Precipitation-generated oscillations in open cellular cloud fields.
Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan
2010-08-12
Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
NASA Astrophysics Data System (ADS)
Chan, Pak Yuen; Goldenfeld, Nigel
2007-10-01
A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.
NASA Astrophysics Data System (ADS)
Lagzi, István; Ueyama, Daishin
2009-01-01
The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.
Liesegang banding and multiple precipitate formation in cobalt phosphate systems
NASA Astrophysics Data System (ADS)
Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih
2012-02-01
We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.
Tóth, Rita; Walliser, Roché M; Lagzi, István; Boudoire, Florent; Düggelin, Marcel; Braun, Artur; Housecroft, Catherine E; Constable, Edwin C
2016-10-12
Periodic precipitation processes in gels can result in impressive micro- and nanostructured patterns known as periodic precipitation (or Liesegang bands). Under certain conditions, the silver nitrate-chromium(vi) system exhibits the coexistence of two kinds of Liesegang bands with different frequencies. We now present that the two kinds of bands form independently on different time scales and the pH-dependent chromate(vi)-dichromate(vi) equilibrium controls the formation of the precipitates. We determined the spatial distribution and constitution of the particles in the bands using focused ion beam-scanning electron microscopy (FIB-SEM) and scanning transmission X-ray spectromicroscopy (STXM) measurements. This provided the necessary empirical input data to formulate a model for the pattern formation; a model that quantitatively reproduces the experimental observations. Understanding the pattern-forming process at the molecular level enables us to tailor the size and the shape of the bands, which, in turn, can lead to new functional architectures for a range of applications.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhai, Panmao; Chen, Yang; Ni, Yunqi
2016-06-01
Based on the daily reanalysis data from NCEP-NCAR and daily precipitation data from the China National Meteorological Information Center, an ensemble empirical mode decomposition method is employed to extract the predominant oscillation modes of the East Asia-Pacific (EAP) teleconnection pattern. The influences of these low-frequency modes on persistent heavy precipitation in the Yangtze-Huai River (YHR) valley are investigated. The results indicate that the EAP pattern and rainfall in YHR valley both exhibit remarkable 10-30- and 30-60-day oscillations. The impacts of the EAP pattern on the YHR persistent heavy precipitation can be found on both the 10-30- and 30-60-day timescales—the 10-30-day scale for most cases. Composite analysis indicates that, on the 10-30-day timescale, formation of the EAP pattern in the lower and middle troposphere is determined by convective systems near the tropical western Pacific; whereas in the middle troposphere, the phase transition is jointly contributed by both the dispersion of zonal wave energies at higher latitudes and convective systems over the South China Sea. In the context of the 10-30-day EAP pattern, the anomalously abundant moisture is transported by an anomalous subtropical anticyclone system, and strong moisture convergence results from that anomalous anticyclone system and a cyclonic system in the midlatitude East Asia. Such a combination of systems persists for at least three days, contributing to the formation of persistent heavy precipitation in the YHR valley.
Organic influences on inorganic patterns of diffusion-controlled precipitation in gels
NASA Astrophysics Data System (ADS)
Barge, Laura M.; Nealson, Kenneth H.; Petruska, John
2010-06-01
The well-known AgNO 3/K 2CrO 4 reaction-diffusion system produces periodic bands of silver chromate precipitate in gelatin, but only randomly oriented crystals in agarose gel. We show that comparable bands can be produced in agarose gel by adding small amounts of simple organic acids (e.g., acetic acid, N-acetyl glycine, and N-acetyl alanine) that suppress crystal growth and promote formation of rounded particles of precipitate. These results indicate that α-carboxyl groups of amino acids or short peptides in gelatin under mildly acidic conditions can induce periodic band patterns in diffusion-controlled silver chromate precipitates.
NASA Astrophysics Data System (ADS)
Li, Shuping; Hou, Wei; Feng, Guolin
2018-04-01
Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961-2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.
Rauscher, Evelin; Schuszter, Gábor; Bohner, Bíborka; Tóth, Ágota; Horváth, Dezső
2018-02-21
We have produced hollow copper-containing precipitate tubes using a flow-injection technique, and characterized their linear and volume growth. It is shown that the ratio of the volume increase rate to that of pumping is constant independent of the chemical composition. It is also found that osmosis significantly contributes to the tube growth, since the inward flux of chemical species dominates during the precipitate pattern formation. The asymmetric hydrodynamic field coupled with the inherent concentration and pH gradients results in different particle morphology on the two sides of the precipitate membrane. While the tubes have a smooth outer surface, the inner walls are covered with nanoflowers for copper phosphate and with nanoballs for copper silicate.
Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.
2016-10-01
Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.
Spatially controlled, in situ synthesis of polymers
Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau
2005-03-22
An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohner, Bíborka; Endrődi, Balázs; Tóth, Ágota, E-mail: atoth@chem.u-szeged.hu
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence ofmore » a strong gravity current.« less
NASA Astrophysics Data System (ADS)
Abed-Elmdoust, Armaghan; Miri, Mohammad-Ali; Singh, Arvind
2016-11-01
We investigate the impact of changing nonuniform spatial and temporal precipitation patterns on the evolution of river networks. To achieve this, we develop a two-dimensional optimal channel network (OCN) model with a controllable rainfall distribution to simulate the evolution of river networks, governed by the principle of minimum energy expenditure, inside a prescribed boundary. We show that under nonuniform precipitation conditions, river networks reorganize significantly toward new patterns with different geomorphic and hydrologic signatures. This reorganization is mainly observed in the form of migration of channels of different orders, widening or elongation of basins as well as formation and extinction of channels and basins. In particular, when the precipitation gradient is locally increased, the higher-order channels, including the mainstream river, migrate toward regions with higher precipitation intensity. Through pertinent examples, the reorganization of the drainage network is quantified via stream parameters such as Horton-Strahler and Tokunaga measures, order-based channel total length and river long profiles obtained via simulation of three-dimensional basin topography, while the hydrologic response of the evolved network is investigated using metrics such as hydrograph and power spectral density of simulated streamflows at the outlet of the network. In addition, using OCNs, we investigate the effect of orographic precipitation patterns on multicatchment landscapes composed of several interacting basins. Our results show that network-inspired methods can be utilized as insightful and versatile models for directly exploring the effects of climate change on the evolution of river drainage systems.
NASA Astrophysics Data System (ADS)
Marquardt, W.; Ihle, P.
At two sites in the north of the G.D.R. 80-100 km distant from industry rain from individual precipitation events was collected by automatic samplers and relevant ionic species were analyzed. The sampler is described. The cloud routes at the 850 hPa level were traced back 1 day and then seven sectors were formed for each collection site taking into consideration geographical aspects and features of the emission pattern for the rea concerned. Investigating the precipitation components as a function of the emission pattern knowledge of meteorological input parameters are required. The influence of these parameters is reported. Contrary to the combustion of other fossil fuels, in the case of brown coal combustion a considerable emission of neutralizing components (especially CaO) occurs, counteracting the formation of "acid rain". This effect is clearly proven by means of individual examples and average considerations, i.e. the formation of acid rain does not only depend on the SO 2 and NO x emissions. The wet deposition of all types of ions at the measuring site for every emission sector was calculated by means of precipitation statistics. Using these investigations reference points with regard to border crossing transport are given.
Fulvic acid like organic compounds control nucleation of marine calcite under suboxic conditions
NASA Astrophysics Data System (ADS)
Neuweiler, Fritz; D'Orazio, Valeria; Immenhauser, Adrian; Geipel, Gerhard; Heise, Karl-Heinz; Cocozza, Claudio; Miano, Teodoro M.
2003-08-01
Intracrystalline organic compounds, enclosed within in situ precipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2) the degree of condensation, (3) the redox conditions involved, and (4) the catalytic role of natural organic matter for the precipitation of automicrite. Fluorescence spectrometry of the intracrystalline organic fraction extracted from these carbonates identifies a marine fulvic acid like organic compound with a low degree of polycondensation. This finding points to a temporal correlation of the initial stage of geopolymer formation with the precipitation of automicrite. Furthermore, the rare earth element (REE) distribution patterns in the mineral show a consistent positive Ce anomaly, suggesting an episode of reductive dissolution of iron-manganese oxyhydroxides during automicrite formation. In general, a relative enrichment of middle-weight REEs is observed, resulting in a convex distribution pattern typical for, e.g., phosphate concretions or humic acid material. By merging the results of spectrometry and REE geochemistry we thus conclude that the marine calcite precipitation was catalyzed by marine fulvic acid like compounds during the early stages of humification under suboxic conditions. This indicates that humification, driven by the presence of a benthic biomass, is more important for calcite authigenesis than any site-specific microbial metabolism. The Neoproterozoic rise of carbonate mounds supports this hypothesis; there is molecular evidence for early metazoan divergence then, but not for a major evolutionary episode of microorganisms.
NASA Astrophysics Data System (ADS)
Mckay, M.
2016-12-01
Baffin Bay is a Reverse estuary located in the semi-arid south Texas coastal plain. It receives on average 60-80 cm of precipitation per year with evaporation exceeding precipitation by 60 cm/year. It has experienced a variety of paleoenvironmental influences since its formation as sea levels rose during the Holocene period. Many of these environmental influences include some terrestrial deposits from creeks, and changes in precipitation patterns. One of the most significant influences on the bay was when it was separated from the Gulf of Mexico by the formation of a large Barrier Island (Padre Island) 5,500 years ago. In recent times, Baffin Bay has experienced decreases in water quality. While it is evident that current anthropological inputs (increased nutrient loading, etc.) are contributory, natural factors that include long-term changes in precipitation patterns, and fresh water flows, along with changes in the bays circulation patterns may also influence the functioning of the bay. In this study, short sediment cores ( 1.3-1.7 m) were taken from twelve locations around the main basin and tributaries of the bay. All cores were sampled at either one or five centimetre intervals depending on the technique employed, using several non-destructive and destructive proxy techniques. Chronological control was provided by Cs-137/Pb-210 analyses. Proxy analysis has corresponded well with both with known events and with the assistance of Cs-137/Pb-210 analyses, are able help discern environmental inputs that are of anthropological origin as opposed to those that of a natural origin or cycle.
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
He, Honghua; Bleby, Timothy M; Veneklaas, Erik J; Lambers, Hans; Kuo, John
2012-01-01
Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory.
He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John
2012-01-01
Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory. PMID:22848528
NASA Astrophysics Data System (ADS)
Baltaci, H.; Kindap, T.; Unal, A.; Karaca, M.
2012-04-01
In this study, we investigated the relationship between synoptic weather types and rainfall patterns in the Marmara region, northwestern part of Turkey. For this purpose, the automated Lamb weather type classification method was applied to the NCEP/NCAR reanalysis daily mean sea level pressure data for the period between 2001 and 2010. Ten synoptic weather types were found that represent the 90% of the synoptic patterns that affect the Marmara region. Based on the annual frequency analysis, mainly six synoptic weather types, 24% (NorthEast), 21% (North), 11% (South), 9% (SouthWest), 7% (Anticyclonic), 5% (Cyclonic), were found dominant in the region. Multiple comparison tests suggest that (i.e., Bonferroni test) northerly patterns (i.e., North and NorthEast) have statistically significantly higher percentages as compared to the southerly (i.e., South and SouthWest) and the rest of the patterns (i.e., Anticylonic and Cylonic). During winter months, N- and NE-patterns observed less frequently than the annual frequencies of them, 18% and 13% of the period, respectively. On the other hand, due to the formation of the low pressure center located over the central Mediterranean Sea, S- and SW-patterns were observed more frequently than their annual mean frequencies, 16% and 17%, respectively. During summer months, N- and NE-patterns become dominant in the region, and they constitute about three quarters of the period, 25% and 44%, respectively. The low pressure center located over central Anatolia and Black Sea brings moist and cool air to the region, preventing excessive heating during the summer season. Cyclonic patterns observed less frequent during the winter and fall months, about 3%. They become more frequent during the summer season, 9% as a result of the shifting of the subtropical jet stream to the south, and the seasonal movement of the Basra low pressure toward the inner and northern parts of the Anatolian peninsula. On the other hand, Anticyclonic patterns are more common in the fall season 11% due to the expansion of spatial extent of the anticyclone center located over the Caspian Sea. Daily precipitation records for the period of between 2001 and 2010 belong to 14 meteorological stations in the region were investigated to understand the influence of synoptic weather types on precipitation. Based on daily precipitation records, about one-third of the NE-patterns result in precipitation which is slightly larger than patterns from other directions. The corresponding values for SW-, N- and S-patterns are 29%, 25% and 25%, respectively. Northerly patterns (N and NE) causes more frequent precipitation on the northern and eastern parts of the region. On the other hand, southerly patterns (S and SW) are more influential and cause more frequent precipitation on the south and northwestern parts of the region. Therefore, frequency of synoptic weather types and daily precipitation records suggest that precipitation regimes are of a different nature in northern and southern parts of the Marmara region. Keywords Synoptic weather types; Marmara Region; Lamb classification; Rainfall patterns
NASA Astrophysics Data System (ADS)
Omer, Muhamed F.; Friis, Henrik
2014-03-01
The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.
