23.49‰ (19.39‰±1.95‰), respectively. Under the influence of monsoon circulation, hydrogen and oxygen isotopes showed substantial seasonal variation, with spring (δD: -29.88‰±3.31‰; δ 18 O: -6.18‰±0.57‰) > summer (δD: -39.25‰±2.65‰; δ 18 O: -7.32‰±0.42‰). The spatial distribution of hydrogen and oxygen isotopes values increased fluctuantly with the position from the sampling site to the river's source, with δD: S 1 <S 4 <S 3 <S 2 , and δ 18 O: S 1 <S 3 <S 4 <S 2 . The deuterium excess values had no significant temporal variation, while it spatially increased gradually with the river levels. The slope and intercept of water line in this river were smaller than that of the local meteoric water line, suggesting that precipitation was the primary water source for this river. At the seasonal scale, both δD and δ 18 O were significantly negatively correlated with water temperature (δD: r=-0.92; δ 18 O: r=-0.88) and δ 18 O was negatively correlated with altitude (r=-0.96). At spatial scale, δ 18 O had a significantly positive correlation with water temperature. The δD and δ 18 O had negative correlation with precipitation, but being not statistically significant.

  6. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data

    NASA Astrophysics Data System (ADS)

    Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.

    2017-09-01

    Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.

  7. Spatio-temporal examination of precipitation isotopes from the North American monsoon in Arizona, New Mexico, and Utah from 2014 to 2017

    NASA Astrophysics Data System (ADS)

    Tulley-Cordova, C. L.; Bowen, G. J.

    2017-12-01

    A significant summertime feature of climate in the southwestern United States (US) is the North American monsoon (NAM), also known as the Mexican monsoon, Arizona monsoon, and the southwestern United States monsoon. NAM is a crucial contributor to total annual precipitation in the Four Corners region of the US. Modern investigation of NAM in this region using stable isotopes has been poorly studied. This study characterizes the spatio-temporal changes of NAM based on stable isotopic results from 40 sites, located within the boundaries of the Navajo Nation, in Arizona, New Mexico, and Utah from 2014 to 2017. Sample collections were collected monthly at each site from May to October. Examination of temporal trends of precipitation revealed strong monthly and interannual changes; spatial analysis showed weak large-scale relationships across the study area. Analysis of stable isotopes in precipitation, surface, ground, and spring waters can be used to interpret the isotopic differences in the modern hydro-climate of the Navajo Nation and Colorado Plateau to help predict future hydro-climate changes and its implications on future water resources.

  8. Modelling stable water isotopes during "high-precipitation" events at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Masson-Delmotte, Valérie; Risi, Camille; Stenni, Barbara; Valt, Mauro; Powers, Jordan G.; Manning, Kevin W.; Duda, Michael G.; Cagnati, Anselmo

    2014-05-01

    For a correct paleoclimatologic interpretation of stable water isotopes from ice cores both pre- and post-depositional processes and their role for isotope fractionation have to be better understood. Our study focusses on "pre-depositional processes", namely the atmospheric processes that determine moisture transport and precipitation formation. At the deep ice core drilling site "Dome C", East Antarctica, fresh snow samples have been taken since 2006. These samples have been analysed crystallographically, which enables us to clearly distinguish between blowing snow, diamond dust, and "synoptic precipitation". Also the stable oxygen/hydrogen isotope ratios of the snow samples were measured, including measurements of 17-O. This is the first and only multi-year fresh-snow data series from an Antarctic deep drilling site. The Antarctic Mesoscale Prediction System (AMPS) employs Polar WRF for aviation weather forecasts in Antarctica. The data are archived and can be used for scientific purposes. The mesoscale atmospheric model was adapted especially for polar regions. The horizontal resolution for the domain that covers the Antarctic continent is 10 km. It was shown that precipitation at Dome C is temporally dominated by diamond dust. However, comparatively large amounts of precipitation are observed during several "high-precipitation" events per year, caused by synoptic activity in the circumpolar trough and related advection of relatively warm and moist air from lower latitudes to the interior of Antarctica. AMPS archive data are used to investigate the synoptic situations that lead to "high-precipitation" events at Dome C; in particular, possible moisture sources are determined using back-trajectories. With this meteorological information, the isotope ratios are calculated using two different isotope models, the Mixed Cloud Isotope Model, a simple Rayleigh-type model, and the LMDZ-iso (Laboratoire de Météorologie Dynamic Zoom), a General Circulation Model (GCM

  9. Isotopic Variability in Central Valley Precipitation Events

    NASA Astrophysics Data System (ADS)

    Keene, D.; Sowers, T.; Wagner, A. J.

    2017-12-01

    Wintertime precipitation in the Sacramento Valley is characterized by two regimes: northerly storms generated by the polar jet stream and southerly storms generated by subtropical atmospheric rivers (ARs). Polar jet stream storms account for the majority of storm activity in the central valley, but the amount of subtropical moisture available for transport tends to increase during El Niño years. However, during the El Niño of 2015-2016, California continued to experience drought conditions with the Sacramento area receiving below average wintertime precipitation. Although the 2016-2017 winter was not an El Niño year, the Sacramento area received more than 190% of its average precipitation from ARs in the opening months of 2017. While this suggests that ARs are a significant part of California's hydrologic cycle independent of El Niño, it has not been established whether these storms have an isotopically distinct signature compared to those generated by the polar jet stream or if their signature covaries with ENSO. To investigate the potential isotopic variability of ARs, rainwater was collected over a period of three years in the Sacramento Valley and the surrounding areas and analyzed for δD and δ18O. Since El Niño is generally considered to cause an increase in the amount of available subtropical moisture delivered to the Sacramento valley, we would expect precipitation during those years to be less depleted than precipitation in non-El Niño years. On average, δD and δ18O values of precipitation during the 2015-2016 winter were not significantly different compared to precipitation from 2016-2017 even though 2016-2017 was dominated by historic amounts of AR rainfall. This suggests that the frequency and intensity of atmospheric river storm events may not be intimately linked with the ENSO cycle.

  10. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  11. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Huang, Enqing; Chen, Yunru; Schefuß, Enno; Steinke, Stephan; Liu, Jingjing; Tian, Jun; Martínez-Méndez, Gema; Mohtadi, Mahyar

    2018-07-01

    Precipitation isotope reconstructions derived from speleothems and plant waxes are important archives for understanding hydroclimate dynamics. Their climatic significance in East Asia, however, remains controversial. Here we present terrestrial plant-wax stable hydrogen isotope (δDwax) records over periods covering the last four interglacials and glacial terminations from sediment cores recovered from the northern South China Sea (SCS) as an archive of regionally-integrated precipitation isotope changes in Southeast China. Combined with previous precipitation isotope reconstructions from China, we find that the SCS δDwax and Southwest-Central China stalagmite δ18O records show relatively enriched and depleted isotopic values, respectively, during interglacial peaks; but relatively similar isotopic variations during most sub-interglacials and glacial periods over the past 430 thousand years. During interglacial peaks, strong summer insolation should have intensified the convection intensity, the isotopic fractionation along moisture trajectories and the seasonality, which are all in favor of causing isotopically-depleted rainfall over the East Asian monsoon regime. These effects in combination with a relatively high proportion of Indian Ocean- versus Pacific-sourced moisture influx should have resulted in strongly depleted precipitation isotopes (stalagmite δ18O) over most parts of China. However, Southeast China should have been affected by a relatively low ratio of Indian Ocean- versus Pacific-sourced moisture influx, which dominated over effects yielding depleted precipitation isotopes and led to enriched precipitation isotopes (δDwax). It is thus concluded that glacial boundary conditions and insolation forcing are the two most important factors for causing regional differences in precipitation isotope compositions over subtropical East Asia on orbital timescales.

  12. Significance of the air moisture source on the stable isotope composition of the precipitation in Hungary

    NASA Astrophysics Data System (ADS)

    Czuppon, György; Bottyán, Emese; Krisztina, Krisztina; Weidinger, Tamás; Haszpra, László

    2017-04-01

    In the last few years, the analysis of backward trajectories has become a common use for identifying moisture uptake regions for the precipitation of various regions. Hungary is influenced by meteorological (climatological) conditions of Atlantic, Mediterranean and North/East regions therefore this area is sensitive to detect changes in the atmospheric circulation. In this study we present the result of the investigation about the determination of air moisture source regions for six localities in Hungary for more than four years. To reconstruct the path of the air moisture from the source region, we ran the NOAA HYSPLIT trajectory model using the GDAS database with 1° spatial and 6 hours temporal resolution for every precipitation event, for heights of 500, 1500 and 3000 m. We determined the location where water vapour entered into the atmosphere by calculating specific humidity along the trajectories. Five possible moisture source regions for precipitation were defined: Atlantic, North European, East European, Mediterranean and continental (local/convective). Additionally, this study evaluates the regional differences in stable isotope compositions of precipitation based on hydrogen and oxygen isotope analyses of daily rainwater samples. Stable isotope variations show systematic and significant differences between the regions. The variability of moisture source shows also systematic seasonal and spatial distribution. Interestingly, the most dominant among the identified source regions in all stations is the Mediterranean area; while the second is the Atlantic region. The ratio of the precipitations originated in Eastern and Northern Europe seem to correlate with the geographic position of the meteorological station. Furthermore, the ratios of the different moisture sources show intra annual variability. In each location, the amount weighted d-excess values were calculated for the identified moisture sources. The precipitation originated in the Mediterranean

  13. Relating isotopic composition of precipitation to atmospheric patterns and local moisture recycling

    NASA Astrophysics Data System (ADS)

    Logan, K. E.; Brunsell, N. A.; Nippert, J. B.

    2016-12-01

    Local land management practices such as irrigation significantly alter surface evapotranspiration (ET), regional boundary layer development, and potentially modify precipitation likelihood and amount. How strong this local forcing is in comparison to synoptic-scale dynamics, and how much ET is recycled locally as precipitation are areas of great uncertainty and are especially important when trying to forecast the impact of local land management strategies on drought mitigation. Stable isotope analysis has long been a useful tool for tracing movement throughout the water cycle. In this study, reanalysis data and stable isotope samples of precipitation events are used to estimate the contribution of local moisture recycling to precipitation at the Konza Prairie LTER - located in the Great Plains, downwind of intensive agricultural areas. From 2001 to 2014 samples of all precipitation events over 5mm were collected and 18O and D isotopes measured. Comparison of observed precipitation totals and MERRA and ERA-interim reanalysis totals is used to diagnose periods of strong local moisture contribution (especially from irrigation) to precipitation. Large discrepancies in precipitation between observation and reanalysis, particularly MERRA, tend to follow dry periods during the growing season, presumably because while ERA-Interim adjusts soil moisture using observed surface temperature and humidity, MERRA includes no such local soil moisture adjustment and therefore lacks potential precipitation feedbacks induced by irrigation. The δ18O and δD signature of local irrigation recycling is evaluated using these incongruous observations. Self-organizing maps (SOM) are then used to identify a comprehensive range of synoptic conditions that result in precipitation at Konza LTER. Comparison of isotopic signature and SOM classification of rainfall events allows for identification of the primary moisture source and estimation of the contribution of locally recycled moisture. The

  14. Long-Term Precipitation Isotope Ratios (δ18O, δ2H, d-excess) in the Northeast US Reflect Atlantic Ocean Warming and Shifts in Moisture Sources

    NASA Astrophysics Data System (ADS)

    Puntsag, T.; Welker, J. M.; Mitchell, M. J.; Klein, E. S.; Campbell, J. L.; Likens, G.

    2014-12-01

    The global water cycle is exhibiting dramatic changes as global temperatures increase resulting in increases in: drought extremes, flooding, alterations in storm track patterns with protracted winter storms, and greater precipitation variability. The mechanisms driving these changes can be difficult to assess, but the spatial and temporal patterns of precipitation water isotopes (δ18O, δ2H, d-excess) provide a means to help understand these water cycle changes. However, extended temporal records of isotope ratios in precipitation are infrequent, especially in the US. In our study we analyzed precipitation isotope ratio data from the Hubbard Brook Experimental Forest in New Hampshire that has the longest US precipitation isotope record, to determine: 1) the monthly composited averages and trends from 1967 to 2012 (45 years); ; 2) the relationships between abiotic properties such as local temperatures, precipitation type, storm tracks and isotope ratio changes; and 3) the influence of regional shifts in moisture sources and/or changes in N Atlantic Ocean water conditions on isotope values. The seasonal variability of Hubbard Brook precipitation isotope ratios is consistent with other studies, as average δ18O values are ~ -15‰ in January and ~ -5 ‰ in July. However, over the 45 year record there is a depletion trend in the δ 18O values (becoming isotopically lighter with a greater proportion of 16O), which coupled with less change in δ 2H leads to increases in d-excess values from ~ -10‰ around 1970 to greater than 10‰ in 2009. These changes occurred during a period of warming as opposed to cooling local temperatures indicating other processes besides temperature are controlling long-term water isotope traits in this region. We have evidence that these changes in precipitation isotope traits are controlled in large part by an increases in moisture being sourced from a warming N Atlantic Ocean that is providing evaporated, isotopically

  15. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  16. Stable Isotopes of Precipitation During Tropical Sumatra Squalls in Singapore

    NASA Astrophysics Data System (ADS)

    He, Shaoneng; Goodkin, Nathalie F.; Kurita, Naoyuki; Wang, Xianfeng; Rubin, Charles Martin

    2018-04-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems during the intermonsoon and southwest monsoon seasons in Singapore. To understand how they affect precipitation isotopes, we monitored the δ value of precipitation daily and continuously (every second and integrated over 30 s) during all squalls in 2015. We found that precipitation δ18O values mainly exhibit a "V"-shape pattern and less commonly a "W"-shape pattern. Variation in δ18O values during a single event is about 1 to 6‰ with the lowest values mostly observed in the stratiform zone, which agrees with previous observations and modeling simulations. Reevaporation can significantly affect δ values, especially in the last stage of the stratiform zone. Daily precipitation is characterized by periodic negative shifts in δ value, largely associated with the squalls rather than moisture source change. The shifts can be more than 10‰, larger than intraevent variation. Initial δ18O values of events are highly variable, and those with the lowest values also have the lowest initial values. Therefore, past convective activities in the upwind area can significantly affect the δ18O, and convection at the sampling site has limited contribution to isotopic variability. A significant correlation between precipitation δ18O value and regional outgoing longwave radiation and rainfall in the Asian monsoon region and western Pacific suggests that regional organized convection probably drives stable isotopic compositions of precipitation. A drop in the frequency of the squalls in 2015 is related to weak organized convection in the region caused by El Niño.

  17. Changes in precipitation isotope-climate relationships from temporal grouping and aggregation of weekly-resolved USNIP data: impacts on paleoclimate and environmental applications

    NASA Astrophysics Data System (ADS)

    Akers, P. D.; Welker, J. M.

    2015-12-01

    Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of

  18. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm

    USGS Publications Warehouse

    Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D.

    2008-01-01

    With a new automated precipitation collector we measured a remarkable decrease of 51??? in the hydrogen isotope ratio (?? 2H) of precipitation over a 60-minute period during the landfall of an extratropical cyclone along the California coast on 21 March 2005. The rapid drop in ??2H occurred as precipitation generation transitioned from a shallow to a much deeper cloud layer, in accord with synoptic-scale ascent and deep "seeder-feeder" precipitation. Such unexpected ?? 2H variations can substantially impact widely used isotope-hydrograph methods. From extreme ??2H values of -26 and -78???, we calculate precipitation temperatures of 9.7 and -4.2??C using an adiabatic condensation isotope model, in good agreement with temperatures estimated from surface observations and radar data. This model indicates that 60 percent of the moisture was precipitated during ascent as temperature decreased from 15??C at the ocean surface to -4??C above the measurement site.

  19. Variogram analysis of stable oxygen isotope composition of daily precipitation over the British Isles

    NASA Astrophysics Data System (ADS)

    Kohán, Balázs; Tyler, Jonathan; Jones, Matthew; Kern, Zoltán

    2017-04-01

    Water stable isotopes are important natural tracers in the hydrological cycle on global, regional and local scales. Daily precipitation water samples were collected from 70 sites over the British Isles on the 23rd, 24th, and 25th January, 2012 [1]. Samples were collected as part of a pilot study for the British Isotopes in Rainfall Project, a community engagement initiative, in collaboration with volunteer weather observers and the UK Met Office. Spatial correlation structure of daily precipitation stable oxygen isotope composition (δ18OP) has been explored by variogram analysis [2]. Since the variograms from the raw data suggested a pronounced trend, owing to the spatial trend discussed in the original study [1], a second order polynomial trend was removed from the raw δ18OP data and variograms were calculated on the residuals. Directional experimental semivariograms were calculated (steps: 10°, tolerance: 30°) and aggregated into variogram surface plots to explore the spatial dependence structure of daily δ18OP. Each daily data set produced distinct variogram plots. -A well expressed anisotropic structure can be seen for Jan 23. The lowest and highest variance was observed in the SW-NE and NNE-SSW direction, respectively. Meteorological observations showed that the majority of the atmospheric flow was SW on this day, so the direction of low variance seems to reflect this flow direction, while the maximum variance might reflect the moisture variance near the elongation of the frontal system. -A less characteristic but still expressed anisotropic structure was found for Jan 24 when a warm front passed the British Isles perpendicular to the east coast, leading to a characteristic east-west δ18OP gradient suggestive of progressive rainout. The low variance central zone has a 100 km radius which might correspond well to the width of the warm front zone. Although, the axis of minimum variance was similarly SW-NE, the zone of maximum variance was broader and

  20. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    PubMed

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  1. Spatial changes of the evaporation/inflow ratio of lake water deduced from surface water isotopes in Bangongcuo, western Tibet

    NASA Astrophysics Data System (ADS)

    Wen, R.; Tian, L.; Weng, Y.; Qu, D.

    2013-12-01

    Oxygen isotope analysis provides a practical approach to understand the regional hydrologic cycle and to reconstruct the paleoclimate and paleoenvironment from lacustrine sediment. The large number of inland lakes on the northern part of the Tibetan Plateau provides the opportunity for this work, and an understanding of the isotope variation of the lake water in the water cycle is vital for this purpose. A water isotope sampling network was set up in the Banggongcuo Lake basin in western Tibet in 2009 that measured precipitation, lake water, and river water. Two years of collecting isotope data, together with AWS observations at the Ngari station in the basin, allowed for a study of lake water isotope variations in the water cycle in narrow Banggongcuo Lake. Observations showed much higher water δ18O in the closed lake due to the strong evaporation fractionation process when compared with local precipitation. An obvious spatial change of lake water δ18O was also found, varying from about -4.9‰ in the east to about +0.9‰ in the west. This spatial change is largely due to the fact that the main river water input to the lake is on the eastern part of the lake, while the lake water evaporates out gradually westward. This phenomenon also matches the spatial change of lake water chemical components. We simulate the gradual evaporation of the lake water using an isotope evaporation fractionation model, in an effort to quantitatively estimate the E/I ratio (evaporation to total lake water inflow) in different parts of the lake. From the observation lake water δ18O, we estimate that the E/I ratio is about 42~60% in the eastern part of the lake and increases to 76~87% in the western part.

  2. Spatial distribution of precipitation extremes in Norway

    NASA Astrophysics Data System (ADS)

    Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.

    2015-04-01

    Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude

  3. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples.

    PubMed

    Graney, Joseph R; Landis, Matthew S

    2013-03-15

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16month period (July 1994-October 1995) at Bondville were parsed into six unique meteorological flow regimes using a minimum variance clustering technique on back trajectory endpoints. Pb isotope ratios and multi-element concentrations were measured using high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) on the archived precipitation samples. Bondville is located in central Illinois, ~250km downwind from smelters in southeast Missouri. The Mississippi Valley Type ore deposits in Missouri provided a unique multi-element and Pb isotope fingerprint for smelter emissions which could be contrasted to industrial emissions from the Chicago and Indianapolis urban areas (~125km north and east, of Bondville respectively) and regional emissions from electric utility facilities. Differences in Pb isotopes and element concentrations in precipitation corresponded to flow regime. Industrial sources from urban areas, and thorogenic Pb from coal use, could be differentiated from smelter emissions from Missouri by coupling Pb isotopes with variations in element ratios and relative mass factors. Using a three endmember mixing model based on Pb isotope ratio differences, industrial processes in urban airsheds contributed 56±19%, smelters in southeast Missouri 26±13%, and coal combustion 18±7%, of the Pb in precipitation collected in Bondville in the mid-1990s. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal

    PubMed Central

    Chakraborty, S.; Sinha, N.; Chattopadhyay, R.; Sengupta, S.; Mohan, P. M.; Datye, A.

    2016-01-01

    Isotopic analysis of precipitation over the Andaman Island, Bay of Bengal was carried out for the year 2012 and 2013 in order to study the atmospheric controls on rainwater isotopic variations. The oxygen and hydrogen isotopic compositions are typical of the tropical marine sites but show significant variations depending on the ocean-atmosphere conditions; maximum depletion was observed during the tropical cyclones. The isotopic composition of rainwater seems to be controlled by the dynamical nature of the moisture rather than the individual rain events. Precipitation isotopes undergo systematic depletions in response to the organized convection occurring over a large area and are modulated by the integrated effect of convective activities. Precipitation isotopes appear to be linked with the monsoon intraseasonal variability in addition to synoptic scale fluctuations. During the early to mid monsoon the amount effect arose primarily due to rain re-evaporation but in the later phase it was driven by moisture convergence rather than evaporation. Amount effect had distinct characteristics in these two years, which appeared to be modulated by the intraseasonal variability of monsoon. It is shown that the variable nature of amount effect limits our ability to reconstruct the past-monsoon rainfall variability on annual to sub-annual time scale. PMID:26806683

  5. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation

    NASA Astrophysics Data System (ADS)

    Martin, N. J.; Conroy, J. L.; Noone, D.; Cobb, K. M.; Konecky, B. L.; Rea, S.

    2018-01-01

    The origin of stable isotopic variability in precipitation over time and space is critical to the interpretation of stable isotope-based paleoclimate proxies. In the eastern equatorial Pacific, modern stable isotope measurements in precipitation (δ18Op and δDp) are sparse and largely unevaluated in the literature, although insights from such analyses would benefit the interpretations of several regional isotope-based paleoclimate records. Here we present a new 3.5 year record of daily-resolved δ18Op and δDp from Santa Cruz, Galápagos. With a prior 13 year record of monthly δ18Op and δDp from the island, these new data reveal controls on the stable isotopic composition of regional precipitation on event to interannual time scales. Overall, we find Galápagos δ18Op is significantly correlated with precipitation amount on daily and monthly time scales. The majority of Galápagos rain events are drizzle, or garúa, derived from local marine boundary layer vapor, with corresponding high δ18Op values due to the local source and increased evaporation and equilibration of smaller drops with boundary layer vapor. On monthly time scales, only precipitation in very strong, warm season El Niño months has substantially lower δ18Op values, as the sea surface temperature threshold for deep convection (28°C) is only surpassed at these times. The 2015/2016 El Niño event did not produce strong precipitation or δ18Op anomalies due to the short period of warm SST anomalies, which did not extend into the peak of the warm season. Eastern Pacific proxy isotope records may be biased toward periods of high rainfall during strong to very strong El Niño events.

  6. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  7. Spatial and Temporal Mapping of Distributed Surface and Groundwater Stable Isotopes Enables New insights into Hydrologic Processes Operating at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Cole, A.; Boutt, D. F.

    2017-12-01

    Isotopic analyses of d18O and d2H of water transiting the hydrologic cycle have allowed hydrologists to better understand the portioning of water between the different components of the water cycle. Isoscapes on a large spatial scale have been created to show isotopic variation in waters as a function of elevation, temperature, distance to coast and precipitation. This has not been done on a 10,000 sq mi area, sub-regional scale or for that matter exhaustively sampled the important components of the terrestrial hydrologic cycle (groundwater, surface water and soil waters). We present the spatial and temporal isotopic results of an ongoing study across Massachusetts, USA, to establish an isotopic baseline for the region. Our current database consists of water samples from 50 precipitation sites, 333 ground water sites and 421 surface water sites. The isotopic signature of d18O and d2H of the samples are measured by a wavelength scanned cavity ring-down spectrometry on un-acidified water samples by a Picarro Cavity Ring Down Spectrometer (L2120-I) analyzer. Our results show that groundwater ranges from -11 to -1 ‰ δ18O across Massachusetts. Wells show a correlation with elevation; at higher elevations groundwater is more depleted in the heavy isotopes than compared with wells located at a lower elevation. Surface, groundwater and precipitation depict a seasonal evaporative enrichment, with waters being lighter during the months and heavier during the summer months. Based on Massachusetts location relative to the coast, there is a large variability in the mean d18O of precipitation with rain being heavy near the coast and lighter with increasing distance from the coast. HYSPLIT trajectory models will be used to determine how source affects isotopic composition. Within Massachusetts the isotopic composition of groundwater in till, glacial fluvial and bedrock aquifers are distinct which indicates the potential for surface and groundwater interaction. Our data also

  8. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  9. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation

    USGS Publications Warehouse

    Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.

    2006-01-01

    Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments

  10. Rainfall Type as a Dominant Control of the Isotopic Composition of Precipitation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Sun, C.; Shanahan, T. M.; Partin, J. W.

    2017-12-01

    The processes that control the isotopic composition of precipitation in the mid-latitudes are understudied compared to the high and low latitudes, but are critical for interpreting paleo records using isotope proxies. To better understand these processes, we investigated changes of isotopic composition of rainwater in Central Texas using 20 months of event-based rainwater collection. We find that in both the event-based data and the monthly data from the Waco GNIP station, the dominant control on the isotopic composition of precipitation is the proportion that is derived from convective systems. This finding is consistent with previously reported data largely from tropical localities (Aggarwal et al., 2016), where large organized convective systems lead to high rainfall amounts and isotopically depleted precipitation. Although there are seasonal differences in the dominant rainfall types over the South Central US, with winter precipitation almost entirely stratiform, seasonality plays very little role in the net isotopic composition of precipitation because the total contribution during winter is small compared with spring, summer and fall. We also find that changes of source have little effect on the isotopic composition of rainfall, as the majority of the moisture is derived from the Gulf of Mexico with little influence of reevaporation or mixing. The majority of the warm season precipitation in the South Central US occurs in association with mesoscale convective systems (MCSs) and the development of these systems plays a critical role in the overall isotopic signature of precipitation. MCSs are characterized by a combination of intense, organized convection at their leading edges and trailing stratiform precipitation. Larger MCSs tend to contain higher proportions of stratiform rainfall and as a result, have isotopically depleted values. Proxy records from this region displaying more negative isotope values in the past should therefore be interpreted with

  11. From precipitation to ice cores: an isotopic comparison at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Feng, X.; Adolph, A. C.; Virginia, R. A.; Posmentier, E. S.

    2015-12-01

    The observed deuterium excess (d-excess) in ice cores from Summit, Greenland has high summer values and low winter values, which is opposite of the seasonal variations of most northern hemisphere locations. The interpretation of this d-excess seasonality in the context of moisture source changes is made more complicated by possible post-depositional modifications. We investigate potential post-depositional modifications within 3-4 years after precipitation events by collecting precipitation samples and comparing them with snow pit profiles at Summit. Precipitation was sampled on a storm-by-storm basis from July 2011 to September 2014. To assess the effect of wind blown snow on cross-storm contamination, we sampled at three heights (1, 2, and 4 m). Snow pits were sampled in the summers of 2013 and 2015 to span the entirety of our precipitation record. All samples were analyzed for δD and δ18O and d-excess was calculated. Mixing of snow between different storms was identified only for samples collected at the lowest height. We thus use the samples collected at the top height for interpretation. The annual cycle of precipitation isotopes follow the established seasonal relationship with the average summer enrichment of -217 and -29‰, and winter depletion of -317 and -40‰ for δD and δ18O, respectively. The d-excess shows an average summer maximum of 16‰ and winter minimum of 3‰. In the snow pit, the seasonal amplitude and phase of both oxygen and hydrogen isotopic ratios as well as the d-excess compare remarkably well with those of the precipitation. The profile appeared to be devoid of major post depositional effects except for a thin layer that changed during a melt event in 2012. However, this type of event is extremely rare at Summit, and should not significantly compromise the interpretation of precipitation isotopes in ice cores, except perhaps during climatic warm period summers. The precipitation d-excess seasonality is typically interpreted as

  12. Estimation of the isotopic composition and origins of winter precipitation over Japan using a regional isotope circulation model

    NASA Astrophysics Data System (ADS)

    Tanoue, M.; Ichiyanagi, K.; Yoshimura, K.; Shimada, J.; Hirabayashi, Y.

    2017-12-01

    Understanding the dynamics of the origins of precipitation (i.e., vapor source regions of evaporated moisture) is useful for long-term forecasting and calibration of water isotope thermometer. In the Asian monsoon region, vapor source regions are identified by the deuterium excess (d-excess; defined as δD - 8 • δ18O) of precipitation because its values mainly reflect humidity conditions during evaporation at the source regions. In Japan, previous studies assumed the Sea of Japan to be the dominant source of winter precipitation when the d-excess value in winter is >20‰ or higher than the average value in summer. Because this assumption is based on an interpretation that the high d-excess value is due to an interaction between the continental winter monsoon (WM) and warm sea surface at the Sea of Japan, it may not be appropriate for winter precipitation caused by extratropical cyclones (EC). Here, we utilized a regional isotope circulation model and then clarified local patterns of isotopic composition and the origins of precipitation in the WM and EC types over Japan. The results indicated that moisture originating from the Sea of Japan made the highest contribution to precipitation on the Sea of Japan side of Japan in the WM type, whereas the Pacific Ocean was the dominant source of precipitation over Japan in the EC type. Because d-excess values were higher in the WM than in the EC type, we can assume that the Sea of Japan was the dominant source of precipitation on the Sea of Japan side when the d-excess value was high. Because precipitation on the Pacific Ocean side and the Kyushu island of Japan was mainly caused by the EC type, we could not identify the dominant source of precipitation as the Sea of Japan from only the d-excess values in these regions. We also found that WM activity could be estimated from observed d-excess values due to a clear positive correlation between simulated d-excess values and the activity.

  13. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region

    NASA Astrophysics Data System (ADS)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.

    2017-10-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  14. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  15. Stable isotope distribution in precipitation in Romania and its relevance for palaeoclimatic studies

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Nagavciuc, Viorica; Bădăluţă, Carmen

    2014-05-01

    A surge of recent studies in Romania have targeted various aspects of palaeoclimate (based on stable isotopes in ice, speleothems, tree rings), mineral water origin, wine and other juices provenance. However, while much needed, these studies lack a stable isotope in precipitation background, with only two LMWL's being published so far. In this paper we discuss the links between the stable isotopic composition of precipitation (δ18O and δ2H), climate (air temperature, precipitation amount and large scale circulation) and their relevance for the palaeocllimatic interpretation of stable isotope values in cave ice, cryogenic calcite and tree rings from different sites in Romania. Most of the precipitation in Romania is delivered by the Westerlies, bringing moisture from the North Atlantic; however, their influence is greatly reduced in the eastern half of the country where local evaporative sources play an important role in the precipitation balance. The SW is dominated by water masses from the Mediterranean Sea, while the SE corner clearly draws most of the moisture from the Black Sea and strongly depleted North Atlantic vapor masses. In 2012, Romania experienced the worst draught in 60 years, possibly due to a northward shift of the jest stream associated to blocking conditions in summer, which led to a more northern penetration of the Mediterranean-derived air masses, as well increased precipitation of re-evaporated waters. We have further analyzed cave drip water (δ18O and δ2H), cryogenic cave calcite (δ18O and δ13C) and tree rings (δ18O and δ13C) from selected sites across NW Romania, where the water isotopes in precipitation showed the best (and easiest to understand, given the climatic conditions in 2012) correlation with climatic parameters. Our results that 1) δ18O and δ2H in cave ice are a good proxy for late summer through early winter air temperature; 2) δ13C in cryogenic cave calcite are possible indicators of soil humidity and 3) δ18O in pine

  16. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    NASA Astrophysics Data System (ADS)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by

  17. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  18. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  19. [Influence of below-cloud secondary evaporation on stable isotope composition in precipitation in Northwest China.

    PubMed

    Liu, Jie Yao; Zhang, Fu Ping; Feng, Qi; Li, Zong Xing; Zhu, Yi Wen; Nie, Shuo; Li, Ling

    2018-05-01

    The precipitation isotope data and meteorological data of eight stations provided by GNIP (Global Network for Isotopes in Precipitation) and two stations from the present study, combined with HYSPLIT model and water droplet evaporation model were used to examine the spatial and temporal distribution of precipitation δ 18 O and d values in Northwest China. The secondary evaporative effect of existence was evaluated and then quantitatively discussed, with the sensitive factors of secondary evaporative effect being considered. The results showed that during the summer monsoon, the δ 18 O and d values decreased from south to north in Xinjiang, while the δ 18 O value increased but d values decreased from south to north and from east to west of Shaanxi-Gansu-Ningxia region. During the winter monsoon, the δ 18 O value decreased from east to west in whole Northwest region, while the d value increased from south to north in Xinjiang, decreased from south to north and increased slightly from east to west in Shanxi-Gansu-Ningxia. The slope and intercept (6.80, -0.07) of the atmospheric precipitation line in the summer monsoon period was significantly lower than that of annual mean (7.27, 3.37) and winter monsoon period (7.46, 6.07), indicating that the secondary evaporation was stronger during the summer monsoon. The evaporation ratio in the summer monsoon was 4.49%, which was higher than 3.65% in the winter monsoon. However, the evaporation ratio of the winter monsoon was higher than the summer monsoon around of Loess Plateau, which might closely relate to the increasing drought of the Loess Plateau in recent years. Finally, the intensity of secondary evaporation decreased with increasing relative humidity, precipitation and vapor pressure but increased with increasing temperature (greater than 0 ℃). The influences of those factors (humidity, precipitation, temperature and vapor pressure) on the secondary evaporation were dependent on the differences of ranges.

  20. Continuous and simultaneous measurements of precipitation and vapor isotopes over two monsoon seasons during 2016-2017 in Singapore

    NASA Astrophysics Data System (ADS)

    Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.

    2017-12-01

    Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.

  1. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    NASA Astrophysics Data System (ADS)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  2. Latitudinal change in precipitation and water vapor isotopes over Southern ocean

    NASA Astrophysics Data System (ADS)

    Rahul, P.

    2015-12-01

    The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope

  3. Stable-isotope ratios of hydrogen and oxygen in precipitation at Norman, Oklahoma, 1996-2008

    USGS Publications Warehouse

    Jaeschke, Jeanne B.; Scholl, Martha A.; Cozzarelli, Isabelle M.; Masoner, Jason R.; Christenson, Scott; Qi, Haiping

    2011-01-01

    Precipitation samples for measurement of stable-isotope ratios of hydrogen (delta2H) and oxygen (delta18O) were collected at the Norman Landfill Research Site in Norman, Oklahoma, from May 1996 to October 2008. Rainfall amounts also were measured at the site (U.S. Geological Survey gaging station 07229053) during the collection period. The delta2H of precipitation samples ranged from -121.9 to +8.3 per mil, and the delta18O of precipitation ranged from -16.96 to +0.50 per mil. The volume-weighted average values for delta2H and delta18O of precipitation over the 12-year measurement period were -31.13 per mil for delta2H and -5.57 per mil for delta18O. Average summer-season delta2H and delta18O values of precipitation usually were more positive (enriched in the heavier isotopes) than winter values.

  4. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio

    2017-10-01

    The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome

  5. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  6. A Study of the Microbial Spatial Heterogeneity of Bahamian Thrombolites Using Molecular, Biochemical, and Stable Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Louyakis, Artemis S.; Mobberley, Jennifer M.; Vitek, Brooke E.; Visscher, Pieter T.; Hagan, Paul D.; Reid, R. Pamela; Kozdon, Reinhard; Orland, Ian J.; Valley, John W.; Planavsky, Noah J.; Casaburi, Giorgio; Foster, Jamie S.

    2017-05-01

    Thrombolites are buildups of carbonate that exhibit a clotted internal structure formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and in situ stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Analyses revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis and carboxylic and fatty acid synthesis within the mats that had not been previously observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study provides the first look at the spatial organization of the microbial populations within Bahamian thrombolites and enables the distribution of microbes to be correlated with their activities within modern thrombolite systems.

  7. Lake Baikal isotope records of Holocene Central Asian precipitation

    NASA Astrophysics Data System (ADS)

    Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael

    2018-06-01

    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.

  8. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    PubMed

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  9. Impact of convective activity on precipitation δ18O in isotope-enabled models

    NASA Astrophysics Data System (ADS)

    Hu, J.; Emile-Geay, J.; Dee, S.

    2017-12-01

    The ^18O signal preserved in paleo-archives (e.g. speleothem, tree ring cellulose, ice cores) is widely used to reconstruct precipitation or temperature. In the tropics, the inverse relationship between precipitation ^18O and rainfall amount, namely "amount effect" [Dansgaard, Tellus, 1964], is often used to interpret precipitation ^18O. However, recent studies have shown that precipitation ^18O is also influenced by precipitation type [Kurita et al, JGR, 2009; Moerman et al, EPSL, 2013], and recent observations indicate that it is negatively correlated with the fraction of precipitation associated with stratiform clouds [Aggarwal et al, Nature Geosci, 2016]. It is thus important to determine to what extent isotope-enabled climate models can reproduce these relationships. Here we do so using output from LMDZ, CAM2, and isoGSM from the Stable Water Isotope Intercomparison Group, Phase 2 (SWING2) project and results of SPEEDY-IER [Dee et al, JGR, 2015] from an AMIP-style experiment. The results show that these models simulate the "amount effect" well in the tropics, and the relationship between precipitation ^18O and precipitation is reversed in many places in mid-latitudes, in accordance with observations [Bowen, JGR, 2008]. Also, these models can all reproduce the negative correlation between monthly precipitation ^18O and stratiform precipitation proportion in mid-latitude (30°N-50°N; 50°S-30°S), but in the tropics (30°S-30°N), models show a positive correlation instead. The reason for this bias will be investigated within idealized experiments with SPEEDY-IER. The correct simulations of the impact of convective activity on precipitation ^18O in isotope-enabled models will improve our interpretation of paleoclimate proxies with respect to hydroclimate variability. P. K. Aggarwal et al. (2016), Nature Geosci., 9, 624-629, doi:10.1038/ngeo2739. G. J. Bowen. (2008), J. Geophys. Res., 113, D05113, doi:10.1029/2007JD009295. W. Dansgaard (1964), Tellus, 16(4), 436

  10. Precipitation and ice core isotopes from the Asian Summer Monsoon region reflect coherent ENSO variability

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Tian, L.; Bowen, G. J.

    2017-12-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  11. Coupling Meteorology, Metal Concentrations, and Pb Isotopes for Source Attribution in Archived Precipitation Samples

    EPA Science Inventory

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16 ...

  12. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia

    NASA Astrophysics Data System (ADS)

    Saurer, Matthias; Schweingruber, Fritz; Vaganov, Eugene A.; Shiyatov, Stepan G.; Siegwolf, Rolf

    2002-05-01

    The oxygen isotope ratio of ice cores and sea-sediments is an extremely useful source of information on long-term climatic changes. A similar approach has been applied to the oxygen isotope ratio of tree rings to enable a pattern-based reconstruction of the isotope variations on the continents. We present an oxygen isotope map for northern Eurasia spanning from Norway to Siberia, that reflects the isotope distribution in the late 19th century, and compare it with an equivalent map for the present-day situation. The average isotope values of 130 trees show a large east-to-west gradient and are highly correlated with the isotope distribution of precipitation. Surprisingly, the 18O/16O ratio of the wood has been decreasing in the interior of the continent since the late 19th century, in contrast to the strong temperature increase recorded by meteorological data. From this isotope trend over time a change in the seasonality of precipitation can be inferred.

  13. The Austrian Network of Isotopes in Precipitation and Surface water: more than 50 years applications and interpretations of basic isotope-hydrological data for Central Europe

    NASA Astrophysics Data System (ADS)

    Wyhlidal, S.; Rank, D.; Kralik, M.