Injection of Super-Critical CO2 in Brine Saturated Sandstone:
NASA Astrophysics Data System (ADS)
Ott, Holger; de Kloe, Kees; Taberner, Conxita; Marcelis, Fons; Makurat, Axel
2010-05-01
Presently, large-scale geological sequestration of CO2, originating from sources like fossil-fueled power plants and contaminated gas production, is seen as an option to reduce anthropogenic emission of greenhouse gases to the atmosphere. Deep saline aquifers and depleted oil and gas fields are potential subsurface deposits for CO2. Injected CO2, however, interacts physically and chemically with the formation leading to uncertainties for CCS projects. One of these uncertainties is related to a dry-out zone that is likely to form around the well bore owing to the injection of dry CO2. Precipitation of salt (mainly halite) that is associated with that drying out of a saline formation has the potential to impair injectivity, and could even lead to the loss of a well. If dry (or under-saturated), super-critical (SC) CO2 is injected into water-bearing geological formations like saline aquifers, water is removed by either advection of the aqueous phase or by evaporation of water and subsequent advection in the injected CO2-rich phase. Both mechanisms act in parallel, however while advection of the aqueous phase decreases with increasing CO2 saturation (diminished mobility), evaporation becomes increasingly important as the aqueous phase becomes immobile. Below residual water saturation, only evaporation takes place and the formation dries out if no additional source of water is available. If water evaporates, the salts originally present in the water are left behind. In case of highly saline formations, the amount of salt that potentially precipitates per unit volume can be quite substantial. It depends on salinity, the solubility limit of water in the CO2 rich phase, and on the ratio of advection and evaporation rates. Since saturations and flow rates cover a large range as functions of space and time close to the well bore, there is no easy answer to the questions whether, where and how salt precipitation impacts injectivity. The present paper presents results of core-flood experiments that were performed to investigate the spatial and temporal precipitation of salt due to the injection of dry CO2 and to understand the underlying mechanisms; super-critical CO2 was injected into brine-saturated sandstone (Berea) samples under realistic pressure and temperature conditions and at high injection rate. To match flow rates that are realistic for the near well-bore area, the experiments were performed on small-scale samples with a cross section of less than 1 cm2. Density profiles were measured by mCT (micro computer tomography) scanning during injection. Reference scans and brine doping with a contrast agent allow the distinction between the CO2-rich phase, the aqueous phase and precipitated solid salt even on pore scale. By means of mCT scanning, spatial and time evolution of halite precipitation in rock samples have been observed under sequestration conditions. Pattern formation of solid salt along the main flow direction as well as a cross-sectional pattern formation has been found. However, while there are areas of high local solid salt accumulation, permeability remained unaffected, which might be a result of the precipitation pattern. The results were complemented by (ex-situ) eSEM/EDAX measurements to study where and how salt precipitates on the microscopic scale. The SEM results cannot be directly translated to in-situ conditions, as salt migrates post-experiment at ambient conditions, but give valuable insight into microscopic processes controlling deposition. Numerical simulations have been performed for a qualitative understanding of principle mechanisms and show a dependency of the observed profile on injection rate and capillary pressure.
Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS
NASA Technical Reports Server (NTRS)
Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer
2016-01-01
Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.
Ziaco, Emanuele; Truettner, Charles; Biondi, Franco; Bullock, Sarah
2018-04-01
Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature-driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water-limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015-2016) showing opposite-sign anomalies between warm- and cold-season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July-August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of P. ponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions. © 2018 John Wiley & Sons Ltd.
Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling
NASA Astrophysics Data System (ADS)
Schwarze, C.; Gupta, A.; Hickel, T.; Darvishi Kamachali, R.
2017-05-01
We investigate the evolution of large number of δ' coherent precipitates from a supersaturated Al-8 at.% Li alloy using large-scale phase-field simulations. A chemomechanical cross-coupling between mechanical relaxation and diffusion is taken into account by considering the dependence of elastic constants of the matrix phase onto the local concentration of solute atoms. The elastic constants as a function of solute concentration have been obtained using density functional theory calculations. As a result of the coupling, inverse ripening has been observed where the smaller precipitates grow at the expense of the larger ones. This is due to size-dependent concentration gradients existing around the precipitates. At the same time, precipitates rearrange themselves as a consequence of minimization of the total elastic energy of the system. It is found that the anisotropy of the chemomechanical coupling leads to the formation of new patterns of elasticity in the matrix thereby resulting in new alignments of the precipitates.
From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael
2017-04-01
Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.
NASA Astrophysics Data System (ADS)
Joosu, Lauri; Lepland, Aivo; Kreitsmann, Timmu; Üpraus, Kärt; Roberts, Nick M. W.; Paiste, Päärn; Martin, Adam P.; Kirsimäe, Kalle
2016-08-01
The first globally significant phosphorous-rich deposits appear in the Paleoproterozoic at around 2 Ga, however, the specific triggers leading to apatite precipitation are debated. We examine phosphorous-rich rocks (up to 8 wt% P2O5) in 1.98-1.92 Ga old Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Russia. Phosphates in these rocks occur as locally derived and resedimented sand-to-gravel/pebble sized grains consisting of apatite-cemented muddy sediments. Phosphatic grains can be subdivided into four petrographic types (A-D), each has a distinct REE signature reflecting different early-to-late diagenetic conditions and/or metamorphic overprint. Pyrite containing petrographic type D, which typically has a flat REE pattern, negative Ce anomaly and positive Eu anomaly, is the best preserved of the four types and best records conditions present during apatite precipitation. Type D phosphatic grains precipitated under (sub)oxic basinal conditions with a significant hydrothermal influence. These characteristics are similar to Zaonega Formation phosphates of NW Russia's Onega Basin, and consistent with phosphogenesis triggered by the development of anoxic(sulfidic)-(sub)oxic redoxclines at shallow sediment depth during the Paleoproterozoic.
NASA Astrophysics Data System (ADS)
Gao, Tao; Xie, Lian
2016-12-01
Precipitation extremes are the dominated causes for the formation of severe flood disasters at regional and local scales under the background of global climate change. In the present study, five annual extreme precipitation events, including 1, 7 and 30 day annual maximum rainfall and 95th and 97.5th percentile threshold levels, are analyzed relating to the reference period 1960-2011 from 140 meteorological stations over Yangtze River basin (YRB). A generalized extreme value (GEV) distribution is applied to fit annual and percentile extreme precipitation events at each station with return periods up to 200 years. The entire time period is divided into preclimatic (preceding climatic) period 1960-1980 and aftclimatic (after climatic) period 1981-2011 by considering distinctly abrupt shift of precipitation regime in the late 1970s across YRB. And the Mann-Kendall trend test is adopted to conduct trend analysis during pre- and aftclimatic periods, respectively, for the purpose of exploring possible increasing/decreasing patterns in precipitation extremes. The results indicate that the increasing trends for return values during aftclimatic period change significantly in time and space in terms of different magnitudes of extreme precipitation, while the stations with significantly positive trends are mainly distributed in the vicinity of the mainstream and major tributaries as well as large lakes, this would result in more tremendous flood disasters in the mid-lower reaches of YRB, especially in southeast coastal regions. The increasing/decreasing linear trends based on annual maximum precipitation are also investigated in pre- and aftclimatic periods, respectively, whereas those changes are not significantly similar to the variations of return values during both subperiods. Moreover, spatiotemporal patterns of precipitation extremes become more uneven and unstable in the second half period over YRB.
NASA Astrophysics Data System (ADS)
Pavelsky, T. M.; Sobolowski, S.; Kapnick, S. B.; Barnes, J. B.
2011-12-01
Precipitation patterns in mountain environments affect global water resources and major hazards such as floods and landslides. In mid-latitude mountain ranges such as the Sierra Nevada Mountains of California, much of the precipitation falls as snow, which accumulates and acts as a natural reservoir. As in many snowfall-dependent regions, California water infrastructure has been designed to capture warm season snowmelt runoff and transport it to otherwise dry areas where it is needed. Recent studies suggest that anthropogenic climate change is likely to result in a substantial shift from snow to rain in the Sierra Nevada during the 21st century. One mechanism for changing spatial patterns in precipitation that has not received substantial attention arises directly from a phase change associated with winter temperatures rising above freezing with greater frequency. Because the fall speed of rain is greater than snow, it is not advected as far as snow by the prevailing winds. We hypothesize that an extreme change from snow to rain will result in a substantial westward shift in annual precipitation under a warming climate. To test this hypothesis, we conducted two climate simulations over the central Sierra Nevada using the WRF regional climate model version 3.1.1 for the period October 2001 to September 2002. Both simulations used nested domains with grid spacings of 27 km, 9 km, and 3 km. The first simulation is a control run, while the second run is an idealized simulation in which fall speeds for snow and graupel are set to be identical to those of raindrops. Comparison of the two runs suggests that a change from snow to rain would yield substantial changes in the spatial patterns of precipitation. However, these patterns are fully realized only in the 3 km domain. In the 9 km and especially the 27 km domain these patterns are substantially attenuated, likely due to less detailed orographic forcing. In the 3 km domain, precipitation increases substantially on windward slopes west of the principal drainage divide, in some areas by more than 1400 mm (115%). Conversely, the eastern slope of the Sierra Nevada becomes substantially drier, with decreases of as much as 886 mm (67%) in some areas. Overall, in a rain-only environment precipitation increases by an average of 135 mm (12%) on the west side of the divide and decreases by 174 mm (45%) on the east side compared to present-day conditions. While these results represent an idealized, extreme case in which all snow falls at the speed of rain from the same hydrometeor formation locations, they suggest that changes in spatial precipitation patterns associated with altered precipitation phase may have substantial effects on water resources, particularly the distribution of total precipitation across water basins, partition of water supply across collocated aqueducts, ecology, natural hazards such as floods and landslides, and other components of natural and human systems in the Sierra Nevada and the state of California more generally.
High-resolution imaging of the supercritical antisolvent process
NASA Astrophysics Data System (ADS)
Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.
2005-06-01
A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.
NASA Astrophysics Data System (ADS)
Barge, L. M.; Petruska, J.; Potter, S.; Cho, J.; Chan, M.; Nealson, K.
2007-12-01
We present results of laboratory gel diffusion experiments designed to simulate the precipitation of iron minerals in natural systems. Liesegang bands and crystals of various iron minerals were formed in aqueous gels, "mini- concretions" of mineral precipitate were formed in both sand and a sand/agarose mixture, and the formation of hollow mineral spheres was observed in gel precipitation experiments where organics were introduced. These mineral structures are analogous to concretion forms observed in the Navajo Sandstone region of Utah, which have been suggested as terrestrial analogs for the "blueberry" hematite concretions on Mars. Iron mineral precipitates (perhaps with a gel precursor) occur in many forms in the Navajo Sandstone, including "mini- concretions" (solid concretions 1-2 mm in diameter), "rind-like" concretions (hollow spheres of hematite several cm in diameter, surrounding a region of sandstone), and Liesegang banding (banded patterns that form at reaction fronts through diffusion of ions from one reservoir to another). On Mars only small (4-5mm) and mini-concretions (~ 1mm) have been observed; Liesegang bands or large rind-like concretions have not yet been discovered. The varying conditions that give rise to each of these mineral structures in the laboratory indicate that the small, spheroidal types of iron precipitates found in the Utah and Martian environments may be diagnostic of the diffusion medium, presence of organics, and characteristics of fluid in that region.
Microstructure and Thermal History of Metal Particles in CH Chondrites
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Jones, R. H.; Kotula, P. G.; Michael, J. R.
2005-01-01
Fe-Ni metal particles with smooth Ni, Co, and Cr zoning patterns, 8-13 wt.% Ni in the center of the particle to 3-5 wt% Ni at the rim, have been identified in several CR-clan (CH, Bencubbinlike, and CR) chondrites. These zoning patterns are broadly consistent with an origin by gas-solid condensation in the solar nebula at temperatures between approximately 1500 to 1300 K and fast cooling rates, 2 to 25 K/day. Apparently, this condensate metal was not melted during chondrule formation or affected significantly in the solid-state by alteration during parent body processing. Consideration of diffusional redistribution of Ni, Co, Cr and siderophile elements have further constrained the calculated condensation temperatures and cooling rates of the zoned condensates. These condensate metals have irregular shapes and vary in size from 50 to 350 m as revealed in some detail by optical and SEM techniques. In addition to zoned condensate particles, other types of metal particles have been observed. These include zoned condensates with exsolution-precipitates, unzoned homogeneous metal with no exsolution precipitates, unzoned metal exhibiting exsolution precipitates and high Ni metal grains.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Instabilities and finger formation in replacement fronts driven by an oversaturated solution
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Tredak, Hanna; Upadhyay, Virat; Ladd, Anthony J. C.; Szymczak, Piotr
2017-08-01
We consider a simple model of infiltration-driven mineral replacement, in which the chemical coupling between precipitation and dissolution leads to the appearance of a reaction front advancing into the system. Such fronts are usually accompanied by a local increase of porosity. We analyze the linear stability of the replacement front to establish whether such a localized porosity increase can lead to global instability and pattern formation in these systems. We find that for a wide range of control parameters such fronts are unstable. However, both short- and long-wavelength perturbations are stabilized, whereas in a purely dissolutional instability only short wavelengths are stable. We analyze the morphologies of the dissolution patterns emerging in the later stages of the evolution of the system, when the dynamics are beyond the linear regime. Implications of these results for the natural systems are discussed, particularly in the context of karst formation in terra rossa-covered carbonate bedrock.