    2017-12-01

    Austria runs one of the longest-standing and most dense isotope precipitation collection networks worldwide, resulting in a unique isotope time series. Stable isotope variations in precipitation are a consequence of isotope effects accompanying each step of the water cycle. Therefore, stable isotope ratios of oxygen (18O/16O) and hydrogen (2H/1H) in precipitation provide important information about the origin and atmospheric transport of water vapour. The separation of a remote moisture source signals from local influences is thereby challenging. The amount of precipitation in Austria is highly influenced by the Alpine mountain range (400-3.000 mm/a). The amount of annual precipitation increases towards the mountain ranges. However, strong regional differences exist between the north and south of the Austrian Alps because the Alpine range functions as weather divide. The isotope time series of the stations of the Austrian precipitation network show significant but not uniform long-term trends. While the 10-year running mean of some mountain stations exhibit a highly significant increase in δ18O of about 1 ‰ since 1975, the change of δ18O at the valley stations is less pronounced. The increasing δ18O values can be correlated to an increase mean air temperature in the Alpine area and can be used as an additional indicator of climate change in this region. The differences in δ18O-values of sampling stations at similar altitudes can be explained by the origin of the air moisture. An Atlantic influence causes lower δ18O-values than sources from the Mediterranean. This can be explained by the different distances to the sea. Deuterium excess is a second-order isotopic parameter which is often interpreted as a tracer of the evaporation conditions of water vapor at the moisture source in terms of relative humidity, wind speed, and sea surface temperature, but can also be modified by local influences, such as below-cloud evaporation and equilibrium fractionation under

  14. The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios

    2018-04-01

    This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system

  15. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  16. Temporal and spatial scaling impacts on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  17. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe

    NASA Astrophysics Data System (ADS)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2018-06-01

    The stable isotope composition of precipitation records processes taking place within the hydrological cycle. Potentially, moisture sources are important controls on the stable isotope composition of precipitation, but studies focused on this topic are still scarce. We studied the moisture sources contributing to precipitation at Postojna (Slovenia) from 2009 to 2013. Back trajectory analyses were computed for the days with precipitation at Postojna. The moisture uptake locations were identified along these trajectories using standard hydrometeorological formulation. The moisture uptake locations were integrated in eight source regions to facilitate its comparison to the monthly oxygen isotope composition (δ18O values) of precipitation. Nearly half of the precipitation originated from continental sources (recycled moisture), and >40% was from central and western Mediterranean. Results show that moisture sources do not have a significant impact on the oxygen isotope composition at this site. We suggest that the large proportion of recycled moisture originated from transpiration rather than evaporation, which produced water vapour with less negative δ18O values. Thus the difference between the oceanic and local vapour source was reduced, which prevented the distinction of the moisture sources based on their oxygen isotope signature. Nevertheless, δ18O values of precipitation are partially controlled by climate parameters, which is of major importance for paleoclimate studies. We found that the main climate control on Postojna δ18O values of precipitation is the surface temperature. Amount effect was not recorded at this site, and the winter North Atlantic Oscillation (NAO) does not impact the δ18O values of precipitation. The Western Mediterranean Oscillation (WeMO) was correlated to oxygen stable isotope composition, although this atmospheric pattern was not a control. Instead we found that the link to δ18O values results from synoptic scenarios affecting We

  18. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  19. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  20. Isoscapes of tree-ring carbon-13 perform like meteorological networks in predicting regional precipitation patterns

    NASA Astrophysics Data System (ADS)

    del Castillo, Jorge; Aguilera, Mònica; Voltas, Jordi; Ferrio, Juan Pedro

    2013-03-01

    isotopes in tree rings provide climatic information with annual resolution dating back for centuries or even millennia. However, deriving spatially explicit climate models from isotope networks remains challenging. Here we propose a methodology to model regional precipitation from carbon isotope discrimination (Δ13C) in tree rings by (1) building regional spatial models of Δ13C (isoscapes) and (2) deriving precipitation maps from Δ13C-isoscapes, taking advantage of the response of Δ13C to precipitation in seasonally dry climates. As a case study, we modeled the spatial distribution of mean annual precipitation (MAP) in the northeastern Iberian Peninsula, a region with complex topography and climate (MAP = 303-1086 mm). We compiled wood Δ13C data for two Mediterranean species that exhibit complementary responses to seasonal precipitation (Pinus halepensis Mill., N = 38; Quercus ilex L.; N = 44; pooling period: 1975-2008). By combining multiple regression and geostatistical interpolation, we generated one Δ13 C-isoscape for each species. A spatial model of MAP was then built as the sum of two complementary maps of seasonal precipitation, each one derived from the corresponding Δ13C-isoscape (September-November from Q. ilex; December-August from P. halepensis). Our approach showed a predictive power for MAP (RMSE = 84 mm) nearly identical to that obtained by interpolating data directly from a similarly dense network of meteorological stations (RMSE = 80-83 mm, N = 65), being only outperformed when using a much denser meteorological network (RMSE = 56-57 mm, N = 340). This method offers new avenues for modeling spatial variability of past precipitation, exploiting the large amount of information currently available from tree-ring networks.

  1. Reconstructing Hydrologic Variability in Southwestern North America Using Speleothem Proxies and Precipitation Isotopes from California

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, Staryl

    Precipitation in southwestern North America has exhibited significant natural variability over the past few thousand years. This variability has been attributed to sea surface temperature regimes in the Pacific and Atlantic oceans, and to the attendant shifts in atmospheric circulation patterns. In particular, decadal variability in the North Pacific has influenced precipitation in this region during the twentieth century, but links to earlier droughts and pluvials are unclear. Here I assess these links using delta18 O measurements from a speleothem from southern California that spans AD 854-- 2007. I show that variations in the oxygen isotopes of the speleothem correlate to sea surface temperatures in the Kuroshio Extension region of the North Pacific, which affect the atmospheric trajectory and isotopic composition of moisture reaching the study site. Interpreting our speleothem data as a record of sea surface temperatures in the Kuroshio Extension, I find a strong 22-year periodicity, suggesting a persistent solar influence on North Pacific decadal variability. A comparison with tree-ring records of precipitation during the past millennium shows that some droughts occurred during periods of warmth in the Kuroshio Extension, similar to the instrumental record. However, other droughts did not and instead were likely influenced by other factors. The carbon isotope record indicates drier conditions are associated with higher delta13C values and may be a suitable proxy for reconstructing past drought variability. More research is needed to determine the controls on trace element concentrations. Finally, I find a significant increase in sea surface temperature variability over the past 150 years, which may reflect an influence of greenhouse gas concentrations on variability in the North Pacific. While drought is a common feature of climate in this region, most climate models also project extreme precipitation events to increase in frequency and severity because the

  2. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    NASA Astrophysics Data System (ADS)

    Le Duy, Nguyen; Heidbüchel, Ingo; Meyer, Hanno; Merz, Bruno; Apel, Heiko

    2018-02-01

    This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R2 = 0.8) compared to single-factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (˜ 70 %) compared to local climatic conditions (˜ 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either

  3. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puscas, R.; Feurdean, V.; Simon, V.

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviatedmore » from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.« less

  4. A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Vimeux, Françoise; Tremoy, Guillaume; Risi, Camille; Gallaire, Robert

    2011-07-01

    Water stable isotopes (δ) in tropical regions are a valuable tool to study both convective processes and climate variability provided that local and remote controls on δ are well known. Here, we examine the intra-seasonal variability of the event-based isotopic composition of precipitation (δD Zongo) in the Bolivian Andes (Zongo valley, 16°20'S-67°47'W) from September 1st, 1999 to August 31st, 2000. We show that the local amount effect is a very poor parameter to explain δD Zongo. We thus explore the property of water isotopes to integrate both temporal and spatial convective activities. We first show that the local convective activity averaged over the 7-8 days preceding the rainy event is an important control on δD Zongo during the rainy season (~ 40% of the δD Zongo variability is captured). This could be explained by the progressive depletion of local water vapor by unsaturated downdrafts of convective systems. The exploration of remote convective controls on δD Zongo shows a strong influence of the South American SeeSaw (SASS) which is the first climate mode controlling the precipitation variability in tropical South America during austral summer. Our study clearly evidences that temporal and spatial controls are not fully independent as the 7-day averaged convection in the Zongo valley responds to the SASS. Our results are finally used to evaluate a water isotope enabled atmospheric general circulation model (LMDZ-iso), using the stretched grid functionality to run zoomed simulations over the entire South American continent (15°N-55°S; 30°-85°W). We find that zoomed simulations capture the intra-seasonal isotopic variation and its controls, though with an overestimated local sensitivity, and confirm the role of a remote control on δ according to a SASS-like dipolar structure.

  5. Spatial interpolation of hourly precipitation and dew point temperature for the identification of precipitation phase and hydrologic response in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.

    2012-12-01

    In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing

  6. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. The impact of Tibet and the Andes on the climate and isotopic composition of precipitation

    NASA Astrophysics Data System (ADS)

    Battisti, D. S.; Ding, Q.; Liu, X.; Roe, G.

    2012-12-01

    We summarize modeling and theoretical evidence for the impact of the high topography in Tibet and the Andes on the climate and the isotopic (δ18O) composition of precipitation, regionally and globally. Tibet controls the seasonal cycle of precipitation over eastern China, mainly via dynamical processes, and has little to no impact on the Indian and southeast Asian monsoons. Tibet is also responsible for the northwesterly winds and extraordinary cold winters in northern China, and contributes to the mid-winter suppression of storminess in the western and central Pacific. The Andes greatly shape the climatological precipitation over South America, and are an important contributor to the annual cycle in sea surface temperature, precipitation and atmospheric circulation throughout the eastern half of the tropical Pacific. We have performed a series of numerical experiments with the isotope-enabled ECHAM 4.6 atmospheric general circulation model to illuminate the impact of the Andes and Tibet on the regional distribution of oxygen isotopes in precipitation. Experiments to be discussed include a world without an elevated Andes circa 12 million years BP, and a series of experiments that prescribed a plausible evolution of the continental geometry and topography for the past 50 million years in and around the Indian Ocean basin. In the latter case, additional idealized experiments are performed to illuminate the separate impacts of topography and continental configuration.

  8. Oxygen and hydrogen stable isotope content in daily-collected precipitation samples at Dome C, East Antarctica

    NASA Astrophysics Data System (ADS)

    Dreossi, Giuliano; Stenni, Barbara; Del Guasta, Massimo; Bonazza, Mattia; Grigioni, Paolo; Karlicek, Daniele; Mognato, Riccardo; Scarchilli, Claudio; Turchetti, Filippo; Zannoni, Daniele

    2016-04-01

    Antarctic ice cores allow to obtain exceptional past climate records, thanks to their water stable isotope content, which provides integrated tracers of the atmospheric water cycle and local climate. Low accumulation sites of the East Antarctic plateau provide the oldest ice core records, with the record-breaking EPICA Dome C drilling covering the last eight climate cycles. However, the isotope-temperature relationship, commonly used to derive the temperature, may be characterized by significant geographical and temporal variations. Moreover, post-depositional effects may further complicate the climate interpretation. A continuous series of precipitation data is needed in order to gain a better understanding of the factors affecting the water stable isotopes in Antarctic precipitation at a specific site. In this study, we use the first and so-far only multi-year series of daily precipitation sampling and isotope measurements from the French-Italian Concordia Station, located at Dome C in East Antarctica (75°06'S 123°21'E; elevation: 3233 m a.s.l.; mean annual temperature: -54.5°C; snow accumulation rate: 25 kg m-2 yr-1), where the oldest deep Antarctic ice core has been retrieved. Surface air temperature data have been provided by the US automatic weather station (AWS), placed 1.5 km away from the base, while tropospheric temperature profiles are obtained by means of a radiosonde, launched once per day by the IPEV/Italian Antarctic Meteo-climatological Observatory. The new dataset also enables us for the first time to study the isotope-temperature relationship distinguishing between different types of precipitation, namely diamond dust, hoar frost and snowfall, identified by the observations carried out by the winter-over personnel collecting the snow samples. Here we present the complete data series of water stable isotopes in precipitation at Dome C spanning the time period from 2008 to 2014, in the framework of the PNRA PRE-REC project.

  9. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work

  10. Circulation controls of the spatial structure of maximum daily precipitation over Poland

    NASA Astrophysics Data System (ADS)

    Stach, Alfred

    2015-04-01

    Among forecasts made on the basis of global and regional climatic models is one of a high probability of an increase in the frequency and intensity of extreme precipitation events. Learning the regularities underlying the recurrence and spatial extent of extreme precipitation is obviously of great importance, both economic and social. The main goal of the study was to analyse regularities underlying spatial and temporal variations in monthly Maximum Daily Precipitation Totals (MDPTs) observed in Poland over the years 1956-1980. These data are specific because apart from being spatially discontinuous, which is typical of precipitation, they are also non-synchronic. The main aim of the study was accomplished via several detailed goals: • identification and typology of the spatial structure of monthly MDPTs, • determination of the character and probable origin of events generating MDPTs, and • quantitative assessment of the contribution of the particular events to the overall MDPT figures. The analysis of the spatial structure of MDPTs was based on 300 models of spatial structure, one for each of the analysed sets of monthly MDPTs. The models were built on the basis of empirical anisotropic semivariograms of normalised data. In spite of their spatial discontinuity and asynchronicity, the MDPT data from Poland display marked regularities in their spatial pattern that yield readily to mathematical modelling. The MDPT field in Poland is usually the sum of the outcomes of three types of processes operating at various spatial scales: local (<10-20 km), regional (50-150 km), and supra-regional (>200 km). The spatial scales are probably connected with a convective/ orographic, a frontal and a 'planetary waves' genesis of high precipitation. Their contributions are highly variable. Generally predominant, however, are high daily precipitation totals with a spatial extent of 50 to 150 km connected with mesoscale phenomena and the migration of atmospheric fronts (35

  11. Long-term data set analysis of stable isotopic composition in German rivers

    NASA Astrophysics Data System (ADS)

    Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine

    2017-09-01

    Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to

  12. Precipitation variability inferred from the annual growth and isotopic composition of tropical trees

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Baker, P. A.; Chambers, J. Q.; Villalba, R.

    2005-12-01

    Here we demonstrate that annual growth and isotopic ratios in tropical trees are responsive to seasonal and annual precipitation variability. We identify several regions of tropical South America characterized by significant relationships between oxygen isotopic ratios (δ 18O) in precipitation and precipitation amount (r = -0.82). Many of these regions are also sensitive to inter-annual variability in the South American Monsoon modulated by the El Niño Southern Oscillation (ENSO). The effectiveness of δ 18O and annual growth of tropical trees as a precipitation proxy is validated by high-resolution sampling of a Tachigali vermelho tree growing near Manaus, Brazil (3.1° S, 60.0° S). Growth in Tachigali spp. was highly correlated with both precipitation and cellulose δ 18O (r = 0.60) and precipitation amount was significantly correlated with δ 18O at a lag of approximately one month (r = 0.56). We also report a multi-proxy record spanning 180 years from Cedrela odorata growing in the Peruvian Amazon near Puerto Maldonado (12.6° S, 69.2° W) revealing a significant relationship between cellulose and monsoon precipitation over the region (r = -0.33). A 150-year record obtained from Polylepis tarapacana growing at Volcan Granada in Northern Argentina (22.0° S, 66.0° W) is also reported with a significant relationship between local monsoon precipitation and a regionally derived ring width index (r = 0.38). Although no significant relationship was revealed between cellulose δ 18O and precipitation in this taxa at this location, separate radii within the same tree revealed a significantly coherent δ 18O signal (r = 0.38). We compared our proxy chronologies with monsoon precipitation reanalysis data for tropical South America, which revealed key features of the South American Monsoon and their sensitivity to ENSO variability.

  13. Stable isotope compositions of waters in the Great Basin, United States 3. Comparison of groundwaters with modern precipitation

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A.

    2002-01-01

    Groundwater samples from wells and springs, scattered over most of the Great Basin province, were collected and analyzed for their isotopic makeup. They were augmented by previously published isotopic data on groundwaters from southeast California and by several hundred unpublished isotopic analyses. The ratio of 2H (deuterium, D) to 1H, in water samples from valleys in parts of California, Idaho, Nevada, Oregon, and Utah, are here compared with the winter, summer, and annual isotopic compositions of precipitation falling in or near the sampled areas. The main goal of this study was to identify basins where the groundwaters have isotopic compositions that are "lighter" (depleted in the heavier isotope, D) relative to modern winter precipitation. Where these basins do not adjoin substantially higher terrain, we consider those light groundwaters to be of Pleistocene age and thus more than 10,000 years old. Where the groundwater is 10 to 19??? lighter than local winter precipitation, we consider it to be possibly an indication of Pleistocene water; where the ??D makeup is >20??? lighter, we consider it to be probably Pleistocene water. More than 80 sites underlain by waters of possible or probable Pleistocene age were identified.

  14. Spatially Resolved Genomic, Stable Isotopic, and Lipid Analyses of a Modern Freshwater Microbialite from Cuatro Ciénegas, Mexico

    PubMed Central

    Nitti, Anthony; Daniels, Camille A.; Siefert, Janet; Souza, Valeria; Hollander, David

    2012-01-01

    Abstract Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ13C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO3 matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records. Key Words: Microbial ecology—Microbe-mineral interactions—Microbial mats—Stromatolites—Genomics. Astrobiology 12, 685–698. PMID:22882001

  15. Seasonal temperature and precipitation recorded in the intra-annual oxygen isotope pattern of meteoric water and tree-ring cellulose

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Jahren, A. Hope

    2015-10-01

    Modern and ancient wood is a valuable terrestrial record of carbon ultimately derived from the atmosphere and oxygen inherited from local meteoric water. Many modern and fossil wood specimens display rings sufficiently thick for intra-annual sampling, and analytical techniques are rapidly improving to allow for precise carbon and oxygen isotope measurements on very small samples, yielding unprecedented resolution of seasonal isotope records. However, the interpretation of these records across diverse environments has been problematic because a unifying model for the quantitative interpretation of seasonal climate parameters from oxygen isotopes in wood is lacking. Towards such a model, we compiled a dataset of intra-ring oxygen isotope measurements on modern wood cellulose (δ18Ocell) from 33 globally distributed sites. Five of these sites represent original data produced for this study, while the data for the other 28 sites were taken from the literature. We defined the intra-annual change in oxygen isotope value of wood cellulose [Δ(δ18Ocell)] as the difference between the maximum and minimum δ18Ocell values determined within the ring. Then, using the monthly-resolved dataset of the oxygen isotope composition of meteoric water (δ18OMW) provided by the Global Network of Isotopes in Precipitation database, we quantified the empirical relationship between the intra-annual change in meteoric water [Δ(δ18OMW)] and Δ(δ18Ocell). We then used monthly-resolved datasets of temperature and precipitation to develop a global relationship between Δ(δ18OMW) and maximum/minimum monthly temperatures and winter/summer precipitation amounts. By combining these relationships we produced a single equation that explains much of the variability in the intra-ring δ18Ocell signal through only changes in seasonal temperature and precipitation amount (R2 = 0.82). We show how our recent model that quantifies seasonal precipitation from intra-ring carbon isotope profiles can be

  16. The Effect of Spatial Aggregation on the Skill of Seasonal Precipitation Forecasts.

    NASA Astrophysics Data System (ADS)

    Gong, Xiaofeng; Barnston, Anthony G.; Ward, M. Neil

    2003-09-01

    Skillful forecasts of 3-month total precipitation would be useful for decision making in hydrology, agriculture, public health, and other sectors of society. However, with some exceptions, the skill of seasonal precipitation outlooks is modest, leaving uncertainty in how to best make use of them. Seasonal precipitation forecast skill is generally lower than the skill of forecasts for temperature or atmospheric circulation patterns for the same location and time. This is attributable to the smaller-scale, more complex physics of precipitation, resulting in its `noisier' and hence less predictable character. By contrast, associated temperature and circulation patterns are larger scale, in keeping with the anomalous boundary conditions (e.g., sea surface temperature) that often give rise to them.Using two atmospheric general circulation models forced by observed sea surface temperature anomalies, the skill of simulations of total seasonal precipitation is examined as a function of the size of the spatial domain over which the precipitation total is averaged. Results show that spatial aggregation increases skill and, by the skill measures used here, does so to a greater extent for precipitation than for temperature. Corroborative results are presented in an observational framework at smaller spatial scales for gauge rainfalls in northeast Brazil.The findings imply that when seasonal forecasts for precipitation are issued, the accompanying guidance on their expected skills should explicitly specify to which spatial aggregation level the skills apply. Information about skills expected at other levels of aggregation should be supplied for users who may work at such levels.

  17. Spatial and temporal variation of H and O isotopic compositions of the Xijiang River system, Southwest China.

    PubMed

    Han, Guilin; Lv, Pin; Tang, Yang; Song, Zhaoliang

    2018-05-01

    Ratios of stable isotopes of hydrogen and oxygen ( 2 H/ 1 H and 18 O/ 16 O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ 2 H and δ 18 O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ 18 O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2 H and 18 O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.

  18. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    NASA Astrophysics Data System (ADS)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  19. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    PubMed Central

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  20. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico.

    PubMed

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings ( δ 18 O tr ). Interannual variation in δ 18 O tr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13 C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18 O tr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18 O-depleted rain in the region and seem to have affected the δ 18 O tr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18 O tr of M . acantholoba can be used as a proxy for source water δ 18 O and that interannual variation in δ 18 O prec is caused by a regional amount effect. This contrasts with δ 18 O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  1. Metallic elements and isotope of Pb in wet precipitation in urban area, South America

    NASA Astrophysics Data System (ADS)

    Migliavacca, Daniela Montanari; Teixeira, Elba Calesso; Gervasoni, Fernanda; Conceição, Rommulo Vieira; Raya Rodriguez, Maria Teresa

    2012-04-01

    The atmosphere of urban areas has been the subject of many studies to show the atmospheric pollution in large urban centers. By quantifying wet precipitation through the analysis of metallic elements (ICP/AES) and Pb isotopes, the wet precipitation of the Metropolitan Area of the Porto Alegre (MAPA), Brazil, was characterized. The samples were collected between July 2005 and December 2007. Zn, Fe and Mn showed the highest concentration in studied sites. Sapucaia do Sul showed the highest average for Zn, due to influence by the steel plant located near the sampling site. The contribution of anthropogenic emissions from vehicular activity and steel plants in wet precipitation and suspended particulate matter in the MAPA was identified by the isotopic signatures of 208Pb/207Pb and 206Pb/207Pb. Moreover the analyses of the metallic elements allowed also to identify the contribution of other anthropic sources, such as steel plants and oil refinery.

  2. Isotopic signals from precipitation and denitrification in nitrate in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Wexller, S.

    2012-12-01

    Denitrification can represent an important term in the nitrogen budget of small catchments; however, this process varies greatly over space and time and is notoriously difficult to quantify. Measurements of the natural abundance of stable isotopes of nitrogen and oxygen in dissolved nitrate in stream- and river water can sometimes provide evidence of denitrification, particularly in large river basins or agriculturally impacted catchments. To date, however, this approach has provided little to no evidence of denitrification in catchments in temperate forests. Here, we examined d15N and d18O of nitrate in water samples collected during summer 2011 not only from streams and precipitation, but also from groundwater from the hydrologic reference watershed (W3) drained by Paradise Brook, at the Hubbard Brook Experimental Forest, in the White Mountains, New Hampshire. Despite low nitrate concentrations (< 0.5 to 8.8 uM nitrate) dual-isotopic signals of nitrate sources and nitrogen cycle processes were clearly distinguishable, including sources from atmospheric deposition, and from nitrification of atmospheric ammonium and from or soil organic nitrogen, as well as nitrate affected by soil denitrification. An atmospheric signal from nitrate in precipitation (enriched with 18O) was observed immediately following a precipitation event in mid-July contributing roughly 22% of stream nitrate export on this date. Stream samples the day following this and other storms showed this export of event nitrate to be short-lived. Hillslope piezometers showed low nitrate concentrations and high d15N- and d18O-nitrate values (averaging 12 and 18 per mil, repectively) indicating denitrification, which preferentially removes isotopically light N and O in N gases and leaves isotopically heavy nitrate behind. These samples showed a positive relationship between nitrogen and oxygen isotopic composition with a regression line slope of 0.76 (R2 = 0.68), and an isotope enrichment factor -12.7 per

  3. [Moisture sources of Guangzhou during the freezing disaster period in 2008 indicated by the stable isotopes of precipitation].

    PubMed

    Liao, Cong-Yun; Zhong, Wei; Ma, Qiao-Hong; Xue, Ji-Bin; Yin, Huan-Ling; Long, Kun

    2012-04-01

    From April 2007 to June 2008, stable isotope samples of all single precipitations were collected at the intervals of 5-30 min. We choose five single precipitations in Guangzhou city that happened during the freezing disaster event (from Jan. 10 to Feb. 2, 2008) in South China, aiming to investigate the variation of stable isotopes under the extremely climatic conditions and its controlling factors. The results show that the values of deltaD and delta18O in precipitations drop significantly during this freezing disaster. The analyses of the d-excess and LMWL indicate the abnormal oceanic moisture sources. Air mass trajectory tracking shows the moisture sources were characterized by the mixture of inland and marine water vapors during the freezing disaster peak period, while the long-distance oceanic moisture sources is the dominate one. Changes of stable isotope in single rain event during the freezing disaster shows three different trends, i. e, Up trend, V-shaped trend and W-shaped trend, which may be resulted from the re-evaporation, re-condensation and the related precipitation types in association with the different vapor sources and precipitation conditions.

  4. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China].

    PubMed

    Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang

    2017-07-18

    Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.

  5. Constraining mechanisms of quartz precipitation in the Archean ocean using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2017-12-01

    To constrain reservoir values for the Archean silica cycle we measured silicon isotope compositions (δ30Si) of 28 igneous, siliciclastic sedimentary, hydrothermal, and chemical sedimentary rock samples from three Archean greenstone belts representing different times (>3.7 - 2.7 Ga) and tectonic regimes. We posit that silicon isotope compositions of quartz (746 analyses measured in situ by secondary ion mass spectrometry at the NORDSIM facility) are linked to changes in key geochemical parameters that vary within local depositional environments, coupled with a dependency on size and δ30Si composition of the source reservoir. Collectively, siliceous precipitates from even a single basin span a 7‰ range in δ30Si values. Such heterogeneity, regardless of basinal position or presence of Fe-phases demonstrates that δ30Si values of chemical sediments are linked to neither a well-mixed water column representative of a single ocean composition, nor a specific time in Earth history. Combining data from all three greenstone belts we discern that all measured Algoma-type iron formation (IF) and about 50% of associated chert samples possess δ30Si values <0‰, while the majority of silicified volcanic rocks and the remaining 50% of chert samples have δ30Si values >0‰. Negative values of Algoma-type IF can be explained by rate-dependent fractionation during precipitation and/or adsorption to Fe/Al. Combined experimental and natural data for quartz precipitates suggest slow precipitation rates coupled with closed system, Rayleigh type distillation could produce the isotopically heavy values. Such results suggest the quartz-precipitating fluid for these rocks evolves from an open system in disequilibrium, to one that is closed, and in equilibrium with the host rock. In contrast to the static range of values through time for Algoma-type IF, associated cherts and silicified rocks, compiled data for Superior-type IF from 3 - 1.8 Ga record a systematic increasing trend from

  6. Stable Isotope Analysis of Precipitation Samples Obtained via Crowdsourcing Reveals the Spatiotemporal Evolution of Superstorm Sandy

    PubMed Central

    Good, Stephen P.; Mallia, Derek V.; Lin, John C.; Bowen, Gabriel J.

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (21‰ for O, 160‰ for H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies. PMID:24618882

  7. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi

    2016-10-01

    We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.

  8. Isoscapes of tree-ring carbon-13 perform like meteorological networks in predicting regional precipitation patterns

    NASA Astrophysics Data System (ADS)

    del Castillo, Jorge; Aguilera, Mònica; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    Stable isotopes in tree rings provide climatic information with annual resolution dating back for centuries or even millennia. However, deriving spatially explicit climate models from isotope networks remains challenging. Here we propose a methodology to model regional precipitation from carbon isotope discrimination (Δ13C) in tree rings by (1) building regional spatial models of Δ13C (isoscapes), and (2) deriving precipitation maps from 13C-isoscapes, taking advantage of the response of Δ13C to precipitation in seasonally-dry climates. As a case study, we modeled the spatial distribution of mean annual precipitation (MAP) in the northeastern Iberian Peninsula, a region with complex orography and climate (MAP=303-1086 mm). We compiled wood Δ13C data for two Mediterranean species that exhibit complementary responses to seasonal precipitation (Pinus halepensis Mill., N=38; Quercus ilex L.; N=44; pooling period: 1975-2008). By combining multiple regression and geostatistical interpolation, we generated one 13C-isoscape for each species. A spatial model of MAP was then built as the sum of two complementary maps of seasonal precipitation, each one derived from the corresponding 13C-isoscape (September-November from Q. ilex; December-August from P. halepensis). Our approach showed a predictive power for MAP (RMSE=84 mm) nearly identical to that obtained by interpolating data directly from a similarly dense network of meteorological stations (RMSE=80-83 mm, N=65), being only outperformed when using a much denser meteorological network (RMSE=56-57 mm, N=340). This method offers new avenues for modeling spatial variability of past precipitation, exploiting the large amount of information currently available from tree-ring networks. Acknowledgements: This work was funded by MC-ERG-246725 (FP7, EU) and AGL 2012-40039-C02-02 (MINECO, Spain). JdC and JPF are supported by FPI fellowship (MCINN) and Ramón y Cajal programme (RYC-2008-02050, MINECO), respectively.

  9. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples

    USGS Publications Warehouse

    Hannon, Janet E.; Böhlke, John Karl; Mroczkowski, Stanley J.

    2008-01-01

    BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms.

  10. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    NASA Astrophysics Data System (ADS)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  11. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave - Field study and experiments

    NASA Astrophysics Data System (ADS)

    Immenhauser, A.; Buhl, D.; Richter, D.; Niedermayr, A.; Riechelmann, D.; Dietzel, M.; Schulte, U.

    2010-08-01

    The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ 26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ 26Mg values of loess-derived soil above the cave (-1.0 ± 0.5‰), soil water (-1.2 ± 0.5‰), the carbonate hostrock (-3.8 ± 0.5‰), dripwater in the cave (-1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; -4.3 ± 0.6‰), cave loam (-0.6 ± 0.1‰) and runoff water (-1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000ln αMg-cc-Mg(aq) = -2.4‰. A similar Mg-isotope fractionation (1000ln αMg-cc-Mg(aq) ≈ -2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg 2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for

  12. Linking the isotopic composition of monthly precipitation, cave drip water and tree ring cellulose - 15 years of monitoring and data-model comparison

    NASA Astrophysics Data System (ADS)

    Labuhn, Inga; Genty, Dominique; Daux, Valérie; Bourges, François; Hoffmann, Georg

    2013-04-01

    The isotopic composition of proxies used for palaeoclimate reconstruction, like tree ring cellulose or speleothem calcite, is controlled to a large extent by the isotopic composition of precipitation. In order to calibrate and interpret these proxies in terms of climate, it is necessary to study water isotopes in rainfall and their link with the proxies' source water. We present 10 to 15-year series of stable hydrogen and oxygen isotopes in monthly precipitation from three sites in the south of France, along with corresponding REMOiso model simulations, a monitoring of cave drip water from two of these sites (Villars cave in the south-west and Chauvet cave in the south-east), as well as measurements of oxygen isotopes in tree ring cellulose from oak trees growing in the same area. The isotopic composition of monthly precipitation at the three sites displays a typical annual cycle. At the south-west sites, under Atlantic influence, the interannual variability is much more pronounced during the winter months than during the summer, whereas the south-eastern Mediterranean site shows the same variability throughout the year. The model simulations are able to reproduce the annual cycle of monthly precipitation δ18O as well as the intra-seasonal variability. Compared to the data, however, the modelled average isotopic values and the seasonal amplitude are overestimated. Correlations between temperature and precipitation δ18O are generally weak at all our sites, on both the monthly and the annual scale, even when using temperature averages weighted by the amount of precipitation. Consequently, a proxy which is controlled by the δ18O of precipitation cannot be directly interpreted in terms of temperature in this region. The isotopic composition of cave drip water in both caves remains stable throughout the monitoring period. By calculating different weighted averages of precipitation δ18O for time periods ranging from months to years, we demonstrate that the cave drip

  13. Spatial variations in snowpack chemistry, isotopic composition of NO3- and nitrogen deposition from the ice sheet margin to the coast of western Greenland

    NASA Astrophysics Data System (ADS)

    Curtis, Chris J.; Kaiser, Jan; Marca, Alina; Anderson, N. John; Simpson, Gavin; Jones, Vivienne; Whiteford, Erika

    2018-01-01

    The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological change in remote Arctic ecosystems, especially lakes, have been the subject of debate over the last decade. Some palaeoecological studies have cited isotopic signals (δ(15N)) preserved in lake sediments as evidence linking N deposition with ecological change, but a key limitation has been the lack of co-located data on both deposition input fluxes and isotopic composition of deposited nitrate (NO3-). In Arctic lakes, including those in western Greenland, previous palaeolimnological studies have indicated a spatial variation in δ(15N) trends in lake sediments but data are lacking for deposition chemistry, input fluxes and stable isotope composition of NO3-. In the present study, snowpack chemistry, NO3- stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at eight locations within three lake catchments in each of three regions (ice sheet margin in the east, the central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181 mm snow water equivalent (SWE) compared with 36 mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl-, other major cations), ammonium (NH4+; regional means 1.4-2.7 µmol L-1), total and non-sea-salt sulfate (SO42-; total 1.8-7.7, non-sea-salt 1.0-1.8 µmol L-1) than the two inland regions. Nitrate (1.5-2.4 µmol L-1) showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in greater net deposition for NO3- as well as NH4+ and non-sea-salt sulfate (nss-SO42-) relative to the inland regions (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17

  14. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2.

    PubMed

    Górka, Maciej; Sauer, Peter E; Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2011-01-01

    This paper describes results of chemical and isotopic analysis of inorganic carbon species in the atmosphere and precipitation for the calendar year 2008 in Wrocław (SW Poland). Atmospheric air samples (collected weekly) and rainwater samples (collected after rain episodes) were analysed for CO2 and dissolved inorganic carbon (DIC) concentrations and for δ13C composition. The values obtained varied in the ranges: atmospheric CO2: 337-448 ppm; δ13CCO2 from -14.4 to -8.4‰; DIC in precipitation: 0.6-5.5 mg dm(-3); δ13CDIC from -22.2 to +0.2‰. No statistical correlation was observed between the concentration and δ13C value of atmospheric CO2 and DIC in precipitation. These observations contradict the commonly held assumption that atmospheric CO2 controls the DIC in precipitation. We infer that DIC is generated in ambient air temperatures, but from other sources than the measured atmospheric CO2. The calculated isotopic composition of a hypothetical CO2 source for DIC forming ranges from -31.4 to -11.0‰, showing significant seasonal variations accordingly to changing anthropogenic impact and atmospheric mixing processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Disentangling Seasonality and Mean Annual Precipitation in the Indo-Pacific Warm Pool: Insights from Coupled Plant Wax C and H Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.

    2016-12-01

    There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.

  16. Spatial analysis of precipitation time series over the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2018-01-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  17. Understanding key drivers controlling daily stable isotope variations in precipitation of Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Sanchez-Murillo, Ricardo; Welsh, Kristin; Birkel, Christian; Esquivel-Hernández, Germain; Corrales-Salazar, Jose; Boll, Jan; Brooks, Erin; Roupsard, Olivier; Katchan, Irina; Arce-Mesén, Rafael; Soulsby, Chris; Araguás-Araguás, Luis

    2015-04-01

    Costa Rica is located on the Central American Isthmus, which receives direct moisture inputs from the Caribbean Sea and the Pacific Ocean. The relatively narrow, but high relief Central American land bridge is characterized by unique mountainous and lowland microclimates. However, only limited knowledge exists about the impact of relief and regional atmospheric circulation patterns on precipitation origin, transport, and isotopic composition in this tropical region. Therefore, the main scope of this study is to identify the key drivers controlling variations in meteoric waters of Costa Rica using stable isotopes based on daily sample collection for the year 2013. The monitoring sites comprise three strategic locations across Costa Rica: Heredia (Central Valley), Turrialba (Caribbean slope), and Caño Seco (South Pacific slope). Sporadic dry season rain is mostly related to isolated enriched events ranging from -5.8‰ d18O up to -0.9‰ d18O. By mid-May, the Intertropical Convergence Zone reaches Costa Rica resulting in a notable depletion in isotope ratios (up to -18.5‰ d18O). HYSPLIT back air mass trajectories indicate the strong influence on the origin and transport of precipitation of two main moisture transport mechanisms, the Caribbean Low Level Jet and the Colombian Low Level Jet as well as localized convection events. Multiple linear regression models constructed based on Random Forests of surface meteorological information and atmospheric sounding profiles suggest that Lifted Condensation Level and surface relative humidity are the main factors controlling isotopic variations. These findings diverge from the recognized 'amount effect' in monthly composite samples across the tropics. Understanding of stable isotope dynamics in tropical precipitation can be used to enhance catchment and groundwater modeling efforts in ungauged basins where scarcity of long-term monitoring data drastically limit current and future water resources management.

  18. Meteoric precipitation at Yucca Mountain, Nevada: Chemical and stable isotope analyses, 2006-09

    USGS Publications Warehouse

    Moscati, Richard J.; Scofield, Kevin M.

    2011-01-01

    Cumulatively, &delta18O values range from 3.0 to -20.4 per mil (%o) and &deltaD values range from 10 to -14%o. Winter-season precipitation commonly has isotopically lighter compositions. The cumulative &delta18O plotted against &deltaD shows that precipitation samples define a line with slope of 6.4, less than the 8 of the Global Meteoric Water Line. This difference in slope, typical of arid environments, is chiefly the result of evaporation of falling raindrops due to warmer air temperatures. ;

  19. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  20. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  1. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; hide

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

  2. Simulated shifts in the mid-latitude storm tracks over the western US detected through isotopes in precipitation and vapor

    NASA Astrophysics Data System (ADS)

    Buenning, N. H.; Stott, L. D.; Kanner, L.; Yoshimura, K.

    2013-12-01

    One of the most robust features of climate model projections for the 21st century includes a poleward shift of middle latitude storm tracks in response to enhanced radiative forcing. This study evaluates how shifts in the middle latitude storm tracks over the North Pacific has been expressed in the stable isotopic composition of atmospheric vapor and precipitation in the past 60 years. Previous work has demonstrated how the isotopic composition of precipitation (δ18Op) in the Pacific Northwest and in atmospheric vapor (δ18Ov) across the western US reflects the large-scale atmospheric circulation. Thus, it is possible to use the isotopic composition of water in these regions to detect shifts in mid-latitude storm tracks. Results from the Isotope-incorporated Global Spectral Model (IsoGSM) are presented to better understand the recent low frequency variations in δ18O values over the western US. The IsoGSM simulations presented here were spectrally nudged every six hours to the NCEP/NCAR Reanalysis wind and temperature fields. The spectral nudging technique allows for realistic isotopic simulations that are consistent with observed large-scale mid-latitude storm systems. Model results suggest that δ18Op has risen over the Pacific Northwest and δ18Ov has increased across the western US since the 1950s (see Figure), an indication of more moisture advection from the tropics and less moisture transported from the middle latitudes. Water tagging simulations reveal that as δ18Ov increased in the western US, the fraction of vapor from the subtropics had also increased, while the fraction from the middle latitudes had decreased. Similarly, the tagging simulations resulted in increased subtropical precipitation falling in the Pacific Northwest and decreased precipitation from the middle latitudes. These model simulations suggest that a northward shift in storm tracks has already taken place over the last 60 years in the western US. Furthermore, the results underscore the

  3. Impact of moisture source regions on the isotopic composition of precipitation events at high-mountain continental site Kasprowy Wierch, southern Poland

    NASA Astrophysics Data System (ADS)

    Rozanski, Kazimierz; Chmura, Lukasz; Dulinski, Marek

    2016-04-01

    Five-year record of deuterium and oxygen-18 isotope composition of precipitation events collected on top of the Kasprowy Wierch mountain (49° 14'N, 19° 59'E, 1989 m a.s.l.) located in north-western High Tatra mountain ridge, southern Poland, is presented and discussed. In total 670 precipitation samples have been collected and analysed. Stable isotope composition of the analysed precipitation events varied in a wide range, from -2.9 to -26.6‰ for δ18O and from -7 to -195 ‰ for δ2H. The local meteoric water line (LMWL) defined by single events data (δ2H=(7.86±0.05)δ18O+(12.9±0.6) deviate significantly from the analogous line defined by monthly composite precipitation data available for IAEA/GNIP station Krakow-Balice (50o04'N, 19o55'E, 220 m a.s.l.), located ca. 100 km north of Kasprowy Wierch ((δ2H=(7.82±0.11)δ18O+(6.9±1.1). While slopes of those two LMWLs are statistically indistinguishable, the intercept of Kasprowy Wierch line is almost two times higher that that characterizing Krakow monthly precipitation. This is well-documented effect associated with much higher elevation of Kasprowy Wierch sampling site when compared to Krakow. The isotope data for Kasprowy Wierch correlate significantly with air temperature, with the slope of the regression line being equal 0.35±0.02 ‰oC for δ18O, whereas no significant correlation with precipitation amount could be established. The impact of moisture source regions on the isotopic composition of precipitation events collected at Kasprowy Wierch site was analysed using HYSPLITE back trajectory model. Five-days back trajectories were calculated for all analysed precipitation events and seasonal maps of trajectory distribution were produced. They illustrate changes in the prevailing transport patterns of air masses bringing precipitation to the sampling site. Back trajectories for the events yielding extreme isotopic composition of precipitation collected at Kasprowy Wierch were analyzed in detail

  4. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2003 through 2014

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-04-25

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  5. Isotopic fingerprints of the Lake Żabińskie (NE Poland) hydrological system on contemporary carbonates precipitated in the lake.

    PubMed

    Ustrzycka, Alicja; Piotrowska, Natalia; Bonk, Alicja; Filipiak, Janusz; Tylmann, Wojciech

    2018-06-01

    An isotopic monitoring was undertaken in 2012-2014 at Lake Żabińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ 18 O and δ 2 H in the precipitation, lake water column, inflows and outflow, δ 18 O and δ 13 C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ 18 O and δ 2 H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water's isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ 18 O of the carbonate fraction in the sediment traps depends on the δ 18 O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ 18 O and δ 13 C in precipitated carbonate.

  6. Arctic and Tropical Influence on Extreme Precipitation Events, Atmospheric Rivers, and Associated Isotopic Values in the Western U.S.

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, S. E.; Johnson, K. R.; Zou, Y.; Welker, J. M.; Strong, C.; Rutz, J. J.; Yu, J. Y.; Yoshimura, K.; Sellars, S. L.; Payne, A. E.