The microstructure and formation of duplex and black plessite in iron meteorites
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.
1993-01-01
Two of the most common plessite structures, duplex and black plessite, in the taenite region of the Windmanstatten pattern of two iron meteorites (Grant and Carlton) are characterized using high-resolution electron microscopy and microanalysis techniques. Two types of gamma precipitates, found in the duplex plessite and black plessite regions, respectively, are identified, and their morphologies are described. The formation of the plessite structure is discussed using the information obtained in this study and results of a parallel investigation of decomposed martensitic Fe-Ni laboratory alloys.
Theoretical Problems in Materials Science
NASA Technical Reports Server (NTRS)
Langer, J. S.; Glicksman, M. E.
1985-01-01
Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.
NASA Astrophysics Data System (ADS)
Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.
2018-04-01
Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.
2018-03-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.
Castagneri, Daniele; Battipaglia, Giovanna; von Arx, Georg; Pacheco, Arturo; Carrer, Marco
2018-04-24
Understanding how climate affects xylem formation is critical for predicting the impact of future conditions on tree growth and functioning in the Mediterranean region, which is expected to face warmer and drier conditions. However, mechanisms of growth response to climate at different temporal scales are still largely unknown, being complicated by separation between spring and autumn xylogenesis (bimodal temporal pattern) in most species such as Mediterranean pines. We investigated wood anatomical characteristics and carbon stable isotope composition in Mediterranean Pinus pinea L. along tree-ring series at intra-ring resolution to assess xylem formation processes and responses to intra-annual climate variability. Xylem anatomy was strongly related to environmental conditions occurring a few months before and during the growing season, but was not affected by summer drought. In particular, the lumen diameter of the first earlywood tracheids was related to winter precipitation, whereas the size of tracheids produced later was influenced by mid-spring precipitation. Diameter of latewood tracheids was associated with precipitation in mid-autumn. In contrast, tree-ring carbon isotope composition was mostly related to climate of the previous seasons. Earlywood was likely formed using both recently and formerly assimilated carbon, while latewood relied mostly on carbon accumulated many months prior to its formation. Our integrated approach provided new evidence on the short-term and carry-over effects of climate on the bimodal temporal xylem formation in P. pinea. Investigations on different variables and time scales are necessary to disentangle the complex climate influence on tree growth processes under Mediterranean conditions.
Concrete-Water-Interaction and Ikaite (CaCO3.6H2O) Precipitation in a Man-Made River Bed
NASA Astrophysics Data System (ADS)
Boch, R.; Dietzel, M.; Reichl, P.; Leis, A.; Pölt, P.; Baldermann, A.
2014-12-01
Centimetre-thick, beige-colored and soft crusts were observed shortly after construction of a man-made river bed, i.e. a small natural river was bypassed flowing through a new bed lined with concrete and blocks. Hydrochemical investigations during wintertime - when water temperatures dropped down close to freezing - showed surprisingly high pH values up to 13.0 and elevated Ca2+ concentrations up to 200 mg/l. Both, the artifical and natural (downstream) section of the river bed were affected by the anomalous hydrochemistry and formation of prominent secondary precipitates. In order to better understand the particular and rapid water-rock-interaction, a hydrochemical monitoring program was launched and several of the delicate precipitates were recovered in refrigerator boxes in their original solution. The samples were analyzed in the laboratory within a few hours after sampling and stored at 1 °C. XRD and FT-IR patterns clearly revealed the predominant occurrence of "ikaite" in the crusts next to minor amounts of other carbonates (calcite, aragonite, vaterite) and detrital minerals. Ikaite - calcium carbonate hexahydrate - is a worldwide rarely documented carbonate mineral. This mineral is metastable and needs particular and narrow conditions in order to precipitate from solutions, i.e. a very limited water-temperature range between 0 and 4 °C (with ambient-pressure and low-salinity), highly alkaline pH conditions, high supersaturation values, and in many cases carbonate precipitation inhibitors (e.g. phosphates). Outside these conditions it disintegrates into calcite and water within minutes to hours. The few places of ikaite formation include Ikka Fjord in Greenland, Arctic- and Antarctic sea-ice and some sites of water mixing at Mono Lake, California. Combining detailed field monitoring results, solid-phase analyses and regional meteorological data (rainfall, water discharge, temperature) with hydrogeochemical modeling allows constraining the mechanisms of ikaite formation, as well as the temporal and spatial evolution of the waters and precipitates in the river bed.
NASA Astrophysics Data System (ADS)
Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.
2017-08-01
Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.
Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast
NASA Astrophysics Data System (ADS)
Agel, L. A.; Barlow, M. A.
2016-12-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.
Rocks and Rain: orographic precipitation and the form of mountain ranges
NASA Astrophysics Data System (ADS)
Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.
2005-12-01
In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.
1996-01-01
Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.
Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation
Lechner, Carolin C.; Becker, Christian F. W.
2015-01-01
Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.
2011-12-01
This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is integrative, relatively extreme precipitation gradients are required to produce anomalous channel profile forms.
Deborah Ulinski Potter
1999-01-01
Previous publications discussed the results of my dissertation research on relationships between seasonality in precipitation and vegetation patterns at landscape scale. Summer precipitation at a study site in the Zuni Mountains, NM, was predicted from lightning strike and relative humidity data using multiple regression. Summer precipitation patterns were mapped using...
Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat
2018-06-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.
Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat
2018-01-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo
Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemicalmore » systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.« less
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah
2018-05-01
Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.
NASA Technical Reports Server (NTRS)
Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco;
2017-01-01
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08
2013-09-30
transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime
Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08
2012-09-30
cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that
NASA Astrophysics Data System (ADS)
Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.
2014-10-01
Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.
Application of hierarchical clustering method to classify of space-time rainfall patterns
NASA Astrophysics Data System (ADS)
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)
Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.
2007-01-01
A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its sorption capacity to zero. Thus the ubiquitous nontronite precipitation along the active plate boundaries and around the hot spots has no significant impact on oceanic trace element chemistry. ?? 2007 Elsevier B.V. All rights reserved.
Determinants of postfire recovery and succession in mediterranean-climate shrublands of California
Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.
2005-01-01
Evergreen chaparral and semideciduous sage scrub shrublands were studied for five years after fires in order to evaluate hypothesized determinants of postfire recovery and succession. Residual species present in the immediate postfire environment dominated early succession. By the fifth year postfire, roughly half of the species were colonizers not present in the first year, but they comprised only 7-14% cover. Successional changes were evaluated in the context of four hypotheses: (1) event-dependent, (2) fire interval, (3) self-regulatory, and (4) environmental filter hypotheses. Characteristics specific to the fire event, for example, fire severity and annual fluctuations in precipitation, were important determinants of patterns of change in cover and density, supporting the "event-dependent" hypothesis. The "fire interval" hypothesis is also supported, primarily through the impact of short intervals on reproductive failure in obligate seeding shrubs and the impact of long intervals on fuel accumulation and resultant fire severity. Successional changes in woody cover were correlated with decreases in herb cover, indicating support for "self-regulatory" effects. Across this landscape there were strong "environmental filter" effects that resulted in complex patterns of postfire recovery and succession between coastal and interior associations of both vegetation types. Of relevance to fire managers is the finding that postfire recovery patterns are substantially slower in the interior sage scrub formations, and thus require different management strategies than coastal formations. Also, in sage scrub (but not chaparral), prefire stand age is positively correlated with fire severity, and negatively correlated with postfire cover. Differential responses to fire severity suggest that landscapes with combinations of high and low severity may lead to enhanced biodiversity. Predicting postfire management needs is complicated by the fact that vegetation recovery is significantly controlled by patterns of precipitation. ?? 2005 by the Ecological Society of America.
Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates
NASA Astrophysics Data System (ADS)
Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.
2012-12-01
In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.
Patterning of alloy precipitation through external pressure
NASA Astrophysics Data System (ADS)
Franklin, Jack A.
Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.
Tropical Sumatra Squalls drive stable isotope ratios of precipitation in Singapore
NASA Astrophysics Data System (ADS)
He, S.; Niezgoda, K.; Kurita, N.; Wang, X.; Rubin, C. M.; Goodkin, N.
2016-12-01
Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems in the study area during the inter-monsoon and southwest monsoon season. Accompanied by gusty winds and heavy rains, the squalls can be very destructive, affecting Sumatra, the Malay Peninsula and Singapore. To understand how they affect precipitation and its stable isotopes, we continuously analyzed real-time δ-values of precipitation during the squalls in 2015 and also obtained δ-values of daily precipitation. We expect the study will improve our knowledge on cloud dynamics, water cycle during the squalls, and the drive of δ-value of precipitation in the region. We found that δ18O values of precipitation during the squalls mainly exhibit a "V" shape pattern or less commonly a "W" shape pattern. Change in the δ18O value during a single event is approximately 1 to 6‰, with the lowest values mostly observed in the stratiform zone. These observations can be largely explained by the mesoscale subsidence and rain re-evaporation in combination with other processes, such as the entrainment of ambient air. In some events, however, the minimum δ-value occurs in the convection core and coincides with 90% of the total event rainfall, implying a control of rain amount and the dominance of condensation mechanism during these events. Daily precipitation is characterized by periodic negative shifts in its δ18O value. Moreover, the shifts are associated with Sumatra Squalls. Compared to 2014, the frequency of the squalls and corresponding negative shifts in δ-values in 2015 is lower probably due to a weak monsoon. During the ENSO event in 2015, the region was generally drier as a result of reduced moisture convergence with the shift of convection in the western Pacific to the central and eastern Pacific. Therefore, Pacific warm/cold events likely affect the formation of the Sumatra Squalls in the region.
Pattern formation in a class of homogeneous photochemical reactions
NASA Astrophysics Data System (ADS)
Schiller, Robert; Hámori, András
1999-03-01
Based on earlier observations of Avnir et al. [D. Avnir, M.L. Kagan, W. Ross, Chem. Phys. Lett. 135 (1987) 177; D. Avnir, M.L. Kagan, Chaos 5 (1995) 589] we investigated the kinetics of the spatial structures of the precipitate, Turnbull-blue, formed in aqueous mixtures of potassium ferrioxalate plus potassium ferricyanide under continuous laser illumination. Similar structures were observed when ferricyanide was replaced by some other Fe 2+ ions reagent. Spatio-temporal and thermochemical analyses led us to the conclusion that the formation of the dissipative structures is due to convection which, in turn, is greatly affected by the heat of reaction.
Preparation of self-assembled microspheres and their potential for drug delivery.
Mellors, Rachel; Benzeval, Ian; Eisenthal, Robert; Hubble, John
2010-01-01
Dextran solutions intended for use as plasma extenders have been observed to form insoluble precipitates. Earlier studies of precipitation have shown that in solutions of 50% and 60% w/w of dextran molecular mass 6000 g mol(-1) beaded precipitates are formed over a two-week period. This study considers dextran precipitation over a wider molecular mass range and the kinetics, of formation, morphology and potential utility of these precipitates is investigated. Results show precipitation occurs over the dextran molecular mass range 6000-17,000 g mol(-1), with lower molecular mass material showing more rapid precipitation. As bead formation is accompanied by an increase in turbidity, formation kinetics were quantified spectrophotometrically confirming that precipitation rates were inversely proportional to molecular mass. The utility of these precipitates for drug delivery applications was assessed using bovine serum albumin as a protein drug analogue. The results showed that the inclusion of protein did not prevent bead formation and that entrapped protein was subsequently released from dextran beads in a time dependant manner. This suggests that dextran beads of this type may find application in the drug delivery area, as they combine the advantages of mild entrapment conditions with the use of an unmodified clinically approved polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whidden, K.J.; Bottjer, D.J.
Silicification in carbonates, particularly silicified trace fossils, has received relatively little previous study. Chert comprises a significant percentage of the upper Fossil Mountain Member of the Kaibab Formation, a Permian epicontinental limestone. Distribution and origin of this chert were studied from outcrops in southwestern Utah. The origin of much of this chert is believed to be as silicified Thalassinoides burrows. Field evidence for trace fossil silicification includes (1) silicified cylindrical tubes with Y-shaped branching patterns as well as hollow tubes, and (2) polygonal box-work patterns of tubes. In addition, brachiopods, bryozoans, and abundant specimens of the sponge Actinocelia maendrina Finksmore » are also silicified. Recognition of silicified trace fossils in carbonates provides a different approach to the study of early diagenetic silica precipitation. These silicified trace fossils also represent new information on bioturbation in ancient carbonates, a subject that has, until recently, been relatively unstudied.« less
NASA Astrophysics Data System (ADS)
Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun
2018-02-01
Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments demonstrated that the change in spring basic state before and after 1998 played a relatively minor role in exciting such a teleconnection pattern, when compared with the tropical precipitation anomaly pattern change.
Three-dimensional digital microfluidic manipulation of droplets in oil medium
Hong, Jiwoo; Kim, Young Kwon; Won, Dong-Joon; Kim, Joonwon; Lee, Sang Joon
2015-01-01
We here develop a three-dimensional DMF (3D DMF) platform with patterned electrodes submerged in an oil medium to provide fundamental solutions to the technical limitations of 2D DMF platforms and water–air systems. 3D droplet manipulation on patterned electrodes is demonstrated by programmably controlling electrical signals. We also demonstrate the formation of precipitates on the 3D DMF platform through the reaction of different chemical samples. A droplet containing precipitates, hanging on the top electrode, can be manipulated without adhesion of precipitates to the solid surface. This method could be a good alternative strategy to alleviate the existing problems of 2D DMF systems such as cross-contamination and solute adsorption. In addition, we ascertain the feasibility of temperature-controlled chemical reaction on the 3D DMF platform by introducing a simple heating process. To demonstrate applicability of the 3D DMF system to 3D biological process, we examine the 3D manipulation of droplets containing mouse fibroblasts in the 3D DMF platform. Finally, we show detachment of droplets wrapped by a flexible thin film by adopting the electro-elasto-capillarity (EEC). The employment of the EEC may offer a strong potential in the development of 3D DMF platforms for drug encapsulation and actuation of microelectromechanical devices. PMID:26033440
NASA Astrophysics Data System (ADS)
Ao, Juan; Sun, Jianqi
2016-05-01
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies (SSTAs) over the South Pacific Ocean (SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.
A new precipitation and meteorological drought climatology based on weather patterns
NASA Astrophysics Data System (ADS)
Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.
2017-12-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.
USDA-ARS?s Scientific Manuscript database
The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...
New Structured Laves Phase in the Mg-In-Ca System with Nontranslational Symmetry and Two Unit Cells
NASA Astrophysics Data System (ADS)
Xie, Hongbo; Pan, Hucheng; Ren, Yuping; Wang, Liqing; He, Yufeng; Qi, Xixi; Qin, Gaowu
2018-02-01
All of the A B2 Laves phases discovered so far satisfy the general crystalline structure characteristic of translational symmetry; however, we report here a new structured Laves phase directly precipitated in an aged Mg-In-Ca alloy by using aberration-corrected scanning transmission electron microscopy. The nanoprecipitate is determined to be a (Mg,In ) 2Ca phase, which has a C 14 Laves structure (hcp, space group: P 63/m m c , a =6.25 Å , c =10.31 Å ) but without any translational symmetry on the (0001) p basal plane. The (Mg,In ) 2Ca Laves phase contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present Laves phase, followed by the Penrose geometrical rule. The orientation relationship between the Laves precipitate and Mg matrix is (0001) p//(0001) α and [11 ¯00 ] p//[112 ¯0 ] α . More specifically, in contrast to the traditional view that the third element would orderly replace other atoms in a manner of layer by layer on the close-packed (0001) L plane, the In atoms here have orderly occupied certain position of Mg atomic columns along the [0001] L zone axis. The finding would be interesting and important for understanding the formation mechanism of Laves phases, and even atom stacking behavior in condensed matter.
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.
2016-12-01
Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.
A new precipitation and drought climatology based on weather patterns.
Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert
2018-02-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Qian, Yun; Zhang, Yaocun
This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results
NASA Astrophysics Data System (ADS)
Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila
2015-04-01
Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the environmental conditions during the formation of the investigated scalings and to increase our knowledge on retarding and preventive measures of scaling for geothermal applications.
Evolution of Tropical and Extratropical Precipitation Anomalies During the 1997 to 1999 ENSO Cycle
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Nelkin, Eric; Bolvin, David; Einaudi, Franco (Technical Monitor)
2000-01-01
The 1997-1999 ENSO period was very powerful, but also well observed. Multiple satellite rainfall estimates combined with gauge observations allow for a quantitative analysis of precipitation anomalies in the tropics and elsewhere accompanying the 1997-99 ENSO cycle. An examination of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent preceded the formation of positive SST anomalies in the eastern Pacific Ocean. 30-60 day oscillations in the winter of 1996/97 may have contributed to this lag relationship. Furthermore, westerly wind burst events may have maintained the drought over the Maritime Continent. The warming of the equatorial Pacific was then followed by an increase in convection. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured substantial changes in Pacific rainfall anomalies. The global precipitation patterns for this event were in good agreement with the strong consistent ENSO-related precipitation signals identified in earlier studies. Differences included a shift in precipitation anomalies over Africa during the 1997-98 El Nino and unusually wet conditions over northeast Australia during the later stages of the El Nino. Also, the typically wet region in the north tropical Pacific was mostly dry during the 1998-99 La Nina. Reanalysis precipitation was compared to observations during this time period and substantial differences were noted. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific was less pronounced for the model compared to the observations.
Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed
2011-02-15
In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources. Copyright © 2010 Elsevier B.V. All rights reserved.
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
Stable isotopic compositions in Australian precipitation
NASA Astrophysics Data System (ADS)
Liu, Jianrong; Fu, Guobin; Song, Xianfang; Charles, Stephen P.; Zhang, Yinghua; Han, Dongmei; Wang, Shiqin
2010-12-01
Stable deuterium (δD) and oxygen-18 (δ18O) isotopes in 1962 to 2002 precipitation from the seven Australian stations of the Global Network of Isotopes in Precipitation (GNIP) were used to investigate isotope characteristics including temporal and spatial distributions across different regions of Australia. On the basis of 1534 samples, the local meteoric water line (LMWL) was established as δD = 7.10δ18O + 8.21. δ18O showed a depletion trend from north and south to central Australia (a continental effect) and from west to east. Precipitation amount effects were generally greater than temperature effects, with quadratic or logarithmic correlations describing δ/T and δ/P better than linear relationships. Nonlinear stepwise regression was used to determine the significant meteorological control factors for each station, explaining about 50% or more of the δ18O variations. Geographical control factors for δ18O were given by the relationship δ18O (‰) = -0.005 longitude (°) - 0.034 latitude (°)-0.003 altitude (m) - 4.753. Four different types of d-excess patterns demonstrated particular precipitation formation conditions for four major seasonal rainfall zones. Finally, wavelet coherence (WTC) between δ18O and SOI confirmed that the influence of ENSO decreased from east and north to west Australia.
Impact of deforestation on local precipitation patterns over the Da River basin, Vietnam
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Spartà, Daniele; Castelletti, Andrea; Boschetti, Mirco
2014-05-01
Change in land cover, e.g. from forest to bare soil, might severely impact the hydrological cycle at the river basin scale by altering the balance between rainfall and evaporation, ultimately affecting streamflow dynamics. These changes generally occur over decades, but they might be much more rapid in developing countries, where economic growth and growing population may cause abrupt changes in landscape and ecosystem. Detecting, analysing and modelling these changes is an essential step to design mitigation strategies and adaptation plans, balancing economic development and ecosystem protection. In this work we investigate the impact of land cover changes on the water cycle in the Da River basin, Vietnam. More precisely, the objective is to evaluate the interlink between deforestation and precipitation. The case study is particularly interesting because Vietnam is one of the world fastest growing economies and natural resources have been considerably exploited to support after-war development. Vietnam has the second highest rate of deforestation of primary forests in the world, second to only Nigeria (FAO 2005), with associated problems like abrupt change in run-off, erosion, sediment transport and flash floods. We performed land cover evaluation by combining literature information and Remote Sensing techniques, using Landsat images. We then analysed time series of precipitation observed on the period 1960-2011 in several stations located in the catchment area. We used multiple trend detection techniques, both state-of-the-art (e.g., Linear regression and Mann-Kendall) and novel trend detection techniques (Moving Average on Shifting Horizon), to investigate trends in seasonal pattern of precipitation. Results suggest that deforestation may induce a negative trend in the precipitation volume. The effect is mainly recognizable at the beginning and at the end of the monsoon season, when the local mechanisms of precipitation formation prevail over the large scale ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.J., E-mail: lixj@alum.imr.ac.cn
During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of depositionmore » time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.« less
Development of a Refractory High Entropy Superalloy (Postprint)
2016-03-17
pp. 159–183. 37. Nishimori, H .; Onuki , A. Pattern formation in phase-separating alloys with cubic symmetry. Phys. Rev. B 1990, 42, 980. [CrossRef] 38...207 MPa for 2 h , and then annealed at 1400 ˝C for 24 h in continuously flowing high-purity argon. During HIPing and annealing, the alloy was covered...after annealing at 1400 °C for 24 h . Second-phase precipitates (which are dark) are present at grain boundaries. (a) (b) Figure 4. High magnification
Biogenic barite preciptiation at micromolar ambient sulfate
NASA Astrophysics Data System (ADS)
Horner, T. J.; Pryer, H. V.; Nielsen, S.; Ricketts, R. D.
2016-12-01
Earth's early oceans were essentially devoid of sulfate, yet barium sulfate (barite) deposits are common to ancient sediments. Most explanations for this `barite paradox' overlook biogenic barite precipitation—the dominant vector of particulate barium cycling in modern seawater—as the ancient oceans were presumably strongly undersaturated with respect to barite. We tested whether biogenic barite could indeed precipitate at trace sulfate by examining the particulate multi-element and Ba-isotopic geochemistry of one of the largest trace-sulfate ecosystems on Earth: Lake Superior. Despite exceptional levels of barite undersaturation in Lake Superior, we find unambiguous evidence of biogenic barite precipitation that is correlated with the depths of greatest organic matter remineralization in the water column. The overall pattern of particulate barium cycling in Lake Superior is strikingly similar to that seen in the open ocean, supporting the critical role of particle-associated `microenvironments' that become rich in respired sulfate as protected sites of biogenic barite formation. Our observations offer a microbially-mediated mechanism for barite formation at micromolar ambient sulfate and thus also a potential resolution to the barite paradox in the ancient oceans.
In situ study of in-beam cobalt suicide growth in silicon
NASA Astrophysics Data System (ADS)
Ruault, M.-O.; Fortuna, F.; Bernas, H.; Kaitasov, O.
1994-02-01
The control of buried suicide layer interfaces requires a systematic study of their formation conditions (implantation temperature, sample orientation, post-annealing conditions). At stoichiometric concentration, the layer roughness stems from the formation and overlap of B-type precipitates during implanted sample annealing. However, at such high concentrations several parameters interfere during suicide layer formation, particularly diffusion-limited precipitate growth and precipitate coalescence and Ostwald ripening. In order to analyze these factors separately, we have performed an in situ TEM study of the initial stages of CoSi 2 precipitate formation and growth in Si during 50 keV Co implantation to fluences between 10 15 and 1.5 × 10 16 Cocm -2, at temperatures between 350 and 650°C. At 350°C, the threshold fluence for suicide precipitate observation was 2 × 10 15 Cocm -2, and the size of the precipitates remained constant (about 4 nm) up to a fluence of 1.5 × 10 16 Cocm -2. At higher implantation temperatures, the average growth rate at 650°C is four times higher than at 500°C until the average size of the precipitates reaches ~ 8 nm. Then the growth rate is surprisingly independent of the implantation temperature. The results are discussed in the light of a recently developed precipitation kinetic analysis.
Global Terrestrial Patterns of Precipitation Change under a Warming Climate
NASA Astrophysics Data System (ADS)
Guo, R.
2017-12-01
Terrestrial global warming has occurred over the last century, especially since the 1950s. This study analyzes changes in global terrestrial precipitation patterns in period of 1950-2010 in an attempt to identify the influence of climate change on precipitation. The results indicate that there is no significant change globally or across latitude bands; nevertheless significant regional differences in precipitation changes are identified. The lack of a change in precipitation levels, or precipitation balance, at both the global and latitudinal band scales is a result of offsetting by opposing precipitation changes at the regional scales. Clear opposing precipitation change patterns appeared in the Northern Hemisphere mid-latitude band (NHM). Significant increases in precipitation were distributed throughout the western extent of NHM, including the North America, Europe and west of Central Asia, while decreases were observed over the eastern extent, namely, East Asia. A dynamical adjustment methodology was applied to precipitation data, which could identify the roles of atmospheric circulation (dynamic) and the residual (thermodynamic) forcing played in generating the opposing regional precipitation changes in the NHM. Distinct different changes of dynamic and thermodynamic precipitation were found in different regions. Increased precipitation in North America and southern Europe were caused by thermodynamic precipitation, while the dynamic precipitation presented decreased trend due to the positive sea level pressure trend. However, in northern Europe and west of Central Asia, dynamic and thermodynamic precipitation both contributed to the increased precipitation, but thermodynamic precipitation had larger amplitude. In East Asia, the decreased precipitation was a result of simultaneous decrease in dynamic and thermodynamic precipitation.