    2014-12-01

    Extreme precipitation events along the U.S. West Coast can result in major damage and are projected by most climate models to increase in frequency and severity. One of the most prevalent extreme precipitation events that occurs along the west coast of North America are known as 'Atmospheric Rivers' (ARs), whereby extensive fluxes of water vapor are transported from the tropics and/or subtropics, delivering substantial precipitation and contributing to flooding when they encounter mountains. This region is particularly vulnerable to ARs, with 30-50% of annual precipitation in this region occurring from just a few AR events. Because of the tropical and/or subtropical origin of ARs, they can carry unique isotopic properties. Here we present the results of analysis of weekly precipitation data and accompanying isotopic values from Giant Forest, in Sequoia National Park, in the southwestern Sierra Nevada Mountains (36.57° N; 118.78° W; 1921m) from 2001 to 2011. To better characterize these events, we focused on the 10 weeks with the highest precipitation totals (all greater than 150 mm) during the study period. We show that nine of the top ten weeks contain documented 'AR' events and that 90% occurred during the negative phase of the Arctic Oscillation. A comparison of extreme precipitation events across the Western U.S. with several key climate indices demonstrate these events occur most frequently when the negative phase of the Arctic Oscillation is in sync with the negative phase of the El Niño Southern Oscillation (ENSO) and the negative or neutral Pacific North American (PNA) pattern. We also demonstrate that central or eastern Pacific location of ENSO sea surface temperature anomalies can further enhance predictive capabilities of the landfall location of extreme precipitation. Stable isotope results show that extreme precipitation events are characterized by highly variable δ18O (-7.20‰ to -19.27‰), however, we find that more negative δ18O values

  7. Precipitation stable isotope records from the northern Hengduan Mountains in China capture signals of the winter India-Burma Trough and the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Yu, Wusheng; Tian, Lide; Yao, Tandong; Xu, Baiqing; Wei, Feili; Ma, Yaoming; Zhu, Haifeng; Luo, Lun; Qu, Dongmei

    2017-11-01

    This project reports results of the first precipitation stable isotope (δ18 O and δD) time series produced for Qamdo in the northern Hengduan Mountains in the southeastern Tibetan Plateau. The data showed that the fluctuations of precipitation stable isotopes at Qamdo during the different seasons revealed various moisture sources. The westerlies and local recycling moisture dominated at the study area before the pre-monsoon and after the post-monsoon seasons, which resulted in similar trends of both precipitation stable isotopes and temperature. The marine moisture was transported to the northern Hengduan Mountains by the winter India-Burma Trough combined with convection. Consequently, stable isotopes in subsequent precipitation were occasionally observed to decrease suddenly. However, δ18 O and δD values of precipitation at Qamdo were lower during the monsoon period and the duration of those low values was longer because of the effects of the Indian Summer Monsoon and the strengthening convection. Our findings indicate that the effects of seasonal precipitation differences caused by various climate systems, including the winter India-Burma Trough and Indian Summer Monsoon, need to be considered when attempting to interpret tree-ring and ice core records for the Hengduan Mountains.

  8. Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures

    NASA Astrophysics Data System (ADS)

    Mansor, Muammar; Harouaka, Khadouja; Gonzales, Matthew S.; Macalady, Jennifer L.; Fantle, Matthew S.

    2018-01-01

    Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ˜13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic

  9. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes

  10. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns

    NASA Astrophysics Data System (ADS)

    Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen

    2013-08-01

    Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.

  11. Novel Stable Isotope Methods for Assessing Changes in Seasonality of Precipitation from Sediments of Ombrotrophic Peatlands

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Booth, R. K.; Jackson, S. T.; Pendall, E. G.; Walcott, M.; Bradley, R.; Pilcher, J.; Huang, Y.

    2007-12-01

    The seasonality of precipitation is a key but often elusive climate parameter in paleoclimate reconstructions. Sediments from ombrotrophic peatlands are excellent archives of past changes in precipitation/evaporation balance. Here we show that these peatland sediments can also be used to assess changes in the seasonality of precipitation. We have recently determined that distributions of Sphagnum and vascular plant biomarkers sensitively record changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513), but biomarker distributions alone do not offer detailed information for the changes in seasonal precipitation. In this study, we combine biomarker and compound-specific H and C isotope ratios to create a more comprehensive picture of the changing climate affecting these sensitive ombrotrophic systems. We present here two sets of downcore data from sites in Arctic Europe as well as Eastern North America. Basic paleohydrology is established using a ratio of Sphagnum to vascular plant biomarkers (C23 and C29 n-alkanes, respectively. We further describe paleohydrology using novel stable isotope proxies based on δD and δ13C measurements of Sphagnum and vascular plant biomarkers. Because Sphagnum has no vascular system and loses water directly by evaporation, Sphagnum biomarkers enriched in deuterium indicate an evaporative growing season (summer). Vascular plants use their root systems to take up water stored within the peatland, so deuterium-depleted vascular plant biomarkers should indicate increased winter recharge of the peatland. A methanotrophic symbiont living inside the Sphagnum's hyaline (water-holding) cells is more active when the Sphagnum is wet and therefore provides more 13C depleted (methane- derived) carbon dioxide for biomass production when the growing season is less evaporative. Hence, 13C depleted Sphagnum biomarkers indicate increased methanotrophy and therefore a wetter summer. We corroborate our stable isotope proxies by

  12. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    USDA-ARS?s Scientific Manuscript database

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  13. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    PubMed

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  14. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  15. Analysis of a global database containing tritium in precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R. L.; Rabun, R. L.; Heath, M.

    The International Atomic Energy Agency (IAEA) directed the collection of tritium in water samples from the mid-1950s to 2009. The Global Network of Isotopes in Precipitation (GNIP) data examined the airborne movement of isotope releases to the environment, with an objective of collecting spatial data on the isotope content of precipitation across the globe. The initial motivation was to monitor atmospheric thermonuclear test fallout through tritium, deuterium, and oxygen isotope concentrations, but after the 1970s the focus changed to being an observation network of stable hydrogen and oxygen isotope data for hydrologic studies. The GNIP database provides a wealth ofmore » tritium data collections over a long period of time. The work performed here primarily examined data features in the past 30 years (after much of the effects of above-ground nuclear testing in the late 1950s to early 1960s decayed away), revealing potentially unknown tritium sources. The available data at GNIP were reorganized to allow for evaluation of trends in the data both temporally and spatially. Several interesting cases were revealed, including relatively high measured concentrations in the Atlantic and Indian Oceans, Russia, Norway, as well as an increase in background concentration at a collector in South Korea after 2004. Recent data from stations in the southeastern United States nearest to the Savannah River Site do not indicate any high values. Meteorological impacts have not been considered in this study. Further research to assess the likely source location of interesting cases using transport simulations and/or literature searches is warranted.« less

  16. Estimation and Validation of \\delta18O Global Distribution with Rayleigh-type two Dimensional Isotope Circulation Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.

    2004-12-01

    A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.

  17. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    NASA Astrophysics Data System (ADS)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  18. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    Treesearch

    Tamir Puntsag; Myron J. Mitchell; John L. Campbell; Eric S. Klein; Gene E. Likens; Jeffrey M. Welker

    2016-01-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To...

  19. [Spatial Distribution of Stable Isotope from the Lakes in Typical Temperate Glacier Region].

    PubMed

    Shi, Xiao-yi; Pu, Tao; He, Yuan-qing; Lu, Hao; Niu, He-wen; Xia, Dun-sheng

    2016-05-15

    We focused mainly on the spatial variation and influencing factors of hydrogen and oxygen stable isotopes between water samples collected at the surface and different depths in the Lashi Lake in August, 2014. Hydrological supply characteristics of the lake in typical temperate glacier region were discussed. The results showed that the values of δ¹⁸O and δD in the Lashi Lake ranged from -12.98 per thousand to -8.16 per thousand with the mean of -9.75 per thousand and from -99.42 per thousand to -73.78 per thousand with the mean of -82.23 per thousand, respectively. There was a reversed spatial variation between δ¹⁸O and d. Relatively low values of δ¹⁸O with high values of d were found at the edge of the lake where the rivers drained into. Meanwhile, the values of d in the vertical profile varied little with depth, suggesting that the waters mixed sufficiently in the vertical direction. The d values increased at first and then decreased from east to west at different layers, but both increase and decrease exhibited different velocities, which were related to the river distribution, the locality of the lake and environmental conditions etc. River water and atmospheric precipitation were the main recharge sources of the Lashi Lake, and the melt-water of snow and ice might also be the supply resource. The δ¹⁸O values of lake water in glacier region decreased along the elevation (except for Lashi Lake), generally, this phenomenon was called "altitude effect". Moreover, high isotopic values of the lake water from non-glacier region were due to the evaporation effect.

  20. Modeling the Spatial and Temporal Variation of Monthly and Seasonal Precipitation on the Nevada Test Site and Vicinity, 1960-2006

    USGS Publications Warehouse

    Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.

    2007-01-01

    The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.

  1. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water

  2. Modeling the water isotopes in Greenland precipitation 1959-2001 with the meso-scale model REMO-iso

    NASA Astrophysics Data System (ADS)

    Sjolte, J.; Hoffmann, G.; Johnsen, S. J.; Vinther, B. M.; Masson-Delmotte, V.; Sturm, C.

    2011-09-01

    Ice core studies have proved the δ18O in Greenland precipitation to be correlated to the phase of the North Atlantic Oscillation (NAO). This subject has also been investigated in modeling studies. However, these studies have either had severe biases in the δ18O levels, or have not been designed to be compared directly with observations. In this study we nudge a meso-scale climate model fitted with stable water isotope diagnostics (REMO-iso) to follow the actual weather patterns for the period 1959-2001. We evaluate this simulation using meteorological observations from stations along the Greenland coast, and δ18O from several Greenland ice core stacks and Global Network In Precipitation (GNIP) data from Greenland, Iceland and Svalbard. The REMO-iso output explains up to 40% of the interannual δ18O variability observed in ice cores, which is comparable to the model performance for precipitation. In terms of reproducing the observed variability the global model, ECHAM4-iso performs on the same level as REMO-iso. However, REMO-iso has smaller biases in δ18O and improved representation of the observed spatial δ18O-temperature slope compared to ECHAM4-iso. Analysis of the main modes of winter variability of δ18O shows a coherent signal in Central and Western Greenland similar to results from ice cores. The NAO explains 20% of the leading δ18O pattern. Based on the model output we suggest that methods to reconstruct the NAO from Greenland ice cores employ both δ18O and accumulation records.

  3. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  4. Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii

    USGS Publications Warehouse

    Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.

    1996-01-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and highelevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift Zone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  5. Use of Precipitation and Groundwater Isotopes to Interpret Regional Hydrology on a Tropical Volcanic Island: Kilauea Volcano Area, Hawaii

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Ingebritsen, S. E.; Janik, C. J.; Kauahikaua, J. P.

    1996-12-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and highelevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift Zone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  6. Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors

    NASA Astrophysics Data System (ADS)

    Liu, Meixian; Xu, Xianli; Sun, Alex

    2015-07-01

    Climate extremes can cause devastating damage to human society and ecosystems. Recent studies have drawn many conclusions about trends in climate extremes, but few have focused on quantitative analysis of their spatial variability and underlying mechanisms. By using the techniques of overlapping moving windows, the Mann-Kendall trend test, correlation, and stepwise regression, this study examined the spatial-temporal variation of precipitation extremes and investigated the potential key factors influencing this variation in southwestern (SW) China, a globally important biodiversity hot spot and climate-sensitive region. Results showed that the changing trends of precipitation extremes were not spatially uniform, but the spatial variability of these precipitation extremes decreased from 1959 to 2012. Further analysis found that atmospheric circulations rather than local factors (land cover, topographic conditions, etc.) were the main cause of such precipitation extremes. This study suggests that droughts or floods may become more homogenously widespread throughout SW China. Hence, region-wide assessments and coordination are needed to help mitigate the economic and ecological impacts.

  7. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  8. Should we care about diurnal temperatures when calculating the precipitation isotope thermometer?

    NASA Astrophysics Data System (ADS)

    Vachon, R.; Kloeckner, D.

    2008-12-01

    Long records of the concentrations of stable isotopes of precipitation (SIPs) have long been used as proxies for regional and global climates for periods when meteorological measurements were not made. SIPs' longstanding correlation to local surface temperatures (in many locations) and molecular thermal dynamics have lead to many interpretations of variability in SIPs to be changes in local temperatures. In order to create accurate temperature-SIP transfer functions one needs to link modern SIP concentrations to temperatures of when precipitation happened. A well-sited example of complexities in the temperature-SIP relationships - For simplicity one may assume that annual precipitation occurred at the same time of year throughout a long SIP archive, however, it is possible that the timing of precipitation actually shifted from summer to winter months. If the temperature difference between the seasons is large the SIP archive could be wrongly interpreted as a several degree cooling in average annual temperatures. Temperature changes similar in magnitude to seasonal fluctuations are also observed throughout a given day. What would happen if precipitation shifted from mid-afternoon to nighttime events? This line of thinking implies that diurnal effects plausibly should be considered when calculating SIP-transfer functions. This is particularly convincing when precipitation for a region is powered by middle of the day (summer) heat causing convective precipitation or evening cooling increasing relative humidities near the land's surface. This study examines both theoretical and observed (5 locations within North America) surface temperatures at the time of precipitation throughout a day and estimates diurnal effects on SIP-transfer functions. Ultimately, one must ask, how high does condensation form, and what are daily temperature patterns at those heights?

  9. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US.

    PubMed

    Puntsag, Tamir; Mitchell, Myron J; Campbell, John L; Klein, Eric S; Likens, Gene E; Welker, Jeffrey M

    2016-03-14

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ(18)O and δ(2)H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968-2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43(°)56'N, 71(°)45'W). We found a significant reduction in δ(18)O and δ(2)H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ(18)O and δ(2)H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.

  10. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    NASA Astrophysics Data System (ADS)

    Puntsag, Tamir; Mitchell, Myron J.; Campbell, John L.; Klein, Eric S.; Likens, Gene E.; Welker, Jeffrey M.

    2016-03-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968-2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43o56‧N, 71o45‧W). We found a significant reduction in δ18O and δ2H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ18O and δ2H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.

  11. Long-term Observations of Intense Precipitation Small-scale Spatial Variability in a Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.

    2017-12-01

    In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

  12. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  13. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  14. A Two-year Record of Daily Rainfall Isotopes from Fiji: Implications for Reconstructing Precipitation from Speleothem δ18O

    NASA Astrophysics Data System (ADS)

    Brett, M.; Mattey, D.; Stephens, M.

    2015-12-01

    Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical

  15. Urban water - a new frontier in isotope hydrology.

    PubMed

    Ehleringer, James R; Barnette, Janet E; Jameel, Yusuf; Tipple, Brett J; Bowen, Gabriel J

    2016-01-01

    Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.

  16. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: an hypothesis

    NASA Astrophysics Data System (ADS)

    Daley, T. J.; Mauquoy, D.; Chambers, F. M.; Street-Perrott, F. A.; Hughes, P. D. M.; Loader, N. J.; Roland, T. P.; van Bellen, S.; Garcia-Meneses, P.; Lewin, S.

    2012-09-01

    Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from southern South America (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively). δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two

  17. Carbon Isotopes in Pinus elliotti from Big Pine Key, Florida: Indicators of Seasonal Precipitation, ENSO and Disturbance Events

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Willoughby, H. E.; Anderson, W. T.; Cherubini, P.

    2013-12-01

    The South Florida coastal ecosystem is among the world's subtropical coastlines which are threatened by the potential effects of climate change. A well-developed localized paleohistory is essential in the understanding of the role climate variability/change has on both hydrological dynamics and disturbance event frequency and intensity; this understanding can then aid in the development of better predictive models. High resolution paleoclimate proxies, such as those developed from tree-ring archives, may be useful tools for extrapolating actual climate trends over time from the overlapping long-term and short-term climate cycles, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO). In South Florida, both the AMO and ENSO strongly influence seasonal precipitation, and a more complete grasp of how these cycles have affected the region in the past could be applied to future freshwater management practices. Dendrochronology records for the terrestrial subtropics, including South Florida, are sparse because seasonality for this region is precipitation driven; this is in contrast to the drastic temperature changes experienced in the temperate latitudes. Subtropical seasonality may lead to the complete lack of visible rings or to the formation of ring structures that may or may not represent annual growth. Fortunately, it has recently been demonstrated that Pinus elliottii trees in South Florida produce distinct annual growth rings; however ring width was not found to significantly correlate with either the AMO or ENSO. Dendrochronology studies may be taken a step beyond the physical tree-ring proxies by using the carbon isotope ratios to infer information about physiological controls and environmental factors that affect the distribution of isotopes within the plant. It has been well established that the stable isotope composition of cellulose can be related to precipitation, drought, large-scale ocean/atmospheric oscillations

  18. Spatial heterogeneity in sulfur isotopes: implications for modern environments and paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Fike, D. A.; Jones, D. S.; Fischer, W. W.

    2011-12-01

    Sulfur isotope ratio data have been used to provide significant insights into global biogeochemical cycling over Earth history. In addition to providing a framework for the construction of global redox budgets, these observations also provide the primary constraints on the advent and environmental importance of particular microbial metabolisms. As the chemostratigraphic record has become better resolved in space and time, however, reports of coeval discordant data are increasingly common - both within and between individual sedimentary basins. If accurate, this variability challenges our understanding of the first order behavior of the 'global' sulfur biogeochemical cycle. Some of this discordance may be due to spatial gradients in important oceanographic parameters; however, we think that a more likely culprit is ongoing microbial metabolic activity (that impacts the isotopic composition recorded by geological samples) during both syndepositional sediment reworking and early diagenetic lithification. Modern studies have recently highlighted the efficacy with which microbial activity during sediment remobilization can dramatically alter isotopic profiles. Further, the magnitude of local, microbially driven variations in S isotopes in modern sediments is sufficiently large that uneven incorporation of these signatures during deposition and lithification can explain much of the observed discordance in chemostratigraphic reconstructions of sulfur cycling. Here we attempt to link spatial variability in the sedimentary rock record with understanding of modern microbial systems operating in marine sediments. To that end we examine chemostratigraphic records of sulfur isotope (δ34S) data spanning the terminal Neoproterozoic to early Paleozoic eras and assess their scales of spatial reproducibility. We can gain insight into interpreting the observed patterns in these records by examining modern (bio)sedimentary environments. This understanding also allows us to reflect on

  19. Long-term enrichment of the stable isotopic composition of stream water due to the release of groundwater recharge from extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.

    2017-12-01

    The isotopic composition of surface and groundwater is impacted by a multitude of hydrologic processes. The long-term response of these systems to hydrologic change is critical for appropriately interpreting isotopic information for streamflow generation, stream-aquifer-coupling, sources of water to wells, and understanding recharge processes. To evaluate the response time of stream-aquifer systems to extreme precipitation events we use a long-term isotope dataset from Western Massachusetts with drainage areas ranging from 0.1 to > 800 km2. The year of 2011 was the wettest calendar year on record and the months of August and September of 2011 were the wettest consecutive two-month period in the 123 year record. Stable isotopic composition of surface waters of catchments ranging from 1 - 1000 km2 show an enrichment due to summertime and Tropical Storm precipitation. Enrichment in potential recharge water is shown to have a significant long-term impact (> 3 hydrologic years) on the isotopic composition of both surface and groundwater. This highlights the importance of groundwater sources of baseflow to streams and the transient storage and release mechanisms of shallow groundwater storage. The length of isotopic recession of stream water are also a strong function of watershed area. It is concluded that the stream water isotopes are consistent with a large pulse of water being stored and released from enriched groundwater emplaced during this period of above-average precipitation. Ultimately the results point to the importance of considering hydrological processes of streamflow generation and their role in hydrologic processes beyond traditional catchment response analysis.

  20. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    USDA-ARS?s Scientific Manuscript database

    The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...

  1. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  2. Stable isotope compositions of speleothems from the last interglacial - Spatial patterns of climate fluctuations in Europe

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Kern, Zoltán; Czuppon, György; Németh, Alexandra; Leél-Őssy, Szabolcs; Siklósy, Zoltán; Lin, Ke; Hu, Hsun-Ming; Shen, Chuan-Chou; Vennemann, Torsten W.; Haszpra, László

    2017-04-01

    Studies on the last interglacial (LIG) can provide information on how our environment behaved in a period of slightly higher global temperatures at about 125 ± 4 ka, even if it is not the best analogue for the Holocene. The available LIG climate proxy records are usually better preserved and can be studied at a higher resolution than those of the preceding interglacials, allowing detailed comparisons. This paper presents complex stable hydrogen, carbon and oxygen isotope records obtained for carbonate (δ13C and δ18Ocarb) and fluid inclusion hosted water (δD and δ18Ow) of a stalagmite from the Baradla Cave system in Central Europe that covers most of the LIG, as proven by U-Th dates. Comparing its C and O isotope data with records reported for other speleothem (cave-hosted carbonate) deposits from Europe revealed the complex behavior of these climate proxies, with a concerted relative increase in 18O of carbonates from 128 to 120 ka and synchronized shifts in the opposite direction after 119 ka. The hydrogen isotope analyses of inclusion-hosted water extracted from the BAR-II stalagmite also correspond to the regional climate proxy records, with meaningful deviations from global temperature trends. Beside following the general paleotemperature pattern from the climate optimum (high δD values up to -64‰ around 120 ka) to the subsequent cooling starting at about 119 ka (low δD values down to -90‰ at about 109 ka), a period between 126.5 and 123 ka with low δD values (down to -81‰) is detected in the BAR-II stalagmite. Although the isotope shifts are muted in the C-O isotope data of carbonate due to competitive fractionation processes, the δ13C data show a positive relationship with the δD pattern, indicating humidity - and possibly temperature - variations. The periods with low δD values fit well to temperature and humidity changes inferred from proxy records from western Europe to the eastern Mediterranean. Spatial distributions of these variables

  3. Expression of Aleutian Low variations by a proxy record of precipitation oxygen isotopes in the Matanuska-Susitna region on Cook Inlet, south central Alaska

    NASA Astrophysics Data System (ADS)

    Finney, B.; Anderson, L.; Engstrom, D. R.

    2017-12-01

    North Pacific ocean-atmosphere processes strongly influence the climatology of Alaska by altering the strength and position of the Aleutian Low. During the past decade, the development of oxygen isotope proxy records that reflect the isotope composition of precipitation has provided substantial evidence of hydroclimatic variability in Alaska in response to Aleutian Low variations during the Holocene. However, a clear understanding of how the isotopic composition of precipitation reflects Aleutian Low variations remains uncertain because modern and proxy observations and modeling studies provide different predictions for regions (coastal and interior), elevations (0 to 5000 m), and time-scales (seasonal to century) that cannot be adequately tested by existing data. Precipitation isotope proxy records from Mount Logan, Denali, Jellybean Lake and Horse Trail Fen provide valuable perspectives at high elevation and interior (leeward) locations but no data has been available from near sea level on the coastal (windward) side of the Alaska and Chugach Mountain Ranges. Here we present newly recovered marl lake sediment cores from the Matanuska-Susitna region of Knik Arm on Cook Inlet, near Wasilla, 50 km north of Anchorage, AK that provide complete de-glacial and Holocene records of precipitation oxygen isotopes. Geochronology is underway based on identification of known tephras and AMS radiocarbon dating of terrestrial macrofossils. Modern and historic sediments are dated by 210Pb. The groundwater fed site is hydrologically open, unaffected by evaporation, has exceptionally high rates of marl sedimentation and preliminary results indicate clearly defined oxygen isotope excursions in the late 1970's and early 1940's, periods when North Pacific ocean-atmosphere forcing of the Aleutian Low is known to have undergone shifts. These results help to evaluate contrasting models of atmospheric circulation and associated isotope fractionation which is critical for proxy

  4. The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Niezgoda, K.; Noone, D.; Konecky, B.

    2017-12-01

    Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.

  5. USGS48 Puerto Rico precipitation - A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.

    2014-01-01

    A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  6. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were

  7. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China.

    PubMed

    Liu, Xue-Yan; Xiao, Hong-Wei; Xiao, Hua-Yun; Song, Wei; Sun, Xin-Chao; Zheng, Xu-Dong; Liu, Cong-Qiang; Koba, Keisuke

    2017-11-01

    To constrain sources of anthropogenic nitrogen (N) deposition is critical for effective reduction of reactive N emissions and better evaluation of N deposition effects. This study measured δ 15 N signatures of nitrate (NO 3 - ), ammonium (NH 4 + ) and total dissolved N (TDN) in precipitation at Guiyang, southwestern China and estimated contributions of dominant N sources using a Bayesian isotope mixing model. For NO 3 - , the contribution of non-fossil N oxides (NO x , mainly from biomass burning (24 ± 12%) and microbial N cycle (26 ± 5%)) equals that of fossil NO x , to which vehicle exhausts (31 ± 19%) contributed more than coal combustion (19 ± 9%). For NH 4 + , ammonia (NH 3 ) from volatilization sources (mainly animal wastes (22 ± 12%) and fertilizers (22 ± 10%)) contributed less than NH 3 from combustion sources (mainly biomass burning (17 ± 8%), vehicle exhausts (19 ± 11%) and coal combustions (19 ± 12%)). Dissolved organic N (DON) accounted for 41% in precipitation TDN deposition during the study period. Precipitation DON had higher δ 15 N values in cooler months (13.1‰) than in warmer months (-7.0‰), indicating the dominance of primary and secondary ON sources, respectively. These results newly underscored the importance of non-fossil NO x , fossil NH 3 and organic N in precipitation N inputs of urban environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spatial and temporal variability of runoff and streamflow generation within and among headwater catchments: a combined hydrometric and stable isotope approach

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.

    2012-12-01

    The combined influence of topography and vegetation on runoff generation and streamflow in headwater catchments remains unclear. We aim to understand how spatial, hydrological and climate variables affect runoff generation and streamflow at hillslope and watershed scales at the Coweeta Hydrologic Laboratory (CHL) in the southern Appalachian Mountains by analyzing stable isotopes of hydrogen (2H) and oxygen (18O) coupled with measurements of hydrological variables (stream discharge, soil moisture, shallow groundwater) and landscape variables (upslope accumulated area, vegetation density slope, and aspect). We investigated four small catchments, two of which contained broadleaf deciduous vegetation and two of which contained evergreen coniferous vegetation. Beginning in June 2011, we collected monthly water samples at 25 m intervals along each stream, monthly samples from 24 shallow groundwater wells, and weekly to monthly samples from 10 rain gauges distributed across CHL. Water samples were analyzed for 2H and 18O using cavity ring-down spectroscopy. During the same time period we recorded shallow groundwater stage at 30 min intervals from each well, and beginning in fall 2011 we collected volumetric soil moisture data at 30 min intervals from multiple depths at 16 landscape positions. Results show high spatial and temporal variability in δ2H and δ18O within and among streams, but in general we found isotopic enrichment with increasing contributing area along each stream. We used a combination of hydrometric observations and geospatial analyses to understand why stream isotope patterns varied during the year and among watersheds, and we used complementary measurements of δ2H and δ18O from other pools within the watersheds to understand the movement and mixing of precipitation that precedes runoff formation. This combination of high resolution stable isotope data and hydrometric observations facilitates a clearer understanding of spatial controls on streamflow

  9. Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models

    NASA Astrophysics Data System (ADS)

    Luce, Charles H.; Lopez-Burgos, Viviana; Holden, Zachary

    2014-12-01

    Empirical sensitivity analyses are important for evaluation of the effects of a changing climate on water resources and ecosystems. Although mechanistic models are commonly applied for evaluation of climate effects for snowmelt, empirical relationships provide a first-order validation of the various postulates required for their implementation. Previous studies of empirical sensitivity for April 1 snow water equivalent (SWE) in the western United States were developed by regressing interannual variations in SWE to winter precipitation and temperature. This offers a temporal analog for climate change, positing that a warmer future looks like warmer years. Spatial analogs are used to hypothesize that a warmer future may look like warmer places, and are frequently applied alternatives for complex processes, or states/metrics that show little interannual variability (e.g., forest cover). We contrast spatial and temporal analogs for sensitivity of April 1 SWE and the mean residence time of snow (SRT) using data from 524 Snowpack Telemetry (SNOTEL) stations across the western U.S. We built relatively strong models using spatial analogs to relate temperature and precipitation climatology to snowpack climatology (April 1 SWE, R2=0.87, and SRT, R2=0.81). Although the poorest temporal analog relationships were in areas showing the highest sensitivity to warming, spatial analog models showed consistent performance throughout the range of temperature and precipitation. Generally, slopes from the spatial relationships showed greater thermal sensitivity than the temporal analogs, and high elevation stations showed greater vulnerability using a spatial analog than shown in previous modeling and sensitivity studies. The spatial analog models provide a simple perspective to evaluate potential futures and may be useful in further evaluation of snowpack with warming.

  10. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  11. Tropical Sumatra Squalls drive stable isotope ratios of precipitation in Singapore

    NASA Astrophysics Data System (ADS)

    He, S.; Niezgoda, K.; Kurita, N.; Wang, X.; Rubin, C. M.; Goodkin, N.

    2016-12-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems in the study area during the inter-monsoon and southwest monsoon season. Accompanied by gusty winds and heavy rains, the squalls can be very destructive, affecting Sumatra, the Malay Peninsula and Singapore. To understand how they affect precipitation and its stable isotopes, we continuously analyzed real-time δ-values of precipitation during the squalls in 2015 and also obtained δ-values of daily precipitation. We expect the study will improve our knowledge on cloud dynamics, water cycle during the squalls, and the drive of δ-value of precipitation in the region. We found that δ18O values of precipitation during the squalls mainly exhibit a "V" shape pattern or less commonly a "W" shape pattern. Change in the δ18O value during a single event is approximately 1 to 6‰, with the lowest values mostly observed in the stratiform zone. These observations can be largely explained by the mesoscale subsidence and rain re-evaporation in combination with other processes, such as the entrainment of ambient air. In some events, however, the minimum δ-value occurs in the convection core and coincides with 90% of the total event rainfall, implying a control of rain amount and the dominance of condensation mechanism during these events. Daily precipitation is characterized by periodic negative shifts in its δ18O value. Moreover, the shifts are associated with Sumatra Squalls. Compared to 2014, the frequency of the squalls and corresponding negative shifts in δ-values in 2015 is lower probably due to a weak monsoon. During the ENSO event in 2015, the region was generally drier as a result of reduced moisture convergence with the shift of convection in the western Pacific to the central and eastern Pacific. Therefore, Pacific warm/cold events likely affect the formation of the Sumatra Squalls in the region.

  12. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  13. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  14. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  15. Optimising predictor domains for spatially coherent precipitation downscaling

    NASA Astrophysics Data System (ADS)

    Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Ben Daoud, A.; Bontron, G.

    2012-04-01

    Relationships between local precipitation (predictands) and large-scale circulation (predictors) are used for statistical downscaling purposes in various contexts, from medium-term forecasting to climate change impact studies. For hydrological purposes like flood forecasting, the downscaled precipitation spatial fields have furthermore to be coherent over possibly large basins. This thus first requires to know what predictor domain can be associated to the precipitation over each part of the studied basin. This study addresses this issue by identifying the optimum predictor domains over the whole of France, for a specific downscaling method based on a analogue approach and developed by Ben Daoud et al. (2011). The downscaling method used here is based on analogies on different variables: temperature, relative humidity, vertical velocity and geopotentials. The optimum predictor domain has been found to consist of the nearest grid cell for all variables except geopotentials (Ben Daoud et al., 2011). Moreover, geopotential domains have been found to be sensitive to the target location by Obled et al. (2002), and the present study thus focuses on optimizing the domains of this specific predictor over France. The predictor domains for geopotential at 500 hPa and 1000 hPa are optimised for 608 climatologically homogeneous zones in France using the ERA-40 reanalysis data for the large-scale predictors and local precipitation from the Safran near-surface atmospheric reanalysis (Vidal et al., 2010). The similarity of geopotential fields is measured by the Teweles and Wobus shape criterion. The predictive skill of different predictor domains for the different regions is tested with the Continuous Ranked Probability Score (CRPS) for the 25 best analogue days found with the statistical downscaling method. Rectangular predictor domains of different sizes, shapes and locations are tested, and the one that leads to the smallest CRPS for the zone in question is retained. The

  16. Quantification of dynamic soil - vegetation feedbacks following an isotopically labelled precipitation pulse

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane

    2017-04-01

    The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water-use in a Mediterranean cork-oak woodland during dry conditions. An irrigation experiment using δ18O-labeled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water-use, water uptake depth plasticity and contribution to ecosystem evapotranspiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive water loss for biomass production, carbon sequestration and nitrogen fixation. During the experiment no adjustments of main root water uptake depth to changes of water availability could be observed, rendering light to medium precipitation events under dry conditions useless. This forces understory plants to compete with adjacent trees for soil water in deeper soil layers. Thus understory plants are faster subject to chronic drought, leading to premature senescence at the onset of drought. Despite this water competition, the presence of Cork oak trees fosters infiltration to large degrees. That reduces drought stress, caused by evapotranspiration, due to favourable micro climatic conditions under tree crown shading. This study

  17. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector

    USGS Publications Warehouse

    Coplen, Tyler B.; Paul J. Neiman,; Allen B. White,; Ralph, F. Martin

    2015-01-01

    During landfall of extratropical cyclones between 2005 and 2011, nearly 1400 precipitation samples were collected at intervals of 30-min time resolution with novel automated collectors at four NOAA sites in northern California [Alta (ATA), Bodega Bay (BBY), Cazadero (CZD) and Shasta Dam (STD)] during 43 events. Substantial decreases were commonly followed hours later by substantial increases in hydrogen isotopic composition (δ2HVSMOW where VSMOW is Vienna Standard Mean Ocean Water) and oxygen isotopic composition (δ18OVSMOW) of precipitation. These variations likely occur as pre-cold frontal precipitation generation transitions from marine vapour masses having low rainout to cold cloud layers having much higher rainout (with concomitant brightband signatures measured by an S-band profiling radar and lower δ2HVSMOW values of precipitation), and finally to shallower, warmer precipitating clouds having lower rainout (with non-brightband signatures and higher δ2HVSMOW values of precipitation), in accord with ‘seeder–feeder’ precipitation. Of 82 intervals identified, a remarkable 100.5 ‰ decrease in δ2HVSMOW value was observed for a 21 January 2010 event at BBY. Of the 61 intervals identified with increases in δ2HVSMOW values as precipitation transitioned to shallower, warmer clouds having substantially less rainout (the feeder part of the seeder–feeder mechanism), a remarkable increase in δ2HVSMOW value of precipitation of 82.3 ‰ was observed for a 10 February 2007 event at CZD. All CZD and ATA events having δ2HVSMOW values of precipitation below −105 ‰ were atmospheric rivers (ARs), and of the 13 events having δ2HVSMOWvalues of precipitation below −80 ‰, 77 % were ARs. Cloud echo-top heights (a proxy for atmospheric temperature) were available for 23 events. The mean echo-top height is greater for higher rainout periods than that for lower rainout periods in 22 of the 23 events. The lowest δ2HVSMOW of precipitation of 28

  18. Future stable water isotope projection with an isotope-AGCM driven by CMIP5 SSTs

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2016-12-01

    Stable water isotope ratios (dD and d18O) are widely used as proxy of past climate changes, and it is extremely important to understand and predict the mechanism of current isotopic spatio-temporal behavior with regard to the on-going climate change. However, as compared many studies on reproduction of isotopes for the past, there are few studies on future projection of isotopes. Therefore, in this study, a set of experiments using an isotope-incorporate AGCM (IsoGSM) with SST and sea ice field simulated from multiple CMIP5 models, namely MIROC5, CCSM4, and MRI-CGCM3, were conducted for the end of 20th century (1980-1990) and the end of 21st century (2080-2090) under RCP2.6 and RCP8.5 scenarios. Thus the responses in stable water isotope ratio in precipitation and water vapor in accordance to the global warming were investigated. As results, the changes in global surface air temperature were about +1K and +3K with RCP2.6 and RCP8.5, respectively. Similarly, the global precipitation changes were about +0.07mm/day (about +2%) and +0.18mm/day (about +5%), and the global precipitable water changes were about +2mm (+7%) and +6mm (+24%), respectively. The moisture was increased in accordance to the Clausius-Clapayron theory (7%/K), but the increase in precipitation is not that large. This indicates that the global hydrological cycle was slowed down in the globally warmed experiments. On the other hand, for the isotopic signals, the changes in globally averaged d18O in precipitation were about 0.2‰ and 0.4‰, and those in precipitable water were 0.2‰ and 0.5‰, in RCP2.6 and RCP8.5, respectively. It is well-known that there are temperature effect (positive correlation in air temperature and precipitation isotopes) and amount effect (negative correlation in precipitation amount and isotopes), but in the globally warmed world, these effects were offset, and only weaker temperature effect was appeared in the global mean isotope signals. Regional details will be shown

  19. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia

    NASA Astrophysics Data System (ADS)

    Dayem, Katherine E.; Molnar, Peter; Battisti, David S.; Roe, Gerard H.

    2010-06-01

    Variability in oxygen isotope ratios collected from speleothems in Chinese caves is often interpreted as a proxy for variability of precipitation, summer precipitation, seasonality of precipitation, and/or the proportion of 18O to 16O of annual total rainfall that is related to a strengthening or weakening of the East Asian monsoon and, in some cases, to the Indian monsoon. We use modern reanalysis and station data to test whether precipitation and temperature variability over China can be related to changes in climate in these distant locales. We find that annual and rainy season precipitation totals in each of central China, south China, and east India have correlation length scales of ∼ 500 km, shorter than the distance between many speleothem records that share similar long-term time variations in δ18O values. Thus the short distances of correlation do not support, though by themselves cannot refute, the idea that apparently synchronous variations in δ18O values at widely spaced (> 500 km) caves in China are due to variations in annual precipitation amounts. We also evaluate connections between climate variables and δ18O values using available instrumental measurements of δ18O values in precipitation. These data, from stations in the Global Network of Isotopes in Precipitation (GNIP), show that monthly δ18O values generally do not correlate well with either local precipitation amount or local temperature, and the degree to which monthly δ18O values do correlate with them varies from station to station. For the few locations that do show significant correlations between δ18O values and precipitation amount, we estimate the differences in precipitation amount that would be required to account for peak-to-peak differences in δ18O values in the speleothems from Hulu and Dongge caves, assuming that δ18O scales with the monthly amount of precipitation or with seasonal differences in precipitation. Insofar as the present-day relationship between δ18O

  20. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  1. A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

    PubMed Central

    Popa-Lisseanu, Ana G.; Sörgel, Karin; Luckner, Anja; Wassenaar, Leonard I.; Ibáñez, Carlos; Kramer-Schadt, Stephanie; Ciechanowski, Mateusz; Görföl, Tamás; Niermann, Ivo; Beuneux, Grégory; Mysłajek, Robert W.; Juste, Javier; Fonderflick, Jocelyn; Kelm, Detlev H.; Voigt, Christian C.

    2012-01-01

    Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe. PMID:22291947

  2. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values

  3. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  4. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    NASA Astrophysics Data System (ADS)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  5. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model.

    PubMed

    Meghdadi, Aminreza; Javar, Narmin

    2018-04-01

    Spatial and seasonal variations in nitrate contamination are a globally concern. While numerous studies have used δ 15 N-NO 3 and δ 18 O-NO 3 to elucidate the dominant sources of nitrate in groundwater, this approach has significant limitations due to the overlap of nitrate isotopic ranges and the occurrence of nitrate isotopic fractionation. This study quantitatively assessed the spatial and seasonal variations in the proportional contributions of nitrate sources from different land uses in the Tarom watershed in North-West Iran. To achieve this aim, orthogonal projection of the hydrochemical and isotopic dataset of the principal component analysis (PCA) as well as correlation coefficient matrix (Corr-PCA) were evaluated to reduce the dimensionality of the inter-correlated dataset. Next, a nitrate isotopic biplot accompanied with a Bayesian isotope mixing model (SIAR) were applied to specify the spatial and seasonal trends in the proportional contribution of three dominant sources of nitrate (fertilizers, animal manure and residential waste) in the watershed. Finally, in order to provide a sensitive framework for nitrate source appointment and overcome the associated limitations of dual nitrate isotope application, the integration of boron isotope (δ 11 B) and strontium isotopic ratio ( 87 Sr/ 86 Sr) was introduced. The results revealed that the mean contribution of residential sewage increased (17%-27.5%), while the mean contribution of fertilizers decreased (28.3%-19%), from late spring to early autumn. Also, fertilizer was the highest contributor (42.1% ± 3.2) during late spring, especially in regions with more than 75% agricultural land. Meanwhile, the mean contribution of sewage was highest in early autumn (32.1% ± 2.8) in the areas with more than 20% residential land. These results were confirmed by coupled application of δ 11 B and 87 Sr/ 86 Sr. This study provides a useful insight for environmental managers to verify groundwater pollution

  6. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  7. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  8. Evaluation of the Heshang Cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record.

    PubMed

    Li, Xiuli; Cui, Xueping; He, Dong; Liao, Jin; Hu, Chaoyong

    2018-02-08

    With their merits of precise dating and sensitivity to climate changes, laminated stalagmites are an important terrestrial archive for reconstructions of paleohydrological changes. In particular, the Ca isotope composition (δ 44/42 Ca) of the Heshang Cave stalagmite has been documented to record a precipitation decrease during the 8.2 ka event in central China. As an extension, this study directly compares near-annual resolution δ 44/42 Ca data with an instrumental precipitation record to evaluate the fidelity of δ 44/42 Ca as a paleohydrologic proxy on annual to decade timescales. Over the period 1881-2001 AD, the δ 44/42 Ca values correlate significantly with both precipitation from a nearby weather station and the dryness/wetness index in the middle Yangtze River, with a stronger correlation on decadal smoothed data. These results clearly show that the δ 44/42 Ca ratio from stalagmites is an effective proxy for paleohydrological changes on a decadal timescale. More study is encouraged to refine understanding of stalagmite Ca isotope ratios and hydrological conditions and their application in paleohydrologic reconstructions.

  9. Isotopes in North American Rocky Mountain Snowpack 1993-2014

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Mast, M. Alisa

    2016-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10-21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  10. Stable Isotopic Composition of Precipitation from 2015-2016 Central Texas Rainfall Events

    NASA Astrophysics Data System (ADS)

    Maupin, C. R.; McChesney, C. L.; Roark, B.; Gorman, M. K.; Housson, A. L.

    2016-12-01

    Central Texas lies within the Southern Great Plains, a region where rainfall is of tremendous agricultural and associated socioeconomic importance. Paleoclimate records from speleothems in central Texas caves may assist in placing historical and recent drought and pluvial events in the context of natural variability. Effective interpretation of such records requires the nature and origin of variations in the meteoric δ18O signal transmitted from cloud to speleothem to be understood. Here we present a record of meteoric δ18O and δD from each individual precipitation event (δ18Op and δDp), collected by rain gauge in Austin, Texas, USA, from April 2015 through 2016. Backwards hybrid single-particle Lagrangian integrated trajectories (HYSPLITs) indicate the broader moisture source for each precipitation event during this time was the Gulf of Mexico. The local meteoric water line is within error of the global meteoric water line, suggesting minimal sourcing of evaporated continental vapor for precipitation. Total monthly rainfall followed the climatological pattern of a dual boreal spring and fall maximum, with highly variable event δ18Op and δDp values. Surface temperature during precipitation often exerts control over continental and mid latitude δ18Op values, but is not significantly correlated to study site δ18Op (p>0.10). Amount of rain falling during each precipitation event ("amount effect") explains a significant 18% of variance in δ18Op. We hypothesize that this relationship can be attributed to the following: 1) minimal recycling of continental water vapor during the study period; 2) the presence of synoptic conditions favoring intense boreal spring and fall precipitation, driven by a developing, and subsequently in-place, strong ENSO event coupled with a southerly flow from the open Gulf of Mexico; and 3) the meteorological nature of the predominant precipitating events over Texas during this time, mesoscale convective systems, which are known to

  11. Spatial decorrelation stretch of annual (2003-2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona, and Utah.

    PubMed

    Ch Miliaresis, George

    2016-06-01

    A method is presented for elevation (H) and spatial position (X, Y) decorrelation stretch of annual precipitation summaries on a 1-km grid for SW USA for the period 2003 to 2014. Multiple linear regression analysis of the first and second principal component (PC) quantifies the variance in the multi-temporal precipitation imagery that is explained by X, Y, and elevation (h). The multi-temporal dataset is reconstructed from the PC1 and PC2 residual images and the later PCs by taking into account the variance that is not related to X, Y, and h. Clustering of the reconstructed precipitation dataset allowed the definition of positive (for example, in Sierra Nevada, Salt Lake City) and negative (for example, in San Joaquin Valley, Nevada, Colorado Plateau) precipitation anomalies. The temporal and spatial patterns defined from the spatially standardized multi-temporal precipitation imagery provide a tool of comparison for regions in different geographic environments according to the deviation from the precipitation amount that they are expected to receive as function of X, Y, and h. Such a standardization allows the definition of less or more sensitive to climatic change regions and gives an insight in the spatial impact of atmospheric circulation that causes the annual precipitation.

  12. SPATIAL Short Courses Build Expertise and Community in Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.; Bowen, G. J.

    2015-12-01

    The SPATIAL short course at the University of Utah is designed for graduate students and professionals in the earth and environmental sciences from around the globe. An integral part of the broader, NSF-funded Inter-university Training for Continental-scale Ecology (ITCE) project, the course is an intensive two-week field, classroom and laboratory experience with internationally-known researchers as instructors. The course focuses on stable isotope geochemistry coupled with spatial analysis techniques. Participants do not typically know each other or this research community well upon entering. One of the stated goals of the overall project is to build a community of practice around these techniques. This design is common in many professional fields, but is not often applied at the graduate level nor formally assessed in the earth sciences. Paired pre- and post-tests were administered before the start and after the close of the short courses over 3 years. The survey is a set of instruments adapted from social-cognitive psychology measuring changes in identity and community with other items to measure content knowledge outcomes. We see a subtle, consistent convergence of identities between large-scale isotope geochemistry and participants' research areas. Results also show that the course generates an increase in understanding about stable isotopes' use and application. The data show the SPATIAL course is very effective at bringing students together socially with each other and with faculty to create an environment that fosters community and scientific cooperation. Semi-structured pre-and post- interviews were conducted to understand the program elements that generated gains in learning and community. Participants were selected based on initial responses on the pre-survey to capture the range of initial conditions for the group. Qualitative analysis shows that the major factors for participants were 1) ready access to researchers in an informal setting during the

  13. Desert Tortoise (Gopherus agassizii) Dietary Specialization Decreases across a Precipitation Gradient

    PubMed Central

    Murray, Ian W.; Wolf, Blair O.

    2013-01-01

    We studied the plant resource use between and within populations of desert tortoise (Gopherus agassizii) across a precipitation gradient in the Sonoran Desert of Arizona. The carbon and nitrogen stable isotope values in animal tissues are a reflection of the carbon and nitrogen isotope values in diet, and consequently represent a powerful tool to study animal feeding ecology. We measured the δ13C and δ15N values in the growth rings on the shells of tortoises in different populations to characterize dietary specialization and track tortoise use of isotopically distinct C4/CAM versus C3 plant resources. Plants using C3 photosynthesis are generally more nutritious than C4 plants and these trait differences can have important growth and fitness consequences for consumers. We found that dietary specialization decreases in successively drier and less vegetated sites, and that broader population niche widths are accompanied by an increase in the dietary variability between individuals. Our results highlight how individual consumer plant resource use is bounded under a varying regime of precipitation and plant productivity, lending insight into how intra-individual dietary specialization varies over a spatial scale of environmental variability. PMID:23840495

  14. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and

  15. Multicentury Reconstruction of Precipitations (1300-2014) in Eastern Canada from Tree-Ring Width and Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Giguère, Claudie; Boucher, Étienne; Bergeron, Yves

    2016-04-01

    Tree ring series enabling long hydroclimatic reconstructions are scarce in Northeastern America, mostly because most boreal species are rather thermo-dependant. Here we propose a new multi-proxy analysis (tree-ring, δ13C and δ18O) from one of the oldest Thuja occidentalis population in NE America (lake Duparquet, Quebec). These rare precipitation-sensitive, long-living trees (> 800 years) grow on xeric rocky shores and their potential for paleo-hydroclimatic reconstructions (based on ring widths solely) was previously assessed. The objectives of this study are twofold i) to strengthen the hydroclimatic signal of this long tree-ring chronology by adding analysis of stable isotope ratios (δ13C and δ18O) and ii) to reconstruct summer precipitation back to 1300 AD, which will represent, by far, the longest high-resolution hydroclimatic reconstruction in this region. A tree-ring chronology was constructed from 61 trees sampled in standing position. Eleven trees were also sampled to produce pooled carbon and oxygen isotope chronologies (annually resolved) with a replication of five to six trees per year. Signal analysis (correlation between climatic data and proxy values) confirms that growth is positively influenced by spring precipitations (May-June), while δ13C is negatively correlated to summer precipitation (June to August) and positively to June temperature. Adding δ18O analysis will strengthen the signal even more, since wood cellulose should be enriched in δ18O when high evapotranspiration conditions prevail. Based on a multi-proxy approach, a summer precipitation reconstruction was developed and compared to other temperature reconstructions from this region as well as to southernmost hydroclimatic reconstructions (e.g. Cook et al). A preliminary analysis of external and internal forcing is proposed in conclusion.

  16. Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems

    USGS Publications Warehouse

    Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca

    2018-01-01

    Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.

  17. Isotopes in North American Rocky Mountain snowpack 1993–2014

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer,; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  18. [Effect of Below-cloud Secondary Evaporation in Precipitations over the Loess Plateau Based on the Stable Isotopes of Hydrogen and Oxygen].

    PubMed

    Jin, Xiao-gang; Zhang, Ming-jun; Wang, Sheng-jie; Zhu, Xiao-fan; Dong, Lei; Ren, Zheng-guo; Chen, Fen-li

    2015-04-01

    Based on stable isotopes in 409 precipitation samples provided by GNIP and meteorological records at the eight stations in Loess Plateau from January 1985 to December 2004, as well as the trajectory model of HYSPLIT 4.9, the spatial and temporal variations of d-excess and Δ18O were analyzed. The spatial distribution of secondary evaporation rate and the impact of meteorological factors on below-cloud secondary evaporation were also discussed. The result showed that: (1) During summer and winter monsoon periods, Δ18O showed an uptrend variation and d-excess showed a downtrend variation from south to north in Loess Plateau. From east to west, Δ180 showed an uptrend variation only in summer monsoon period and a downtrend variation in winter monsoon period. The value of d-excess also showed a downtrend variation. Amplitude of variation Δ18O and d-excess could indicate the routes of monsoon. (2) Secondary evaporation existed on an annual basis, and it was relatively significant during the summer monsoon period, with ranges from 1.51% to 5.88% and an average rate of 3.87%. While winter monsoon became lower, the rates ranged from 1.06% to 5.46%, and the average rate dropped to 3.03%. Monsoon had larger influence on secondary evaporation in margin area of the plateau, while the influence on the central stations was little. (3) Temperature had the highest contribution to secondary evaporation, followed by precipitation amount and water vapor pressure, and relative humidity had a small contribution. Moreover, the influence of wind speed and altitude on secondary evaporation was weak.

  19. Evaluation of Fuzzy-Logic Framework for Spatial Statistics Preserving Methods for Estimation of Missing Precipitation Data

    NASA Astrophysics Data System (ADS)

    El Sharif, H.; Teegavarapu, R. S.

    2012-12-01

    Spatial interpolation methods used for estimation of missing precipitation data at a site seldom check for their ability to preserve site and regional statistics. Such statistics are primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of a fuzzy-logic methodology for infilling missing historical daily precipitation data in preserving site and regional statistics. Rain gauge sites in the state of Kentucky, USA, are used as a case study for evaluation of this newly proposed method in comparison to traditional data infilling techniques. Several error and performance measures will be used to evaluate the methods and trade-offs in accuracy of estimation and preservation of site and regional statistics.

  20. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region].

    PubMed

    Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang

    2013-10-01

    There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.

  1. The Relative Importance of Convective and Trade-wind Orographic Precipitation to Streamflow in the Luquillo Mountains, Eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.

    2012-12-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long

  2. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  3. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    PubMed

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  4. Conceptualisation of Snowpack Isotope Dynamics in Spatially Distributed Tracer-Aided Runoff Models in Snow Influenced Northern Cathments

    NASA Astrophysics Data System (ADS)

    Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.

    2016-12-01

    We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.

  5. Magnesium Isotopic Evidence for Widespread Microbial Dolomite Precipitation in the Geological Record.

    NASA Astrophysics Data System (ADS)

    Carder, E. A.; Galy, A.; McKenzie, J. A.; Vasconcelos, C.; Elderfield, H.

    2005-12-01

    The enigma surrounding the `Dolomite Problem' is the relative abundance of dolomite in the geological record versus its very rare occurrence on the surface of the modern Earth despite a particularly favourable modern seawater chemistry. Recent studies of modern dolomite from hypersaline coastal lagoons in Brazil and Pleistocene dolomite from ODP cores collected during ODP Leg 201 on the Peru Margin suggest microbial mediation is an important factor [1]. Indeed, cultures of sulfate-reducing bacteria isolated from the lagoons mediate dolomite precipitation in the laboratory [2, 3]. In this study we report magnesium isotopic analyses of these modern microbial associated dolomites and ancient dolomites of a range of geological ages and environments. The application of stable magnesium isotopes to study dolomite formation and the nature of the processes involved represents a new frontier in isotope geochemistry. Highly accurate determination of the magnesium isotopic composition allows us to distinguish between kinetic and equilibrium isotope fractionation on the basis of the excess of 25Mg. A significant kinetic isotope fractionation is observed in laboratory cultures and surfical microbial mats from the Brazilian lagoons. Older dolomites (<3000 yrs.) taken from cores recovered from the lagoon are much closer to equilibrium. We interpret our data as evidencing an initial microbial mediated nucleation of dolomite that is a kinetic process and a subsequent inorganic addition of dolomite overprinting an equilibrium signature. This is in agreement with a previous major element and crystallographic study of the Brazilian dolomites [1]. The ancient dolomites analysed range in age from Neoproterozoic to Pleistocene and come from diverse geological environments including submarine diagenetic zones, platform carbonates and lagoonal environments. Magnesium isotopic analysis shows evidence of a varying component of kinetic fractionation, smaller than the kinetic end member as

  6. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions.

    PubMed

    Jódar, J; Custodio, E; Liotta, M; Lambán, L J; Herrera, C; Martos-Rosillo, S; Sapriza, G; Rigo, T

    2016-04-15

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (Aδ) varies along a vertical transect. A clear relationship between Aδ and local evaporation is obtained, with slopes of -0.87 ‰/100mm/yr and -7.3 ‰/100mm/yr for Aδ(18)O and Aδ(2)H, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between Aδ and elevation is obtained, with vertical gradients of 0.16 ‰/100mm/yr and 1.46 ‰/100mm/yr forAδ(18)O and Aδ(2)H, respectively. Copyright © 2015. Published by Elsevier B.V.

  7. The roles of convective entrainment in spatial distributions and temporal variations of precipitation over tropical oceans

    NASA Astrophysics Data System (ADS)

    Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.

    2013-12-01

    This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.

  8. Chemical and isotopic data collected from groundwater, surface-water, and atmospheric precipitation sites in Upper Kittitas County, Washington, 2010-12

    USGS Publications Warehouse

    Hinkle, Stephen R.; Ely, D. Matthew

    2013-01-01

    As part of a multidisciplinary U.S. Geological Survey study of water resources in Upper Kittitas County, Washington, chemical and isotopic data were collected from groundwater, surface-water, and atmospheric precipitation sites from 2010 to 2012. These data are documented here so that interested parties can quickly and easily find those chemical and isotopic data related to this study. The locations of the samples are shown on an interactive map of the study area. This report is dynamic; additional data will be added to it as they become available.

  9. Proxy system modeling of tree-ring isotope chronologies over the Common Era

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; LeGrande, A. N.

    2017-12-01

    The Asian monsoon can be characterized in terms of both precipitation variability and atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings may reveal broader regional hydroclimate and atmosphere-ocean dynamics. Tree-ring oxygen isotope chronologies from Monsoon Asia have been interpreted to reflect a local 'amount effect', relative humidity, source water and seasonality, and winter snowfall. Here, we use an isotope-enabled general circulation model simulation from the NASA Goddard Institute for Space Science (GISS) Model E and a proxy system model of the oxygen isotope composition of tree-ring cellulose to interpret the large-scale and local climate controls on δ 18O chronologies. Broad-scale dominant signals are associated with a suite of covarying hydroclimate variables including growing season rainfall amounts, relative humidity, and vapor pressure deficit. Temperature and source water influences are region-dependent, as are the simulated tree-ring isotope signals associated with the El Nino Southern Oscillation (ENSO) and large-scale indices of the Asian monsoon circulation. At some locations, including southern coastal Viet Nam, local precipitation isotope ratios and the resulting simulated δ 18O tree-ring chronologies reflect upstream rainfall amounts and atmospheric circulation associated with monsoon strength and wind anomalies.

  10. Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite

    NASA Astrophysics Data System (ADS)

    AlKhatib, Mahmoud; Eisenhauer, Anton

    2017-07-01

    In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in aragonite we performed precipitation experiments decoupling temperature and precipitation rates (R∗, μmol/m2 h) in the interval of about 2.3-4.5 μmol/m2 h. Aragonite is the only pure solid phase precipitated from a stirred solutions exposed to an atmosphere of NH3 and CO2 gases throughout the spontaneous decomposition of (NH4)2CO3. The order of reaction with respect to Ca ions is one and independent of temperature. However, the order of reaction with respect to the dissolved inorganic carbon (DIC) is temperature dependent and decreases from three via two to one as temperature increases from 12.5 and 25.0 to 37.5 °C, respectively. Strontium distribution coefficient (DSr) increases with decreasing temperature. However, R∗ responds differently depending on the initial Sr/Ca concentration and temperature: at 37.5 °C DSr increase as a function of increasing R∗ but decrease for 12.5 and 25 °C. Not seen at 12.5 and 37.5 °C but at 25 °C the DSr-R∗ gradient is also changing sign depending on the initial Sr/Ca ratio. Magnesium (Mg) adsorption coefficient between aragonite and aqueous solution (DMg) decreases with temperature but increases with R∗ in the range of 2.4-3.8 μmol/m2 h. Strontium isotope fractionation (Δ88/86Sraragonite-aq) follows the kinetic type of fractionation and become increasingly negative as a function of R∗ for all temperatures. In contrast Ca isotope fractionation (Δ44/40Caaragonite-aq) shows a different behavior than the Sr isotopes. At low temperatures (12.5 and 25 °C) Ca isotope fractionation (Δ44/40Caaragonite-aq) becomes positive as a function of R∗. In contrast, at 37.5 °C and as a function of increasing R∗ the Δ44/40Caaragonite-aq show a Sr type like behavior and becomes increasingly negative. Concerning both the discrepant behavior of DSr as a function of temperature as well as for the Ca isotope fractionation as a

  11. Time-series Oxygen-18 Precipitation Isoscapes for Canada and the Northern United States

    NASA Astrophysics Data System (ADS)

    Delavau, Carly J.; Chun, Kwok P.; Stadnyk, Tricia A.; Birks, S. Jean; Welker, Jeffrey M.

    2014-05-01

    The present and past hydrological cycle from the watershed to regional scale can be greatly enhanced using water isotopes (δ18O and δ2H), displayed today as isoscapes. The development of water isoscapes has both hydrological and ecological applications, such as ground water recharge and food web ecology, and can provide critical information when observations are not available due to spatial and temporal gaps in sampling and data networks. This study focuses on the creation of δ18O precipitation (δ18Oppt) isoscapes at a monthly temporal frequency across Canada and the northern United States (US) utilizing CNIP (Canadian Network for Isotopes in Precipitation) and USNIP (United States Network for Isotopes in Precipitation) measurements. Multiple linear stepwise regressions of CNIP and USNIP observations alongside NARR (North American Regional Reanalysis) climatological variables, teleconnection indices, and geographic indicators are utilized to create empirical models that predict the δ18O of monthly precipitation across Canada and the northern US. Pooling information from nearby locations within a region can be useful due to the similarity of processes and mechanisms controlling the variability of δ18O. We expect similarity in the controls on isotopic composition to strengthen the correlation between δ18Oppt and predictor variables, resulting in model simulation improvements. For this reason, three different regionalization approaches are used to separate the study domain into 'isotope zones' to explore the effect of regionalization on model performance. This methodology results in 15 empirical models, five within each regionalization. A split sample calibration and validation approach is employed for model development, and parameter selection is based on demonstrated improvement of the Akaike Information Criteria (AIC). Simulation results indicate the empirical models are generally able to capture the overall monthly variability in δ18Oppt. For the three

  12. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (p<0.05) to the isotope composition in meteoric water in a regression analysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  13. Spatial Extent of Relativistic Electron Precipitation from the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Shekhar, Sapna

    Relativistic Electron Precipitation (REP) in the atmosphere can contribute signi- cantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the 0° Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of the region of precipitation in L shell and Magnetic Local Time. In the duration of 15 years (2000-2014), 31035 REPs were found in this study. Events were found to split into two classes; one class of events coincided with proton precipitation in the P1 channel (30-80 keV), were located in the dusk and early morning sector, and were more localized in L shell and magnetic local time (dMLT 0-3 hrs, dL 0.25-0.5),whereas the other class of events did not include proton precipitation, and were located mostly in the midnight sector and were wider in L shell (dL 1-2.5) but localized in MLT (dMLT 0-3 hrs); both classes occurred mostly during the declining phase of the solar cycle and geomagnetically active times. The events located in the midnight sector for both classes were found to be associated with tail magnetic field stretching which could be due to the fact that they tend to occur mostly during geomagnetically active times, or could imply that precipitation is caused by current sheet scattering. Use of POES to infer information about the precipitation energy spectrum was also investigated, despite the coarse energy channels and contamination issues. In order to study the energy specicity of the REP events, a method to t exponential spectra to the REP events, wherever possible, was formulated and validated through comparisons with SAMPEX observed spectra. 18 events on POES were found to be in conjunction with SAMPEX in the years 2000-04. The exponentially tted

  14. The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El Niño-Southern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850 CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is

  15. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods

    NASA Astrophysics Data System (ADS)

    Trayler, Robin B.; Kohn, Matthew J.

    2017-02-01

    Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.

  16. [Spatial variations of heavy metals in precipitation at Mount Taishan region].

    PubMed

    Wang, Yan; Liu, Xiao-Huan; Jin, Ling-Ren; Yue, Tai-Xing; Wang, De-Zhong; Wang, Wen-Xing

    2007-11-01

    Zn, Al, Mn, Fe, Pb, Cu, Ni, Cr, As, Cd in rain samples collected from two sites at Mount Taishan region were determined by ICP-MS, to evaluate the spatial variation characteristics of heavy metals in precipitation. Individual rain events were sampled for one whole year from Jan. to Dec. 2006. High concentrations of heavy metals were found at both sites, indicating serious heavy metal pollution. Zn was the most abundant element, accounting for 54% - 57% of the total metals concentrations. Its volume-weighted mean concentrations of precipitation at Mt-top and Mt-foot sites were 92.94 microg/L and 70.41 microg/L respectively. The following elements were Fe, Al and Mn and their concentrations were much higher than toxic heavy metals (As, Cd and Cd) except Pb (8.04 microg/L and 7.79 microg/L at two sites respectively). Comparison results between two sites suggested that heavy metal characteristics of precipitation at two sites were different, due to the influences of different ambient air conditions. Correlation analysis between two sites showed that Al, Mn, Fe, As, Cd, Pb influenced by air mass origin greatly, while Ni, Cu, Zn affected by other different factors.

  17. Quantification of dynamic soil-vegetation feedbacks following an isotopically labelled precipitation pulse

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane

    2017-05-01

    The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and a pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water use in a Mediterranean cork oak woodland during dry conditions. An irrigation experiment using δ18O labelled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on the infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water use, water uptake depth plasticity, and contribution to ecosystem soil evaporation and transpiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive evaporation for transpiration, but infiltration rates decreased. No adjustments of main root water uptake depth to changes in water availability could be observed during the experiment. This forces understorey plants to compete with adjacent trees for water in deeper soil layers at the onset of summer. Thus, understorey plants are subjected to chronic water deficits faster, leading to premature senescence at the onset of drought. Despite this water competition, the presence of cork oak trees fosters infiltration and reduces evapotranspirative water losses from the understorey and the soil, both due to altered microclimatic conditions under crown shading. This study highlights complex soil-plant-atmosphere and

  18. System for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  19. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.

    PubMed

    Roden, John S; Ehleringer, James R

    2007-04-01

    The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.

  20. Detectability of change in winter precipitation within mountain landscapes: Spatial patterns and uncertainty

    NASA Astrophysics Data System (ADS)

    Silverman, N. L.; Maneta, M. P.

    2016-06-01

    Detecting long-term change in seasonal precipitation using ground observations is dependent on the representativity of the point measurement to the surrounding landscape. In mountainous regions, representativity can be poor and lead to large uncertainties in precipitation estimates at high elevations or in areas where observations are sparse. If the uncertainty in the estimate is large compared to the long-term shifts in precipitation, then the change will likely go undetected. In this analysis, we examine the minimum detectable change across mountainous terrain in western Montana, USA. We ask the question: What is the minimum amount of change that is necessary to be detected using our best estimates of precipitation in complex terrain? We evaluate the spatial uncertainty in the precipitation estimates by conditioning historic regional climate model simulations to ground observations using Bayesian inference. By using this uncertainty as a null hypothesis, we test for detectability across the study region. To provide context for the detectability calculations, we look at a range of future scenarios from the Coupled Model Intercomparison Project 5 (CMIP5) multimodel ensemble downscaled to 4 km resolution using the MACAv2-METDATA data set. When using the ensemble averages we find that approximately 65% of the significant increases in winter precipitation go undetected at midelevations. At high elevation, approximately 75% of significant increases in winter precipitation are undetectable. Areas where change can be detected are largely controlled by topographic features. Elevation and aspect are key characteristics that determine whether or not changes in winter precipitation can be detected. Furthermore, we find that undetected increases in winter precipitation at high elevation will likely remain as snow under climate change scenarios. Therefore, there is potential for these areas to offset snowpack loss at lower elevations and confound the effects of climate change

  1. Spatially distinct effects of preceding precipitation on heat stress over eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Xingcai; Tang, Qiuhong; Zhang, Xuejun; Groisman, Pavel; Sun, Siao; Lu, Hui; Li, Zhe

    2017-11-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or are even induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for bodily thermal comfort. However, the effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature and the preceding three months of precipitation was assessed over eastern China. It is found that the probability of occurrence of above the average number of hot days exceeds 0.7 after a preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over eastern China, the precipitation in the preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for the increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in eastern China a few weeks ahead of its occurrence.

  2. Spatially distinct effects of preceding precipitation on heat stress over Eastern China

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Liu, X.; Zhang, X.; Groisman, P. Y.; Sun, S.; Lu, H.; Li, Z.

    2017-12-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or even are induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for human body thermal comfort. However, effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature (WBGT) and preceding 3-month precipitation was assessed over Eastern China. It is found that the probability of occurrence of the above-the-average number of hot days exceeds 0.7 after preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over Eastern China, precipitation in preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in Eastern China a few weeks ahead of its occurrence.

  3. Precipitation source inferred from stable isotopic composition of Pleistocene groundwater and carbonate deposits in the western desert of Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultan, M.; Sturchio, N.; Hassan, F. A.

    1997-01-01

    An Atlantic source of precipitation can be inferred from stable isotopic data (H and O) for fossil groundwaters and uranium-series-dated carbonate spring deposits from oases in the Western Desert of Egypt. In the context of available stable isotopic data for fossil groundwaters throughout North Africa, the observed isotopic depletions ({delta}D -72 to -81{per_thousand}; {delta}{sup 18}O -10.6 to -11.5{per_thousand}) of fossil ({ge}32,000 yr B.P.) groundwaters from the Nubian aquifer are best explained by progressive condensation of water vapor from paleowesterly wet oceanic air masses that traveled across North Africa and operated at least as far back as 450,000 yr before themore » present. The values of {delta}{sup 18}O (17.1 to 25.9{per_thousand}) for 45,000- to >450,000-yr-old tufas and vein-filling calcite deposits from the Kharga and Farafra Oases are consistent with deposition from groundwaters having oxygen isotopic compositions similar to those of fossil groundwaters sampled recently at these locations.« less

  4. The Sensitivity of Atmospheric Water Isotopes to Entrainment and Precipitation Efficiency in a Bulk Plume Model of Convection

    NASA Astrophysics Data System (ADS)

    Duan, S.; Wright, J. S.; Romps, D. M.

    2016-12-01

    Atmospheric water isotopes have been proposed as potentially powerful constraints on the physics of convective clouds and parameterizations of convective processes in models. We have previously derived an analytical model of water vapor (H2O) and one of its heavy isotopes (HDO) in convective environments based on a bulk-plume convective water budget in radiative convective equilibrium. This analytical model provides a useful starting point for examining the joint responses of water vapor and its isotopic composition to changes in convective parameters; however, certain idealistic assumptions are required to make the model analytically solvable. Here, we develop a more flexible numerical framework that enables a wider range of model configurations and includes additional isotopic tracers. This model provides a bridge between Rayleigh distillation, which is simple but inflexible, and more complicated convection schemes and cloud resolving models, which are more realistic but also more difficult to perturb and interpret. Application of realistic in-cloud water profiles in our model produces vertical distributions of δD that qualitatively match satellite observations from the Tropospheric Emission Spectrometer (TES). We test the sensitivity of water vapor and its isotopic composition to a wide range of perturbations in the model parameters and their vertical profiles. In this presentation, we focus especially on establishing constraints for convective entrainment and precipitation efficiency. We conclude by discussing the potential application of this model as part of a larger water isotope toolkit for use with offline diagnostics provided by reanalyses and GCMs.

  5. Supplement of: The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colose, Christopher; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El NioSouthern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium.An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records.Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the amount effect. During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger

  6. Broad-spectrum monitoring strategies for predicting occult precipitation contribution to water balance in a coastal watershed in California: Ground-truthing, areal monitoring and isotopic analysis of fog in the San Francisco Bay region

    NASA Astrophysics Data System (ADS)

    Koohafkan, M.; Thompson, S. E.; Leonardson, R.; Dufour, A.

    2013-12-01

    We showcase a fog monitoring study designed to quantitatively estimate the contribution of summer fog events to the water balance of a coastal watershed managed by the San Francisco Public Utilities Commission. Two decades of research now clearly show that fog and occult precipitation can be major contributors to the water balance of watersheds worldwide. Monitoring, understanding and predicting occult precipitation is therefore as hydrologically compelling as forecasting precipitation or evaporation, particularly in the face of climate variability. We combine ground-based monitoring and collection strategies with remote sensing technologies, time-lapse imagery, and isotope analysis to trace the ';signature' of fog in physical and ecological processes. Spatial coverage and duration of fog events in the watershed is monitored using time-lapse cameras and leaf wetness sensors strategically positioned to provide estimates of the fog bank extent and cloud base elevation, and this fine-scale data is used to estimate transpiration suppression by fog and is examined in the context of regional climate through the use of satellite imagery. Soil moisture sensors, throughfall collectors and advective fog collectors deployed throughout the watershed provide quantitative estimates of fog drip contribution to soil moisture and plants. Fog incidence records and streamflow monitoring provide daily estimates of fog contribution to streamflow. Isotope analysis of soil water, fog drip, stream water and vegetation samples are used to probe for evidence of direct root and leaf uptake of fog drip by plants. Using this diversity of fog monitoring methods, we develop an empirical framework for the inclusion of fog processes in water balance models.

  7. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    PubMed

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  8. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  9. Isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica.

    PubMed

    Sánchez-Murillo, Ricardo; Esquivel-Hernández, Germain; Sáenz-Rosales, Oscar; Piedra-Marín, Gilberto; Fonseca-Sánchez, Alicia; Madrigal-Solís, Helga; Ulloa-Chaverri, Franz; Rojas-Jiménez, Luis D; Vargas-Víquez, José A

    2017-03-01

    The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18 O/ 16 O and 2 H/H ratios. A parsimonious four-variable regression model (r 2  = 0.52) was able to predict daily δ 18 O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.

  10. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  11. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  12. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin.

    PubMed

    Daggupati, Prasad; Srinivasan, Raghavan; Ahmadi, Mehdi; Verma, Deepa

    2017-01-01

    Tigris and Euphrates river basin (TERB) is one of the largest river basins in the Middle East, and the precipitation (in the form of snowfall) is a major source of streamflow. This study investigates the spatial and temporal variability of precipitation and streamflow in TERB to better understand the hydroclimatic variables and how they varied over time. The precipitation shows a decreasing trend with 1980s being wetter and 2000s being drier. A total of 55 and 40% reduction in high flows in Tigris and Euphrates rivers at T20 and E3 was seen in post-reservoir period. A lag time of 3 to 4 and 5 to 6 months was estimated between peak snowfall and runoff time periods. Decreasing precipitation and streamflow along with several planned dams could hamper the sustainability of several Mesopotamian marshlands that completely depend on the water from the Tigris and Euphrates rivers.

  13. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    NASA Astrophysics Data System (ADS)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (<1 km2) coffee agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  14. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed

  15. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the

  16. Late-Quaternary Molecular Isotopic Paleohydrology of Lake Junin, Peru

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Liu, C.; Rodbell, D. T.; Abbott, M. B.

    2013-12-01

    There is great potential for reconstructing past changes in the hydrologic cycle using the hydrogen isotopic composition of plant-wax biomarkers. At present, empirical relationships relating plant-wax hydrogen isotope compositions (δDwax) to source water are almost exclusively based upon modern plants, soils and sediments. Relatively little is known about how plant-wax hydrogen isotopes track source water through time. Here we take advantage of existing paleoisotopic information from Lake Junin in the central Peruvian Andes to evaluate the temporal fidelity of δDwax to source water δD. In Lake Junin and the nearby region, oxygen isotopic records from lacustrine carbonates, speleothems and ice-cores provide robust constraints on the isotopic composition of lake water and precipitation in the past. Combined with new measurements of δDwax in Lake Junin sediments, these data allow us to evaluate the isotopic, climatic and vegetation influences on δDwax over the past 20,000 years. The n-alkanoic acid δDwax values exhibit trends through time that are similar to those for precipitation and lakewater δD. Highly negative δDwax values during the Last Glacial Maximum mirror depleted lakewater and precipitation δD values, more positive δDwax values at the beginning of the Holocene correspond to more enriched water δD values, and decreasing δDwax values over the past 10,000 years parallel the decreasing δD of lakewater and precipitation. However, the magnitude of the δDwax shifts are much larger than can be explained by changing δD water values. For example, the enrichment of δDwax values at the beginning of the Holocene is +30‰ and +80‰ larger than those of lakewater or precipitation δD, respectively. These differences could reflect changes in vegetation type, shifting proportions of aquatic and terrestrial plant sources, or environmental factors such as aridity. Vegetation type is an unlikely explanation as pollen abundances indicate only minor

  17. Gridded precipitation fields at high temporal and spatial resolution for operational flood forecasting in the Rhine basin

    NASA Astrophysics Data System (ADS)

    van Osnabrugge, Bart; Weerts, Albrecht; Uijlenhoet, Remko

    2017-04-01

    Gridded areal precipitation, as one of the most important hydrometeorological input variables for initial state estimation in operational hydrological forecasting, is available in the form of raster data sets (e.g. HYRAS and EOBS) for the River Rhine basin. These datasets are compiled off-line on a daily time step using station data with the highest possible spatial density. However, such a product is not available operationally and at an hourly discretisation. Therefore, we constructed an hourly gridded precipitation dataset at 1.44 km2 resolution for the Rhine basin for the period from 1998 to present using a REGNIE-like interpolation procedure (Weerts et al., 2008) using a low and a high density rain gauge network. The datasets were validated against daily HYRAS (Rauthe, 2013) and EOBS (Haylock, 2008) data. The main goal of the operational procedure is to emulate the HYRAS dataset as good as possible, as the daily HYRAS dataset is used in the off-line calibration of the hydrological model. Our main findings are that even with low station density, the spatial patterns found in the HYRAS data set are well reproduced. With low station density (years 1999-2006) our dataset underestimates precipitation compared to HYRAS and EOBS, notably during the winter. However, interpolation based on the same set of stations overestimates precipitation compared to EOBS for the years 2006-2014. This discrepancy disappears when switching to the high station density. We also analyze the robustness of the hourly precipitation fields by comparing with stations not used during interpolation. Specific issues regarding the data when creating the gridded precipitation fields will be highlighted. Finally, the datasets are used to drive an hourly and daily gridded WFLOW_HBV model of the Rhine at the same spatial resolution. Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and

  18. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  19. Optimising predictor domains for spatially coherent precipitation downscaling

    NASA Astrophysics Data System (ADS)

    Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Ben Daoud, A.; Bontron, G.

    2013-10-01

    Statistical downscaling is widely used to overcome the scale gap between predictors from numerical weather prediction models or global circulation models and predictands like local precipitation, required for example for medium-term operational forecasts or climate change impact studies. The predictors are considered over a given spatial domain which is rarely optimised with respect to the target predictand location. In this study, an extended version of the growing rectangular domain algorithm is proposed to provide an ensemble of near-optimum predictor domains for a statistical downscaling method. This algorithm is applied to find five-member ensembles of near-optimum geopotential predictor domains for an analogue downscaling method for 608 individual target zones covering France. Results first show that very similar downscaling performances based on the continuous ranked probability score (CRPS) can be achieved by different predictor domains for any specific target zone, demonstrating the need for considering alternative domains in this context of high equifinality. A second result is the large diversity of optimised predictor domains over the country that questions the commonly made hypothesis of a common predictor domain for large areas. The domain centres are mainly distributed following the geographical location of the target location, but there are apparent differences between the windward and the lee side of mountain ridges. Moreover, domains for target zones located in southeastern France are centred more east and south than the ones for target locations on the same longitude. The size of the optimised domains tends to be larger in the southeastern part of the country, while domains with a very small meridional extent can be found in an east-west band around 47° N. Sensitivity experiments finally show that results are rather insensitive to the starting point of the optimisation algorithm except for zones located in the transition area north of this east

  20. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  1. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    PubMed

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  2. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  3. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organicmore » carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.« less

  4. Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment

    NASA Astrophysics Data System (ADS)

    Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip

    2014-05-01

    Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.

  5. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  6. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h-1 m-2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in 40

  7. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less

  8. Water Source and Isotope changes through the Deglaciation and Holocene

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Carlson, A. E.; Ullman, D. J.; Nusbaumer, J. M.

    2017-12-01

    The deglacial period saw radical shifts in climate across the globe. Water isotopologues provide some of the most wide-spread proxy archives of these climate changes. Here we present new analyses on a suite of 12 water isotope-enabled coupled atmosphere-ocean GCM simulations from GISS ModelE-R that span 24kya to the pre-industrial period. We show how millennial scale co-variability in water isotopes and climate (temperature, precipitation, humidity, and moist-static energy) is distinct from regional scale spatial slopes, consistent with proxy archives (e.g., Cuffey et al 1995). We supplement this set of simulations with a new ensemble of deglacial simulations that contain a complementary suite of tracers that determine moisture provenance changes through the deglaciation. We diagnose regions that have had significant changes in moisture provenance and compare this information against simulated changes in the water isotope changes.

  9. Isotopic signals of denitrification in a northern hardwood forested catchment

    NASA Astrophysics Data System (ADS)

    Wexler, Sarah; Goodale, Christine

    2013-04-01

    Water samples from streams, groundwater and precipitation were collected during summer from the hydrologic reference watershed (W3) at Hubbard Brook Experimental Forest in the White Mountains, New Hampshire, and analysed for d15N-NO3 and d18O-NO3. Despite very low nitrate concentrations (<0.5 to 8.8 uM NO3-) dual-isotopic signals of sources and processes were clearly distinguishable. The isotopic composition of nitrate from shallow groundwater showed evidence of dual isotopic fractionation in line with denitrification, with a positive relationship between nitrogen and oxygen isotopic composition, a regression line slope of 0.76 (r2 = 0.68), and an empirical isotope enrichment factor of ɛP-S 15N-NO3 -12.7%. The isotopic composition of riparian groundwater nitrate from time-series samples showed variation in processes over a small spatial scale. The expected isotopic composition of nitrate sources in the watershed was used to distinguish nitrate in rain and nitrate from nitrification of both rainfall ammonium and ammonium from mineralised soil organic nitrogen. Evidence of oxygen exchange with water during nitrification was seen in the isotopic composition of stream and shallow groundwater nitrate. The isotopic composition of streamwater nitrate following a period of storms indicated that 25% of nitrate in the streamwater was of atmospheric origin. This suggests rapid infiltration of rainfall via vertical bypass flow to the saturated zone, enabling transport of atmospheric nitrate to the stream channels. Across the Hubbard Brook basin, the isotopic composition of nitrate from paired samples from watersheds 4-7 indicated a switch between a nitrification and assimilation dominated system, to a system influenced by rainfall nitrogen inputs and denitrification. The dual isotope approach has revealed evidence of denitrification of nitrate from different sources at low concentrations at Hubbard Brook during summer. This isotopic evidence deepens our understanding of the

  10. Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope

    USGS Publications Warehouse

    Ericksen, J.A.; Gustin, M.S.; Lindberg, S.E.; Olund, S.D.; Krabbenhoft, D.P.

    2005-01-01

    A solution containing 198Hg in the form of HgCl2 was added to a 4 m2 area of desert soils in Nevada, and soil Hg fluxes were measured using three dynamic flux chambers. There was an immediate release of 198Hg after it was applied, and then emissions decreased exponentially. Within the first 6 h after the isotope was added to the soil, ???12 ng m-2 of 198Hg was emitted to the atmosphere, followed by a relatively steady flux of the isotope at 0.2 ?? 0.2 ng m-2 h-1 for the remainder of the experiment (62 days). Over this time, -200 ng m-2 or 2% of the 198Hg isotope was emitted from the soil, and we estimate that ???6% of the isotope would be re-emitted in a year's time. During the experiment, dry deposition of elemental Hg from the atmosphere was measured with an average deposition rate of 0.2 ?? 0.1 ng m-2 h-1. Emission of ambient Hg from the soil was observed after soil wetting with the isotope solution and after a storm event. However, the added moisture from the storm event did not affect 198Hg flux. Results suggest that in this desert environment, where there is limited precipitation, Hg deposited by wet processes is not readily re-emitted and that dry deposition of elemental Hg may be an important process. ?? 2005 American Chemical Society.

  11. Stable isotope paleoaltimetry and the evolution of landscapes and life

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas

    2016-01-01

    circulation and associated teleconnections in the global climate system that affect δ18O or δD of precipitation; (2) Evaluating on a case-by-case basis if temporal and spatial changes in isotope lapse rates influence interpretations of paleoelevation; (3) Interfacing with phylogenetic techniques to evaluate competing hypotheses with respect to the timing of surface uplift and the diversification of lineages; (4) Characterizing feedbacks between changes in surface elevation and atmospheric circulation as these are likely to be equally important to the diversification of lineages than changes in surface elevation alone. Tackling these challenges will benefit from the accelerating pace of improved data-model comparisons and rapidly evolving geochemical techniques for reconstructing precipitation patterns. Most importantly, stable isotope paleoaltimetry has the potential to develop into a truly interdisciplinary field if innovative tectonic/paleoclimatic and evolutionary biology/phylogenetic approaches are integrated into a common research framework. It therefore, opens new avenues to study the long-term evolution of landscapes and life.

  12. Using atmospheric chemistry and storm tracks to explain nitrate stable isotope variations in precipitation at a site in central Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Stable isotopes of NO3- (delta15N-NO3- and delta18O-NO3-) were monitored in precipitation at a central Pennsylvania site during six storm events in 2005 to determine whether information on atmospheric oxidants (e.g. O3, NO2, and NOx), and storm-tracks were capable of explaining observed seasonal and...

  13. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes

    NASA Astrophysics Data System (ADS)

    Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.

    2017-12-01

    Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.