Ouyang, Y F; Chen, H M; Tao, X M; Gao, F; Peng, Q; Du, Y
2018-01-03
The properties of precipitates are important in understanding the strengthening mechanism via precipitation during heat treatment and the aging process in Al-Cu based alloys, where the formation of precipitates is sensitive to temperature and pressure. Here we report a first-principles investigation of the effect of temperature and pressure on the structural stability, elastic constants and formation free energy for precipitates of Al 2 Cu, as well as their mechanical properties. Based on the formation enthalpy of Guinier-Preston (GP(I)) zones, the size of the GP(I) zone is predicted to be about 1.4 nm in diameter, which is in good agreement with experimental observations. The formation enthalpies of the precipitates are all negative, suggesting that they are all thermodynamically stable. The present calculations reveal that entropy plays an important role in stabilizing θ-Al 2 Cu compared with θ C '-Al 2 Cu. The formation free energies of θ''-Al 3 Cu, θ C '-Al 2 Cu, θ D '-Al 5 Cu 3 and θ t '-Al 11 Cu 7 increase with temperature, while those of θ'-Al 2 Cu, θ O '-Al 2 Cu and θ-Al 2 Cu decrease. The same trend is observed with the effect of pressure. The calculated elastic constants for the considered precipitation phases indicate that they are all mechanically stable and anisotropic, except θ C '-Al 2 Cu. θ D '-Al 5 Cu 3 has the highest Vicker's hardness. The electronic structures are also calculated to gain insight into the bonding characteristics. The present results can help in understanding the formation of precipitates by different treatment processes.
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Lohmann, U.
2016-12-01
Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water content adjustments over number changes by estimating susceptibilities d ln P / d ln N of precipitation formation P to droplet or crystal number N from the budget equation. The susceptibility analysis also reveals that aerosol perturbations to droplet and crystal number compensate each other.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.
2016-01-01
Microbial biofilms and mineral precipitation commonly co-occur in engineered water systems, such as cooling towers and water purification systems, and both decrease process performance. Microbial biofilms are extremely challenging to control and eradicate. We previously showed that in situ biomineralization and the precipitation and deposition of abiotic particles occur simultaneously in biofilms under oversaturated conditions. Both processes could potentially alter the essential properties of biofilms, including susceptibility to biocides. However, the specific interactions between mineral formation and biofilm processes remain poorly understood. Here we show that the susceptibility of biofilms to chlorination depends specifically on internal transport processes mediated by biomineralization and the accumulation of abiotic mineral deposits. Using injections of the fluorescent tracer Cy5, we show that Pseudomonas aeruginosa biofilms are more permeable to solutes after in situ calcite biomineralization and are less permeable after the deposition of abiotically precipitated calcite particles. We further show that biofilms are more susceptible to chlorine killing after biomineralization and less susceptible after particle deposition. Based on these observations, we found a strong correlation between enhanced solute transport and chlorine killing in biofilms, indicating that biomineralization and particle deposition regulate biofilm susceptibility by altering biocide penetration into the biofilm. The distinct effects of in situ biomineralization and particle deposition on biocide killing highlight the importance of understanding the mechanisms and patterns of biomineralization and scale formation to achieve successful biofilm control. PMID:26944848
Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.
Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico
2014-08-01
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.
Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP
Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert
2014-01-01
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386
NASA Astrophysics Data System (ADS)
Chavaillaz, Yann; Joussaume, Sylvie; Bony, Sandrine; Braconnot, Pascale
2016-08-01
Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30-40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.
USDA-ARS?s Scientific Manuscript database
CLIGEN (CLImate GENerator) is a widely used stochastic weather generator to simulate continuous daily precipitation and storm pattern information for hydrological and soil erosion models. Although CLIGEN has been tested in several regions in the world, thoroughly assessment before applying it to Chi...
Assessing and quantifying changes in precipitation patterns using event-driven analysis
USDA-ARS?s Scientific Manuscript database
Studies have claimed that climate change may adversely affect precipitation patterns by increasing the occurrence of extreme events. The effects of climate change on precipitation is expected to take place over a long period of time and will require long-term data to demonstrate. Frequency analysis ...
Precipitation Based Malaria Patterns in the Amazon -- Will Deforestation Alter Risk?
NASA Astrophysics Data System (ADS)
Olson, S. H.; Durieux, L.; Elguero, E.; Foley, J.; Gagnon, R.; Guegan, J.; Patz, J.
2007-12-01
The World Health Organization, estimates that forty-two percent of malaria cases are "associated with policies and practices regarding land use, deforestation, water resource management, settlement siting and modified house design". This estimate was drawn from expert opinion and studies performed at local scales, but little research has investigated the cumulative impacts of land use and land cover changes occurring in the Amazon Basin on malaria. Much less is understood about the impact of changing land use and subsequent precipitation regimes on malaria risk. To understand how land use practices may alter malaria patterns in the Basin we present an analysis of municipio (n=755) malaria case data and monthly precipitation patterns between 1996 and 1999. Climate data originated from the CRU TS 2.1 half-degree grid resolution climate data set. We present a hierarchical (random coefficients) log-linear Poisson model relating malaria incidence to precipitation for both municipos and states. At the Basin scale precipitation and cases show strong relationships. Precipitation and cases are asynchronous across the period of observation, but detailed inspection of states and individual municipios reveal geographic dependencies of precipitation and malaria incidence. Future research will link the patterns of precipitation and malaria to anticipated changes in climate from deforestation in the Basin.
TRMM .25 deg x .25 deg Gridded Precipitation Text Product
NASA Technical Reports Server (NTRS)
Stocker, Erich; Kelley, Owen
2009-01-01
Since the launch of the Tropical Rainfall Measuring Mission (TRMM), the Precipitation Measurement Missions science team has endeavored to provide TRMM precipitation retrievals in a variety of formats that are more easily usable by the broad science community than the standard Hierarchical Data Format (HDF) in which TRMM data is produced and archived. At the request of users, the Precipitation Processing System (PPS) has developed a .25 x .25 gridded product in an easily used ASCII text format. The entire TRMM mission data has been made available in this format. The paper provides the details of this new precipitation product that is designated with the TRMM designator 3G68.25. The format is packaged into daily files. It provides hourly precipitation information from the TRMM microwave imager (TMI), precipitation radar (PR), and TMI/PR combined rain retrievals. A major advantage of this approach is the inclusion only of rain data, compression when a particular grid has no rain from the PR or combined, and its direct ASCII text format. For those interested only in rain retrievals and whether rain is convection or stratiform, these products provide a huge reduction in the data volume inherent in the standard TRMM products. This paper provides examples of the 3G68 data products and their uses. It also provides information about C tools that can be used to aggregate daily files into larger time samples. In addition, it describes the possibilities inherent in the spatial sampling which allows resampling into coarser spatial sampling. The paper concludes with information about downloading the gridded text data products.
Summer precipitation prediction in the source region of the Yellow River using climate indices
NASA Astrophysics Data System (ADS)
Yuan, F.
2016-12-01
The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.
Moseke, Claus; Gelinsky, Michael; Groll, Jürgen; Gbureck, Uwe
2013-04-01
A model system for the precipitation of hydroxyapatite (HA) from saturated solutions at basic pH was utilized to investigate the effects of V, Co, and Cu ions on crystallography and stoichiometry of the produced apatites. X-ray diffraction (XRD) was applied to analyze phase composition and crystallinity of powders obtained with different metal ion concentrations and annealed at different sintering temperatures. This procedure used the temperature-dependent phase transitions and decompositions of calcium phosphates to analyze the particular influences of the metal ions on apatite mineralization. Comparative XRD measurements showed that all metal ion species reduced crystallinity and crystallite size of the produced apatites. Furthermore the transformation of amorphous calcium phosphate (ACP) to HA was partially inhibited, as was deduced from the formation of α-tricalcium phosphate (α-TCP) peaks in XRD patterns of the heated powders as well as from the reduced intensity of the OH stretch vibration in FTIR spectra. The thermally induced formation of β-TCP indicated a significantly reduced Ca/P ratio as compared to stoichiometric HA. This effect was more pronounced with rising metal ion content. In addition, the appearance of metal oxides in the XRD patterns of samples heated to higher temperatures indicated the incorporation of metal ions in the precipitated apatites. Peak shifts showed that both the apatitic as well as the β-TCP phase apparently had incorporated metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
A new precipitation and drought climatology based on weather patterns
Fowler, Hayley J.; Kilsby, Christopher G.; Neal, Robert
2017-01-01
ABSTRACT Weather‐pattern, or weather‐type, classifications are a valuable tool in many applications as they characterize the broad‐scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather‐pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI‐based drought months. The new weather‐pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation‐based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra‐pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification‐based analyses in the UK. PMID:29456290
Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu
2015-05-15
The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi
2016-10-01
We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; Lynch, Cary; Hartin, Corinne
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...
2017-05-12
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
NASA Astrophysics Data System (ADS)
Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.
2017-12-01
In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.
NASA Astrophysics Data System (ADS)
Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.
2017-12-01
Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. The LT model has potential to be used in other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling.
NASA Astrophysics Data System (ADS)
Marra, K. R.; Agena, W. F.; Dubiel, R. F.; Lee, M. W.; Pitman, J. K.
2012-12-01
The Pennsylvanian Paradox Formation (Hermosa Group) contains 33 documented evaporite cycles consisting of thick (6-240 m) halite successions interbedded with anhydrite, silty dolomite, and black shale. The evaporite deposits precipitated from marine brines under restricted circulation conditions in the Paradox Basin, a northwest-southeast trending asymmetrical trough formed adjacent to the Uncompahgre uplift, where periodic glacioeustatic sea-level fluctuations and intermittent meteoric water influxes altered salinity gradients. Each salt cycle contains rhythmically bedded halite-anhydrite couplets, in which anhedral to euhedral bottom-growth halite crystals are overlain by thin (mm-scale), subaqueously precipitated layers of anhydrite in the form of "snow-on-the-roof" texture. Discrete grains of sylvite, which are red due to hematite inclusions, locally occur as bands or aggregates throughout most salt packages. In order to delineate controls on high-frequency halite-anhydrite precipitation, the thickness of distinct couplets were measured in four salt cycles, two (Cycles 3 and 5) in the Cane Creek No.1 corehole and two (Cycles 5 and 13) in the Shafer No. 1 corehole. The cores were drilled approximately 8 km apart within the central portion of the basin near the crests of the Cane Creek and Shafer salt anticlines. The thickness of halite-anhydrite couplets ranges between 1-90 cm for all measured cycles, with the most commonly occurring thickness of approximately 3-4 cm. Despite the proximity of the two cores, the salt cycles in the Shafer No. 1 core are 12-15m thicker than in the Cane Creek No. 1 core, and individual couplets thicken within the middle (~20 m) of the salt section. In contrast, couplets thicken near the top of the halite bed in the Cane Creek No.1 core, which is most pronounced in Cycle 5. Locally disrupted and distorted laminae due to salt flowage, however, complicates some laminae measurements. The small-scale, cyclical pattern of halite-anhydrite couplets within the Paradox Formation may have resulted from annual water temperature (and corresponding calcium sulfate solubility) fluctuations or irregular influxes of meteoric waters due to storm or monsoon events. Interannual disturbances due to Spring and neap tides may have also played a role. The presence of sylvite may reflect a climatic overprint of arid conditions, which promoted eolian iron dispersal. Spectral analyses are being conducted on all measured salt cycles to discern bunching patterns in halite-anhydrite couplet thicknesses.
The formation of nickel sulfides has been examined experimentally over the temperature range from 25 to 60°C. At all conditions studied, hexagonal (α-NiS) was the initial precipitate from solution containing Ni2+ and dissolved sulfide. The formation of millerite (β- NiS, rhombo...
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Astrophysics Data System (ADS)
Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan
1998-04-01
The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean or monthly precipitation patterns with some degree of skill. In some instances, individual monthly mean SST versus seasonal mean (February-May) precipitation relationships differ considerably from the corresponding monthly SST versus monthly precipitation relationships. It is argued that the seasonal mean relationships result from the relatively strong monthly relationships toward the end of the season, combined with the considerable persistence of SST in both oceans.
NASA Astrophysics Data System (ADS)
Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane
2018-01-01
In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.
NASA Astrophysics Data System (ADS)
Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Ironside, K.; Cobb, N. S.
2008-12-01
Floristic provinces of the western United States (west of 100W) can be segregated into three regions defined by significant seasonal precipitation during the months of: 1) November-March (Mediterranean); 2) July- September (Monsoonal); or, 3) May-June (Rocky Mountain). This third region is best defined by the absence of the late spring-early summer drought that affects regions 1 and 2. Each of these precipitation regimes is characterized by distinct vegetation types and fire seasonality adapted to that particular cycle of seasonal moisture availability and deficit. Further, areas where these regions blend from one to another can support even more complex seasonal patterns and resulting distinctive vegetation types. As a result, modeling the effects of climates on these ecosystems requires confidence that GCMs can at least approximate these sub- continental seasonal precipitation patterns. We evaluated the late Twentieth Century (1950-1999 AD) estimates of annual precipitation seasonality produced by 22 GCMs contained within the IPCC Fourth Assessment (AR4). These modeled estimates were compared to values from the PRISM dataset, extrapolated from station data, over the same historical period for the 3 seasonal periods defined above. The correlations between GCM estimates and PRISM values were ranked using 4 measures: 1) A map pattern relationship based on the correlation coefficient, 2) A map pattern relationship based on the congruence coefficient, 3) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation amounts, and, 4) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation percentages of the annual total. For each of the four metrics, the rank order of models was very similar. The ranked order of the performance of the different models quantified aspects of the model performance visible in the mapped results. While some models represented the seasonal patterns very well, others showed little correspondence with the regional patterns, especially for the summer monsoon period. These sub-continental patterns were especially well simulated over this period by the UKMO-HadGEM1, ECHAM5/MPI-OM, and the MRI-CGCM2 model runs.