  14. A spatially distributed isotope sampling network in a snow-dominated catchment for the quantification of snow meltwater

    NASA Astrophysics Data System (ADS)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2017-04-01

    In mountainous catchments with seasonal snowpacks, river discharge in downstream valleys is largely sustained by snowmelt in spring and summer. Future climate warming will likely reduce snow volumes and lead to earlier and faster snowmelt in such catchments. This, in turn, may increase the risk of summer low flows and hydrological droughts. Improved runoff predictions are thus required in order to adapt water management to future climatic conditions and to assure the availability of fresh water throughout the year. However, a detailed understanding of the hydrological processes is crucial to obtain robust predictions of river streamflow. This in turn requires fingerprinting source areas of streamflow, tracing water flow pathways, and measuring timescales of catchment storage, using tracers such as stable water isotopes (18O, 2H). For this reason, we have established an isotope sampling network in the Alptal, a snowmelt-dominated catchment (46.4 km2) in Central-Switzerland, as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Precipitation and snow cores are analyzed for their isotopic signature at daily or weekly intervals. Three-week bulk samples of precipitation are also collected on a transect along the Alptal valley bottom, and along an elevational transect perpendicular to the Alptal valley axis. Streamwater samples are taken at the catchment outlet as well as in two small nested sub-catchments (< 2 km2). In order to catch the isotopic signature of naturally-occurring snowmelt, a fully automatic snow lysimeter system was developed, which also facilitates real-time monitoring of snowmelt events, system status and environmental conditions (air and soil temperature). Three lysimeter systems were installed within the catchment, in one forested site and two open field sites at different elevations, and have been operational since November 2016. We will present the isotope time series from our

  15. Regime shifts in the Arctic North Atlantic during the Neoglacial revealed by seabirds and precipitation isotopes on Bjørnøya, Svalbard

    NASA Astrophysics Data System (ADS)

    D'Andrea, William J.; Hormes, Anne; Bakke, Jostein; Nicolaisen, Line

    2016-04-01

    The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. We report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver isotopically enriched nitrogen to nesting areas. We developed a record of seabird population changes on Bjørnøya based on the nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, using δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals with more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the strength of the subpolar gyre.

  16. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA

    USGS Publications Warehouse

    Machavaram, M.V.; Whittemore, Donald O.; Conrad, M.E.; Miller, N.L.

    2006-01-01

    A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.

  17. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, Niel; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  18. Archival processes of the water stable isotope signal in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  19. Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.

    PubMed

    Estiarte, Marc; Vicca, Sara; Peñuelas, Josep; Bahn, Michael; Beier, Claus; Emmett, Bridget A; Fay, Philip A; Hanson, Paul J; Hasibeder, Roland; Kigel, Jaime; Kröel-Dulay, Gyorgy; Larsen, Klaus Steenberg; Lellei-Kovács, Eszter; Limousin, Jean-Marc; Ogaya, Romà; Ourcival, Jean-Marc; Reinsch, Sabine; Sala, Osvaldo E; Schmidt, Inger Kappel; Sternberg, Marcelo; Tielbörger, Katja; Tietema, Albert; Janssens, Ivan A

    2016-07-01

    Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with

  20. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings.

    PubMed

    Cuo, Lan; Zhang, Yongxin

    2017-07-11

    The Tibetan Plateau and the surrounding (TPS) with its vast land mass and high elevation affects regional climate and weather. The TPS is also the headwater of 9 major Asian rivers that provide fresh water for 1.65 billion people and many ecosystems, with wet season (May-September) precipitation being the critical component of the fresh water. Using station observations, ERA-Interim and MERRA2 reanalysis, we find that wet season precipitation displays vertical gradients (i.e., changes with elevation) that vary within the region on the TPS. The decrease of precipitation with elevation occurs in the interior TPS with elevation larger than 4000 m, little or no change over the southeastern TPS, and increase elsewhere. The increase of precipitation with elevation is caused by increasing convective available potential energy (CAPE) and decreasing lifting condensation level (LCL) with elevation overwhelming the effects of decreasing total column water vapor (TCWV) with elevation. The decreasing precipitation with elevation is due to the combined effects of increasing LCL and decreasing TCWV. LCL and CAPE play a more important role than TCWV in determining the spatial patterns. These findings are important for hydrology study in observation scarce mountainous areas, water resources and ecosystem managements in the region.

  1. Spatial downscaling and correction of precipitation and temperature time series to high resolution hydrological response units in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Kienzle, Stefan

    2015-04-01

    Precipitation is the central driving force of most hydrological processes, and is also the most variable element of the hydrological cycle. As the precipitation to runoff ratio is non-linear, errors in precipitation estimations are amplified in streamflow simulations. Therefore, the accurate estimate of areal precipitation is essential for watershed models and relevant impacts studies. A procedure is presented to demonstrate the spatial distribution of daily precipitation and temperature estimates across the Rocky Mountains within the framework of the ACRU agro-hydrological modelling system (ACRU). ACRU (Schulze, 1995) is a physical-conceptual, semi-distributed hydrological modelling system designed to be responsive to changes in land use and climate. The model has been updated to include specific high-mountain and cold climate routines and is applied to simulate impacts of land cover and climate change on the hydrological behaviour of numerous Rocky Mountain watersheds in Alberta, Canada. Both air temperature and precipitation time series need to be downscaled to hydrological response units (HRUs), as they are the spatial modelling units for the model. The estimation of accurate daily air temperatures is critical for the separation of rain and snow. The precipitation estimation procedure integrates a spatially distributed daily precipitation database for the period 1950 to 2010 at a scale of 10 by 10 km with a 1971-2000 climate normal database available at 2 by 2 km (PRISM). Resulting daily precipitation time series are further downscaled to the spatial resolution of hydrological response units, defined by 100 m elevation bands, land cover, and solar radiation, which have an average size of about 15 km2. As snow measurements are known to have a potential under-catch of up to 40%, further adjustment of snowfall may need to be increased using a procedure by Richter (1995). Finally, precipitation input to HRUs with slopes steeper than 10% need to be further corrected

  2. Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing

    2017-05-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  3. [Impacts of dominated landscape types on hydrogen and oxygen isotope effects of spring water in the Hani Rice Terraces].

    PubMed

    Jiao, Yuan Mei; Liu, Cheng Jing; Liu, Xin; Liu, Zhi Lin; Ding, Yin Ping

    2017-07-18

    Analysis of hydrogen and oxygen stable isotopes is an effective method to track the water cycle in watershed. Impact of landscape pattern on the isotope effects of spring water is a new interdisciplinary topic between landscape ecology and isotope hydrology. Taking the Quanfuzhuang River basin located in the core area of UNESCO World Cultural Heritage of Honghe Hani Rice Terrace as the object, collecting the monthly samples of 78 points of spring water and 39 precipitation at altitude of 1500 m (terraces), 1700 m (terraces) and 1900 m (forest) from March 2015 to March 2016, we analyzed the hydrogen and oxygen stable isotopes of water samples under the different landscape types. The results indicated that the dominated landscape types were forests and rice terraces, being 66.6% and 22.1% of the whole landscape area respectively, and they had a spatial vertical pattern of forest located at the mountain top and rice terraces at the down-slope. The correlation analysis showed that the spring water not only came from the precipitation, but also from other water sources which had a more positive δ 18 O and δD values, the spring water in up-slope forests mainly came from precipitation, while that in down-slope rice terraces came from precipitation, ri-ver water, rice terrace water and under ground water. Therefore, the mixing effects of spring water δ 18 O and δD were more significant in rice terraces. The overall altitude effect of the hydrogen and oxygen stable isotopes in spring water was obvious. The linear decreasing rates of δ 18 O and δD values were -0.125‰·(100 m) -1 and -0.688‰·(100 m) -1 , respectively. The deuterium surplus value increased with the altitude because of the impacts of landscape pattern and the local cycle of water isotopes. In summary, the dominant landscape types had a significant impact on the hydrogen and oxygen isotopes of spring water, which could be used as response indicator to reveal the impacts of landscape pattern on

  4. A multi-source precipitation approach to fill gaps over a radar precipitation field

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  5. Apportioning atmospheric pollution to Canadian and American sources in Kejimkujik National Park, Nova Scotia, using Pb isotopes in precipitation

    NASA Astrophysics Data System (ADS)

    DesJardins, Michelle J.; Telmer, Kevin; Beauchamp, S.

    Precipitation samples were collected from July 2001 through June 2002 to determine sources of anthropogenic heavy metal pollutants to Kejimkujik National Park, Nova Scotia using Pb isotope ratios. Generally, Mean annual Pb concentrations (0.116 μg l -1) and depositional fluxes (151 μg m -2) are lower than other reported mid-Atlantic coastal regions. Pb isotope compositions may be explained by binary mixing of anthropogenic emissions from US and Canadian sources, indicating long-range atmospheric transport of pollutants from populated and industrial regions of northeastern US and southeastern Canada. The 206Pb/ 207Pb ratios in precipitation ranged from 1.165 to 1.201, with an annual weighted mean 206Pb/ 207Pb ratio of 1.181, indicating that on an annual basis, US and Canadian sources contribute 61% and 39%, respectively, of the anthropogenic Pb (and likely other similarly behaved metal pollutants) reaching Kejimkujik Park. These results differ from those estimated by using epiphytic lichens due to one or a combination of the following possibilities: (1) some of the Pb in the lichens reflects more radiogenic local bedrock sources; (2) there has been an overall increase in the proportion of Canadian inputs since the early 1990s; (3) there was an unusually higher proportion of Pb inputs from Canadian sources during the study period; or (4) possible shifts in the isotopic composition of the Canadian and US sources that may have occurred due to increased international trade in lead and a lesser dependency on national production. As well, seasonal variations in the sources were observed, with summer and fall months having a lower mean 206Pb/ 207Pb ratio of 1.178 (more Canadian) than the winter and spring months with 206Pb/ 207Pb of 1.185 (more American).

  6. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to

  7. Iron isotope fractionation during hydrothermal ore deposition and alteration

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed

  8. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.

    2017-12-01

    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  9. Regional precipitation-frequency analysis and spatial mapping of 24-hour precipitation for Oregon.

    DOT National Transportation Integrated Search

    2008-01-01

    For this study regional frequency analyses were conducted for precipitation annual maxima in the state of Oregon for the : 24-hour duration. A total of 693 precipitation gages in Oregon, southern Washington, western Idaho, northern California : and n...

  10. Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Yongqin David

    2018-01-01

    Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified. Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading of moisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.

  11. Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada

    NASA Astrophysics Data System (ADS)

    Gan, T. Y. Y.; Tan, X.; Chen, Y. D.

    2017-12-01

    Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified.Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading ofmoisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.

  12. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  13. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    NASA Astrophysics Data System (ADS)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2018-03-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  14. Analyzing Spatial and Temporal Variation in Precipitation Estimates in a Coupled Model

    NASA Astrophysics Data System (ADS)

    Tomkins, C. D.; Springer, E. P.; Costigan, K. R.

    2001-12-01

    the LADHS and RAMS cumulative precipitation reveal a disassociation over time, with R equal to 0.74 at day eight and R equal to 0.52 at day 31. Linear correlation coefficients (Pearson) returned a stronger initial correlation of 0.97, decreasing to 0.68. The standard deviations for the 2500 LADHS cells underlying each 5km RAMS cell range from 8 mm to 695 mm in the Sangre de Cristo Mountains and 2 mm to 112 mm in the San Luis Valley. Comparatively, the standard deviations of the RAMS estimates in these regions are 247 mm and 30 mm respectively. The LADHS standard deviations provide a measure of the variability introduced through the downscaling routine, which exceeds RAMS regional variability by a factor of 2 to 4. The coefficient of variation for the average LADHS grid cell values and the RAMS cell values in the Sangre de Cristo Mountains are 0.66 and 0.27, respectively, and 0.79 and 0.75 in the San Luis Valley. The coefficients of variation evidence the uniformity of the higher precipitation estimates in the mountains, especially for RAMS, and also the lower means and variability found in the valley. Additionally, Kolmogorov-Smirnov tests indicate clear spatial and temporal differences in mean simulated precipitation across the grid.

  15. Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    DOE PAGES

    Estiarte, Marc; Vicca, Sara; Penuelas, Josep; ...

    2016-04-06

    Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effectsmore » of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. Seventy two percent of expiriments showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need

  16. Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estiarte, Marc; Vicca, Sara; Penuelas, Josep

    Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effectsmore » of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. Seventy two percent of expiriments showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need

  17. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Garzione, Carmala N.; Higgins, Pennilyn; MacFadden, Bruce J.; Anaya, Frederico; Alvarenga, Herculano

    2010-01-01

    Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ˜ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ˜ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about - 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ˜ 8 Ma in the northern Altiplano and by ˜ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and

  18. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a

  19. Effect of organic ligands on Mg partitioning and Mg isotope fractionation during low-temperature precipitation of calcite

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Immenhauser, Adrian; Buhl, Dieter; Purgstaller, Bettina; Baldermann, Andre; Dietzel, Martin

    2016-04-01

    Calcite growth experiments have been performed at 25 oC and 1 bar pCO2 in the presence of aqueous Mg and six organic ligands in the concentration range from 10-5 to 10-3 M. These experiments were performed in order to quantify the effect of distinct organic ligands on the Mg partitioning and Mg stable isotope fractionation during its incorporation in calcite at similar growth rates normalized to total surface area. The organic ligands used in this study comprise of (i) acetate acid, (ii) citrate, (iii) glutamate, (iv) salicylate, (v) glycine and (vi) ethylenediaminetetraacetic acid (EDTA), containing carboxyl- and amino-groups. These fuctional groups are required for bacterial activity and growth as well as related to biotic and abiotic mineralization processes occurring in sedimentary and earliest diagenetic aquatic environments (e.g. soil, cave, lacustrine, marine). The results obtained in this study indicate that the presence of organic ligands promotes an increase in the partition coefficient of Mg in calcite (DMg = (Mg/Ca)calcite (Mg/Ca)fluid). This behaviour can be explained by the temporal formation of aqueous Mg-ligand complexes that are subsequently adsorbed on the calcite surfaces and thereby reducing the active growth sites of calcite. The increase of DMg values as a function of the supersaturation degree of calcite in the fluid phase can be described by the linear equation LogDMg =0.3694 (±0.0329)×SIcalcite - 1.9066 (±0.0147); R2=0.92 In contrast, the presence of organic ligands, with exception of citrate, does not significantly affect the Mg isotope fractionation factor between calcite and reactive fluid (Δ26Mgcalcite-fluid = -2.5 ±0.1). Citrate likely exhibits larger fractionation between the Mg-ligand complexes and free aqueous Mg2+, compared to the other organic ligands studied in this work, as evidenced by the smaller Δ26Mgcalcite-fluid values. These results indicate that in Earth's surface calcite precipitating environments that are

  20. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Volkmann, Till H. M.; von Freyberg, Jana; Frentress, Jay; Penna, Daniele; Dawson, Todd E.; Kirchner, James W.

    2018-05-01

    Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  1. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2017-10-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  2. Empirical High-Temperature Calibration for the Carbonate Clumped Isotopes Paleothermometer

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.; Davis, S.; Crawshaw, J.

    2013-12-01

    The clumped isotope paleothermometer is being used in a wide range of applications related to carbonate mineral formation, focusing on temperature and fluid δ18O reconstruction. Whereas the range of typical Earth surface temperatures has been the focus of several studies based on laboratory experiments and biogenic carbonates of known growth temperatures, the clumped isotope-temperature relationship above 70 °C has not been assessed by direct precipitation of carbonates. We investigated the clumped isotope-temperature relationship by precipitating carbonates between 20 and 200°C in the laboratory. The setup consists of a pressurized vessel in which carbonate minerals are precipitated from the mixture of two solutions (CaCl2, NaHCO3). Both solutions are thermally and isotopically equilibrated before injection in the pressure vessel. Minerals precipitated in this setup generally consist of calcite. Samples were reacted with 105% orthophosphoric acid for 10 min at 90°C. The evolved CO2 was continuously collected and subsequently purified with a Porapak trap held at -35°C. Measurements were performed on a MAT 253 using the protocol of Huntington et al. (2009) and Dennis et al. (2011). Clumped isotope values from 20-90°C are consistent with carbonates that were precipitated from a CaCO3 super-saturated solution using the method of McCrea (1950). This demonstrates that the experimental setup does not induce any kinetic fractionation, and can be used for high-temperature carbonate precipitation. The new clumped isotope calibration at high temperature follows the theoretical calculations of Schauble et al. (2006) adjusted for phosphoric acid digestion at 90°C. We gratefully acknowledge funding from Qatar Petroleum, Shell and the Qatar Science and Technology Park.

  3. Spatial and Temporal Energy Characterization of Precipitating Electrons for the January 10th, 1997 Magnetic Cloud Event

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Germany, G. A.; Brittnacher, M. J.; Parks, G. K.; Elsen, R.

    1997-01-01

    The January 10-11, 1997 magnetic cloud event provided a rare opportunity to study auroral energy deposition under varying but intense IMF conditions. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The Polar Ultraviolet Imager (UVI) observed the aurora[ precipitation during the first encounter of the cloud with Earth's magnetosphere and during several subsequent substorm events. The UVI has the unique capability of measuring the energy flux and characteristic energy of the precipitating electrons through the use of narrow band filters that distinguish short and long wavelength molecular nitrogen emissions. The spatial and temporal characteristics of the precipitating electron energy will be discussed beginning with the inception of the event at the Earth early January 1 Oth and continuing through the subsidence of auroral activity on January 11th.

  4. Spatial and temporal variations of evapotranspiration, groundwater and precipitation in Amazonia

    NASA Astrophysics Data System (ADS)

    Niu, J.; Riley, W. J.; Shen, C.; Melack, J. M.; Qiu, H.

    2017-12-01

    We used wavelet coherence analysis to investigate the effects of precipitation (P) and groundwater dynamics (total water storage anomaly, TWSA) on evapotranspiration (ET) at kilometer, sub-basin, and whole basin scales in the Amazon basin. The Amazon-scale averaged ET, P, and TWSA have about the same annual periodicity. The phase lag between ET and P (ΦET-P) is 1 to 3 months, and between ET and TWSA (ΦET-TWSA) is 3 to 7 months. The phase patterns have a south-north divide due to significant variation in climatic conditions. The correlation between ΦET-P and ΦET-TWSA is affected by the aridity index (the ratio between potential ET (PET) and P, PET / P), of each sub-basin, as determined using the Budyko framework at the sub-basin level. The spatial structure of ΦET-P is negatively correlated with the spatial structure of annual ET. At Amazon-scale during a drought year (e.g., 2010), both phases decreased, while in the subsequent years, ΦET-TWSA increased, indicating strong groundwater effects on ET immediately following dry years Amazon-wide.

  5. Temporal and spatial variability of chemical and isotopic composition of soil solutions from cambisols - field study and experiments.

    PubMed

    Schön, Walter; Mittermayr, Florian; Leis, Albrecht; Mischak, Irene; Dietzel, Martin

    2016-12-01

    The chemical and isotopic composition of soil solutions is highly relevant for environmental and forensic tasks. We investigated interstitial solutions from soil horizons of three cambisols in Styria (Austria). The soils consisted mainly of quartz, feldspar and clay minerals with a vertical variability. Two soil solution fractions from meso-, macro- and micropores (m) and micropores only (μ) were extracted at two subsequent hydraulic pressure steps corresponding to matrix potentials of up to pF 5.43 and from 5.43 to 5.73, respectively. While solute concentrations indicated diverse distribution in soil solution fractions m and μ, heavy stable hydrogen and oxygen isotopes of H 2 O (-92.5‰<δ 2 H<-34.4‰; -11.9‰<δ 18 O<-4.0‰, VSMOW) are clearly enriched in the μ versus m fractions. Principal component analysis on the hydrochemical data set indicates that the intensity of the overall silicate weathering is higher in autumn versus spring, whereas the anthropogenic impact on weathering behaves inversely. The anthropogenic impact is related to seasonal variability of nitrification of N-fertilizers. In consequence of evaluated signals for overall silicate weathering about three-fourths of the soil solutions sampled in autumn indicated elevated total dissolved solid concentration vs. those in spring accompanied with washing out solutes from the soil cover following precipitation events in autumn before sampling. Isotopic shift of soil solutions from the local meteoric water line in spring obviously followed an evaporation trend because of less precipitation and high evaporation before sampling. Experimentally simulated evaporation of soil samples confirmed the observed isotopic evaporation trend. Wetting experiments indicated the infiltration of water within minutes into the micropores of the soils. Exchange of water molecules between micro-, meso- and macropores is an almost instantaneous process and soil solutions in micropores are not as isolated from the soil

  6. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    NASA Astrophysics Data System (ADS)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  7. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  8. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs

    2017-07-01

    Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is

  9. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  10. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    NASA Astrophysics Data System (ADS)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2010-09-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we used the denitrifier method to measure nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high altitude and polar areas. Several δ18O values were observed lower than the expected minimum of 50‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  11. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    NASA Astrophysics Data System (ADS)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  12. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans

    NASA Astrophysics Data System (ADS)

    Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.

    1997-06-01

    Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.

  13. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  14. Oxygen isotope variations in phosphate of deer bones

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Cormie, Allison B.; Schwarcz, Henry P.

    1990-06-01

    Variations of δ 18O of bone phosphate (δ p) of white tailed deer were studied in samples with wide geographic distribution in North America. Bones from the same locality have similar isotopic values, and the difference between specimens (0.4‰) is not large relative to the measurement error (0.3‰). The total range of δ p values is about 12‰. This indicates that deer use water from a relatively small area, and thus their δ p indicates local environmental conditions. Multiple regression analysis between oxygen isotope composition of deer bone phosphate and of local relative humidity and precipitation (δ w) yields a high correlation coefficient (0.95). This correlation is significantly better than the linear correlation (0.81) between δ p and δ w of precipitation alone. Thus δ p depends on both isotopic composition of precipitation and on relative humidity. This is because deer obtain most of their water from leaves, the isotopic composition of which is partly controlled by relative humidity through evaporation/transpiration.

  15. A fully automated meltwater monitoring and collection system for spatially distributed isotope analysis in snowmelt-dominated catchments

    NASA Astrophysics Data System (ADS)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2016-04-01

    In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter

  16. Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D.

    2016-12-01

    The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is

  17. Response of leaf stable carbon isotope composition to temporal and spatial variabilities of aridity index on two opposite hillslopes in a native vegetated catchment

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Guan, Huade; Skrzypek, Grzegorz; Simmons, Craig T.

    2017-10-01

    The stable carbon isotope composition (δ13C) has been demonstrated to be a useful indicator of environmental conditions occurring during plant growth. Previous studies suggest that tree leaf δ13C is correlated with mean annual precipitation (MAP) over a broad range of climates with precipitation between 100 and 2000 mm/year. However, this relationship confirmed at the large scale may not be present at the local scale with complex terrain where factors other than precipitation may lead to additional variability in plant water stress. In this study, we investigated δ13C of tree leaves in a native vegetation catchment over a local gradient of hydro-climatic conditions induced by two hillslopes with opposite aspects. Significant seasonal variations, calculated as a difference between the maximum and minimum δ13C values for each tree, were observed for two species, up to 1.9‰ for Eucalyptus (E.) paniculata, and up to 2.7‰ for Acacia (A.) pycnantha on the north-facing slope (NFS). Also the mean δ13C values calculated from all investigated trees of each hillslope were significantly different and leaf δ13C on the NFS was higher by 1.4 ± 0.5‰ than that on the south-facing slope (SFS). These results cannot be explained by the negligible difference in precipitation between the two hillslopes located just 200 m apart. The correlation coefficients between the δ13C of E. tree leaves and the integrated aridity index (AI) were statistically significant for temporal observations on the NFS (R2 0.18-0.44, p-value 0.00-0.06), and spatial observations (R2 = 0.35, p-value 0.05) at the end of the dry season. These results suggest that AI as a measure of plant water stress is better associated with leaf δ13C than precipitation. Therefore, leaf δ13C value can be used as a valuable proxy for plant water stress across the landscape in both time and space.

  18. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara

    excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less

  19. Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past

    NASA Astrophysics Data System (ADS)

    Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.

    2016-12-01

    The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood

  20. Estimation of oxygen isotope in source water of tree-ring cellulose in Indonesia using tree-ring oxygen isotope model

    NASA Astrophysics Data System (ADS)

    Hisamochi, R.; Watanabe, Y.; Kurita, N.; Sano, M.; Nakatsuka, T.; Matsuo, M.; Yamamoto, H.; Sugiyama, J.; Tsuda, T.; Tagami, T.

    2016-12-01

    Oxygen isotope composition (δ18O) of tree-ring cellulose has been used as paleoclimate proxy because its origin is atmospheric precipitation. However, interpretation of tree-ring cellulose δ18O is not simple because source water of tree-ring cellulose (the water took up by tree) is not atmospheric precipitation but soil water or ground water in growing season, precisely. In this study, we investigate the relationship between source water of tree-ring cellulose and precipitation in order to improve interpretation of tree-ring cellulose δ18O as paleoclimate proxy. We collected ten teak (Tectona grandis) plantation samples in Java Island, Indonesia. Teak is deciduous tree and grows in rainy season. Samples were cut into annual rings after cellulose extraction. δ18O of individual rings were measured by TCEA-IRMS at the Research Institute of Humanity and Nature. We calculatedδ18O of source water by means of tree-ring oxygen isotope model and then comparedδ18O of source water and that of monthly atmospheric precipitation at Jakarta (GNIP; Global Network of isotopes in Precipitation). Source waterδ18O shows two types of significant correlation withδ18O in atmospheric precipitation. One is positive correlation withδ18O of atmospheric precipitation in previous rainy season. Another is negative correlation with δ18O of atmospheric precipitation in beginning of the growing season. The former indicates that soil water in growing season contains rainfall in previous rainy season and teak mainly takes it up. The latter is difficult to interpret. It may be related to soil moisutre in beginning of growing season.

  1. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    NASA Astrophysics Data System (ADS)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  2. Spatial variability of summer Florida precipitation and its impact on microwave radiometer rainfall-measurement systems

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Austin, G. L.

    1993-01-01

    Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.

  3. Fundamental limits to the accuracy of deuterium isotopes for identifying the spatial origin of migratory animals

    USGS Publications Warehouse

    Farmer, A.; Cade, B.S.; Torres-Dowdall, J.

    2008-01-01

    Deuterium isotope analyses have revolutionized the study of migratory connectivity because global gradients of deuterium in precipitation (??DP) are expressed on a continental scale. Several authors have constructed continental scale base maps of ??DP to provide a spatial reference for studying the movement patterns of migratory species and, although they are very useful, these maps present a static, 40-year average view of the landscape that ignores much underlying inter-annual variation. To more fully understand the consequences of this underlying variation, we analyzed the GNIP deuterium data, the source for all current ??DP maps, to estimate the minimum separation in ??DP (and latitude) necessary to conclude with a given level of confidence that distinct ??DP values represent different geographic sites. Extending analyses of ??DP successfully to deuterium in tissues of living organisms, e.g., feathers in migratory birds (??DF), is dependent on the existence of geographic separation of ??DP, where every geographic location has a distribution of values associated with temporal variability in ??DP. Analyses were conducted for three distinct geographic regions: North America, eastern North America (east of longitude 100??W), and Argentina. At the 80% confidence level, the minimum separation values were 12, 7, and 14?? of latitude (equivalent to 53, 31, and 32???) for North America, eastern North America, and Argentina, respectively. Hence, in eastern North America, for example, one may not be able to accurately assign individual samples to sites separated by less than about 7?? of latitude as the distributions of ??DP were not distinct at latitudes <7?? apart. Moreover, two samples that differ by less than 31??? cannot be confidently said to originate from different latitudes. These estimates of minimum separation for ??DP do not include other known sources of variation in feather deuterium (??D F) and hence are a first order approximation that may be useful, in

  4. Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Wojtal, Paul K.; Clark, Sydney C.; Hastings, Meredith G.

    2017-04-01

    On-road vehicle nitrogen oxide (NOx) sources currently dominate the U.S. anthropogenic emission budgets, yet vehicle NOx emissions have uncertain contributions to oxidized nitrogen (N) deposition patterns. Isotopic signatures serve as a potentially valuable observational tool to trace source contributions to NOx chemistry and N deposition, yet in situ emission signatures are underconstrained. We characterize the spatiotemporal variability of vehicle NOx emission isotopic signatures (δ15N-NOx) representative of U.S. vehicle fleet-integrated emission plumes. A novel combination of on-road mobile and stationary urban measurements is performed using a field and laboratory-verified technique for actively capturing NOx in solution to quantify δ15N-NOx at hourly resolution. On-road δ15N-NOx upwind of Providence, RI, ranged from -7 to -3‰. Simultaneous urban background δ15N-NOx observations showed comparable range and variations with on-road measurements, suggesting that vehicles dominate NOx emissions in the Providence area. On-road spatial δ15N-NOx variations of -9 to -2‰ were observed under various driving conditions in six urban metropolitan areas and rural interstate highways during summer and autumn in the U.S. Northeast and Midwest. Although isotopic signatures were insensitive to on-road driving mode variations, statistically significant correlations were found between δ15N-NOx and NOx emission factor extremes associated with heavy diesel emitter contributions. Overall, these results constrain an isotopic signature of fleet-integrated roadway NOx emission plumes, which have important implications for distinguishing vehicle NOx from other sources and tracking emission contributions to NOx chemistry and N deposition.

  5. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2016-11-01

    Two active spring vent pools at Shiqiang (Yunnan Province, China) are characterized by a complex array of precipitates that coat the wall around the pool and the narrow ledges that surround the vent pool. These precipitates include arrays of aragonite crystals, calcite cone-dendrites, red spar calcite, unattached dodecahedral and rhombohedral calcite crystals, and late stage calcite that commonly coats and disguises the earlier formed precipitates. Some of the microbial mats that grow on the ledges around the pools have been partly mineralized by microspheres that are formed of Si and minor amounts of Fe. The calcite and aragonite that are interspersed with each other at all scales are both primary precipitates. Some laminae, for example, change laterally from aragonite to calcite over distances of only a few millimetres. The precipitates at Shiqiang are similar to precipitates found in and around the vent pools of other springs found in Yunnan Province, including those at Gongxiaoshe, Zhuyuan, Eryuan, and Jifei. In all cases, the δDwater and δ18Owater indicate that the spring water is of meteoric origin. These are thermogene springs with the carrier CO2 being derived largely from the mantle and reaction of the waters with bedrock. Variations in the δ13Ctravertine values indicate that the waters in these springs were mixed, to varying degrees, with cold groundwater and its soil-derived CO2. Calcite and aragonite precipitation took place once the spring waters had become supersaturated with respect to CaCO3, probably as a result of rapid CO2 degassing. These precipitates, which were not in isotopic equilibrium with the spring water, are characterized by their unusual crystal morphologies. The precipitation of calcite and aragonite, seemingly together, can probably be attributed to microscale variations in the saturation levels that are, in turn, attributable to microscale variations in the rate of CO2 degassing.

  6. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    NASA Astrophysics Data System (ADS)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  7. 13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.

    2011-06-01

    The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition

  8. Radar-based Quantitative Precipitation Forecasting using Spatial-scale Decomposition Method for Urban Flood Management

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.

    2016-12-01

    Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.

  9. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  10. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  11. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: Estimates from a stable isotope mass-balance model

    USGS Publications Warehouse

    Ufnar, David F.; Ludvigson, Greg A.; Gonzalez, L.; Grocke, D.R.

    2008-01-01

    Stable isotope mass-balance modeling results of meteoric ??18O values from the Cenomanian Stage of the Cretaceous Western Interior Basin (KWIB) suggest that precipitation and evaporation fluxes were greater than that of the present and significantly different from simulations of Albian KWIB paleohydrology. Sphaerosiderite meteoric ??18O values have been compiled from the Lower Tuscaloosa Formation of southwestern Mississippi (25??N paleolatitude), The Dakota Formation Rose Creek Pit, Fairbury Nebraska (35??N) and the Dunvegan Formation of eastern British Columbia (55??N paleolatitude). These paleosol siderite ??18O values define a paleolatitudinal gradient ranging from - 4.2??? VPDB at 25??N to - 12.5??? VPDB at 55??N. This trend is significantly steeper and more depleted than a modern theoretical siderite gradient (25??N: - 1.7???; 65??N: - 5.6??? VPDB ), and a Holocene meteoric calcite trend (27??N: - 3.6???; 67??N: - 7.4??? VPDB). The Cenomanian gradient is also comparatively steeper than the Albian trend determined for the KWIB in the mid- to high latitudes. The steep latitudinal trend in meteoric ??18O values may be the result of increased precipitation and evaporation fluxes (amount effects) under a more vigorous greenhouse-world hydrologic cycle. A stable-isotope mass-balance model has been used to generate estimates of precipitation and evaporation fluxes and precipitation rates. Estimates of Cenomanian precipitation rates based upon the mass-balance modeling of the KWIB range from 1400??mm/yr at 25??N paleolatitude to 3600??mm/yr at 45??N paleolatitude. The precipitation-evaporation (P-E) flux values were used to delineate zones of moisture surplus and moisture deficit. Comparisons between Cenomanian P-E and modern theoretical siderite, and Holocene calcite latitudinal trends shows an amplification of low-latitude moisture deficits between 5-25??N paleolatitude and moisture surpluses between 40-60??N paleolatitude. The low-latitude moisture deficits

  12. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    PubMed

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  13. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  14. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  15. The distribution of meteoric Cl-36 in precipitation across Europe in spring 2007

    NASA Astrophysics Data System (ADS)

    Johnston, Vanessa E.; McDermott, Frank

    2008-10-01

    The cosmogenic isotope 36Cl is a valuable tool for understanding many Earth system processes, but an improved knowledge of its spatial distribution at the Earth's surface is critical for several applications. Meteoric 36Cl fallout reflects complex interactions between atmospheric production, transport, and deposition processes, and predictive models require experimental validation. This study investigates, for the first time in a systematic way, the spatial distribution of meteoric 36Cl on a continental scale within the European landmass using precipitation samples collected during spring 2007. 36Cl/Cl ratios increase with distance inland and the new data exhibit a strong exponential relationship with δ18O values of precipitation ( RS = - 0.75), yielding a useful predictive framework for future studies. Precipitation events in central European regions are characterised by high 36Cl/Cl ratios, with a maximum measured in Lyon, France of 746 (± 134) × 10 - 15 . The new data confirm models for the dependence of 36Cl fallout on latitude, with the highest mean springtime fallout (53.6 atoms m - 2 s - 1 ) occurring in the 40-50°N latitudinal band, with sharp decreases in fallout in high latitude regions and more gradual decreases towards the lower latitudes. The 36Cl bomb pulse, introduced by thermonuclear weapon testing, predominantly in the 1950's, has persisted in the environment for c. 50 years, but the new data indicate that 36Cl fallout has now essentially returned to natural, pre-bomb values.

  16. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique.

    PubMed

    Yang, Yuzhong; Wu, Qingbai; Hou, Yandong; Zhang, Zhongqiong; Zhan, Jing; Gao, Siru; Jin, Huijun

    2017-12-15

    Permafrost degradation on the Qinghai-Tibet Plateau (QTP) will substantially alter the surface runoff discharge and generation, which changes the recharge processes and influences the hydrological cycle on the QTP. Hydrological connections between different water bodies and the influence of thawing permafrost (ground ice) are not well understood on the QTP. This study applied water stable isotopic method to investigate the permafrost hydrological variabilities in Beiluhe Basin (BLB) on Central QTP. Isotopic variations of precipitation, river flow, thermokarst lake, and near-surface ground ice were identified to figure out the moisture source of them, and to elaborate the hydrological connections in permafrost region. Results suggested that isotopic seasonalities in precipitation is evident, it is showing more positive values in summer seasons, and negative values in winter seasons. Stable isotopes of river flow are mainly distributed in the range of precipitation which is indicative of important replenishment from precipitation. δ 18 O, δD of thermokarst lakes are more positive than precipitation, indicating of basin-scale evaporation of lake water. Comparison of δ I values in different water bodies shows that hydrology of thermokarst lakes was related to thawing of permafrost (ground ice) and precipitation. Near-surface ground ice in BLB exhibits different isotopic characteristics, and generates a special δD-δ 18 O relationship (freezing line): δD=5.81δ 18 O-23.02, which reflects typical freezing of liquid water. From isotopic analysis, it is inferred that near-surface ground ice was mainly recharged by precipitation and active layer water. Stable isotopic and conceptual model is suggestive of striking hydrological connections between precipitation, river flow, thermokarst lake, and ground ice under degrading permafrost. This research provides fundamental comprehensions into the hydrological processes in permafrost regions on QTP, which should be considered

  17. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  18. Water isotope systematics: Improving our palaeoclimate interpretations

    USGS Publications Warehouse

    Jones, M. D.; Dee, S.; Anderson, L.; Baker, A.; Bowen, G.; Noone, D.

    2016-01-01

    The stable isotopes of oxygen and hydrogen, measured in a variety of archives, are widely used proxies in Quaternary Science. Understanding the processes that control δ18O change have long been a focus of research (e.g. Shackleton and Opdyke, 1973; Talbot, 1990 ; Leng, 2006). Both the dynamics of water isotope cycling and the appropriate interpretation of geological water-isotope proxy time series remain subjects of active research and debate. It is clear that achieving a complete understanding of the isotope systematics for any given archive type, and ideally each individual archive, is vital if these palaeo-data are to be used to their full potential, including comparison with climate model experiments of the past. Combining information from modern monitoring and process studies, climate models, and proxy data is crucial for improving our statistical constraints on reconstructions of past climate variability.As climate models increasingly incorporate stable water isotope physics, this common language should aid quantitative comparisons between proxy data and climate model output. Water-isotope palaeoclimate data provide crucial metrics for validating GCMs, whereas GCMs provide a tool for exploring the climate variability dominating signals in the proxy data. Several of the studies in this set of papers highlight how collaborations between palaeoclimate experimentalists and modelers may serve to expand the usefulness of palaeoclimate data for climate prediction in future work.This collection of papers follows the session on Water Isotope Systematics held at the 2013 AGU Fall Meeting in San Francisco. Papers in that session, the breadth of which are represented here, discussed such issues as; understanding sub-GNIP scale (Global Network for Isotopes in Precipitation, (IAEA/WMO, 2006)) variability in isotopes in precipitation from different regions, detailed examination of the transfer of isotope signals from precipitation to geological archives, and the

  19. Results from stable isotope investigations of river waters in Western Croatia

    NASA Astrophysics Data System (ADS)

    Häusler, H.; Frančišković-Bilinski, S.; Rank, D.; Stadler, P.; Bilinski, H.

    2012-04-01

    During a campaign lasting from 27 October to 21 November 2010, sixty-one water samples were taken from the Kupa River, the catchment of which is about ten thousand square kilometres in size. Due to the fact that the upper tributaries of e.g. the Čabranka-, Dobra-, Korana-, Mrežnica- and Petrinjčica River comprise karstified Mesozoic carbonate formations, the hydrogeologic catchment of Kupa River extends the hydrologic one by far. The upper Kupa River is mainly charged by springs from big karst reservoirs in the Gorski Kotar mountain range, where a mean groundwater residence time of up to one year has to be considered. The rapid increase of discharge of these tributary rivers results from the rapid increase of discharge of karst wells after melting in springtime as well as from storm events. In general, the minimum mean discharge for all hydrographs in July reveals a dry summer season, with the maximum discharge in August/September resulting from an increase in precipitation. We interpret the d O-18 values of the Čabranka River (of about -8, 07‰) as signals from maritime precipitation in this karstified catchment area. The d O-18 value of upper Kupa River diminishes along its course from -8,09‰ near Osilnica to -9,06‰ west of Karlovac. After the inflow of tributaries south of Karlovac, the oxygen isotope ratio of Kupa River water reveals a significant change because the d O-18 values of the Dobra-, Korana- and Mrežnica River range from -10,45‰ to -9,58‰ . Due to the fact that the catchment of Dobra- and Korana River rises between 400 and 880 metres, we interpret the lower d O-18 values of river waters from recharge areas at those low mean altitudes as not caused by an altitude effect, but instead by precipitation out of more continental air masses. Our interpretation of stable isotope ratios in river waters is based on the relation between the weighted mean d O-18 and the altitude obtained from stations of the Global Network of Isotopes in

  20. Summer Precipitation Predicts Spatial Distributions of Semiaquatic Mammals

    PubMed Central

    Ahlers, Adam A.; Cotner, Lisa A.; Wolff, Patrick J.; Mitchell, Mark A.; Heske, Edward J.; Schooley, Robert L.

    2015-01-01

    Climate change is predicted to increase the frequency of droughts and intensity of seasonal precipitation in many regions. Semiaquatic mammals should be vulnerable to this increased variability in precipitation, especially in human-modified landscapes where dispersal to suitable habitat or temporary refugia may be limited. Using six years of presence-absence data (2007–2012) spanning years of record-breaking drought and flood conditions, we evaluated regional occupancy dynamics of American mink (Neovison vison) and muskrats (Ondatra zibethicus) in a highly altered agroecosystem in Illinois, USA. We used noninvasive sign surveys and a multiseason occupancy modeling approach to estimate annual occupancy rates for both species and related these rates to summer precipitation. We also tracked radiomarked individuals to assess mortality risk for both species when moving in terrestrial areas. Annual model-averaged estimates of occupancy for mink and muskrat were correlated positively to summer precipitation. Mink and muskrats were widespread during a year (2008) with above-average precipitation. However, estimates of site occupancy declined substantially for mink (0.56) and especially muskrats (0.09) during the severe drought of 2012. Mink are generalist predators that probably use terrestrial habitat during droughts. However, mink had substantially greater risk of mortality away from streams. In comparison, muskrats are more restricted to aquatic habitats and likely suffered high mortality during the drought. Our patterns are striking, but a more mechanistic understanding is needed of how semiaquatic species in human-modified ecosystems will respond ecologically in situ to extreme weather events predicted by climate-change models. PMID:26284916

  1. Summer Precipitation Predicts Spatial Distributions of Semiaquatic Mammals.

    PubMed

    Ahlers, Adam A; Cotner, Lisa A; Wolff, Patrick J; Mitchell, Mark A; Heske, Edward J; Schooley, Robert L

    2015-01-01

    Climate change is predicted to increase the frequency of droughts and intensity of seasonal precipitation in many regions. Semiaquatic mammals should be vulnerable to this increased variability in precipitation, especially in human-modified landscapes where dispersal to suitable habitat or temporary refugia may be limited. Using six years of presence-absence data (2007-2012) spanning years of record-breaking drought and flood conditions, we evaluated regional occupancy dynamics of American mink (Neovison vison) and muskrats (Ondatra zibethicus) in a highly altered agroecosystem in Illinois, USA. We used noninvasive sign surveys and a multiseason occupancy modeling approach to estimate annual occupancy rates for both species and related these rates to summer precipitation. We also tracked radiomarked individuals to assess mortality risk for both species when moving in terrestrial areas. Annual model-averaged estimates of occupancy for mink and muskrat were correlated positively to summer precipitation. Mink and muskrats were widespread during a year (2008) with above-average precipitation. However, estimates of site occupancy declined substantially for mink (0.56) and especially muskrats (0.09) during the severe drought of 2012. Mink are generalist predators that probably use terrestrial habitat during droughts. However, mink had substantially greater risk of mortality away from streams. In comparison, muskrats are more restricted to aquatic habitats and likely suffered high mortality during the drought. Our patterns are striking, but a more mechanistic understanding is needed of how semiaquatic species in human-modified ecosystems will respond ecologically in situ to extreme weather events predicted by climate-change models.

  2. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutionsmore » and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.« less

  3. Improving plant water isotope models with precise estimates of source water δ2H and δ18O values for trees from precipitation δ2H and δ18O values

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Brinkmann, N.; Seeger, S.; Buchmann, N. C.; Eugster, W.; Weiler, M.

    2016-12-01

    δ2H and δ18O values in plant water and plant organic compounds have established as powerful tools in ecology, biogeochemistry and paleoclimatology. In general, the δ2H and δ18O values in plants are driven by (i) the isotope composition of the plants' source water, (ii) the evaporative 2H or 18O enrichment of foliar water, and (iii) fractionations during the biosynthesis of organic compounds. While we have a robust understanding of what determines the evaporative 2H or 18O enrichment in plant water and biosynthetic fractionation factors have also been reasonably well constrained, our understanding how a plant's source water δ2H and δ18O values are linked to seasonal variation in precipitation δ2H and δ18O values is surprisingly poor. Precise estimates of a plant's source water δ2H and δ18O values, e.g. from the GNIP database are thus not possible and limit the application of plant water isotope models for the interpretation of δ2H and δ18O in plants. Here we present a four-year dataset of precipitation, soil water (0 - 80 cm) and plant source water δ2H and δ18O values from a mixed temperate forest. We employed this dataset to (i) estimate the link between precipitation and soil water δ2H and δ18O values at different soil depths, (ii) apply a hydrological model to estimate the mean residence time of precipitation water in different soil depths and (iii) estimate the integration time of seasonal precipitation for the source water δ2H and δ18O values of four tree species. Our data show a seasonal amplitude in δ2H and δ18O of precipitation of xx and xx, respectively. This seasonal variability in precipitation is transferred into the soil, where it declines with soil depth. Mean residence time of precipitation is xx days in the upper soil layers (5 cm) and increases to xx days in the lower soil layers (80 cm). The trees' source water originated from soil depths between 20 and 70 cm. The δ2H and δ18O values of the trees source water resemble mean

  4. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  5. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico.

    PubMed

    Breitbart, Mya; Hoare, Ana; Nitti, Anthony; Siefert, Janet; Haynes, Matthew; Dinsdale, Elizabeth; Edwards, Robert; Souza, Valeria; Rohwer, Forest; Hollander, David

    2009-01-01

    Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.

  6. Carbon and hydrogen isotope composition of plant biomarkers as proxies for precipitation changes across Heinrich Events in the subtropics

    NASA Astrophysics Data System (ADS)

    Arnold, T. E.; Freeman, K.; Brenner, M.; Diefendorf, A. F.

    2014-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  7. STAMMEX high resolution gridded daily precipitation dataset over Germany: a new potential for regional precipitation climate research

    NASA Astrophysics Data System (ADS)

    Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel

    2014-05-01

    We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present

  8. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  9. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    NASA Astrophysics Data System (ADS)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time

  10. Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation

    NASA Astrophysics Data System (ADS)

    Hui, K. L.; Bordoni, S.

    2017-12-01

    Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of

  11. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Peng, Haidong; Mayer, Bernhard; Harris, Stuart; Krouse, H. Roy

    2004-04-01

    Short-term (0.5 3 d) precipitation samples were collected from January 1992 to December 2001 in Calgary, Alberta, Canada, and the stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) for these samples were determined. The 10-yr amount-weighted average δ2H and δ18O values of precipitation were -136.1‰ and -17.9‰, respectively. Consistent with International Atomic Energy Agency (IAEA) established practice, the following local meteoric water line (LMWL) for Calgary was derived using amount-weighted monthly average δ2H and δ18O values: δ2H = 7.68 δ18O -0.21 (r2= 0.96, n= 104). The correlation equation between δ2H and δ18O values from individual samples was found to be δ2H = 7.10 δ18O -13.64 (r2= 0.95, n= 839), which is different from the LMWL, exhibiting lower slope and intercept values. A comparison of δ2H and δ18O correlation equations with temperature during precipitation events showed a trend of decreasing slopes and intercepts with increasing temperature. Our data suggest that this is caused by incorporation of moisture derived from evaporation from water bodies and soils along the storm paths and by secondary evaporation between the cloud base and the ground during precipitation events. These processes compromise the usefulness of d-excess values as an indicator for the meteorological conditions in the maritime source regions. The δ18O temperature dependence at Calgary was found to be ~ 0.44‰°C-1. The study shows that short-term sampling of individual precipitation events yields valuable information, which is not obtainable by the widely used monthly collection programs.

  12. Controls of precipitation δ18O on the northwestern Tibetan Plateau: A case study at Ngari station

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Tian, Lide; Wen, Rong; Yu, Wusheng; Qu, Dongmei

    2017-06-01

    The shifting atmospheric circulation between the Indian monsoon and the westerlies on the northwestern Tibetan Plateau (TP) influences precipitation as well as precipitation isotopes. Isotopic records will therefore show historical fluctuations. To understand better the factors controlling present day precipitation δ18O values on the northwestern TP, we made continuous observations of precipitation isotopes at Ngari station from 2010 to 2013. The drivers of precipitation δ18O were investigated using analyses of their statistical relations with temperature, precipitation amount, relative humidity, and convective activities based on outgoing longwave radiation (OLR) data from NOAA satellites, and downward shortwave radiation (DSR) data collected at the Ngari automatic weather station. Atmospheric circulation patterns from NCAR reanalysis, and moisture transport paths of individual events derived from the HYSPLIT model using NCEP data, were also used to trace moisture sources. The results of our study include: (1) The slope and intercept of the Local Meteoric Water Line (LMWL) at Ngari (δD = 8.51 δ18O + 11.57 (R2 = 0.97, p < 0.01)) were higher than for the Global Meteoric Water Line (GMWL), indicating drier local climatic conditions; (2) Precipitation δ18O values showed a weak ;temperature effect; and a weak ;precipitation amount effect; at Ngari; and (3) Convection (or temperature patterns) integrated over several days (0-20) preceding each event were determined to be the main driver of precipitation isotopic values in monsoon (or non-monsoon) season. The longer (shorter) periods of τm days when correlation coefficients between precipitation δ18O and OLR were at their maxima (minima) indicate deep convective activities (shorter moisture transportation pathways) in August (June, July, and September).

  13. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  14. Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther C.

    Variations in terrestrial oxygen-isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. In this work, we demonstrate with the fully coupled isotope-enabled Community Earth System Model an additional process contributing to the oxygen-isotope variations during glacial meltwater events. This process, termed “the direct meltwater effect,” involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15–35% of the δ 18O signals in precipitation over Greenland and eastern Brazilmore » for large freshwater forcings (0.25–0.50 sverdrup (10 6 m 3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ 18O.« less

  15. Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model

    DOE PAGES

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther C.; ...

    2017-12-28

    Variations in terrestrial oxygen-isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. In this work, we demonstrate with the fully coupled isotope-enabled Community Earth System Model an additional process contributing to the oxygen-isotope variations during glacial meltwater events. This process, termed “the direct meltwater effect,” involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15–35% of the δ 18O signals in precipitation over Greenland and eastern Brazilmore » for large freshwater forcings (0.25–0.50 sverdrup (10 6 m 3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ 18O.« less

  16. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  17. Insights into streamflow generation mechanisms using high-frequency analysis of isotopes and water quality in streamflow and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Kirchner, James W.

    2017-04-01

    In the pre-Alpine Alptal catchment in central Switzerland, snowmelt and rainfall events cause rapid changes not only in hydrological conditions, but also in water quality. A flood forecasting model for such a mountainous catchment thus requires process understanding that is informed by high-frequency monitoring of hydrological and hydrochemical parameters. Therefore, we installed a high-frequency sampling and analysis system near the outlet of the 0.7 km2 Erlenbach catchment, a headwater tributary of the Alp river. We measured stable water isotopes (δ18O, δ2H) in precipitation and streamwater using Picarro, Inc.'s (Santa Clara, CA, USA) newly developed Continuous Water Sampler Module (CWS) coupled to their L2130-i Cavity Ring-Down Spectrometer, at 30 min temporal resolution. Water quality was monitored with a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as with a UV-Vis spectroscopy system and electrochemical probes (s::can Messtechnik GmbH, Vienna, Austria) for characterization of nutrients and basic water quality parameters. For quantification of trace elements and metals, we collected additional water samples for subsequent ICP-MS analysis in the laboratory. To illustrate the applicability of our newly developed automated analysis and sampling system under field conditions, we will present initial results from the 2016 fall and winter seasons at the Erlenbach catchment. During this period, river discharge was mainly fed by groundwater, as well as intermittent snowmelt and rain-on-snow events. Our high-frequency data set, along with spatially distributed sampling of snowmelt, enables a detailed analysis of source areas, flow pathways and biogeochemical processes that control chemical dynamics in streamflow and the discharge regime.

  18. Regime shifts in the northern North Atlantic during the past 6,000 years: A record of seabird population size and precipitation isotopes on Bjørnøya, Svalbard

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Hormes, A.; Bakke, J.; Nicolaisen, L.

    2015-12-01

    The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. Here, we report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver this isotopically enriched nitrogen to their nesting area. We developed a record of seabird population changes on Bjørnøya based on the bulk nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, by measuring δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals having more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the

  19. A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2012-12-01

    A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China Li Xiangzhong a, Liu Weiguoa, b a State Key Laboratory of Loess and Quaternary Geology, IEE, CAS, Xi'an, 710075, China b School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China Abstract Usually, the oxygen isotopic compositions of ostracods from the lake sediments are interpreted as changes in effective precipitation, temperature and evaporation/input water ratio in a sub-arid or arid area. Here, we compare a 150-year-long oxygen-isotope record that was derived from ostracod carbonate from the sediment core (in a seven-year resolution) of Lake Gahai in the Qaidam Basin with meteorological data (precipitation) and tree-ring evidence for changing precipitation. Our results show that the increased precipitation accompanied a shift to less positive δ18O values in the lake water, and hence of the ostracod shells, whereas decreased precipitation coincides with the opposite in Lake Gahai over the past ~150 years. The sole occurrence of the ostracod E. mareotica also indicates that the lake's salinity may have experienced no marked change over the past 150 years. Therefore, we conclude that the oxygen isotopic compositions of ostracod shells can be used to indicate changes in precipitation for paleoclimatic reconstruction over a short time scale in Lake Gahai. Keywords: oxygen isotope; ostracod; precipitation; Lake Gahai, Qaidam Basin

  20. Induced and catalysed mineral precipitation in the deep biosphere

    NASA Astrophysics Data System (ADS)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  1. Stable isotopes of water in estimation of groundwater dependence in peatlands

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2016-04-01

    Peatland hydrology and ecology can be irreversibly affected by anthropogenic actions or climate change. Especially sensitive are groundwater dependent areas which are difficult to determine. Environmental tracers such as stable isotopes of water are efficient tools to identify these dependent areas and study water flow patterns in peatlands. In this study the groundwater dependence of a Finnish peatland complex situated next to an esker aquifer was studied. Groundwater seepage areas in the peatland were localized by thermal imaging and the subsoil structure was determined using ground penetrating radar. Water samples were collected for stable isotopes of water (δ18O and δ2H), temperature, pH and electrical conductivity at 133 locations of the studied peatland (depth of 10 cm) at approximately 100 m intervals during 4 August - 11 August 2014. In addition, 10 vertical profiles were sampled (10, 30, 60 and 90 cm depth) for the same parameters and for hydraulic conductivity. The cavity ring-down spectroscopy (CRDS) was applied to measure δ18O and δ2H values. The local meteoric water line was determined using precipitation samples from Nuoritta station located 17 km west of the study area and the local evaporation line was defined using water samples from lake Sarvilampi situated on the studied peatland complex. Both near-surface spatial survey and depth profiles of peatland water revealed very wide range in stable isotope composition, from approximately -13.0 to -6.0 ‰ for δ18O and from -94 to -49 ‰ for δ2H, pointing to spatially varying influence of groundwater input from near-by esker aquifer. In addition, position of the data points with respect to the local meteoric water line showed spatially varying degree of evaporation of peatland water. Stable isotope signatures of peatland water in combination with thermal images delineated the specific groundwater dependent areas. By combining the information gained from different types of observations, the

  2. Oxygen isotope constraints on the alteration temperatures of CM chondrites

    NASA Astrophysics Data System (ADS)

    Verdier-Paoletti, Maximilien J.; Marrocchi, Yves; Avice, Guillaume; Roskosz, Mathieu; Gurenko, Andrey; Gounelle, Matthieu

    2017-01-01

    We report a systematic oxygen isotopic survey of Ca-carbonates in nine different CM chondrites characterized by different degrees of alteration, from the least altered known to date (Paris, 2.7-2.8) to the most altered (ALH 88045, CM1). Our data define a continuous trend that crosses the Terrestrial Fractionation Line (TFL), with a general relationship that is indistinguishable within errors from the trend defined by both matrix phyllosilicates and bulk O-isotopic compositions of CM chondrites. This bulk-matrix-carbonate (BMC) trend does not correspond to a mass-dependent fractionation (i.e., slope 0.52) as it would be expected during fluid circulation along a temperature gradient. It is instead a direct proxy of the degree of O-isotopic equilibration between 17,18O-rich fluids and 16O-rich anhydrous minerals. Our O-isotopic survey revealed that, for a given CM, no carbonate is in O-isotopic equilibrium with its respective surrounding matrix. This precludes direct calculation of the temperature of carbonate precipitation. However, the O-isotopic compositions of alteration water in different CMs (inferred from isotopic mass-balance calculation and direct measurements) define another trend (CMW for CM Water), parallel to BMC but with a different intercept. The distance between the BMC and CMW trends is directly related to the temperature of CM alteration and corresponds to average carbonates and serpentine formation temperatures of 110 °C and 75 °C, respectively. However, carbonate O-isotopic variations around the BMC trend indicate that they formed at various temperatures ranging between 50 and 300 °C, with 50% of the carbonates studied here showing precipitation temperature higher than 100 °C. The average Δ17O and the average carbonate precipitation temperature per chondrite are correlated, revealing that all CMs underwent similar maximum temperature peaks, but that altered CMs experienced protracted carbonate precipitation event(s) at lower temperatures than

  3. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau

    USGS Publications Warehouse

    Tian, L.; Yao, T.; Schuster, P.F.; White, J.W.C.; Ichiyanagi, K.; Pendall, Elise; Pu, J.; Yu, W.

    2003-01-01

    A detailed study of the climatic significance of ??18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of ??18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation "amount effect" and results in a poor ??18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects of the monsoon are diminished but continue to cause a reduced correlation of ??18O and temperature at the annual scale. At the monthly scale, however, a significant ??18O-T relationship does exist. To the north of the Tibetan Plateau beyond the extent of the effects of monsoon precipitation, ??18O in precipitation shows a strong temperature dependence. ??18O records from two shallow ice cores and historic air temperature data were compared to verify the modern ??18O-T relationship. ??18O in Dunde ice core was positively correlated with air temperature from a nearby meteorological station in the north of the plateau. The ??18O variation in an ice core from the southern Plateau, however, was inversely correlated with precipitation amount at a nearby meteorological station and also the accumulation record in the ice core. The long-term variation of ??18O in the ice core record in the monsoon regions of the southern Tibetan Plateau suggest past monsoon seasons were probably more expansive. It is still unclear, however, how changes in large-scale atmosphere circulation might influence summer monsoon precipitation on the Tibetan Plateau.

  4. Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai'i

    Treesearch

    Shaneka Lawson; Carrie Pike

    2017-01-01

    Stable carbon and nitrogen isotopes can be influenced by a multitude of factors including elevation, precipitation rate, season, and temperature. This work examined variability in foliar stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of koa (Acacia koa) across 17 sites on Hawai'i Island, delineated by elevation and precipitation...

  5. Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors

    NASA Astrophysics Data System (ADS)

    Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.

    2006-06-01

    Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.

  6. Elevational Dependence of Catchment-scale Evapotranspiration Partitioning as Revealed by Water Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Sato, R.

    2017-12-01

    Transpiration (T) through plants (i.e., green water) does not induce isotopic fractionation, although evaporation (E) from soils and water surfaces do. Therefore, water stable isotopes offer a powerful tool to partition evapotranspiration (ET) components. We attempted to evaluate catchment-scale T/ET for five mountainous catchments in the central Japan, using river water isotopes and isotope maps of precipitation and soil water as well as climatic and radar precipitation maps. The estimated T/ET ranged from 56% to 79% (ET not including interception loss), and negatively correlated with mean elevation of the catchments (r = -0.88). This is due to decreasing transpiration (-82 mm/yr per 100 m) and slightly increasing evaporation (8 mm/yr per 100 m) with increasing elevation. Another estimation scheme using isotope data only showed a positive correlation between elevation and E/P*, where P* is effective precipitation defined by gross precipitation minus interception. Because the forest coverage within the catchments has positive correlation with catchment-mean-elevation, both decrease in transpiration and increase in soil evaporation seem to reflect structural change in forests (e.g., dense to sparse) along elevation and thus temperature gradients. Applying the space-for-time substitution, our results indicates that global warming will increase transpiration (and thus carbon intake) at mid-latitude mountainous landscapes.

  7. Spatial and trophic preferences of jumbo squid Dosidicus gigas (D´Orbigny, 1835) in the central Gulf of California: ecological inferences using stable isotopes.

    PubMed

    Trasviña-Carrillo, L D; Hernández-Herrera, A; Torres-Rojas, Y E; Galván-Magaña, F; Sánchez-González, A; Aguíñiga-García, S

    2018-04-26

    The jumbo squid Dosidicus gigas is a fishery resource of considerable economic and ecological importance in the Mexican Pacific. Studies on its habitat preferences are needed to understand recent fluctuations in the species' abundance and availability. Stable isotope analysis allows us to infer ecological aspects such as spatial distribution and trophic preferences. We used an isotope ratio mass spectrometer, automated for carbonate analysis, and coupled to an elemental analyzer, to determine the isotopic composition of statoliths (δ 18 O and δ 13 C values) and beaks (δ 13 C and δ 15 N values) from 219 individuals caught over two fishing seasons (2007 and 2009) off the coast of Santa Rosalía, in the central Gulf of California. We used these isotopic ratios to assess variation in spatial and trophic preferences by sex, size, and fishing season. In the 2009 group, we observed significant differences in statolith δ 13 C values and beak δ 13 C and δ 15 N values between males and females. Between size groups, we observed significant differences in statolith δ 18 O and δ 13 C values in 2007 and in beak δ 13 C and δ 15 N values during both seasons. Both seasons were characterized by high overlap in δ 18 O and δ 13 C values between sexes and in 2009 between size groups. We observed low trophic overlap between sexes in 2009 and between size groups during both seasons. The isotopic ratios from statoliths and beaks indicate that D. gigas has changed its spatial and trophic preferences, a shift that is probably related to changes in the species diet. This intraspecific variation in preferences could be related to characteristics such as size, which may influence squid distribution preferences. This article is protected by copyright. All rights reserved.

  8. Dependence of long-term persistence properties of precipitation on spatial and regional characteristics

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Dimitriadis, Panayiotis; Iliopoulou, Theano; Tzouka, Katerina; Koutsoyiannis, Demetris

    2017-04-01

    The long-term persistence (LTP), else known in hydrological science as the Hurst phenomenon, is a behaviour observed in geophysical processes in which wet years or dry years are clustered to respective long time periods. A common practice for evaluating the presence of the LTP is to model the geophysical time series with the Hurst-Kolmogorov process (HKp) and estimate its Hurst parameter H where high values of H indicate strong LTP. We estimate H of the mean annual precipitation using instrumental data from approximately 1 500 stations which cover a big area of the earth's surface and span from 1916 to 2015. We regress the H estimates of all stations on their spatial and regional characteristics (i.e. their location, elevation and Köppen-Geiger climate class) using a random forest algorithm. Furthermore, we apply the Mann-Kendall test under the LTP assumption (MKt-LTP) to all time series to assess the significance of observed trends of the mean annual precipitation. To summarize the results, the LTP seems to depend mostly on the location of the stations, while the predictive value of the fitted regression model is good. Thus when investigating for LTP properties we recommend that the local characteristics should be considered. Additionally, the application of the MKt-LTP suggests that no significant monotonic trend can characterize the global precipitation. Dominant positive significant trends are observed mostly in main climate type D (snow), while in the other climate types the percentage of stations with positive significant trends was approximately equal to that of negative significant trends. Furthermore, 50% of all stations do not exhibit significant trends at all.

  9. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N

    USGS Publications Warehouse

    Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.

    2008-01-01

    In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic

  10. Investigating the direct meltwater effect in oxygen-isotope records using an isotope-enabled Earth system model

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liu, Z.; Brady, E. C.; Otto-Bliesner, B. L.; Marcott, S. A.; Zhang, J.; Wang, X.; Noone, D.; Nusbaumer, J. M.; Wong, T. E.; Jahn, A.

    2017-12-01

    Oxygen isotopes (δ18O) in both terrestrial and marine paleoclimate archives have long been used to study the climate evolution of the late Quaternary. Based on the high-latitude "temperature effect" and the tropical "amount effect", the δ18O variations in ice cores and speleothems have been primarily interpreted as changes in surface air temperature and regional precipitation amount, respectively, although recent studies suggest that other climate processes may also play a role. However, one long-overlooked assumption for these climatic interpretations is that the δ18O variations in the terrestrial records can be exclusively explained by changes in climate variables. This assumption could be violated during past glacial meltwater events, as the meltwater discharged into the ocean by icebergs or surface runoff is considerably depleted in δ18O compared to the surface ocean. This depleted meltwater can significantly decrease the isotope composition of the seawater it deposits and propagate within the hydrological cycle to directly influence the δ18O values in adjacent precipitation (the direct effect), without involving any changes in the climate state (the indirect effect). Here, by conducting water isotope-enabled climate simulations, we aim to quantify the direct meltwater effect on the terrestrial δ18O records. We find that, for large meltwater events in the northern North Atlantic Ocean (e.g., around 0.25 Sv lasting 300 years), the direct meltwater effect contributes more than 15% and 35% of the total δ18O changes in the precipitation over Greenland and the eastern Brazil, respectively. Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of meltwater, and it is sensitive to both the location and the shape of the freshwater forcing. We argue that the direct meltwater effect on δ18O records could also be significant in other regions and for other terrestrial oxygen-isotope records, as long as the

  11. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method

  12. Trend analysis of precipitation in Jharkhand State, India. Investigating precipitation variability in Jharkhand State

    NASA Astrophysics Data System (ADS)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2017-10-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  13. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    NASA Astrophysics Data System (ADS)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  14. Water Isotope Proxy-Proxy and Proxy-Model Convergence for Late Pleistocene East Asian Monsoon Rainfall Reconstructions

    NASA Astrophysics Data System (ADS)

    Clemens, S. C.; Holbourn, A.; Kubota, Y.; Lee, K. E.; Liu, Z.; Chen, G.

    2017-12-01

    Confidence in reconstruction of East Asian paleomonsoon rainfall using precipitation isotope proxies is a matter of considerable debate, largely due to the lack of correlation between precipitation amount and isotopic composition in the present climate. We present four new, very highly resolved records spanning the past 300,000 years ( 200 year sample spacing) from IODP Site U1429 in the East China Sea. We demonstrate that all the orbital- and millennial-scale variance in the onshore Yangtze River Valley speleothem δ18O record1 is also embedded in the offshore Site U1429 seawater δ18O record (derived from the planktonic foraminifer Globigerinoides ruber and sea surface temperature reconstructions). Signal replication in these two independent terrestrial and marine archives, both controlled by the same monsoon system, uniquely identifies δ18O of precipitation as the primary driver of the precession-band variance in both records. This proxy-proxy convergence also eliminates a wide array of other drivers that have been called upon as potential contaminants to the precipitation δ18O signal recorded by these proxies. We compare East Asian precipitation isotope proxy records to precipitation amount from a CCSM3 transient climate model simulation of the past 300,000 years using realistic insolation, ice volume, greenhouse gasses, and sea level boundary conditions. This model-proxy comparison suggests that both Yangtze River Valley precipitation isotope proxies (seawater and speleothem δ18O) track changes in summer-monsoon rainfall amount at orbital time scales, as do precipitation isotope records from the Pearl River Valley2 (leaf wax δ2H) and Borneo3 (speleothem δ18O). Notably, these proxy records all have significantly different spectral structure indicating strongly regional rainfall patterns that are also consistent with model results. Transient, isotope-enabled model simulations will be necessary to more thoroughly evaluate these promising results, and to

  15. Natural stable isotopic compositions of mercury in aerosols and wet precipitations around a coal-fired power plant in Xiamen, southeast China

    NASA Astrophysics Data System (ADS)

    Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu

    2018-01-01

    In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.

  16. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    NASA Astrophysics Data System (ADS)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  17. Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton

    NASA Astrophysics Data System (ADS)

    Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.

    2016-11-01

    We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.

  18. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Olson, Robert J.; Popp, Brian N.; Graham, Brittany S.; López-Ibarra, Gladis A.; Galván-Magaña, Felipe; Lennert-Cody, Cleridy E.; Bocanegra-Castillo, Noemi; Wallsgrove, Natalie J.; Gier, Elizabeth; Alatorre-Ramírez, Vanessa; Ballance, Lisa T.; Fry, Brian

    2010-07-01

    Evaluating the impacts of climate and fishing on oceanic ecosystems requires an improved understanding of the trophodynamics of pelagic food webs. Our approach was to examine broad-scale spatial relationships among the stable N isotope values of copepods and yellowfin tuna ( Thunnus albacares), and to quantify yellowfin tuna trophic status in the food web based on stable-isotope and stomach-contents analyses. Using a generalized additive model fitted to abundance-weighted-average δ 15N values of several omnivorous copepod species, we examined isotopic spatial relationships among yellowfin tuna and copepods. We found a broad-scale, uniform gradient in δ 15N values of copepods increasing from south to north in a region encompassing the eastern Pacific warm pool and parts of several current systems. Over the same region, a similar trend was observed for the δ 15N values in the white muscle of yellowfin tuna caught by the purse-seine fishery, implying limited movement behavior. Assuming the omnivorous copepods represent a proxy for the δ 15N values at the base of the food web, the isotopic difference between these two taxa, “ ΔYFT-COP,” was interpreted as a trophic-position offset. Yellowfin tuna trophic-position estimates based on their bulk δ 15N values were not significantly different than independent estimates based on stomach contents, but are sensitive to errors in the trophic enrichment factor and the trophic position of copepods. An apparent inshore-offshore, east to west gradient in yellowfin tuna trophic position was corroborated using compound-specific isotope analysis of amino acids conducted on a subset of samples. The gradient was not explained by the distribution of yellowfin tuna of different sizes, by seasonal variability at the base of the food web, or by known ambit distances (i.e. movements). Yellowfin tuna stomach contents did not show a regular inshore-offshore gradient in trophic position during 2003-2005, but the trophic

  19. Method for production of an isotopically enriched compound

    DOEpatents

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  20. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  1. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  2. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  3. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  4. Spatial distribution of the daily precipitation concentration index in Southern Russia

    NASA Astrophysics Data System (ADS)

    Vyshkvarkova, Elena; Voskresenskaya, Elena; Martin-Vide, Javier

    2018-05-01

    The territory of Southern Russia presents a great diversity of climates and complex orography that lead to a very different precipitation distribution. Annual precipitation amounts differ between 222 mm in the coast of the Caspian Sea and > 2000 mm in the highest parts of the Caucasus Mountains. In order to investigate the statistical structure of daily precipitation across the study region the daily precipitation Concentration Index (CI) was used. In present paper, the CI was calculated for 42 meteorological stations during the 1970-2010 period. The analysis of precipitation concentration identified that the distribution of daily precipitation is more regular over the west, north and south regions compared to the east (the Caspian Sea coast and the Caspian Depression). The Crimean peninsula is characterized by low CI values in the north and high values in the eastern part.

  5. Numerical simulations of significant orographic precipitation in Madeira island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  6. Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment

    NASA Astrophysics Data System (ADS)

    Gregory, Melissa J.; Mathur, Ryan

    2017-11-01

    Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.

  7. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    NASA Astrophysics Data System (ADS)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic

  8. Molybdenum isotope fractionation during adsorption to organic matter

    USGS Publications Warehouse

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  9. Molybdenum isotope fractionation during adsorption to organic matter

    NASA Astrophysics Data System (ADS)

    King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.

    2018-02-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  10. Evolution of Precipitation Extremes in Three Large Ensembles of Climate Simulations - Impact of Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.

    2017-12-01

    Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.

  11. Re - Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    USGS Publications Warehouse

    Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.

    1991-01-01

    The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.

  12. Synchronous precipitation reduction in the American Tropics associated with Heinrich 2.

    PubMed

    Medina-Elizalde, Martín; Burns, Stephen J; Polanco-Martinez, Josué; Lases-Hernández, Fernanda; Bradley, Raymond; Wang, Hao-Cheng; Shen, Chuan-Chou

    2017-09-11

    During the last ice age temperature in the North Atlantic oscillated in cycles known as Dansgaard-Oeschger (D-O) events. The magnitude of Caribbean hydroclimate change associated with D-O variability and particularly with stadial intervals, remains poorly constrained by paleoclimate records. We present a 3.3 thousand-year long stalagmite δ 18 O record from the Yucatan Peninsula (YP) that spans the interval between 26.5 and 23.2 thousand years before present. We estimate quantitative precipitation variability and the high resolution and dating accuracy of this record allow us to investigate how rainfall in the region responds to D-O events. Quantitative precipitation estimates are based on observed regional amount effect variability, last glacial paleotemperature records, and estimates of the last glacial oxygen isotopic composition of precipitation based on global circulation models (GCMs). The new precipitation record suggests significant low latitude hydrological responses to internal modes of climate variability and supports a role of Caribbean hydroclimate in helping Atlantic Meridional Overturning Circulation recovery during D-O events. Significant in-phase precipitation reduction across the equator in the tropical Americas associated with Heinrich event 2 is suggested by available speleothem oxygen isotope records.

  13. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our

  14. Comparing NEXRAD Operational Precipitation Estimates and Raingage Observations of Intense Precipitation in the Missouri River Basin.

    NASA Astrophysics Data System (ADS)

    Young, C. B.

    2002-05-01

    Accurate observation of precipitation is critical to the study and modeling of land surface hydrologic processes. NEXRAD radar-based precipitation estimates are increasingly used in field experiments, hydrologic modeling, and water and energy budget studies due to their high spatial and temporal resolution, national coverage, and perceived accuracy. Extensive development and testing of NEXRAD precipitation algorithms have been carried out in the Southern Plains. Previous studies (Young et al. 2000, Young et al. 1999, Smith et al. 1996) indicate that NEXRAD operational products tend to underestimate precipitation at light rain rates. This study investigates the performance of NEXRAD precipitation estimates of high-intensity rainfall, focusing on flood-producing storms in the Missouri River Basin. NEXRAD estimates for these storms are compared with data from multiple raingage networks, including NWS recording and non-recording gages and ALERT raingage data for the Kansas City metropolitan area. Analyses include comparisons of gage and radar data at a wide range of temporal and spatial scales. Particular attention is paid to the October 4th, 1998, storm that produced severe flooding in Kansas City. NOTE: The phrase `NEXRAD operational products' in this abstract includes precipitation estimates generated using the Stage III and P1 algorithms. Both of these products estimate hourly accumulations on the (approximately) 4 km HRAP grid.

  15. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  16. Aircraft profile measurements of 18O/16O and D/H isotope ratios of cloud condensate and water vapor constrain precipitation efficiency and entrainment rates in tropical clouds

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.

    2011-12-01

    Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes

  17. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Spatiotemporal variability in the carbon isotope composition of sedimentary organic matter (OM) preserves information about the evolution of the biosphere and of the exogenic carbon cycle as a whole. Primary compositions, and imprints of the post-depositional processes that obscure them, exist at the scale of individual sedimentary grains (mm to micron). Secondary ion mass spectrometry (SIMS) (1) enables analysis at these scales and in petrographic context, (2) permits morphological and compositional characterization of the analyte and associated minerals prior to isotopic analysis, and (3) reveals patterns of variability homogenized by bulk techniques. Here we present new methods for in situ organic carbon isotope analysis with sub-permil precision and spatial resolution to 1 micron using SIMS, as well as new data acquired from a suite of Archean rocks. Three analytical protocols were developed for the CAMECA ims1280 at WiscSIMS to analyze domains of varying size and carbon concentration. Average reproducibility (at 2SD) using a 6 micron spot size with two Faraday cup detectors was 0.4 %, and 0.8 % for analyses using 1 micron and 3 micron spot sizes with a Faraday cup (for C-12) and an electron multiplier (for C-13). Eight coals, two ambers, a shungite, and a graphite were evaluated for micron-scale isotopic heterogeneity, and LCNN anthracite (delta C-13 = -23.56 +/- 0.1 %, 2SD) was chosen as the working standard. Correlation between instrumental bias and H/C was observed and calibrated for each analytical session using organic materials with H/C between 0.1 and 1.5 (atomic), allowing a correction based upon a C-13H/C-13 measurement included in every analysis. Matrix effects of variable C/SiO2 were evaluated by measuring mm to sub-micron graphite domains in quartzite from Bogala mine, Sri Lanka. Apparent instrumental bias and C-12 count rate are correlated in this case, but this may be related to a crystal orientation effect in graphite. Analyses of amorphous

  18. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    USGS Publications Warehouse

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  19. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    NASA Astrophysics Data System (ADS)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  20. Implementing a Global Tool for Mercy Corps Based on Spatially Continuous Precipitation Analysis for Resiliency Monitoring and Measuring at the Community-Scale

    NASA Astrophysics Data System (ADS)

    Tomlin, J. N.; El-Behaedi, R.; McCartney, S.; Lingo, R.; Thieme, A.

    2017-12-01

    Global water resources are important for societies, economies, and the environment. In Niger, limited water resources restrict the expansion of agriculture and communities. Mercy Corps currently works in over 40 countries around the world to address a variety of stresses which include water resources and building long-term food resilience. As Mercy Corps seeks to integrate the use of Earth observations, NASA has established a partnership to help facilitate this effort incorporating Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data to create a standardized precipitation index that highlights low and high rainfall from 1981 - 2016. The team created a Google Earth Engine tool that combines precipitation data with other metrics of stress in Niger. The system is designed to be able to incorporate groundwater storage data as it becomes available. This tool allows for near real-time updates of trends in precipitation and improves Mercy Corps' ability to spatially evaluate changes in resiliency by monitoring shocks and stressors.

  1. Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland).

    PubMed

    Gorka, Maciej; Jedrysek, Mariusz-Orion; Strapoc, Dariusz

    2008-06-01

    This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wrocław (SW Poland). The resulting equation of Local Meteoric Water Line for Wrocław is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wrocław precipitation: (i) low-temperature secondary sulphates forming in situ in Wrocław from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wrocław.

  2. A Statistical Study of Spatial Variation of Relativistic Electron Precipitation Energy Spectra With Polar Operational Environmental Satellites

    NASA Astrophysics Data System (ADS)

    Shekhar, S.; Millan, R. M.; Hudson, M. K.

    2018-05-01

    The mechanisms that drive relativistic electron precipitation (REP) from the radiation belts can be better understood with a better knowledge of the particle energies involved. National Oceanic and Atmospheric Administration Polar Operational Environmental Satellites, being a network of multiple satellites, can provide multiple point spectral data over a long time period, including the Van Allen Probe's era. The number of energy channels is limited, but the particle detectors on Polar Operational Environmental Satellites have a narrow field of view allowing an investigation of bounce loss cone particles. We use the ratio of count rates in the E3 (>300 keV) and the P6 (>700 keV) channels as a parameter to define spectral hardness. Using this parameter, the spatial variation of spectral hardness of REP events was investigated. It was found that very soft events were mostly found in the dusk-midnight-early morning magnetic local time sectors and L˜ 5-7 while the hardest events were located in the postnoon sector peaking at L˜ 4-5. The hardest events peaked at lower L shells, and less than 20% were coincident with low-energy (30-80 keV) proton precipitation. Further, around 70% of nightside REP coincident with proton precipitation was associated with stretched magnetic field lines indicating that curvature scattering may have been an important driver. Around 62% of nightside REP coincident with proton precipitation associated with relaxed magnetic field lines, suggesting a mechanism other than magnetic field curvature scattering, was highly energetic.

  3. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States

    NASA Astrophysics Data System (ADS)

    Wurster, Christopher M.; McFarlane, Donald A.; Bird, Michael I.

    2007-07-01

    Stable isotopes of faeces contain information related to the animals feeding ecology. The use of stable isotope values from subfossil faeces as a palaeoenvironmental indicator depends on how faithfully the animal records their local environment. Here we present insectivorous bat guano δ 13C and δ 15N values from a precipitation gradient across the southern United States and northern Mexico to compare with local vegetation and climate. We find δ 13C values to be an excellent predictor of expected C 4/CAM vegetation, indicating that the bats are non-selective in their diet. Moreover, we find bat guano δ 13C values to be strongly correlated with summer precipitation amount and winter precipitation ratio. We also find evidence for a significant relationship with mean annual temperature. In general, we do not find δ 15N values to be related to any parameters along the climatic gradient we examined. Additionally, we measured δ 13C and δ 15N values of bulk guano deposited annually from 1968 to 1987 in a varved guano deposit at Eagle Creek Cave, Arizona. Neither δ 13C nor δ 15N values were significantly related to various local meteorological variables; however, we found δ 13C values of guano to be significantly related to drought and to the North American Monsoon indicating bat guano δ 13C values preserve an interpretable record of large-scale atmospheric variability.

  4. When will trends in European mean and heavy daily precipitation emerge?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-03-01

    A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only; the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby, the TOE becomes a fundamentally limiting timescale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus, minimum temporal and spatial scales for adaptation planning are also given. In northern Europe, positive winter trends in mean and heavy precipitation, and in southwestern and southeastern Europe, summer trends in mean precipitation already emerge within the next few decades. However, across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend, in general, emerges earlier.

  5. Precipitation From a Multiyear Database of Convection-Allowing WRF Simulations

    NASA Astrophysics Data System (ADS)

    Goines, D. C.; Kennedy, A. D.

    2018-03-01

    Convection-allowing models (CAMs) have become frequently used for operational forecasting and, more recently, have been utilized for general circulation model downscaling. CAM forecasts have typically been analyzed for a few case studies or over short time periods, but this limits the ability to judge the overall skill of deterministic simulations. Analysis over long time periods can yield a better understanding of systematic model error. Four years of warm season (April-August, 2010-2013)-simulated precipitation has been accumulated from two Weather Research and Forecasting (WRF) models with 4 km grid spacing. The simulations were provided by the National Center for Environmental Prediction (NCEP) and the National Severe Storms Laboratory (NSSL), each with different dynamic cores and parameterization schemes. These simulations are evaluated against the NCEP Stage-IV precipitation data set with similar 4 km grid spacing. The spatial distribution and diurnal cycle of precipitation in the central United States are analyzed using Hovmöller diagrams, grid point correlations, and traditional verification skill scoring (i.e., ETS; Equitable Threat Score). Although NCEP-WRF had a high positive error in total precipitation, spatial characteristics were similar to observations. For example, the spatial distribution of NCEP-WRF precipitation correlated better than NSSL-WRF for the Northern Plains. Hovmöller results exposed a delay in initiation and decay of diurnal precipitation by NCEP-WRF while both models had difficulty in reproducing the timing and location of propagating precipitation. ETS was highest for NSSL-WRF in all domains at all times. ETS was also higher in areas of propagating precipitation compared to areas of unorganized diurnal scattered precipitation. Monthly analysis identified unique differences between the two models in their abilities to correctly simulate the spatial distribution and zonal motion of precipitation through the warm season.

  6. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States.

    PubMed

    Portmann, Robert W; Solomon, Susan; Hegerl, Gabriele C

    2009-05-05

    Changes in climate during the 20th century differ from region to region across the United States. We provide strong evidence that spatial variations in US temperature trends are linked to the hydrologic cycle, and we also present unique information on the seasonal and latitudinal structure of the linkage. We show that there is a statistically significant inverse relationship between trends in daily temperature and average daily precipitation across regions. This linkage is most pronounced in the southern United States (30-40 degrees N) during the May-June time period and, to a lesser extent, in the northern United States (40-50 degrees N) during the July-August time period. It is strongest in trends in maximum temperatures (T(max)) and 90th percentile exceedance trends (90PET), and less pronounced in the T(max) 10PET and the corresponding T(min) statistics, and it is robust to changes in analysis period. Although previous studies suggest that areas of increased precipitation may have reduced trends in temperature compared with drier regions, a change in sign from positive to negative trends suggests some additional cause. We show that trends in precipitation may account for some, but not likely all, of the cause point to evidence that shows that dynamical patterns (El Niño/Southern Oscillation, North Atlantic Oscillation, etc.) cannot account for the observed effects during May-June. We speculate that changing aerosols, perhaps related to vegetation changes, and increased strength of the aerosol direct and indirect effect may play a role in the observed linkages between these indices of temperature change and the hydrologic cycle.

  7. [Stochastic characteristics of daily precipitation and its spatiotemporal difference over China based on information entropy].