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
Ward W. McCaughey; Phillip E. Farnes; Katherine J. Hansen
1997-01-01
Water production from mountain watersheds depends on total precipitation input, the type and distribution of precipitation, the amount intercepted in tree canopies, and losses to evaporation, transpiration and groundwater. A systematic process was developed to estimate historic average annual runoff based on fire patterns, habitat cover types and precipitation patterns...
NASA Astrophysics Data System (ADS)
Lim, Y.; Kim, W.
2015-12-01
Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.
NASA Astrophysics Data System (ADS)
da Silva, Fabricio Polifke; Justi da Silva, Maria Gertrudes Alvarez; Rotunno Filho, Otto Corrêa; Pires, Gisele Dornelles; Sampaio, Rafael João; de Araújo, Afonso Augusto Magalhães
2018-05-01
Natural disasters are the result of extreme or intense natural phenomena that cause severe impacts on society. These impacts can be mitigated through preventive measures that can be aided by better knowledge of extreme phenomena and monitoring of forecasting and alert systems. The city of Petropolis (in a mountainous region of the state of Rio de Janeiro, Brazil) is prone to heavy rain events, often leading to River overflows, landslides, and loss of life. In that context, this work endeavored to characterize the thermodynamic and dynamic synoptic patterns that trigger heavy rainfall episodes and the corresponding flooding of Quitandinha River. More specifically, we reviewed events from the time period between January 2013 and December 2014 using reanalysis data. We expect that the overall description obtained of synoptic patterns should provide adequate qualitative aid to the decision-making processes involved in operational forecasting procedures. We noticed that flooding events were related to the presence of the South Atlantic Convergence Zone (SACZ), frontal systems (FS), and convective storms (CS). These systems showed a similar behavior on high-frequency wind components, notably with respect to northwest winds before precipitation and to a strong southwest wind component during rainfall events. Clustering analyses indicated that the main component for precipitation formation with regard to CS systems comes from daytime heating, with the dynamic component presenting greater efficiency for the FS configurations. The SACZ events were influenced by moisture availability along the vertical column of the atmosphere and also due to dynamic components of precipitation efficiency and daytime heating, the latter related to the continuous transport of moisture from the Amazon region and South Atlantic Ocean towards Rio de Janeiro state.
Seasonally varying footprint of climate change on precipitation in the Middle East.
Tabari, Hossein; Willems, Patrick
2018-03-13
Climate change is expected to alter precipitation patterns; however, the amplitude of the change may broadly differ across seasons. Combining different seasons may mask contrasting climate change signals in individual seasons, leading to weakened signals and misleading impact results. A realistic assessment of future climate change is of great importance for arid regions, which are more vulnerable to any change in extreme events as their infrastructure is less experienced or not well adapted for extreme conditions. Our results show that climate change signals and associated uncertainties over the Middle East region remarkably vary with seasons. The region is identified as a climate change hotspot where rare extreme precipitation events are expected to intensify for all seasons, with a "highest increase in autumn, lowest increase in spring" pattern which switches to the "increase in autumn, decrease in spring" pattern for less extreme precipitation. This pattern is also held for mean precipitation, violating the "wet gets wetter, dry gets drier" paradigm.
Miscible viscous fingering with chemical reaction involving precipitation.
NASA Astrophysics Data System (ADS)
Bae, Si-Kyun; Nagatsu, Yuichiro; Kato, Yoshihito; Tada, Yutaka
2007-11-01
When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. The present study has experimentally examined how precipitation produced by chemical reaction affects miscible viscous fingering pattern. A 97 wt % glycerin solution containing iron(III) nitrate (yellow) and a solution containing potassium hexacyano ferrate(II) (colorless) were used as the more- and less-viscous liquids, respectively. In this case, the chemical reaction instantaneously takes place and produces the precipitation being dark blue in color. The experiments were done by varying reactant concentrations, the cell's gap width, and the displacement speed. We compared the patterns involving the precipitation reaction with those in the non-reactive cases. We have found fylfot-like pattern is observed, depending on the experimental condition, which has never been formed in the non-reactive experiments. As the reactant concentrations are increased or the displacement speed is decreased, the effects of the precipitation on the patterns are more pronounced.
NASA Technical Reports Server (NTRS)
Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison
2016-01-01
This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.
Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; ...
2016-02-03
This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC)U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scalemore » patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1)MERRAshows a spurious negative trend in Nebraska andKansas, which ismost likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. The increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.« less
A model for the biological precipitation of Precambrian iron-formation
NASA Technical Reports Server (NTRS)
Laberge, G. L.
1986-01-01
A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.
Land Use and Family Formation in the Settlement of the U.S. Great Plains
Gutmann, Myron P.; Pullum-Piñón, Sara M.; Witkowski, Kristine; Deane, Glenn D.; Merchant, Emily
2014-01-01
In agricultural settings, environment shapes patterns of settlement and land use. Using the Great Plains of the United States during the period of its initial Euro-American settlement (1880–1940) as an analytical lens, this article explores whether the same environmental factors that determine settlement timing and land use—those that indicate suitability for crop-based agriculture—also shape initial family formation, resulting in fewer and smaller families in areas that are more conducive to livestock raising than to cropping. The connection between family size and agricultural land availability is now well known, but the role of the environment has not previously been explicitly tested. Descriptive analysis offers initial support for a distinctive pattern of family formation in the western Great Plains, where precipitation is too low to support intensive cropping. However, multivariate analysis using county-level data at 10-year intervals offers only partial support to the hypothesis that environmental characteristics produce these differences. Rather, this analysis has found that the region was also subject to the same long-term social and demographic changes sweeping the rest of the country during this period. PMID:24634550
NASA Astrophysics Data System (ADS)
Duan, Yajuan
Light rainfall (< 3 mm/hr) amounts to 30-70% of the annual water budget in the Southern Appalachian Mountains (SAM), a mid-latitude mid-mountain system in the SE CONUS. Topographic complexity favors the diurnal development of regional-scale convergence patterns that provide the moisture source for low-level clouds and fog (LLCF). Low-level moisture and cloud condensation nuclei (CCN) are distributed by ridge-valley circulations favoring LLCF formation that modulate the diurnal cycle of rainfall especially the mid-day peak. The overarching objective of this dissertation is to advance the quantitative understanding of the indirect effect of aerosols on the diurnal cycle of LLCF and warm-season precipitation in mountainous regions generally, and in the SAM in particular, for the purpose of improving the representation of orographic precipitation processes in remote sensing retrievals and physically-based models. The research approach consists of integrating analysis of in situ observations from long-term observation networks and an intensive field campaign, multi-sensor satellite data, and modeling studies. In the first part of this dissertation, long-term satellite observations are analyzed to characterize the spatial and temporal variability of LLCF and to elucidate the physical basis of the space-time error structure in precipitation retrievals. Significantly underestimated precipitation errors are attributed to variations in low-level rainfall microstructure undetected by satellites. Column model simulations including observed LLCF microphysics demonstrate that seeder-feeder interactions (SFI) among upper-level precipitation and LLCF contribute to an three-fold increase in observed rainfall accumulation and can enhance surface rainfall by up to ten-fold. The second part of this dissertation examines the indirect effect of aerosols on cloud formation and warm-season daytime precipitation in the SAM. A new entraining spectral cloud parcel model was developed and applied to provide the first assessment of aerosol-cloud interactions in the early development of mid-day cumulus congestus over the inner SAM. Leveraging comprehensive measurements from the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014, model results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations. Further, to explore sensitivity of warm-season precipitation processes to CCN characteristics, detailed intercomparisons of Weather Research and Forecasting (WRF) model simulations using IPHEx and standard continental CCN spectra were conducted. The simulated CDNC using the local spectrum show better agreement with IPHEx airborne observations and better replicate the widespread low-level cloudiness around mid-day over the inner region. The local spectrum simulation also indicate suppressed early precipitation, enhanced ice processes tied to more vigorous vertical development of individual storm cells. The studied processes here are representative of dominant moist atmospheric processes in complex terrain and cloud forests in the humid tropics and extra-tropics, thus findings from this research in the SAM are transferable to mountainous areas elsewhere.
Decadal variability of precipitation over Western North America
Cayan, D.R.; Dettinger, M.D.; Diaz, Henry F.; Graham, N.E.
1998-01-01
Decadal (>7- yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation 'modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate proceses. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.Decadal (>7-yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation `modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.
NASA Astrophysics Data System (ADS)
Dong, Jingnuo; Ochsner, Tyson E.
2018-03-01
Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...
2015-12-18
The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Thomas; Kueppers, Lara; Paton, Steve
This dataset is a derivative product of raw meteorological data collected at Barro Colorado Island, Panama (see acknowledgements below). This dataset contains the following: 1) a seven-year record (2008-2014) of meteorological observations from BCI that is in a comma delimited text format, 2) an R-script that converts the observed meteorology into an hdf5 format that can be read by the ED2 model, 3) two decades of meteorological drivers in hdf5 format that are based on the 7-year record of observations and include a synthetic 2-yr El Nino drought, 4) a ReadMe.txt file that explains how the data in the hdf5more » meteorological drivers correspond to the observations. The raw meteorological data were further QC'd as part of the NGEE-Tropics project to derive item 1 above. The R-script makes the appropriate unit conversions for all observed meteorological variables to be compatible with the ED2 model. The R-script also converts RH into specific humidity, splits total shortwave radiation into its 4-stream parts, and calculates longwave radiation from air temperature and RH. The synthetic El Nino drought is based on selected months from the observed meteorology where in each, precipitation (only) of the selected months was modified to reflect the precipitation patterns of the 1982/83 El Nino observed at BCI.« less
The influence of spectral nudging on typhoon formation in regional climate models
NASA Astrophysics Data System (ADS)
Feser, Frauke; Barcikowska, Monika
2012-03-01
Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model, with results slightly closer to reanalysis data for the spectral nudged simulations. On the basis of this regional climate model hindcast study of a single typhoon season, spectral nudging seems to be favourable since it has mostly positive effects on typhoon formation, location and general circulation patterns in the generation areas of TCs.
NASA Astrophysics Data System (ADS)
Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang
2017-04-01
The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.
NASA Astrophysics Data System (ADS)
Schnier, S.; Cai, X.; Sivapalan, M.
2014-12-01
About half of all humans alive today live in cities, with that number projected to grow to 70% by 2050. Because most people live in cities, urban streamflow patterns and precipitation events have a large impact on the global population. Urban environments can alter natural streamflow and precipitation patterns in a localized area. This study introduces a novel way to characterize this interference: the weekly hydrometeorological signature. Daily streamflow and precipitation data is collected from USGS gages around three climatically-different major American cities: Chicago, Los Angeles, and Charlotte. The following hypothesis is tested: a persistent weekly pattern (Monday through Sunday) exists in the hydrometeorological data which is unique to each city. All three cities appear to exhibit a persistent weekly pattern which is unique to that city for various climatological, industrial, and topographic reasons. Further study is needed; however these findings have important implications for understanding urban weather and can serve as a unique identifier, or fingerprint, for human interference to local streamflow and precipitation patterns.
Dissolution-Assisted Pattern Formation During Olivine Carbonation
NASA Astrophysics Data System (ADS)
Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; De Andrade, Vincent
2017-10-01
Olivine and pyroxene-bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability, and available reactive surface area, yet entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary minerals causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. The observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.
Dissolution-Assisted Pattern Formation During Olivine Carbonation
Lisabeth, Harrison; Zhu, Wenlu; Xing, Tiange; ...
2017-08-31
Olivine and pyroxene bearing rocks in the oceanic crust react with hydrothermal fluids producing changes in the physical characteristics and behaviors of the altered rocks. Notably, these reactions tend to increase solid volume, reducing pore volume, permeability and available reactive surface area; yet, entirely hydrated and/or carbonated rocks are commonly observed in the field. We investigate the evolution of porosity and permeability of fractured dunites reacted with CO 2-rich solutions in laboratory experiments. The alteration of crack surfaces changes the mechanical and transport properties of the bulk samples. Analysis of three-dimensional microstructural data shows that although precipitation of secondary mineralsmore » causes the total porosity of the sample to decrease, an interconnected network of porosity is maintained through channelized dissolution and coupled carbonate precipitation. Lastly, the observed microstructure appears to be the result of chemo-mechanical coupling, which may provide a mechanism of porosity maintenance without the need to invoke reaction-driven cracking.« less
NASA Astrophysics Data System (ADS)
Tan, X.; Gan, T. Y. Y.; Chen, Y. D.