    PubMed

    Li, Xin Xin; Sang, Yan Fang; Xie, Ping; Liu, Chang Ming

    2018-04-01

    Daily precipitation process in China showed obvious randomness and spatiotemporal variation. It is important to accurately understand the influence of precipitation changes on control of flood and waterlogging disaster. Using the daily precipitation data measured at 520 stations in China during 1961-2013, we quantified the stochastic characteristics of daily precipitation over China based on the index of information entropy. Results showed that the randomness of daily precipitation in the southeast region were larger than that in the northwest region. Moreover, the spatial distribution of stochastic characteristics of precipitation was different at various grades. Stochastic characteri-stics of P 0 (precipitation at 0.1-10 mm) was large, but the spatial variation was not obvious. The stochastic characteristics of P 10 (precipitation at 10-25 mm) and P 25 (precipitation at 25-50 mm) were the largest and their spatial difference was obvious. P 50 (precipitation ≥50 mm) had the smallest stochastic characteristics and the most obviously spatial difference. Generally, the entropy values of precipitation obviously increased over the last five decades, indicating more significantly stochastic characteristics of precipitation (especially the obvious increase of heavy precipitation events) in most region over China under the scenarios of global climate change. Given that the spatial distribution and long-term trend of entropy values of daily precipitation could reflect thespatial distribution of stochastic characteristics of precipitation, our results could provide scientific basis for the control of flood and waterlogging disaster, the layout of agricultural planning, and the planning of ecological environment.

  8. Isotopic evidence of spatial magnitude of the Pb deposition near a lead smelter

    NASA Astrophysics Data System (ADS)

    Flament, P.; Franssens, M.; Debout, K.; Weis, D.

    2003-05-01

    In order to détermine the dry deposition of lead around a Pb-Zn refinery, two cross-sectional sampling experiments, using deposition plates, have been performed on a daiiy basis, ucder representative meteorological situations (north-easterly and south-westerly winds). The amount of lead deposited as well as its isotopic composition (expressed by the ^{206}Pb/^{207}Pb ratio) are systematically measured. For a daily production of approximately 670 metric tons of (Pb+Zn) the dry fallout, greater than 1000 μg Pb.h^{-1}.m^{-2} on the edge of the plant, falls to about 100 μg Pb.h^{-1}.m^{-2}, four kilometres away from the refinery. This value is still ten times higher than th urban background (<10 μg Pb.h^{-1}.m^{-2}). The spatial extension of the dry deposition plume is evidenced by the evolution of the isotopic signature of the refinery (1.10<^{206}Pb/^{207}), clearly distinct from the urban backgrounde signature (1.15<^{206}Pb/^{207}Pb<1.16). As a first estimate, the extension of the deposition plume seems not to be linked to the wind speed. At the opposite, diffuse emissions from slag heaps are related to this parameter.

  9. Simulation of Orographically-Driven Precipitation in Southern California

    NASA Astrophysics Data System (ADS)

    Carpenter, T. M.; Georgakakos, K. P.

    2008-12-01

    The proximity of the Pacific Ocean to the Transverse and Peninsular Mountain Ranges of coastal Southern California may lead to significant, orographically-enhanced precipitation in the region. With abundant moisture, such as evidenced in Pineapple Express events or atmospheric rivers, this precipitation may lead to other hydrologic hazards as flash flooding, landslides or debris flows. Available precipitation observation networks are relatively sparse in the mountainous regions and often do not capture the spatial variation of these events with high resolution. This study aims to simulate the topographically-driven precipitation over Southern California with high spatial resolution using a simplified orographic precipitation model. The model employs potential theory flow to estimate steady state three-dimensional wind fields for given free stream velocity forcing winds, atmospheric moisture advection, and cloud and precipitation microphysics proposed by Kessler (1969). The advantage of this modeling set-up is the computational efficiency as compared to regional mesoscale models such as the MM5. For this application, the Southern California region, comprised of the counties of Santa Barbara, Ventura, Los Angeles, Orange, and San Diego, and portions of San Bernardino and Riverside counties, are modeled at a 3-km resolution. The orographic precipitation model is forced by free stream wind velocities given by the 700mb winds from the NCEP Reanalysis I dataset. Atmospheric moisture initial conditions are defined also by the NCEP Reanalysis I dataset, and updated 4x- daily with the available 6-hourly NCEP Reanalysis forcing. This paper presents a comparison of the simulated precipitation to observations for over a variety of spatial scales and over the historical wet season periods from October 2000 to April 2005. The comparison is made over several performance measurements including (a) the occurrence/non-occurrence of precipitation, (b) overall bias and correlation, (c

  10. Importance of orographic precipitation to the water resources of Monteverde, Costa Rica

    NASA Astrophysics Data System (ADS)

    Guswa, Andrew J.; Rhodes, Amy L.; Newell, Silvia E.

    2007-10-01

    Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Development associated with ecotourism has put significant stress on water resources, and recent work has shown evidence that changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species. Precipitation samples collected from 2003 to 2005 reveal a seasonal signal in stable isotope composition, as measured by δ 18O and δ 2H, that is heaviest during the dry and transitional seasons. Attenuated versions of this signal propagate through to stream samples and provide a means of determining the importance of precipitation delivered by the trade winds during the dry and transitional seasons to water resources for the region. Results from six catchments on the leeward slope indicate that topography exerts a strong control on the importance of orographic precipitation to stream baseflow. The contributions are greatest in those catchments that are close to the Brillante Gap in the Continental Divide. Differences in the temporal variation of precipitation and streamflow isotope compositions provide insight to the hydrologic pathways that move water to the streams.

  11. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  12. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  13. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS.

    PubMed

    Konegger-Kappel, Stefanie; Prohaska, Thomas

    2016-01-01

    Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from

  14. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  15. Fractionation of silver isotopes in native silver explained by redox reactions

    NASA Astrophysics Data System (ADS)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  16. The Origin of Antarctic Precipitation: A Modeling Approach

    NASA Technical Reports Server (NTRS)

    Delaygue, Gilles; Masson, Valerie; Jouzel, Jean; Koster, Randal D.; Healy, Richard J.

    1998-01-01

    Isotope concentrations in polar ice cores have long been used to estimate paleotemperatures. Underlying the use of this "isotope paleothermometer" is the assumption that the relationship between surface temperature and isotope concentration over time at a single geographical point is the same as that observed over space during the present-day climate. The validity of this assumption may in fact be compromised by several factors related to climate change. The specific factor studied in this paper involves the evaporative sources for polar precipitation. Climatic changes in the relative strengths of these sources would imply a need for a recalibration of the paleothermometer. To quantify such changes, we performed two GCM simulations, one of present-day climate and the other of the climate during the Last Glacial Maximum (LGM), roughly 18000 years ago. Evaporative sources of Antarctic precipitation were established using special tracer diagnostics. Results suggest that polar precipitation during the LGM does indeed consist of (relatively) more water from tropical oceans, a direct reflection of the LGM's increased equator-to-pole temperature gradient and its increased sea ice extent, which reduces high latitude evaporation. This result implies that an uncalibrated ice core paleothermometer would produce LGM temperatures that are biased slightly low. Because LGM boundary conditions are still under debate, we performed a third GCM simulation using a modified set of LGM boundary conditions. Using this simulation gives some qualitatively similar results, though the tropical contribution is not quite as high. Uncertainties in the LGM boundary conditions does hamper success in calibrating the paleothermometer.

  17. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Henebry, G. M.

    2014-02-01

    We evaluated the spatial and temporal responses of precipitation in the basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean (IO) dipole modes using observed precipitation records at 43 stations across the Ganges and Brahmaputra basins from 1982 to 2010. Daily observed precipitation records were extracted from Global Surface Summary of the Day dataset and spatial and monthly anomalies were computed. The anomalies were averaged for the years influenced by climate modes combinations. Occurrences of El Niño alone significantly reduced (60% and 88% of baseline in the Ganges and Brahmaputra basins, respectively) precipitation during the monsoon months in the northwestern and central Ganges basin and across the Brahmaputra basin. In contrast, co-occurrence of La Niña and a positive IO dipole mode significantly enhanced (135% and 160% of baseline, respectively) precipitation across both basins. During the co-occurrence of neutral phases in both climate modes (occurring 13 out of 28 yr), precipitation remained below average to average in the agriculturally extensive areas of Haryana, Uttar Pradesh, Bihar, eastern Nepal, and the Rajshahi district in Bangladesh in the Ganges basin and northern Bangladesh, Meghalaya, Assam, and Arunachal Pradesh in the Brahmaputra basin. This pattern implies that a regular water deficit is likely in these areas with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Major flooding and drought occurred as a consequence of the interactive effects of the ENSO and IO dipole modes, with the sole exception of extreme precipitation and flooding during El Niño events. This observational analysis will facilitate well informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under changing climate.

  18. Evaluating the extreme precipitation events using a mesoscale atmopshere model

    NASA Astrophysics Data System (ADS)

    Yucel, I.; Onen, A.

    2012-04-01

    Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.

  19. How to explain Si isotopes of chert?

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    The variations of d30Si values in diagenetic chert and chert- associated BIFs over time can be used to reconstruct the environmental conditions of the early Earth, and become a hot topic in the Si isotope society. However, there are several different views of explaining the variation of d30Si values over time. Moreover, there are disputes in explaining the distribution of Si isotope in several main reservoirs in surface systems. Those disagreements are caused by lacking key Si isotope fractionation factors associated with the formation processes of chert and its altered products. There are many unexplained observations about Si isotope distributions in Earth's surface systems (Opfergelt and Delmelle, 2012). For example, the deduced Si isotope equilibrium fractionation factors by Rayleigh model at ambient temperature between clay and the solution D30Siclay-solution = -1.5 ‰ and -2.05 ‰ (Hughes et al., 2013) obviously disagree with common sense, which dictates that stiffer chemical bonds will enrich heavier isotopes, i.e., the precipitated minerals will preferentially incorporate heavy isotopes relative to aqueous H4SiO4 due to their shorter Si-O bonds. Another similar case is the fractionation between quartz and solution. Most field observations suggested that solution will be enriched with heavier Si isotope compared to quartz, conflicting to the fact that quartz is the one with much shorter Si-O bonds than aqueous H4SiO4 (ca. 1.610Å vs. 1.639Å). Here we provide equilibrium and kinetic Si isotope fractionation factors associated with the formation of amorphous quartz and other secondary minerals in polymerization, co-precipitation and adsorption processes. The adsorption processes of silica gel to Fe-hydroxides have been carefully examined. The Si isotope fractionations due to the formation of mono-dentate to quadru-dentate adsorbed Fe-Si complexes have been calculated. These data can explain well the experimental observations (e.g., Zheng et al., 2016) and

  20. Tree-ring width based temperature and precipitation reconstruction in southeastern China

    NASA Astrophysics Data System (ADS)

    Shi, Jiangfeng; Shi, Shiyuan; Zhao, Yesi; Lu, Huayu

    2017-04-01

    Southeastern China is a subtropical region where the climate is dominated by the Asian monsoon climate system, with high temperature and precipitation in summer, and low temperature and precipitation in winter. Tree-ring research has been developed very fast in the past decade in the region. Some studies show that coniferous tree growth in the region is limited by temperatures in prior winter and during the growing season (i.e., prior November to current April, April to July, etc.), however to different limiting levels. Higher temperature in the dormant season means less damage to leaves and roots, and less consumption of previously stored carbohydrates and starches that can be used for tree growth in the coming year. The mechanism of positive relationships with the growing season is the same as that in high-latitude and high-elevation regions. The temperature reconstructions match each other very well at decadal to multi-decadal scales during the past 150 years at a large spatial scale, that is, of 700 km away, even though there are some discrepancies in the early part of the comparisons. Possible reasons for the discrepancies may include local temperature differences, small sample depth in the early part of the reconstructions, and/or juvenile effects. Generally, there is a weak precipitation signal in tree-ring width chronlogies. However, some studies have shown potentials in precipitation reconstruction in recent years, such as using tree-ring width chrnologies by taking samples at some special sites, using adjusted late-wood width chronlogies, and using stable isotopes. Thus, we might have a comprehensive understanding of the Asian monsson climate system over the past several centuries through temperature and precipitation reconstruction together using tree-ring series.

  1. Multiple stable isotope fronts during non-isothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  2. Paleoclimate Reconstruction at Lamanai, Belize Using Oxygen-Isotope Tropical Dendrochronology

    NASA Astrophysics Data System (ADS)

    Prentice, A.; Webb, E. A.; White, C. D.; Graham, E.

    2009-05-01

    Tropical dendrochronology can be complicated because many trees growing in these areas lack distinct visible annual rings. However, the oxygen-isotope composition of wood growing in tropical regions can provide a record of seasonal fluctuations in the amount of precipitation even when visible rings are absent. Variations in the oxygen-isotope compositions of cellulose as the trees grow can be related to the relative timing of wet and dry seasons and used to identify periods of drought. In this study, the oxygen-isotope composition was determined for cellulose extracted from living trees at the site of Lamanai, Belize to assess the variation in oxygen-isotope values that result from heterogeneity within individual tree rings and seasonal fluctuations in amount of precipitation. In temperate regions, the latewood rings that form during periods of reduced growth are traditionally selected for oxygen-isotope analysis of cellulose because their oxygen-isotope compositions are more directly influenced by climate and precipitation during the growing season. However, in tropical isotope dendrochronology, when visible rings are present, detailed sampling of both the light coloured earlywood and the denser latewood is required. At Lamanai, a seasonal signal was evident in the oxygen- isotope composition of the cellulose when tree rings were sectioned in very small increments (approximately every mm), sub-sampling both earlywood and latewood. However, the visible rings did not always correspond with minimum or maximum oxygen-isotope values. As a result, the amplitude of the oxygen-isotope signal obtained by considering only latewood samples is smaller than that obtained from fine-increment sampling. Hence, the oxygen-isotope values of latewood samples alone did not provide accurate data for climate reconstruction. Multiple series of latewood samples extracted from different cross-sections of the same tree did not consistently show the same trends in oxygen isotope values

  3. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008

    USGS Publications Warehouse

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.

  4. Ca isotopic geochemistry of an Antarctic aquatic system

    USGS Publications Warehouse

    Lyons, W. Berry; Bullen, Thomas D.; Welch, Kathleen A.

    2017-01-01

    The McMurdo Dry Valleys, Antarctica, are a polar desert ecosystem. The hydrologic system of the dry valleys is linked to climate with ephemeral streams that flow from glacial melt during the austral summer. Past climate variations have strongly influenced the closed-basin, chemically stratified lakes on the valley floor. Results of previous work point to important roles for both in-stream processes (e.g., mineral weathering, precipitation and dissolution of salts) and in-lake processes (e.g., mixing with paleo-seawater and calcite precipitation) in determining the geochemistry of these lakes. These processes have a significant influence on calcium (Ca) biogeochemistry in this aquatic ecosystem, and thus variations in Ca stable isotope compositions of the waters can aid in validating the importance of these processes. We have analyzed the Ca stable isotope compositions of streams and lakes in the McMurdo Dry Valleys. The results validate the important roles of weathering of aluminosilicate minerals and/or CaCO3 in the hyporheic zone of the streams, and mixing of lake surface water with paleo-seawater and precipitation of Ca-salts during cryo-concentration events to form the deep lake waters. The lakes in the McMurdo Dry Valleys evolved following different geochemical pathways, evidenced by their unique, nonsystematic Ca isotope signatures.

  5. Carbon and hydrogen isotope composition of plant biomarkers from lake sediments as proxies for precipitation changes across Heinrich Events in the subtropics

    NASA Astrophysics Data System (ADS)

    Arnold, T. E.; Diefendorf, A. F.; Brenner, M.; Freeman, K. H.; Curtis, J. H.

    2015-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  6. Rainfall and cave water isotopic relationships in two South-France sites

    NASA Astrophysics Data System (ADS)

    Genty, D.; Labuhn, I.; Hoffmann, G.; Danis, P. A.; Mestre, O.; Bourges, F.; Wainer, K.; Massault, M.; Van Exter, S.; Régnier, E.; Orengo, Ph.; Falourd, S.; Minster, B.

    2014-04-01

    This article presents isotopic measurements (δ18O and δD) of precipitation and cave drip water from two sites in southern France in order to investigate the link between rainfall and seepage water, and to characterize regional rainfall isotopic variability. These data, which are among the longest series in France, come from two rainfall stations in south-west France (Le Mas 1996-2012, and Villars 1998-2012; typically under Atlantic influence), and from one station in the south-east (Orgnac 2000-2012; under both Mediterranean and Atlantic influence). Rainfall isotopic composition is compared to drip water collected under stalactites from the same sites: Villars Cave (four drip stations 1999-2012) in the south-west, and Chauvet Cave (two drip stations 2000-2012) in the south-east, near Orgnac. The study of these isotopic data sets allows the following conclusions to be drawn about the rainfall/drip water relationships and about rainfall variability: (1) the cave drip water isotopic composition does not show any significant changes since the beginning of measurements; in order to explain its isotopic signature it is necessary to integrate weighted rainfall δ18O of all months during several years, which demonstrates that, even at shallow depths (10-50 m), cave drip water is a mixture of rain water integrated over relatively long periods, which give an apparent time residence from several months to up to several years. These results have important consequences on the interpretation of proxies like speleothem fluid inclusions and tree-ring cellulose isotopic composition, which are used for paleoclimatic studies; (2) in the Villars Cave, where drip stations at two different depths were studied, lower δ18O values were observed in the lower galleries, which might be due to winter season overflows during infiltration and/or to older rain water with a different isotopic composition that reaches the lower galleries after years; (3) local precipitation is characterized by

  7. Trends in monthly precipitation over the northwest of Iran (NWI)

    NASA Astrophysics Data System (ADS)

    Asakereh, Hossein

    2017-10-01

    Increasing global temperatures during the last century have had their own effects on other climatic conditions, particularly on precipitation characteristics. This study was meant to investigate the spatial and temporal monthly trends of precipitation using the least square error (LSE) approach for the northwest of Iran (NWI). To this end, a database was obtained from 250 measuring stations uniformly scattered all over NWI from 1961 to 2010. The spatial average of annual precipitation in NWI during the period of study was approximately 220.9-726.7 mm. The annual precipitation decreased from southwest to northeast, while the large amount of precipitation was concentrated in the south-west and in the mountainous areas. All over NWI, the maximum and minimum precipitation records occurred from March to May and July to September, respectively. The coefficient of variation (CV) is greater than 44 % in all of NWI and may reach over 76 % in many places. The greatest range of CV, for instance, occurred during July. The spatial variability of precipitation was consistent with a tempo-spatial pattern of precipitation trends. There was a considerable difference between the amounts of change during the months, and the negative trends were mainly attributed to areas concentrated in eastern and southern parts of NWI far from the western mountain ranges. Moreover, limited areas with positive precipitation trends can be found in very small and isolated regions. This is observable particularly in the eastern half of NWI, which is mostly located far from Westerlies. On the other hand, seasonal precipitation trends indicated a slight decrease during winter and spring and a slight increase during summer and autumn. Consequently, there were major changes in average precipitation that occurred negatively in the area under study during the observation period. This finding is in agreement with those findings by recent studies which revealed a decreasing trend of around 2 mm/year over NWI

  8. What Drives Hydrogen Isotopic Variability Recorded by Biomarkers in Sediments of Lake Karakul, Pamir?

    NASA Astrophysics Data System (ADS)

    Aichner, B.; Mischke, S.; Pausata, F. S. R.; Werner, M.; Zhang, Q.; Heinecke, L.; Feakins, S. J.; Sachse, D.; Mahmoudov, Z.; Rajabov, I.

    2017-12-01

    Central Asia is a climate sensitive region located at the boundary of large scale atmospheric circulation systems. To examine glacial to interglacial hydrological changes in the region, we analysed the hydrogen isotopic composition (δD values) of n-alkanes in a 30-ka record from Lake Karakul, eastern Pamir (altitude: 3,915m, MAT: -3.9 °C, MAP: 82 mm). δD values of both aquatic and terrestrial compounds showed distinct trends throughout the studied time interval, with generally higher values during the glacial and lower values during the Holocene, and variability of up to 60‰. In particular shifts towards higher δD values were observed for aquatic biomarkers at ca. 30, 27, and 15 ka BP. Temperature and precipitation effects alone cannot explain the higher δD values during the glacial and the large isotopic amplitudes. To explain these observations we conducted a set of experiments using atmospheric models with embedded isotope modules (CAM3iso- and ECHAM5-wiso). We assume that terrestrial n-alkanes mainly record the isotopic signature of summer precipitation within the lower elevated parts of the Karakul Basin. Based on the model output we hypothesize that shifts between local and more distant vapour sources are the reason behind the trends within isotopic data. Data derived from aquatic biomarkers are more difficult to explain due to multiple influencing factors on δD of the lake water. Assuming that the lake water integrates an annual isotopic signal from the whole lake catchment, we suggest that a change in precipitation seasonality drives the large variability of hydrogen isotopic values. This is in agreement with the models, which suggest reduced winter (more negative δD) and slightly higher summer precipitation (more positive δD) during the glacial compared to the Holocene. Consequently, a net-increase of isotopically enriched inflow into the lake could explain the three distinct shifts towards higher δD values. Expansion of terrestrial vegetation

  9. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  10. What water isotopes tell us about water cycle responses to climate change

    NASA Astrophysics Data System (ADS)

    Raudzens Bailey, A.; Singh, H. A.; Nusbaumer, J. M.; Dee, S.; Blossey, P. N.; Posmentier, E. S.

    2017-12-01

    The water cycle is expected to respond strongly to rising global temperatures. Models predict regional imbalances in evaporation and precipitation will intensify, resulting in a slowing of the large-scale circulation. This slowing will extend the moisture length scale by increasing the amount of time water resides in the atmosphere. However, verifying these changes observationally is challenging. Isotope ratios in water vapor and precipitation represent an integrated record of moisture's journey from evaporative source to precipitation sink. Consequently, they provide a unique opportunity to identify changes in moisture length scale associated with shifts in regional hydrologic balance. Leveraging satellite retrievals, box models, climate simulations, and in situ data, this presentation demonstrates how water isotope ratios can be used to estimate water cycle changes over the historical period and into the future. These changes are closely linked to variations in the divergence of atmospheric moisture fluxes, which result from variations in specific humidity, wind direction, and wind speed. This presentation highlights the extent to which isotopic measurements allow us to track changes in the dynamic, or wind-driven, component of moisture transport and to investigate whether remote moisture contributions are becoming increasingly important in augmenting local precipitation.

  11. Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Kennedy, Casey D.; Bowen, Gabriel J.

    2011-10-01

    Large-scale climate teleconnections such as the Pacific/North American (PNA) pattern strongly influence atmospheric processes and continental climate. Here we show that precipitation δ 18O values in the contiguous United States are correlated with an index of the PNA pattern. The δ 18O/PNA relationship varies across the study region and exhibits two prominent modes, with positive correlation in the western USA and negative correlation in the east. This spatial pattern appears not to reflect variation in local climate variables, but rather primarily reflects differences in atmospheric circulation and moisture sources associated with PNA. Our results suggest that strong antiphase variation in paired paleo-water δ 18O proxy records from regions characterized by the two modes of δ 18O/PNA correlation, especially in the Midwest and southwestern USA, may provide a robust basis for reconstruction of past variation in the PNA pattern.

  12. Kinetic Fractionation of Stable Isotopes in Carbonates on Mars: Terrestrial Analogs

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Golden, D. C.; Ming, Douglas W.; McKay, Gordon A.

    2003-01-01

    An ancient Martian hydrosphere consisting of an alkali-rich ocean would likely produce solid carbonate minerals through the processes of evaporation and/or freezing. We postulate that both (or either) of these kinetically-driven processes would produce carbonate minerals whose stable isotopic compositions are highly fractionated (enriched) with respect to the source carbon. Various scenarios have been proposed for carbonate formation on Mars, including high temperature formation, hydrothermal alteration, precipitation from evaporating brines, and cryogenic formation. 13C and 18O -fractionated carbonates have previously been shown to form kinetically under some of these conditions, ie.: 1) alteration by hydrothermal processes, 2) low temperature precipitation (sedimentary) from evaporating bicarbonate (brine) solutions, and 3) precipitation during the process of cryogenic freezing of bicarbonate-rich fluids. Here we examine several terrestrial field settings within the context of kinetically controlled carbonate precipitation where stable isotope enrichments have been observed.

  13. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  14. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    NASA Astrophysics Data System (ADS)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  15. First field-based observations of δ2H and δ18O values of precipitation and other water bodies in the Mongolian Gobi desert

    NASA Astrophysics Data System (ADS)

    Burnik Šturm, Martina; Ganbaatar, Oyunsaikhan; Voigt, Christian C.; Kaczensky, Petra

    2017-04-01

    Hydrogen (δ2H) and oxygen (δ18O) isotope values of water are widely used to track the global hydrological cycle and the global δ2H and δ18O patterns of precipitation are increasingly used in studies on animal migration, forensics, food authentication and traceability studies. However, δ2H and δ18O values of precipitation spanning one or more years are available for only a few 100 locations worldwide and for many remote areas such as Mongolia data are still scarce. We obtained the first field-based δ2H and δ18O isotope data of event-based precipitation, rivers and other water bodies in the extreme environment of the Dzungarian Gobi desert in SW Mongolia, covering a period of 16 months (1). Our study area is located over 450 km north-east from the nearest IAEA GNIP station (Fukang station, China) from which it is separated by a mountain range at the international border between China and Mongolia. Isotope values of the collected event-based precipitation showed and extreme range and a high seasonal variability with higher and more variable values in summer and lower in winter. The high variability could not be explained by different origin of air masses alone (i.e. NW polar winds over Russia or westerlies over Central Asia; analyzed using back-trajectory HYSPLIT model), but is likely a result of a combination of different processes affecting the isotope values of precipitation in this area. The calculated field-based local meteoric water line (LMWL, δ2H=(7.42±0.16)δ18O-(23.87±3.27)) showed isotopic characteristics of precipitation in an arid region. We observed a slight discrepancy between the filed based and modelled (Online Isotope in Precipitation Calculator, OIPC) LMWL which highlighted the difficulty of modelling the δ2H and δ18O values for areas with extreme climatic conditions and thus emphasized the importance of collecting long-term field-based data. The collected isotopic data of precipitation and other water bodies provide a basis for future

  16. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  17. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  18. The magnesium isotope (δ26Mg) signature of dolomites

    NASA Astrophysics Data System (ADS)

    Geske, A.; Goldstein, R. H.; Mavromatis, V.; Richter, D. K.; Buhl, D.; Kluge, T.; John, C. M.; Immenhauser, A.

    2015-01-01

    Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (δ18O, δ13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipitation environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evaporative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine ("mixing zone") dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic investigation of dolomite magnesium isotope ratios (δ26Mgdol). Dolomite δ26Mg ratios documented here range, from -2.49‰ to -0.45‰ (δ26Mgmean = -1.75 ± 1.08‰, n = 42). The isotopically most depleted end member is represented by earliest diagenetic marine evaporative sabkha dolomites (-2.11 ± 0.54‰ 2σ, n = 14). In comparing ancient compositions to modern ones, some of the variation is probably due to alteration. Altered marine (-1.41 ± 0.64‰ 2σ, n = 4), and earliest diagenetic lacustrine and palustrine dolomites (-1.25 ± 0.86‰ 2σ, n = 14) are less negative than sabkha dolomites but not distinct in composition. Various hydrothermal dolomites are characterized by a comparatively wide range of δ26Mg ratios, with values of -1.44 ± 1.33‰ (2σ, n = 10). By using fluid inclusion data and clumped isotope thermometry (Δ47) to represent temperature of precipitation for hydrothermal dolomites, there is no correlation between fluid temperature (∼100 to 180 °C) and dolomite Mg isotope signature (R2 = 0.14); nor is there a correlation between δ26Mgdol and δ18Odol. Magnesium-isotope values of different dolomite types are affected by a complex array of different Mg sources and sinks, dissolution/precipitation and non

  19. Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania

    USGS Publications Warehouse

    Otte, Insa; Detsch, Florian; Gutlein, Adrian; Scholl, Martha A.; Kiese, Ralf; Appelhans, Tim; Nauss, Thomas

    2017-01-01

    To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n = 2,140, R2 = .91, p < .001. We investigated the precipitation-type-specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = −0.11‰ × 100 m−1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south- and north-easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of dexcess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.

  20. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  1. Investigations of the Hydrologic Cycle in the Arctic Climate System Using Water Isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, Ben Gordon

    Warming has caused widespread changes to the Arctic hydrologic cycle, indicated by sea ice reductions, the Greenland Ice Sheet (GIS) mass loss, and permafrost degradation. Understanding Arctic hydrologic processes is essential for quantifying hydrological responses to climate change. A valuable tool to study these responses is the hydrogen and oxygen isotope ratios of water. Studies presented here aim to both innovatively apply water isotopes with existing understanding, and gain new knowledge in isotope systematics. I present several studies here. First, I show that Arctic precipitation increases with enhanced evaporation due to sea ice reduction; each 100,000 km2 loss in sea ice area increases the fraction of Arctic sourced moisture in total precipitation by 11 to 18%. Second, I argue that vapor sublimated from the GIS significantly contributes to summer precipitation at Summit, Greenland. This conclusion is first supported by isotopic variations in the daily precipitation collected at Summit for three years, and then further verified by 30 annual isotopic cycles in a shallow ice core. The result is not only important for quantifying the current ice sheet mass balance, but also for inferences of paleoclimate from ice cores. Third, I demonstrate that local scale atmospheric circulation in the glacier-free strip of West Greenland is dominated by convergence of dry glacial air masses from the east and moist marine air masses from the west. The dynamics of this convergence are affected by both regional radiation balance differences and broader circulation patterns such as the North Atlantic Oscillation. Humidity variations associated with these air masses control local precipitation and lake evaporation. Finally, along the east-west moisture gradient in West Greenland, lake evaporation also exhibits systematic changes in rate and isotopic enrichment, a result that is important for lake sediment core research. I have made advances in understanding water isotope

  2. Re — Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Echeverria, L. M.; Shirey, S. B.; Horan, M. F.

    1991-04-01

    The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (ɛNd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (γOs) ranged from 0 to +22, and model-initial μ values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.

  3. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H)

    NASA Astrophysics Data System (ADS)

    Joshi, Suneel Kumar; Rai, Shive Prakash; Sinha, Rajiv; Gupta, Sanjeev; Densmore, Alexander Logan; Rawat, Yadhvir Singh; Shekhar, Shashank

    2018-04-01

    Rapid groundwater depletion from the northwestern Indian aquifer system in the western Indo-Gangetic basin has raised serious concerns over the sustainability of groundwater and the livelihoods that depend on it. Sustainable management of this aquifer system requires that we understand the sources and rates of groundwater recharge, however, both these parameters are poorly constrained in this region. Here we analyse the isotopic (δ18O, δ2H and tritium) compositions of groundwater, precipitation, river and canal water to identify the recharge sources, zones of recharge, and groundwater flow in the Ghaggar River basin, which lies between the Himalayan-fed Yamuna and Sutlej River systems in northwestern India. Our results reveal that local precipitation is the main source of groundwater recharge. However, depleted δ18O and δ2H signatures at some sites indicate recharge from canal seepage and irrigation return flow. The spatial variability of δ18O, δ2H, d-excess, and tritium reflects limited lateral connectivity due to the heterogeneous and anisotropic nature of the aquifer system in the study area. The variation of tritium concentration with depth suggests that groundwater above c. 80 mbgl is generally modern water. In contrast, water from below c. 80 mbgl is a mixture of modern and old waters, and indicates longer residence time in comparison to groundwater above c. 80 mbgl. Isotopic signatures of δ18O, δ2H and tritium suggest significant vertical recharge down to a depth of 320 mbgl. The spatial and vertical variations of isotopic signature of groundwater reveal two distinct flow patterns in the aquifer system: (i) local flow (above c. 80 mbgl) throughout the study area, and (ii) intermediate and regional flow (below c. 80 mbgl), where water recharges aquifers through large-scale lateral flow as well as vertical infiltration. The understanding of spatial and vertical recharge processes of groundwater in the study area provides important base-line knowledge

  4. Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.

    2015-12-01

    Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.

  5. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain

  6. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we

  7. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    NASA Astrophysics Data System (ADS)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated

  8. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm

  9. Temporal and spatial variations of precipitation in Northwest China during 1960-2013

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhang, Yongyong; Hong, Si

    2017-01-01

    Based on the precipitation data from 96 weather stations in Northwest China (NWC) during 1960-2013, the Continuous Wavelet Transform (CWT) and the Mann-Kendall (MK) test were applied to analyze the precipitation spatiotemporal variations at different time scales. The relationships between the original precipitation and different periodic components were investigated. The results indicated that the annual precipitation was significantly increasing (P < 0.01) at the rate of 0.55 mm/a in the NWC. In terms of seasonal precipitation, the summer original precipitation significantly increased (P < 0.05) in the Southern Altay Mountain Basin (SAMB), Qaidam Basin (QB), Qiang Tang Plateau Basin (QTPB), Turpan-Hami Basin (THB), Tarim Desert Basin (TDB), Northern Tianshan Mountain Basin (NTMB) and NWC. For the winter original precipitation, except the Inner Mongolia Inland Rivers Basin and Northern Kunlun Mountain Basin, the significant increases (P < 0.05) were detected in the other sub-basins. In terms of monthly precipitation, significant increases were detected in January in the SAMB, NTMB and NWC, and July in the QB, Headstreams of Tarim River Basin (HTRB) and N. Additionally, most of the increasing and decreasing trends began in the mid-1980s or mid-1990s. Moreover, the periodic components were not always similar to the original data with the significant trends. The dominant scale of the original data from the periodic components was different in spatiotemporal distribution. Meanwhile, the relationship between the precipitation and El Niño-Southern Oscillation (ENSO) was different from period to period and from time scale to time scale. This study will help to develop better management measures to account for climate change and the supply/demand of water.

  10. Carbon Dioxide and CO2 Isotopes at Three Spatial Scales Over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Schaeffer, S. M.; Miller, J. B.; Stephens, B. B.

    2006-12-01

    Recent studies highlight the importance of western mountain regions to the North American carbon sink, suggesting 25 to 50 percent of the U.S. sink can be attributed to montane ecosystems. Isotopes of CO2 provide insight into ecosystem carbon cycling, plant physiological processes, and atmospheric boundary-layer dynamics, and are useful in integration of processes over multiple scales. CO2 isotopes have played a central role in our understanding of the magnitude and inter-annual dynamics of the terrestrial carbon sink at a variety of spatial and temporal scales, and will be crucial to understanding the carbon balance and carbon accounting of the North American continent. In 2005, we began a long-term study examining biosphere- atmosphere exchange of CO2 and its stable isotopes over the Rocky Mountains in Colorado. Measurements are made at 3 sites representing 3 different spatial scales. These include a subalpine forest site (3050 m elevation, the Niwot Ridge AmeriFlux site), a tundra site 3 km away (3520 m, representing the overlying forest air), and an aircraft site 125 km to the northeast over the plains (vertical profiles from ground level at 1740 m to 8000 m, representing the regional convective boundary layer and the free troposphere). The tundra (NWR) and aircraft (CAR) sites have been part of NOAA/CCGG Cooperative Air Sampling Network for many years. Observed CO2 and δ13C showed seasonal variation (> 10 ppm and >0.5 permil) and strong local variation at all sites (>100 ppm and >5 permil at the forest site). The forest exerted a strong respiratory influence on the overlying air during the fall and winter. Measurements 10m above the top of the forest canopy in winter were always higher in CO2 (~ 3 ppm) and more negative in δ13C of CO2 ~ 0.3 permil) than those at the tundra site. Summer data are still being analyzed, but we expect this to shift in the other direction during the growing season. Substantial synoptic variation in CO2 and δ13C was observed at

  11. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffry M.

    2015-01-01

    We evaluated the spatial and seasonal responses of precipitation in the Ganges and Brahmaputra basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) modes using Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation data from 1901 to 2010 with a spatial resolution of 0.5° × 0.5°. The GPCC monthly total precipitation climatology targeting the period 1951–2000 was used to compute gridded monthly anomalies for the entire time period. The gridded monthly anomalies were averaged for the years influenced by combinations of climate modes. Occurrences of El Niño alone significantly reduce (88% of the long-term average (LTA)) precipitation during the monsoon months in the western and southeastern Ganges Basin. In contrast, occurrences of La Niña and co-occurrences of La Niña and negative IOD events significantly enhance (110 and 109% of LTA in the Ganges and Brahmaputra Basin, respectively) precipitation across both basins. When El Niño co-occurs with positive IOD events, the impacts of El Niño on the basins' precipitation diminishes. When there is no active ENSO or IOD events (occurring in 41 out of 110 years), precipitation remains below average (95% of LTA) in the agriculturally intensive areas of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Western Nepal in the Ganges Basin, whereas precipitation remains average to above average (104% of LTA) across the Brahmaputra Basin. This pattern implies that a regular water deficit is likely, especially in the Ganges Basin, with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Historically, major droughts occurred during El Niño and co-occurrences of El Niño and positive IOD events, while major flooding occurred during La Niña and co-occurrences of La Niña and negative IOD events in the basins. This observational analysis will facilitate well

  12. Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.

    2017-12-01

    Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally

  13. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  14. Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Florea, Lee J.

    2013-05-01

    This paper considers the variation of δ18O and δ2H (VSMOW) in precipitation and shallow groundwater from carbonate aquifers that lend insight into the source and timing of recharge within temperate, epigenic karst. The shallow groundwater collected during 2010 and 2011 at Stream Cave (SC) and Natural Bridge Caverns (NBC) represent one input to and the primary output from the Redmond Creek karst aquifer in the Cumberland Plateau of southeast Kentucky, respectively. These data are compared with the isotopic composition of concurrent samples of precipitation from the same watershed that covers some 1900 ha. Values of δ18O and δ2H at SC and NBC are statistically similar and cluster at the midpoint of the local meteoric water line. These values remain surprisingly constant despite seasonal changes in temperature regimens and discharge. Samples in 2012 from regional springs that include Redmond Creek are more depleted in the heavier isotope and similarly stable despite coming from aquifers of a range of sizes and physical characteristics. Applying a Priestly-Taylor model for daily values of potential evapotranspiration, only 43% of the 1.10 m of precipitation in the 2010-2011 dataset remains as potential recharge, primarily during cooler months with lower solar insolation. Weighting δ18O and δ2H values of precipitation by potential recharge creates a better match with the isotopic composition of shallow groundwater than by weighting by precipitation amount. The isotopic composition and deuterium excess of precipitation samples are directly and inversely proportional to temperature, respectively. Deuterium excess in this study and displays intra- and inter-annual variation that ranges from a minimum of +11.1‰ to a maximum of +29.5‰ that demonstrate the higher-than-average deuterium excess in greater Appalachia and the shifting latitude of moisture sources, including a significant winter component of re-evaporated, continental moisture.

  15. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England

    NASA Astrophysics Data System (ADS)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.

    2010-07-01

    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  16. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  17. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  18. Spatial and Temporal Patterns in the Carbon Isotopic Signal of Leaf Wax Aerosols in Continental Air Masses: Linkages with Ecosystem Discrimination

    NASA Astrophysics Data System (ADS)

    Weber, J.; Conte, M. H.

    2006-12-01

    Temporal and spatial variations in the concentration and isotopic composition of atmospheric carbon dioxide can be used to estimate the relative magnitudes of the terrestrial and oceanic carbon sinks. An important model parameter is the terrestrial photosynthetic carbon isotopic fractionation of CO2 (Δ), yet estimating Δ over the large spatial scales required by models remains problematic. Epiculticular leaf waxes appear to closely reflect the plant's carbon isotopic discrimination; therefore, the ablated wax aerosols present in well-mixed continental air masses may be used as a proxy to estimate the magnitude of Δ integrated over large (subcontinental) spatial scales. Over the last several years, we have been conducting time-series studies of wax aerosol molecular and isotopic composition at strategically located sites (Maine, northern Alaska, Florida, Bermuda, Barbados) which receive continental air masses passing over major terrestrial biomes (northern temperate/ecotonal boreal forests, tundra, southern US pine/hardwood forests, North American and north African). In this presentation, we describe and contrast patterns of wax aerosol-derived estimates of Δ at these sites. In North American air masses, estimates of Δ range from 14.5-20.5 using the concentration-weighted average δ13C of wax n-acids and from 13.5-19.5 for the wax n-alcohols. Seasonal trends observed in the Florida (southern US) and Bermuda samples (mixed North American air masses) indicate maximum discrimination in early spring and minimum discrimination during the summer dry season. In northern US and high latitude air masses, seasonal trends are less pronounced but in general temporally offset with highest discrimination occurring during late summer. At Barbados, which is dominated by north African air masses passing over regions largely comprised of arid C4 grasslands, estimated Δ for the wax n-acids is significantly lower (14.0-15.5 per mil), consistent with a higher predominance of C4

  19. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  20. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  1. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    NASA Technical Reports Server (NTRS)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  2. Continuous Real-time Measurements of δ-values of Precipitation during Rain Events: Insights into Tropical Convection

    NASA Astrophysics Data System (ADS)

    He, S.; Goodkin, N.; Jackisch, D.; Ong, M. R.

    2017-12-01

    Studying how the tropical convection affects stable isotopes in precipitation can help us understand the evolution of the precipitation isotopes over time and improve the interpretation of paleoclimate records in the tropical region. We have been continuously monitoring δ-values of precipitation during rain events in Singapore for the past three years (2014-2017) using a diffusion sampler-cavity ring-down spectrometer (DS-CRDS) system. This period of time spans the most recent El Niño and La Niña, and thus affords us the opportunity to use our ultra-high temporal resolutsion data to examine the El Niño-Southern Oscillation (ENSO) impact on the precipitation isotopes during convection and the intra-annual variability in the region. δ-values of precipitation could change significantly during a single event, and mainly exhibits "V" (or "U" ) shape or "W" shape patterns. The mesoscale subsidence and rain re-evaporation are two processes that largely shape the isotopes of precipitation during events. Time series of the initial, highest and lowest δ-values of individual events, and absolute change in δ-values during these events show clear evolution over time. Events with low δ-values occurred less frequently in 2015 than the other years. Likewise, the frequency of events with larger magnitude change in δ-values and low initial values are also lower in 2015. The events with low averaged δ-values usually have very low initial δ-values, and are closely associated with organized regional convection, indicating that the convective activities in the upwind area can significantly influence the δ-values of precipitation. All these observations suggest lower intensity and frequency of regional organized convection in 2015. The ENSO event in 2015 was likely responsible for these changes. During an ENSO event, convection over the central and eastern Pacific is strengthened while that of the western Pacific and Southeast Asia is supressed, resulting in a weakened

  3. Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China

    NASA Astrophysics Data System (ADS)

    Chen, Fengrui; Gao, Yongqi

    2018-01-01

    Many studies have reported the excellent ability of high-resolution satellite precipitation products (0.25° or finer) to capture the spatial distribution of precipitation. However, it is not known whether the precipitation trends derived from them are reliable. For the first time, we have evaluated the annual and seasonal precipitation trends from two typical sources of high-resolution satellite-gauge products, TRMM 3B43 and PERSIANN-CDR, using rain gauge observations over China, and they were also compared with those from gauge-only products (0.25° and 0.5° precipitation products, hereafter called CN25 and CN50). The evaluation focused mainly on the magnitude, significance, sign, and relative order of the precipitation trends, and was conducted at gridded and regional scales. The following results were obtained: (1) at the gridded scale, neither satellite-gauge products precisely measure the magnitude of precipitation trends but they do reproduce their sign and relative order; regarding capturing the significance of trends, they exhibit relatively acceptable performance only over regions with a sufficient amount of significant precipitation trends; (2) at the regional scale, both satellite-gauge products generally provide reliable precipitation trends, although they do not reproduce the magnitude of trends in winter precipitation; and (3) overall, CN50 and TRMM 3B43 outperform others in reproducing all four aspects of the precipitation trends. Compared with CN25, PERSIANN-CDR performs better in determining the magnitude of precipitation trends but marginally worse in reproducing their sign and relative order; moreover, both of them are at a level in capturing the significance of precipitation trends.

  4. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  5. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei

    2016-04-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  6. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations

    PubMed Central

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  7. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ 57/54Fe observations

    DOE PAGES

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; ...

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  8. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.

    PubMed

    Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  9. The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor

    NASA Astrophysics Data System (ADS)

    Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.

    2016-12-01

    Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.

  10. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?

    NASA Astrophysics Data System (ADS)

    Ban, Nikolina; Schmidli, Juerg; Schär, Christoph

    2015-02-01

    Climate models project that heavy precipitation events intensify with climate change. It is generally accepted that extreme day-long events will increase at a rate of about 6-7% per degree warming, consistent with the Clausius-Clapeyron relation. However, recent studies suggest that subdaily (e.g., hourly) precipitation extremes may increase at about twice this rate. Conventional climate models are not suited to assess such events, due to the limited spatial resolution and the need to parametrize convective precipitation (i.e., thunderstorms and rain showers). Here we employ a convection-resolving model using a horizontal grid spacing of 2.2 km across an extended region covering the Alps and its larger-scale surrounding from northern Italy to northern Germany. Consistent with previous results, projections using a Representative Concentration Pathways version 8.5 greenhouse gas scenario reveal a significant decrease of mean summer precipitation. However, unlike previous studies, we find that both extreme day-long and hour-long precipitation events asymptotically intensify with the Clausius-Clapeyron relation. Differences to previous studies might be due to the model or region considered, but we also show that it is inconsistent to extrapolate from present-day precipitation scaling into the future.

  11. Observation-Corrected Precipitation Estimates in GEOS-5

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing

    2014-01-01

    Several GEOS-5 applications, including the GEOS-5 seasonal forecasting system and the MERRA-Land data product, rely on global precipitation data that have been corrected with satellite and or gauge-based precipitation observations. This document describes the methodology used to generate the corrected precipitation estimates and their use in GEOS-5 applications. The corrected precipitation estimates are derived by disaggregating publicly available, observationally based, global precipitation products from daily or pentad totals to hourly accumulations using background precipitation estimates from the GEOS-5 atmospheric data assimilation system. Depending on the specific combination of the observational precipitation product and the GEOS-5 background estimates, the observational product may also be downscaled in space. The resulting corrected precipitation data product is at the finer temporal and spatial resolution of the GEOS-5 background and matches the observed precipitation at the coarser scale of the observational product, separately for each day (or pentad) and each grid cell.

  12. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  13. Spatial analysis of extreme precipitation deficit as an index for atmospheric drought in Belgium

    NASA Astrophysics Data System (ADS)

    Zamani, Sepideh; Van De Vyver, Hans; Gobin, Anne

    2014-05-01

    The growing concern among the climate scientists is that the frequency of weather extremes will increase as a result of climate change. European society, for example, is particularly vulnerable to changes in the frequency and intensity of extreme events such as heat waves, heavy precipitation, droughts, and wind storms, as seen in recent years [1,2]. A more than 50% of the land is occupied by managed ecosystem (agriculture, forestry) in Belgium. Moreover, among the many extreme weather conditions, drought counts to have a substantial impact on the agriculture and ecosystem of the affected region, because its most immediate consequence is a fall in crop production. Besides the technological advances, a reliable estimation of weather conditions plays a crucial role in improving the agricultural productivity. The above mentioned reasons provide a strong motivation for a research on the drought and its impacts on the economical and agricultural aspects in Belgium. The main purpose of the presented work is to map atmospheric drought Return-Levels (RL), as first insight for agricultural drought, employing spatial modelling approaches. The likelihood of future drought is studied on the basis of precipitation deficit indices for four vegetation types: water (W), grass (G), deciduous (D) and coniferous forests (C) is considered. Extreme Value Theory (EVT) [3,4,5] as a branch of probability and statistics, is dedicated to characterize the behaviour of extreme observations. The tail behaviour of the EVT distributions provide important features about return levels. EVT distributions are applicable in many study areas such as: hydrology, environmental research and meteorology, insurance and finance. Spatial Generalized Extreme Value (GEV) distributions, as a branch of EVT, are applied to annual maxima of drought at 13 hydro-meteorological stations across Belgium. Superiority of the spatial GEV model is that a region can be modelled merging the individual time series of

  14. Eocene Antarctic seasonality inferred from high-resolution stable isotope profiles of fossil bivalves and driftwood

    NASA Astrophysics Data System (ADS)

    Judd, E. J.; Ivany, L. C.; Miklus, N. M.; Uveges, B. T.; Junium, C. K.

    2017-12-01

    The Eocene Epoch was a time of large-scale global climate change, experiencing both the warmest temperatures of the Cenozoic and the onset of southern hemisphere glaciation. The record of average global temperatures throughout this transition is reasonably well constrained, however considerably less is known about the accompanying changes in seasonality. Seasonally resolved temperature data provide a wealth of information not readily available from mean annual temperature data alone. These data are particularly important in the climatically sensitive high latitudes, as they can elucidate the means by which climate changes and the conditions necessary for the growth of ice sheets. Several recent studies, however, have suggested the potential for monsoonal precipitation regimes in the early-middle Eocene high latitudes, which complicates interpretation of seasonally resolved oxygen isotope records in shallow nearshore marine settings. Seasonal precipitation and runoff could create a brackish, isotopically depleted lens in these environments, depleting summertime δ18Ocarb and thereby inflating the inferred mean and range of isotope-derived temperatures. Here, we assess intra-annual variations in temperature in shallow nearshore Antarctic waters during the middle and late Eocene, inferred from high-resolution oxygen isotope profiles from accretionary bivalves of the La Meseta Formation, Seymour Island, Antarctica. To address concerns related to precipitation and runoff, we also subsample exceptionally preserved fossil driftwood from within the formation and use seasonal differences in δ13Corg values to estimate the ratio of summertime to wintertime precipitation. Late Eocene oxygen isotope profiles exhibit strongly attenuated seasonal amplitudes and more enriched mean annual values in comparison with data from the middle Eocene. Preliminary fossil wood data are not indicative of a strongly seasonal precipitation regime, implying that intra-annual variation in oxygen

  15. Heating-insensitive scale increase caused by convective precipitation

    NASA Astrophysics Data System (ADS)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  16. High variability in spatial and temporal size-based trophodynamics of deep-sea fishes from the Mid-Atlantic Ridge elucidated by stable isotopes

    NASA Astrophysics Data System (ADS)

    Reid, William D. K.; Sweeting, Christopher J.; Wigham, Ben D.; McGill, Rona A. R.; Polunin, Nicholas V. C.

    2013-12-01

    Demersal fish play an important role in the deep-sea ecosystem by acting as a link to mobile food in the water column, consuming benthic fauna, breaking down large food parcels and dispersing organic matter over large areas. Poor diet resolution from stomach content analysis often impairs the ability to assess differences in inter- and intra-population trophodynamics and therefore understand resource partitioning among deep-sea fishes. Antimora rostrata (predator-scavenger), Coryphaenoides armatus (predator-scavenger), Coryphaenoides brevibarbis (predator) and Halosauropsis macrochir (predator) were collected from 3 stations on the Mid-Atlantic Ridge (MAR) in 2007 and 2009 to investigate trophic ecology using δ13C and δ15N. Variability in lipid-normalised δ13C (δ13Cn) and δ15N was explained by body length in all species but slope and significance of the isotope-length relationships varied both temporally and spatially. δ15N increases with length were observed in A. rostrata at all stations, C. brevibarbis and H. macrochir at one or more stations but were absent in C. armatus. δ13Cn increased with length in A. rostrata but the slope of δ13Cn-length relationships varied spatially and temporally in C. armatus and C. brevibarbis. The co-occurring δ13Cn and δ15N size-based trends in A. rostrata and H. macrochir suggested that size-based trends were a result of increasing trophic position. In C. armatus and C. brevibarbis the isotope-length trends were difficult to distinguish among trophic position increases, shifts in resource use i.e. benthic to pelagic or internal physiology. However, the overall strength, direction and significance of isotope-length trends varied temporally and spatially which suggested varying degrees of overlap in trophic ecology and feeding plasticity among these species.

  17. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.

  18. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    NASA Astrophysics Data System (ADS)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  19. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  20. Compound-Specific Hydrogen Isotopic Records of Holocene Climate Dynamics in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Shuman, B. N.

    2017-12-01

    The northeastern United States, located between the location of Laurentide ice sheet and the dynamic North Atlantic Ocean, is an ideal region for studying paleoclimate changes on centennial to multi-millennial time scales because the region experienced multiple abrupt climate changes and variations over the past 14 ka. Over the Holocene, the region's long-term climate trend was influenced by isolation changes, the retreat of the Laurentide Ice Sheet (LIS), changes in atmospheric composition and changes in the North Atlantic Meridional Overturning Circulation (AMOC). Hydrological and pollen records show that multiple abrupt climate changes punctuate the long-term trends, even after the widely recognized events associated with the LIS and AMOC, but the mechanisms behind the abrupt climate changes observed are not well understood. To understand the mechanisms behind abrupt climate shifts, their impact on hydrology, ecosystems, regional and local climates, additional insights are needed. Compound-specific hydrogen isotope (D/H) ratios derived from terrestrial and aquatic leaf waxes and preserved in lake sediments, have been shown to record D/H ratios of environmental water and we use such data to further investigate the regional climate history. Here we present hydrogen isotope records of precipitation using compound specific hydrogen isotope of leaf wax n-alkanes derived from aquatic and terrestrial leaf waxes from three lakes: Twin Ponds, Vermont; Blanding Pond, Pennsylvania; and Crooked Pond, Massachusetts. We use the results to evaluate common climate trends across the region from an isotopic perspective and to assess changes in the spatial isotopic gradients across the northeastern US during the Holocene.

  1. Understanding Extreme Precipitation Behaviour in British Columbia's Lower Mainland Using Historical and Proxy Records

    NASA Astrophysics Data System (ADS)

    Spry, Christina

    In British Columbia, Pineapple Express storms can lead to flooding, slope failures and negative impacts to water quality. Mitigating the impacts of extreme weather events in a changing climate requires an understanding of how local climate responds to regional-toglobal climate forcing patterns. In this study, I use historical and proxy data to identify the distinguishing characteristics of Pineapple Express storms and to develop a tree ring oxygen isotope record (1960--1995) of local climate conditions in the Lower Mainland of British Columbia. I found that high magnitude Pineapple Express storms have significantly higher precipitation and streamflow than other storms types, which result in relatively high contributions of Pineapple Express storms to the annual water budget. As well, Pineapple Express precipitation is characterized by an enriched delta18O isotopic signature when compared to precipitation originating from the North Pacific Ocean. However, differences in source water do not appear to be driving the variability in tree ring delta18O ratios. Instead, tree ring isotopic values exhibit a regional climate pattern that is strongly driven by latitudinal temperature gradients and the Rayleigh distillation effect. Therefore, future warmer conditions may decrease the temperature gradient between the equator and the poles, which can be recorded in the tree ring isotope record. The results also suggest that warmer temperatures due to climate change could result in more active Pineapple Express storm seasons, with multiple PE storms happening over a short period of time. Concurrent storms significantly increase the risk to society because the resulting antecedent saturated soil conditions can trigger precipitationinduced natural hazards. Keywords: extreme weather; stable isotopes; Pineapple Express; British Columbia; climate change; tree rings.

  2. Importance of Dry-Season Precipitation to the Water Resources of Monteverde, Costa Rica

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.

    2005-12-01

    Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species, and a boom in ecotourism has put stress on water resources. A recent attempt to withdraw water from a local stream led to a standoff between conservationists and business developers, and there is a clear need for hydrologic data and understanding in support of policy. Through signals observed in the stable isotopic composition of precipitation and streamflow, we seek to understand how precipitation from the drier seasons propagates through the hydrologic cycle. In precipitation, δ18O and δ2H are heaviest during the dry and transitional seasons and light during the rainy season, consistent with the condensation mechanisms and degree of rainout typical of these periods. The signal in d-excess indicates a contribution of recycled water to precipitation in Monteverde from late in the rainy season through the dry season. Attenuated versions of these seasonal signals propagate through to the stream samples and provide a means of determining the importance of dry-season precipitation to water resources for the region. Results from six catchments on the leeward slope indicate that the Brillante Gap in the continental divide exerts strong control on the input of orographic precipitation to the region. Disparities in the temporal signals of precipitation and streamflow isotopes indicate non-linear behavior in the hydrologic processes that move water through these catchments.

  3. Should Variations of d2H, d18O and d17O in Precipitation be Considered 'Settled Science' or a 'New Frontier' For Understanding Cloud Dynamics and Microphysics?

    NASA Astrophysics Data System (ADS)

    Aggarwal, P. K.; araguas Araguas, L.; Belachew, D.; Terzer, S.; Wassenaar, L. I.; Longstaffe, F. J.; Schumacher, C.; Funk, A. B.; Steinacker, R.; Kaltenboeck, R.

    2017-12-01

    After more than 60 years of isotope measurements in precipitation, there are relatively well established patterns of variation, but their origin and controlling parameters remain a matter of debate, preventing a fuller integration of isotope-based information in meteorology. The prevailing hypothesis based on temperature and Rayleigh distillation has been successful in explaining many of the patterns, particularly at a seasonal or annual scale, and attempts to explain variances by 'tweaking' the prevailing hypothesis suggest that the underlying science may be considered to be 'settled'. A rigorous evaluation at the storm event scale, where precipitation acquires its isotope composition, however, does not provide a satisfactory explanation in most cases. We have conducted an year-long study with high-frequency sampling (5-15 min) of mid-latitude precipitation at Vienna and more than 1000 samples have been analyzed for d2H, d18O and d17O. We have also collected profiles of reflectivity and doppler velocity using a vertically pointed micro-rain radar, particle size distribution in precipitation using a disdrometer, and conducted aerological analysis of air and moisture circulation using sounding data. A combined evaluation of isotope and meteorological data provides a detailed understanding of isotope variability. We will discuss these results and the light they shed on boundary layer and tropospheric moisture circulation in frontal or convective precipitation, the relative roles of vapor deposition and riming growth of precipitation, and the origin of d-excess. The agreement between meteorological observations and isotopic variability is extremely promising and may help open a new frontier in the use of isotopes for weather and climate studies.

  4. Characterization of calcium isotopes in natural and synthetic barite

    USGS Publications Warehouse

    Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.

    2008-01-01

    The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.

  5. Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)

    DOE Data Explorer

    Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia

    2000-01-01

    Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.

  6. When at what scale will trends in European mean and heavy precipitation emerge

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only, the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby the TOE becomes a fundamentally limiting time scale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus also minimum temporal and spatial scales for adaptation planning are given. In northern Europe, positive winter trends in mean and heavy precipitation, in southwestern and southeastern Europe summer trends in mean precipitation emerge already within the next decades. Yet across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend in general emerges earlier. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

  7. A precipitation organization climatology for North Carolina: Development and GIS-based analysis

    NASA Astrophysics Data System (ADS)

    Zarzar, Christopher M.

    A climatology of precipitation organization is developed for the Southeast United States and is analyzed in a GIS framework. This climatology is created using four years (2009-2012) of daily-averaged data from the NOAA high-resolution multi-sensor precipitation estimation (MPE) dataset, specifically the radar-based quantitative precipitation estimation (QPE) product and the mosaic reflectivity. The analysis associates precipitation at each pixel with the spatial scale of precipitation organization, either a mesoscale precipitation feature (MPF) or isolated storm. While the long-term averaged precipitation totals of these systems may be similar, their hydrological and climatological impacts are very different, especially at a local scale. The classification of these modes of precipitation organization in the current precipitation climatology provides information beyond standard precipitation climatologies that will benefit a range of hydrological and climatological applications. This study focuses on North Carolina and takes advantage of a GIS framework to examine hydrological responses to different modes of precipitation organization. Specifically, the following questions are addressed: First, what are the discharge response characteristics to precipitation events in different watersheds across the state, from the mountains to the coastal plain? Second, what are the different impacts on watershed discharge between MPF precipitation and isolated precipitation? We first present seasonal and annual composites of precipitation and duration of MPF and isolated storms across three regions of North Carolina: the western mountains, the central Piedmont, and the eastern coastal plain. Further analysis in a GIS framework provides information about the impacts this seasonal and geographic variability in precipitation has on watershed discharge. This analysis defines five watersheds in North Carolina based on five North Carolina river basins using ArcGIS watershed delineation

  8. Analysis of precipitation teleconnections in CMIP models as a measure of model fidelity in simulating precipitation

    NASA Astrophysics Data System (ADS)

    Langenbrunner, B.; Neelin, J.; Meyerson, J.

    2011-12-01

    The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.

  9. Repeated and random components in Oklahoma's monthly precipitation record

    USDA-ARS?s Scientific Manuscript database

    Precipitation across Oklahoma exhibits a high degree of spatial and temporal variability and creates numerous water resources management challenges. The monthly precipitation record of the Central Oklahoma climate division was evaluated in a proof-of-concept to establish whether a simple monthly pre...

  10. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  11. Isotopic studies of mariposite-bearing rocks from the south- central Mother Lode, California.

    USGS Publications Warehouse

    Kistler, R.W.; Dodge, F.C.W.; Silberman, M.L.

    1983-01-01

    Gold-bearing vein formation in the Mother Lode belt of the study area apparently occurred during the Early Cretaceous between 127 and 108 m.y. B.P. The hydrothermal fluids that carried the gold precipitated quartz and mariposite at approx 320oC, similar to the T of precipitation of gold-bearing quartz veins in the Allegheny district. The O- and H-isotopic composition calculated for the fluid indicate that it was similar to formation water or was metamorphic in origin. If the carbonate in the veins was in isotopic equilibrium with this same fluid, it apparently precipitated at a higher T of approx 400oC. The Sr in the carbonate is much less radiogenic than that in any known marine carbonate, but is similar in isotopic composition to that in metamorphosed mafic volcanic rocks of the general region. These mafic rocks could have been the source for the Sr in the hydrothermal veins. This observation supports the contention that the gold-mariposite-quartz-carbonate rocks were formed as an alteration product of serpentinite and other mafic igneous rocks.-A.P.

  12. Metals and metalloids in precipitation collected during CHINARE campaign from Shanghai, China, to Zhongshan Station, Antarctica: Spatial variability and source identification

    NASA Astrophysics Data System (ADS)

    Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.

    2015-06-01

    Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.

  13. The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

    PubMed Central

    Thompson, David W. J.; van den Broeke, Michiel R.

    2017-01-01

    Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735

  14. Isotopes in the Arctic atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  15. Isotopic investigation of rivers runoff in glaciated regions of the central Asian arid highlands (southeastern Altai)

    NASA Astrophysics Data System (ADS)

    Bantcev, Dmitrii; Ganushkin, Dmitriy; Ekaykin, Alexey; Chistyakov, Kirill

    2017-04-01

    Stable isotopes investigations were carried out during fieldwork in glacier basins of the Mongun-Taiga (southwestern Tuva) and Tsambagarav (northwestern Mongolia) mountain massifs in July, 2016. These Arid highlands are problematic in the context of provision of water resources, and glaciers here play a large part in nourishment of the rivers. Concentrations of the oxygen 18, deuterium and the mineralization were measured in the samples of meltwater, precipitation, water from streams, ice and snow. Sable isotope method was used for separation of the glacier runoff. Average isotopic characteristics for different water sources, such as glacier ice, snow patches and precipitation, were calculated and the contribution of these sources in total runoff was valued. Isotopic method was also used for estimation of contribution of buried ice meltwater from rock glaciers ice cores.

  16. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Saylor, Joel E.; Garzione, Carmala N.; Leier, Andrew; Sundell, Kurt E.

    2016-12-01

    Environmental parameters that influence the isotopic composition of meteoric water (δ18O and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in δ18O of stream water west of the Eastern Cordillera (∼1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative δ18O values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in δ18O on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to

  17. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  18. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  19. Examining Basin-Scale Water and Climate Relations across the Pampa del Tamarugal, Atacama Desert through Spatial Analysis of Hydrogen, Carbon and Oxygen Isotopes in Tree Rings

    NASA Astrophysics Data System (ADS)

    Olson, E. J.; Dodd, J. P.; Rivera, M. A.

    2016-12-01

    Arid regions are extremely sensitive to variations hydroclimate. However, our understanding of past hydroclimate variations in these regions is often limited by a paucity of spatially resolved proxy data. The Atacama Desert of northern Chile is one of the driest regions on Earth, and hydroclimatic processes in the Atacama Desert may be a useful proxy for understanding the implications of expanding global aridity. In order to assess the ability of tree-ring isotope studies to record changes in hydrology and terrestrial climate in the Atacama Desert, oxygen (δ18O), carbon (δ13C) and hydrogen (δ2H) isotope values in tree rings of Prosopis tamarugo are analyzed for the modern period (1954-2014) when anthropogenic change to regional groundwater levels have been most notable. Samples of wood cellulose were collected throughout the Pampa del Tamarugal basin from 14 individuals and used to create an interpolated surface of isotope variations. The isotope data were then compared to groundwater depth from well monitoring data provided by the Dirección de General de Agua of Chile. There is a significant correlation between groundwater level and isotope values with best agreement occurring during the past two decades for δ18O (r = 0.58), δ13C (r = 0.55), and δ2H (r = 0.66) values. This spatial correlation analysis reveals that tree ring a-cellulose isotope values are a suitable proxy for reconstructing groundwater depth in the Pampa del Tamarugal Basin. A stepwise multiregression analysis between δ18O values of cellulose and several other environmental variables including groundwater level, relative humidity, and temperature suggest that groundwater depth is the dominate control of variation in the modern δ18O tree ring record. The response of tree cellulose to the hydroclimate in this region suggests that tree ring isotope variations may be used to reconstruct past hydroclimate conditions in arid regions throughout the globe.

  20. Developing novel peat isotope proxies from vascular plant-dominated peatlands of New Zealand to reconstruct Southern Hemisphere climate dynamics

    NASA Astrophysics Data System (ADS)

    Roland, T.; Amesbury, M. J.; Charman, D.; Newnham, R.; Royles, J.; Griffiths, H.; Ratcliffe, J.; Rees, A.; Campbell, D.; Baisden, T.; Keller, E. D.

    2017-12-01

    The Southern Annular Mode (SAM) is a key control on the strength and position of the southern westerly winds (SWW), which are a major influence on Southern Hemisphere (SH) mid- to high-latitude climate. A shift towards a more positive SAM has occurred since the 1950s, driven by ozone layer thinning and enhanced by greenhouse gas driven warming. Although these recent changes are thought to be unprecedented over the last 1000 years, the longer-term behaviour of the SAM is poorly understood. We are developing stable isotope proxies from plant cellulose in vascular plant-dominated (Empodisma spp.) peatlands in New Zealand that we hypothesise are related to changes in past temperature (δ13C) and precipitation moisture source (δ18O). The moisture source signal is driven by the balance between Southern Ocean sources (depleted δ18O) and sub-tropical sources (enriched δ18O), reflecting the relative states of SAM and the El Niño-Southern Oscillation. We aim to provide palaeoclimatic context for the recent positive trend in the SAM, and explore the long-term relationship between the SAM and ENSO, testing the contention that tropical Pacific variability is a key influence on past and future SAM variability. Terrestrial palaeoclimate records in the Southern Hemisphere are often spatially isolated and temporally fragmented. However, New Zealand is ideally placed to test such hypotheses as it registers strong correlations between SAM, temperature and precipitation, and it straddles the zone of interaction between the SWW and sub-tropical moisture sources, reflected in a strong precipitation δ18O gradient. We report data from surface samples across New Zealand and explore the spatial and temporal patterns in stable isotopes in cellulose and water that we will use to interpret the palaeoenvironmental data. Preliminary downcore data will be used to demonstrate the efficacy of this approach to reconstructing moisture sources and temperature linked to moisture source variability.

  1. Carbon isotopes of C3 herbs correlate with temperature on removing the influence of precipitation across a temperature transect in the agro-pastoral ecotone of northern China.

    PubMed

    Liu, Xian-Zhao; Zhang, Yong; Li, Zhen-Guo; Feng, Teng; Su, Qing; Song, Yan

    2017-12-01

    Plant δ 13 C-temperature (δ-T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13 C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ 13 C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming-pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ 13 C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site-mean foliar δ 13 C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C ( p  =   .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries , the slopes (or coefficients) of foliar δ 13 C and AMT were significantly steeper (larger) than those of foliar δ 13 C and AMT where the precipitation influence was not excluded, whereas the δ-T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ 13 C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.

  2. The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO2 containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-12-01

    The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered.

  3. Characterization of extreme precipitation within atmospheric river events over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, S.; Prabhat,; Byna, S.

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  4. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  5. Evolution of precipitation extremes in two large ensembles of climate simulations

    NASA Astrophysics Data System (ADS)

    Martel, Jean-Luc; Mailhot, Alain; Talbot, Guillaume; Brissette, François; Ludwig, Ralf; Frigon, Anne; Leduc, Martin; Turcotte, Richard

    2017-04-01

    Recent studies project significant changes in the future distribution of precipitation extremes due to global warming. It is likely that extreme precipitation intensity will increase in a future climate and that extreme events will be more frequent. In this work, annual maxima daily precipitation series from the Canadian Earth System Model (CanESM2) 50-member large ensemble (spatial resolution of 2.8°x2.8°) and the Community Earth System Model (CESM1) 40-member large ensemble (spatial resolution of 1°x1°) are used to investigate extreme precipitation over the historical (1980-2010) and future (2070-2100) periods. The use of these ensembles results in respectively 1 500 (30 years x 50 members) and 1200 (30 years x 40 members) simulated years over both the historical and future periods. These large datasets allow the computation of empirical daily extreme precipitation quantiles for large return periods. Using the CanESM2 and CESM1 large ensembles, extreme daily precipitation with return periods ranging from 2 to 100 years are computed in historical and future periods to assess the impact of climate change. Results indicate that daily precipitation extremes generally increase in the future over most land grid points and that these increases will also impact the 100-year extreme daily precipitation. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety. Estimated increases in precipitation associated to very extreme precipitation events (e.g. 100 years) will drastically change the likelihood of flooding and their extent in future climate. These results, although interesting, need to be extended to sub-daily durations, relevant for urban flooding protection and urban infrastructure design (e.g. sewer networks, culverts). Models and simulations at finer spatial and temporal resolution are therefore needed.

  6. Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.

    2017-12-01

    We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.

  7. Moisture transport across Canada: evidence from stable oxygen and deuterium isotope values of lakes and rivers

    NASA Astrophysics Data System (ADS)

    Oakley, J. R.; Patterson, W. P.

    2008-12-01

    Global warming models often contain a prediction of changes in precipitation, yet modern moisture cycling is poorly understood. Stable oxygen and deuterium isotope values of several thousand lake and river water samples collected from 2004 to 2008 throughout Canada and the Northern United States provide a means to evaluate variations in the movement of moisture across the northern North American continent. Our particular focus is on the moisture tracking in the province of Saskatchewan. The dominant moisture source for Saskatchewan is the Gulf of Mexico, though precipitation contains some water from the Pacific and Arctic Oceans as well. By sampling locations multiple times, we established time series of isotope variability that we can relate to meteorological variation. A series of cross-plots of oxygen to deuterium isotopes for each year exhibits an increase in slope from year to year that reflects an increase in humidity and/or precipitation throughout the Prairies from 2004 to 2008. We define the influence of temperature, precipitation and humidity on the change in slope for each suite of samples. Ultimately, by combining our evidence of moisture transport with a grid of long-term secular records from lakes, speleothems and tree-ring isotope variability, we can not only reconstruct changes in atmospheric circulation through time, but also better predict what will happen in the future under various global climate change scenarios.

  8. How Trees Interact with Their Hydrologic Environment: a Stable Isotope Study

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, T.

    2012-12-01

    progressed and cumulative rainfall increased, the isotopic composition of mobile soil water evolved towards that of local precipitation. The isotopic composition of twig water samples resembled that of bulk soil water from March and July 2011. In August, September and into November, twig water isotope values appeared to have both bulk soil water and mobile soil water contributions. The conceptual model that we have developed to explain this phenomenon relies on different infiltration mechanisms for snowmelt and monsoon precipitation which determine where water is stored. Snowmelt infiltrates soil and is stored in shallow soils where trees can easily access it. Short duration, high intensity monsoon rains in the late summer exceed infiltration capacity, exploit preferential flow paths and quickly flush through profiles to recharge groundwater and shallow epikarst reservoirs in the underlying bedrock. As epikarst storage increases, a secondary root system is able to begin exploiting the newly available source in the epikarst feature. The contribution of this secondary source manifests in tree water as an integrated mixture of bulk soil water and mobile soil water. Continued use into November of these two water sources by certain trees while others returned to bulk soil water usage suggests spatial variation in epikarst storage and drainage.

  9. Developing a regional retrospective ensemble precipitation dataset for watershed hydrology modeling, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Smith, K.; LaPorte, P.

    2011-12-01

    Applications like flood forecasting, military trafficability assessment, and slope stability analysis necessitate the use of models capable of resolving hydrologic states and fluxes at spatial scales of hillslopes (e.g., 10s to 100s m). These models typically require precipitation forcings at spatial scales of kilometers or better and time intervals of hours. Yet in especially rugged terrain that typifies much of the Western US and throughout much of the developing world, precipitation data at these spatiotemporal resolutions is difficult to come by. Ground-based weather radars have significant problems in high-relief settings and are sparsely located, leaving significant gaps in coverage and high uncertainties. Precipitation gages provide accurate data at points but are very sparsely located and their placement is often not representative, yielding significant coverage gaps in a spatial and physiographic sense. Numerical weather prediction efforts have made precipitation data, including critically important information on precipitation phase, available globally and in near real-time. However, these datasets present watershed modelers with two problems: (1) spatial scales of many of these datasets are tens of kilometers or coarser, (2) numerical weather models used to generate these datasets include a land surface parameterization that in some circumstances can significantly affect precipitation predictions. We report on the development of a regional precipitation dataset for Idaho that leverages: (1) a dataset derived from a numerical weather prediction model, (2) gages within Idaho that report hourly precipitation data, and (3) a long-term precipitation climatology dataset. Hourly precipitation estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are stochastically downscaled using a hybrid orographic and statistical model from their native resolution (1/2 x 2/3 degrees) to a resolution of approximately 1 km. Downscaled

  10. Future changes of precipitation characteristics in China

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wu, Y.; Wen, J.

    2017-12-01

    Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.

  11. Precipitation Nowcast using Deep Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  12. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    NASA Astrophysics Data System (ADS)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (<6 months); (ii) at medium time scales (6-24 months); and at long time scales (>24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results

  13. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    NASA Astrophysics Data System (ADS)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  14. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska

    USGS Publications Warehouse

    Kelley, K.D.; Wilkinson, J.J.; Chapman, J.B.; Crowther, H.L.; Weiss, D.J.

    2009-01-01

    Analyses of sphalerite samples from shale-hosted massive sulfide and stratigraphically underlying vein breccia deposits in the Red Dog district in northern Alaska show a range ??66Zn values from zero to 0.60 per mil. The lowest values are observed in the vein breccia deposits, and the stratigraphically overlying (but structurally displaced) shale-hosted massive sulfide deposits show a systematic trend of increasing ??66Zn values from south to north (Main-Aqqaluk-Paalaaq-Anarraaq). The ??66Zn values are inversely correlated with sphalerite Fe/Mn ratio and also tend to be higher in low Cu sphalerite, consistent with precipitation of lower ??66Zn sphalerite closer to the principal hydrothermal fluid conduits. The most likely control on isotopic variation is Rayleigh fractionation during sulfide precipitation, with lighter zinc isotopes preferentially incorporated in the earliest sphalerite to precipitate from ore fluids at deeper levels (vein breccias) and close to the principal fluid conduits in the orebodies, followed by precipitation of sulfides with higher ??66Zn values in shallower and/or more distal parts of the flow path. There is no systematic variation among the paragenetic stages of sphalerite from a single deposit, suggesting an isotopically homogeneous zinc source and consistent transport-deposition conditions and/or dissolution-reprecipitation of earlier sphalerite without significant fractionation. Decoupled Zn and S isotope compositions are best explained by mixing of separate metal- and sulfur-bearing fluids at the depositional site. The results confirm that Zn isotopes may be a useful tracer for distinguishing between the central and distal parts of large hydrothermal systems as previously suggested and could therefore be of use in exploration. ?? 2009 by Economic Geology.

  15. Living on the Edge? Clumped Isotope and Oxygen Isotope Record of Early Cascade Topography (Eocene Chumstick Basin, WA, USA)

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Umhoefer, P. J.; Chamberlain, C. P.

    2014-12-01

    The topographic evolution of the world's major orogens exerts a strong impact on atmospheric circulation and precipitation patterns and is a key element in reconstructing the interactions among tectonics, climate, and Earth surface processes. Using carbonate stable and clumped isotope data together with low-temperature thermochronology information from the terrestrial Eocene Chumstick Basin (Central Washington; USA), today located to the East of the Washington Cascades, we investigate the E-W extent of the western North American plateau region and the evolution of Cascade topography. Oxygen isotope measurements of Eocene (51 to 37 Ma) pedogenic carbonate concretions and calcic horizons yield low δ18Ocarbonate values of +9 to +13 ‰ (SMOW) despite the proximity of the Eocene Chumstick Basin to the Pacific moisture source and paleofloral data that indicate moderate elevations and montane rain forest conditions during a warm and rather wet, seasonal climate. This either suggests that 51-37 Ma ago Cascade-like topography characterized the western edge of the North American-Pacific plate margin to the West of the Chumstick Basin or that the δ18Ocarbonate data were variably reset or only formed during burial and diagenesis. Clumped isotope (Δ47) thermometry of pedogenic carbonate and carbonate concretions (n=11 samples) indicates spatially variable burial temperatures of 80 to 120 °C that correlate with vitrinite reflectance data in these sediments. In concordance with changes in depositional environment the youngest (<40 Ma) Chumstick sediments experienced a lesser degree of post-depositional burial and heating (ca. 70 - 80 °C) compared to the older Chumstick series (80 - 120 °C). Calculated δ18O values of the circulating fluids in the Chumstick basin sediments range from -6 ‰ (T ~100 °C at ca. 40-30 Ma) to -9 ‰ (T ~75 °C at ca. 25-15 Ma). These values suggest a low-altitude meteoric fluid source and as a consequence only moderate Cascade topography during

  16. Isotope Reanalysis for 20th century: Reproduction of isotopic time series in corals, tree-rings, and tropical ice cores

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2012-04-01

    In the present study, an isotope-incorporated GCM simulation for AD1871 to AD2008 nudged toward the so-called "20th Century Reanalysis (20CR)" atmospheric fields is conducted. Beforehand the long-term integration, a method to downscale ensemble mean fields is proposed, since 20CR is a product of 56-member ensemble Kalman filtering data assimilation. The method applies a correction to one of the ensemble members in such a way that the seasonal mean is equal to that of the ensemble mean, and then the corrected member is inputted into the isotope-incorporated GCM (i.e., IsoGSM) with the global spectral nudging technique. Use of the method clearly improves the skill than the cases of using only a single member and of using the ensemble means; the skill becomes equivalent to when 3-6 members are directly used. By comparing with GNIP precipitation isotope database, it is confirmed that the 20C Isotope Reanalysis's performance for latter half of the 20th century is just comparable to the other latest studies. For more comparisons for older periods, proxy records including corals, tree-rings, and tropical ice cores are used. First for corals: the 20C Isotope Reanalysis successfully reproduced the δ18O in surface sea water recorded in the corals at many sites covering large parts of global tropical oceans. The comparison suggests that coral records represent past hydrologic balance information where interannual variability in precipitation is large. Secondly for tree-rings: δ18O of cellulose extracted from the annual rings of the long-lived Bristlecone Pine from White Mountain in Southern California is well reproduced by 20C Isotope Reanalysis. Similar good performance is obtained for Cambodia, too. However, the mechanisms driving the isotopic variations are different over California and Cambodia; for California, Hadley cell's expansion and consequent meridional shift of the submerging dry zone and changes in water vapor source is the dominant control, but in Cambodia

  17. Holocene Climate Reconstructions from Lake Water Oxygen Isotopes in NW and SW Greenland

    NASA Astrophysics Data System (ADS)

    Lasher, G. E.; Axford, Y.; McFarlin, J. M.; Kelly, M. A.; Osterberg, E. C.; Berkelhammer, M. B.; Berman, K.; Kotecki, P.; Gawin, B.

    2016-12-01

    Reconstructions of stable isotopes of precipitation (SIP) from currently unglaciated parts of Greenland can help elucidate spatial patterns of past climate shifts in this climatically important and complex region. We have developed a 7700-year record of lake water δ18O from a small non-glacial lake in NW Greenland (near Thule Air Base), inferred from the δ18O of subfossil chironomid (insect) head capsules and aquatic mosses. Lake water δ18O remains constant from 8 ka until 4 ka and then declines by 2.5 ‰ to the present, representing a +2.5 to 5.5 °C Holocene Thermal Maximum temperature anomaly for this region. For comparison, two new sediment records from hydrologically connected lakes south of Nuuk in SW Greenland record 8500 years of lake water δ18O, also inferred from δ18O of chironomids. At the time cores were collected during the summer in 2014 and 2015, all lakes reflected SIP and exhibited minimal evaporation influence. Historical monitoring of stable isotopes of precipitation from Thule Air Base and Grønnedal in south Greenland suggest the controls on SIP differ greatly between our two study sites, as would be predicted based upon the strongly Arctic (in the NW) versus North Atlantic (in the SW) atmospheric and marine influences at the two sites. Interpretation of Holocene climate from these two contrasting sites will be discussed. These climate records from the same proxy allow us to compare millennial scale Holocene climate responses to northern hemisphere solar insolation trends in two different climate regimes of Greenland.

  18. Carbon stable isotopic composition of soluble sugars in Tillandsia epiphytes varies in response to shifts in habitat.

    PubMed

    Goode, Laurel K; Erhardt, Erik B; Santiago, Louis S; Allen, Michael F

    2010-07-01

    We studied C stable isotopic composition (delta(13)C) of bulk leaf tissue and extracted sugars of four epiphytic Tillandsia species to investigate flexibility in the use of crassulacean acid metabolism (CAM) and C(3) photosynthetic pathways. Plants growing in two seasonally dry tropical forest reserves in Mexico that differ in annual precipitation were measured during wet and dry seasons, and among secondary, mature, and wetland forest types within each site. Dry season sugars were more enriched in (13)C than wet season sugars, but there was no seasonal difference in bulk tissues. Bulk tissue delta(13)C differed by species and by forest type, with values from open-canopied wetlands more enriched in (13)C than mature or secondary forest types. The shifts within forest habitat were related to temporal and spatial changes in vapor pressure deficits (VPD). Modeling results estimate a possible 4% increase in the proportional contribution of the C(3) pathway during the wet season, emphasizing that any seasonal or habitat-mediated variation in photosynthetic pathway appears to be quite moderate and within the range of isotopic effects caused by variation in stomatal conductance during assimilation through the C(3) pathway and environmental variation in VPD. C isotopic analysis of sugars together with bulk leaf tissue offers a useful approach for incorporating short- and long-term measurements of C isotope discrimination during photosynthesis.

  19. Carbon stable isotopic composition of soluble sugars in Tillandsia epiphytes varies in response to shifts in habitat

    PubMed Central

    Erhardt, Erik B.; Santiago, Louis S.; Allen, Michael F.

    2010-01-01

    We studied C stable isotopic composition (δ13C) of bulk leaf tissue and extracted sugars of four epiphytic Tillandsia species to investigate flexibility in the use of crassulacean acid metabolism (CAM) and C3 photosynthetic pathways. Plants growing in two seasonally dry tropical forest reserves in Mexico that differ in annual precipitation were measured during wet and dry seasons, and among secondary, mature, and wetland forest types within each site. Dry season sugars were more enriched in 13C than wet season sugars, but there was no seasonal difference in bulk tissues. Bulk tissue δ13C differed by species and by forest type, with values from open-canopied wetlands more enriched in 13C than mature or secondary forest types. The shifts within forest habitat were related to temporal and spatial changes in vapor pressure deficits (VPD). Modeling results estimate a possible 4% increase in the proportional contribution of the C3 pathway during the wet season, emphasizing that any seasonal or habitat-mediated variation in photosynthetic pathway appears to be quite moderate and within the range of isotopic effects caused by variation in stomatal conductance during assimilation through the C3 pathway and environmental variation in VPD. C isotopic analysis of sugars together with bulk leaf tissue offers a useful approach for incorporating short- and long-term measurements of C isotope discrimination during photosynthesis. PMID:20155286

  20. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    PubMed

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.