2017-12-01
Dominant synoptic moisture pathway patterns of vertically integrated water vapor transport (IVT) in winter and spring over Canada West and East were identified using the self-organizing map method. Large-scale meteorological patterns (LSMPs) were related to the variability in seasonal precipitation totals and occurrences of precipitation extremes. Changes in both occurrences of LSMPs and seasonal precipitation occurred under those LSMPs were evaluated to attribute observed changes in seasonal precipitation totals and occurrences of precipitation extremes. Effects of large-scale climate anomalies on occurrences of LSMPs were also examined. Results show that synoptic moisture pathways and LSMPs exhibit the propagation of jet streams as the location and direction of ridges and troughs, and the strength and center of pressure lows and highs varied considerably between LSMPs. Significant decreases in occurrences of synoptic moisture pathway patterns that are favorable with positive precipitation anomalies and more precipitation extremes in winter over Canada West resulted in decreases in seasonal precipitation and occurrences of precipitation extremes. LSMPs resulting in a hot and dry climate and less (more) frequent precipitation extremes over the Canadian Prairies in winter and northwestern Canada in spring are more likely to occur in years with a negative phase of PNA. Occurrences of LSMPs for a wet climate and frequent occurrences of extreme precipitation events over southeastern Canada are associated with a positive phase of NAO. In El Niño years or negative PDO years, LSMPs associated with a dry climate and less frequent precipitation extremes over western Canada tend to occur.
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.
2018-01-01
Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.
NASA Astrophysics Data System (ADS)
Baranowski, D.; Waliser, D. E.; Jiang, X.
2016-12-01
One of the key challenges in subseasonal weather forecasting is the fidelity in representing the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC). In reality both propagating and non-propagating MJO events are observed, but in numerical forecast the latter group largely dominates. For this study, comprehensive model performances are evaluated using metrics that utilize the mean precipitation pattern and the amplitude and phase of the diurnal cycle, with a particular focus on the linkage between a model's local MC variability and its fidelity in representing propagation of the MJO and equatorial Kelvin waves across the MC. Subseasonal to seasonal variability of mean precipitation and its diurnal cycle in 20 year long climate simulations from over 20 general circulation models (GCMs) is examined to benchmark model performance. Our results show that many models struggle to represent the precipitation pattern over complex Maritime Continent terrain. Many models show negative biases of mean precipitation and amplitude of its diurnal cycle; these biases are often larger over land than over ocean. Furthermore, only a handful of models realistically represent the spatial variability of the phase of the diurnal cycle of precipitation. Models tend to correctly simulate the timing of the diurnal maximum of precipitation over ocean during local solar time morning, but fail to acknowledge influence of the land, with the timing of the maximum of precipitation there occurring, unrealistically, at the same time as over ocean. The day-to-day and seasonal variability of the mean precipitation follows observed patterns, but is often unrealistic for the diurnal cycle amplitude. The intraseasonal variability of the amplitude of the diurnal cycle of precipitation is mainly driven by model's ability (or lack of) to produce eastward propagating MJO-like signal. Our results show that many models tend to decrease apparent air-sea contrast in the mean precipitation and diurnal cycle of precipitation patterns over the Maritime Continent. As a result, the complexity of those patterns is heavily smoothed, to such an extent in some models that the Maritime Continent features and imprint is almost unrecognizable relative to the eastern Indian Ocean or Western Pacific.
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert
2000-01-01
The ENSO phenomenon is characterized by fluctuations in the climate system of the tropical Pacific. Quantifying changes in the precipitation component of this system is important in understanding the distribution of heating in the atmosphere which drives the large-scale circulation and affects the weather patterns in the mid-latitudes. Monitoring precipitation anomalies in the Pacific is also an important component for tracking the evolution of ENSO. The most timely and complete observations of the earth come from satellite instruments. In this study, the state of the art satellite-gauge merged monthly precipitation data set from the Global Precipitation Climatology Project (GPCP) is used to depict tropical rainfall patterns during ENSO events over the past two decades and quantify these patterns using indices. This analysis will be complemented by daily precipitation data which can resolve the Madden-Julian Oscillation and westerly wind burst events. The 1997-98 El Nino and 1998-2000 La Nina were the best observed ENSO cycle in the historic record. Prior to the El Nino (in terms of anomalous warming of the east Pacific) dry anomalies over the Maritime Continent were observed in February 1997 as a westerly wind burst advected convection to the east. The largest SST anomalies occurred around November-December 1997, which were followed by the largest precipitation anomalies in the beginning of 1998. The largest precipitation departures from normal were not colocated with the SST anomalies, but were further west, In the spring of 1998 negative precipitation anomalies to the north of the equator intensified, signaling the mature phase of the El Nino. A rapid increase in the precipitation-based La Nina index from December-January 1998 to March-April 1998 signaled the coming La Nina. The 1982-1983 El Nino was comparable in strength (according to several indices) and the precipitation patterns evolved in a similar fashion. For the 1998-2000 La Nina, the coldest anomalies, were confined to the central equatorial Pacific, while the driest anomalies were found in the west Pacific,
Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China
NASA Astrophysics Data System (ADS)
Cheng, Y.; Yang, W.; Zhan, H.
2017-12-01
Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.
A Numerical Study of Hurricane Erin (2001). Part 1; Model Verification and Storm Evolution
NASA Technical Reports Server (NTRS)
Wu, Liguang; Braun, Scott A.; Halverson, J.; Heymsfield, G.
2006-01-01
The fifth-generation Pennsylvania State University National Center for Atmospheric Research (PSU NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Erin (2001) at high resolution (4-km spacing) from its early development as a tropical depression on 7 September 2001, through a period of rapid intensification into a strong hurricane (8 9 September), and finally into a stage during which it maintains its intensity on 10 September. These three stages of formation, intensification, and maintenance in the simulation are in good agreement with the observed evolution of Erin. The simulation shows that during the formation and early portions of the intensification stages, intensification is favored because the environmental wind shear is weak and the system moves over a warm tongue of water. As Erin intensifies, the wind shear gradually increases with the approach of an upper-level trough and strengthening of a low-level high pressure system. By 10 September, the wind shear peaks and begins to decrease, the storm moves over slightly cooler waters, and the intensification ends. Important structural changes occur at this time as the outer precipitation shifts from the northeastern and eastern sides to the western side of the eye. A secondary wind maximum and an outer eyewall begin to develop as precipitation begins to surround the entire eye. The simulation is used to investigate the role of vertical wind shear in the changes of the precipitation structure that took place between 9 and 10 September by examining the effects of changes in storm-relative flow and changes in the shear-induced tilt. Qualitative agreement is found between the divergence pattern and advection of vorticity by the relative flow with convergence (divergence) generally associated with asymmetric inflow (outflow) in the eyewall region. The shift in the outer precipitation is consistent with a shift in the low-level relative inflow from the northeastern to the northwestern side of the storm. The changes in the relative flow are associated with changes in the environmental winds as the hurricane moves relative to the upper trough and the low-level high pressure system. Examination of the shear-induced tilt of the vortex shows that the change in the tilt direction is greater than that of the shear direction as the tilt shifts from a northerly orientation to northwesterly. Consistent with theory for adiabatic vortices, the maximum low-level convergence and upper-level divergence (and the maximum upward motion) occurs in the direction of tilt. Consequently, both mechanisms may play roles in the changes in the precipitation pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.
The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ Transmission Electron Microscopy (TEM) and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) across a length scale from sub-Angstrom to several micrometers. TEM brings information concerning the nature, morphology, and size of the precipitates while SAXS and WAXS provide qualitative and quantitative information concerning the time-dependent size and volume fraction evolution of the precipitates at different stages of the precipitation sequence. Within themore » experimental time resolution, precipitation at these ageing temperatures involves dissolution of nanometer-sized small clusters and formation of the planar S phase precipitates. Using a three-parameter scattering model constructed on the basis of TEM results, we established the temperature-dependent kinetics for the cluster-dissolution and S-phase formation processes simultaneously. These two processes are shown to have different kinetic rates, with the cluster-dissolution rate approximately double the S-phase formation rate. We identified a dissolution activation energy at (149.5 ± 14.6) kJ mol-1, which translates to (1.55 ± 0.15) eV/atom, as well as an activation energy for the formation of S precipitates at (129.2 ± 5.4) kJ mol-1, i.e. (1.33 ± 0.06) eV/atom. Importantly, the SAXS/WAXS results show the absence of an intermediate Guinier-Preston Bagaryatsky 2 (GPB2)/S" phase in the samples under the experimental ageing conditions. These results are further validated by precipitation simulations that are based on Langer-Schwartz theory and a Kampmann-Wagner numerical method.« less
NASA Astrophysics Data System (ADS)
Yatagai, Akiyo; Watanabe, Akira; Ishihara, Masahito; Ishihara, Hirohiko; Takara, Kaoru
2014-05-01
The transport and diffusion of the radioactive pollutants from the Fukushima-Daiichi NPP inthe atmosphere caused a disaster for residents in and around Fukushima. Studies have sought to understand the transport, diffusion, and deposition process, and to understand the movement of radioactive pollutants through the soil, vegetation, rivers, and groundwater. However, a detailed simulation and understanding of the distribution of radioactive compounds depend on a simulation of precipitation and on the information on the timing of the emission of these radioactive pollutants from the NPP. Further, precipitation type and its amount affect the various transport process of the radioactive nuclides. Hence, this study first examine the qualitative precipitation pattern and timing in March 2011 using X-band radar data from Fukushima University and three dimensional C-band radar data network of Japan Meteorological Agency. Second, by collecting rain-gauge network and other surface meteorological data, we estimate quantitative precipitation and its type (rain/snow) according to the same method used to create APHRODITE daily grid precipitation (Yatagai et al., 2012) and judge of rain/snow (Yasutomi et al., 2011). For example, the data clarified that snowfall was observed on the night of Mar 15 into the morning of Mar 16 throughout Fukushima prefecture. This had an important effect on the radioactive contamination pattern in Fukushima prefecture. The precipitation pattern itself does not show one-on-one correspondence with the contamination pattern. While the pollutants transported northeast of the NPP and through north Kanto (about 200 km southwest of Fukushima and, 100 km north of Tokyo) went to the northeast, the timing of the precipitation causing the fallout, i.e., wet-deposition, is important. Although the hourly Radar-AMeDAS 1-km-mesh precipitation data of JMA are available publically, it does not represent the precipitation pattern in Nakadori, in central Fukushima prefecture. Hence, we used 10-minute interval X-band radar, located in north Nakadori to determine the start and detailed horizontal pattern (120-m mesh) of the precipitation. The developed precipitation and other meteorological dataset will be released to the project Fukushima-IRIS site (http://firis.dpri.kyoto-u.ac.jp, or linked from http://center.stelab.nagoya-u.ac.jp/member/akiyoyatagai/). The project aims to make a database to understand the initial meteorological condition. Various useful sites with meteorological data and other physical information on March 2011 have already linked at the site. This project is being supported by the Disaster Prevention Research Institute, Kyoto University.
Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption
NASA Astrophysics Data System (ADS)
van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.
2018-04-01
Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.
NASA Astrophysics Data System (ADS)
Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.
2017-02-01
Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.
NASA Astrophysics Data System (ADS)
Gimeno-Sotelo, Luis; Nieto, Raquel; Vázquez, Marta; Gimeno, Luis
2018-05-01
In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.
Gypsum crystals observed in experimental and natural sea ice
NASA Astrophysics Data System (ADS)
Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.
2013-12-01
gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.
Regulation of star formation in giant galaxies by precipitation, feedback and conduction.
Voit, G M; Donahue, M; Bryan, G L; McDonald, M
2015-03-12
The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.
Formation of copper precipitates in silicon
NASA Astrophysics Data System (ADS)
Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.
1999-12-01
The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.
NASA Astrophysics Data System (ADS)
Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad
2018-02-01
Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.
NASA Astrophysics Data System (ADS)
Hui, D.; Chen, H.; Deng, Q.; Wang, G.; Schadt, C. W.
2017-12-01
The major source of atmospheric nitrous oxide (N2O) is from croplands. A rapid pulse response of soil N2O emission to precipitation (PPT) is often reported, especially after a drought period. However, how precipitation pattern (i.e. frequency) and intensity, and nitrogen (N) fertilization would interactively influence soil N2O emission has not been well investigated. In this modeling study, we took advantage of a validated biogeochemical model (DNDC) in a cornfield and simulated soil N2O emission under manipulated precipitation treatments and three levels (Low, medium and high) of N application rate. The PPT treatments included precipitation pattern (from very frequent, to medium, and rare dry-wet cycles without changes in total annual precipitation) and intensity (from ambient, to -50%, +50%, and +100% ambient precipitation without changes in precipitation pattern). Results showed that both precipitation pattern and intensity, as well as nitrogen application rate had significant influences on the pulse responses and annual soil N2O emission. Very frequent dry-wet cycles tended to increase soil N2O emission while long drought-wet cycles had lower soil N2O emission, but the timing of N fertilization and precipitation also played an important role in the magnitude of pulse response and annual budget of N2O emission. As expected, soil N2O emission was higher under the high N application and lower under the low N application rate. Double precipitation (+100%) had the highest soil N2O emission, but showed no significant differences with +50% and ambient precipitation. The drought (-50%) treatment significantly reduced soil N2O emission. Annual soil N2O emission could be described as N2O=-6.7436+0.1098N+0.0049PPT, R2=0.86. Our results demonstrate that not only the intensity and pattern of precipitation greatly influence soil N2O emission, but also the timing of rainfall and N fertilization may play an important role in soil N2O pulse responses and annual N2O emission in cornfields. These modeling approaches inform our future work to deploy automated gas flux systems to validate and monitor these rapid N2O responses in the field.
Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems
NASA Astrophysics Data System (ADS)
Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.
2011-12-01
In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.
Biogeography in the air: fungal diversity over land and oceans
NASA Astrophysics Data System (ADS)
Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.
2012-03-01
Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.
Links between North Atlantic atmospheric blocking and recent trends in European winter precipitation
NASA Astrophysics Data System (ADS)
Ummenhofer, Caroline; Seo, Hyodae; Kwon, Young-Oh; Joyce, Terrence
2015-04-01
European precipitation has sustained robust trends during wintertime (January - March) over recent decades. Central, western, and northern Europe have become wetter by an average 0.1-0.3% per annum for the period 1901-2010, while southern Europe, including the Iberian Peninsula, much of Italy and the Balkan States, has sustained drying of -0.2% per annum or more over the same period. The overall pattern is consistent across different observational precipitation products, while the magnitude of the precipitation trends varies amongst data sets. Using cluster analysis, which identifies recurrent states (or regimes) of European winter precipitation by grouping them according to an objective similarity criterion, changes in the frequency of dominant winter precipitation patterns over the past century are evaluated. Considerable multi-decadal variability exists in the frequency of dominant winter precipitation patterns: more recent decades are characterised by significantly fewer winters with anomalous wet conditions over southern, western, and central Europe. In contrast, winters with dry conditions in western and southern Europe, but above-average rainfall in western Scandinavia and the northern British Isles, have been more common recently. We evaluate the associated multi-decadal large-scale circulation changes across the broader extratropical North Atlantic region, which accompany the observed wintertime precipitation variability using the 20th Century reanalysis product. Some influence of the North Atlantic Oscillation (NAO) is apparent in modulating the frequency of dominant precipitation patterns. However, recent trends in the characteristics of atmospheric blocking across the North Atlantic sector indicate a change in the dominant blocking centres (near Greenland, the British Isles, and west of the Iberian Peninsula). Associated changes in sea level pressure, storm track position and strength, and oceanic heat fluxes across the North Atlantic region are also addressed.
Global Precipitation Patterns Associated with ENSO and Tropical Circulations
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric
1999-01-01
Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.
2012-08-01
AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase
Areal and Temporal Analysis of Precipitation Patterns In Slovakia Using Spectral Analysis
NASA Astrophysics Data System (ADS)
Pishvaei, M. R.
Harmonic analysis as an objective method of precipitation seasonality studying is ap- plied to the 1901-2000 monthly precipitation averages at five stations in the low-land part of Slovakia with elevation less than 800 m a.s.l. The significant harmonics of long-term precipitation series have been separately computed for eight 30-year peri- ods, which cover the 20th century and some properties and the variations are com- pared to 100-year monthly precipitation averages. The selected results show that the first and the second harmonics pre-dominantly influence on the annual distribution and climatic seasonal regimes of pre-cipitation that contribute to the precipitation am- plitude/pattern with about 20% and 10%, respectively. These indicate annual and half year variations. The rest harmon-ics often have each less than 5% contribution on the Fourier interpolation course. Maximum in yearly precipitation course, which oc- curs approximately at the begin-ning of July, because of phase changing shifts then to the middle of June. Some probable reasons regarding to Fourier components are discussed. In addition, a tem-poral analysis over precipitation time series belonging to the Hurbanovo Observa-tory as the longest observational series on the territory of Slovakia (with 130-year precipitation records) has been individually performed and possible meteorological factors responsible for the observed patterns are suggested. A comparison of annual precipitation course obtained from daily precipitation totals analysis and polynomial trends with Fourier interpolation has been done too. Daily precipitation data in the latest period are compared for some stations in Slovakia as well. Only selected results are pre-sented in the poster.
Precipitation patterns during channel flow
NASA Astrophysics Data System (ADS)
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Clifford, Michael J; Royer, Patrick D; Cobb, Neil S; Breshears, David D; Ford, Paulette L
2013-10-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented. © 2013 No claim to US Government works. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.
2016-12-01
In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.
North-South precipitation patterns in western North America on interannual-to-decadal timescales
Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.
1998-01-01
The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25?? to 55 ??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both tim
Regional Atmospheric Modeling of Caribbean Climate
NASA Astrophysics Data System (ADS)
Winter, A.; Gonzalez, J.; Ramirez, N.; Vásquez, R.
2002-12-01
We use the Regional Atmospheric Modeling System (RAMS) to simulate climatic pattern on the island of Puerto Rico. We hope our analyses will be used to determine the effects of climate change on other Caribbean and tropical islands. Our first experiments were to simulate the precipitation patterns on the island and the urban heat island effect. The main model configuration consists of two grids. Grid 1 covers the entire Caribbean area and has a horizontal resolution of 20 km; it was used mainly for downscaling the large-scale observational data and for boundary nudging. Grid 2 has a horizontal resolution of 5 km and covers the island of Puerto Rico and surrounding waters with the full microphysical parameterization. RAMS was configured to use a vegetation index based on AVHRR data from NOAA 12 and NOAA 14 satellites. From these images we show that the vegetation for the month of January is more abundant than in March. Mean diameters for cloud droplets and raindrops where specified as 35 micrometers and 100 micrometers, respectively. We minimized errors due to clouds by combining data into a monthly composites. We found that experimentation with the microphysical parameterization had a significant impact in the total precipitation amount over the island. RAMS robustly simulated the total accumulated precipitation for the month of April 1998 as well the dependence of the precipitation pattern on the local topography over the island of Puerto Rico. To test the urban heat island effect RAMS was configured using only infrared emission and absorption of water vapor and carbon dioxide without treating clouds or condensate. A soil model was used with ten layers 5 cm thick. The model clearly shows that because of the urban heat island effect San Juan is 5° warmer than the surrounding area. The model results were validated using an extensive network of environmental monitoring instruments from various agencies covering the island of Puerto Rico. The data was converted to a common format using the Java application and made available over the internet using Java Server Pages. Statistical analysis and neural network techniques were employed to improve resolution of sparse lower atmospheric data.
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
NASA Astrophysics Data System (ADS)
Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn
2015-04-01
Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
2017-11-15
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
NASA Astrophysics Data System (ADS)
Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy
2018-03-01
Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.
Johnson, Richard L.; Thoms, R.B.; Zogorski, J.S.
2003-01-01
MTBE and other volatile organic compounds (VOCs) are widely observed in shallow groundwater in the United States, especially in urban areas. Previous studies suggest that the atmosphere and/or nonpoint surficial sources could be responsible for some of those VOCs, especially in areas where there is net recharge to groundwater. However, in semi-arid locations where annual potential evapotranspiration can exceed annual precipitation, VOC detections in groundwater can be frequent. VOC transport to groundwater under net discharge conditions has not previously been examined. A numerical model is used here to demonstrate that daily precipitation and evapotranspiration (ET) patterns can have a significant effect on recharge to groundwater, water table elevations, and VOC transport. Ten-year precipitation/ET scenarios from six sites in the United States are examined using both actual daily observed values and “average” pulsed precipitation. MTBE and tetrachloroethylene transport, including gas-phase diffusion, are considered. The effects of the precipitation/ET scenarios on net recharge and groundwater flow are significant and complicated, especially under low-precipitation conditions when pulsed precipitation can significantly underestimate transport to groundwater. In addition to precipitation and evapotranspiration effects, location of VOC entry into the subsurface within the watershed is important for transport in groundwater. This is caused by groundwater hydraulics at the watershed scale as well as variations in ET within the watershed. The model results indicate that it is important to consider both daily precipitation/ET patterns and location within the watershed in order to interpret VOC occurrence in groundwater, especially in low-precipitation settings.
T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank
2017-01-01
A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a uniquemore » opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.« less
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
NASA Astrophysics Data System (ADS)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.
1982-09-01
alloy , a number of minor phases have been reported (Thompson and Brooks, 1975). The precipitates expected after the heat treatments used in this study... precipitate or inclusion fracture, twin formation, martensite to create detectable acoustic emission. In alloy formation, dislocation motion, and... precipitate anticipated for each heat The nominal composition of 2219 is given in Table 2. It is treatment. essentially a binary aluminium- copper alloy
Major Pathways to Electron Distribution Function Formation in Regions of Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia
2017-01-01
This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric collisional machine that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.
Major pathways to electron distribution function formation in regions of diffuse aurora
NASA Astrophysics Data System (ADS)
Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia
2017-04-01
This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric "collisional machine" that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.
The effect of nitrogen on precipitation and transformation kinetics in vanadium steels
NASA Astrophysics Data System (ADS)
Balliger, N. K.; Honeycombe, R. W. K.
1980-03-01
The isothermal decomposition of austenite has been studied in a series of vanadium steels containing varying amounts of carbon and nitrogen, (in approximately stoichio-metric proportions), in the temperature range 700 to 850°C. In the basic alloy, Fe-0.27V-0.05C (composition in wt pct), below 810°C the austenite to polygonal ferrite trans-formation is accompanied by interphase precipitation of vanadium carbide, the finer dis-persions being associated with the lower transformation temperatures. However, below 760°C there is an additional precipitation reaction where dislocation precipitation of vanadium carbide predominates; this is shown to occur in association with Widmanstätten ferrite. Above 810° C, a proeutectoid ferrite reaction results, the ferrite being void of precipitates; evidence is provided to show that partitioning of vanadium from ferrite to austenite occurs during the transformation. In the two steels containing nitrogen, namely Fe-0.26V-0.022N-0.020C and Fe-0.29V-0.032 N the basic interphase precipitation re-action is unchanged, but the resultant precipitate dispersions are finer at a given trans-formation temperature. The temperature range over which interphase precipitation oc-curs is expanded by the presence of nitrogen, since the Widmanstätten start tempera-ture is depressed and the proeutectoid ferrite reaction is inhibited. Precipitation in austenite prior to transformation and twin formation during transformation are both en-couraged by the presence of nitrogen.
Global sea surface temperature (SST) anomalies have a demonstrable effect on vegetation dynamics and precipitation patterns throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactio...
Extreme precipitation patterns reduced terrestrial ecosystem production across biomass
USDA-ARS?s Scientific Manuscript database
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...
NASA Astrophysics Data System (ADS)
Trayler, Robin B.; Kohn, Matthew J.
2017-02-01
Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.
NASA Astrophysics Data System (ADS)
Zhao, Zijian; Wang, Yuxuan
2017-12-01
The West Pacific subtropical high (WPSH), as one of the most important components of the East Asian summer monsoon (EASM), is the key synoptic-scale circulation pattern influencing summertime precipitation and atmospheric conditions in China. Here we investigate the impacts of the WPSH on surface ozone daily variability over eastern China, using observations from recently established network of ozone monitors and meteorology reanalysis data during summer (June, July, August; JJA) 2014-2016 with a focus on 2014. An empirical orthogonal function (EOF) analysis of daily ozone variations reveals that the dominating eigenvector (EOF1), which contributes a quarter (25.2%) to the total variances, is a marked north-south contrast. This pattern is temporally well correlated (r = -0.66, p < 0.01) with daily anomalies of a normalized WPSH intensity index (WPSH-I). Spatially, the WPSH-I and ozone correlation is positive in North China (NC) but negative in South China (SC), which well correlates with the ozone EOF1 pattern showing the same north-south contrast (r = -0.86, p < 0.01). These associations suggest the dominant component of surface ozone daily variability in eastern China is linked with the variability of the WPSH intensity in that a stronger WPSH leads to a decrease of surface ozone over SC but an increase over NC and vice versa. This is because a stronger WPSH enhances southwesterly transport of moisture into SC, creating such conditions not conducive for ozone formation as higher RH, more cloudiness and precipitation, less UV radiation, and lower temperature. Meanwhile, as most of the rainfall due to the enhanced southwesterly transport of moisture occurs in SC, water vapor is largely depleted in the air masses transported towards NC, creating dry and sunny conditions over NC under a strong WPSH, thereby promoting ozone formation.
NASA Technical Reports Server (NTRS)
Weinman, James A.; Garan, Louis
1987-01-01
A more advanced cloud pattern analysis algorithm was subsequently developed to take the shape and brightness of the various clouds into account in a manner that is more consistent with the human analyst's perception of GOES cloud imagery. The results of that classification scheme were compared with precipitation probabilities observed from ships of opportunity off the U.S. east coast to derive empirical regressions between cloud types and precipitation probability. The cloud morphology was then quantitatively and objectively used to map precipitation probabilities during two winter months during which severe cold air outbreaks were observed over the northwest Atlantic. Precipitation probabilities associated with various cloud types are summarized. Maps of precipitation probability derived from the cloud morphology analysis program for two months and the precipitation probability derived from thirty years of ship observation were observed.
Wei, Xiaomei; Yan, Linmiao; Zhao, Chengjian; Zhang, Yueyun; Xu, Yongli; Cai, Bo; Jiang, Ni; Huang, Yong
2018-05-01
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor , we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor ( F 23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.
Aguado, Edward; Cayan, Daniel R.; Reece, Brian D.; Riddle, Larry
1993-01-01
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Weaver, Scott; Gutzler, David; Dai, Aiguo; Delworth, Tom; Deser, Clara; Findell, Kristen; Fu, Rong;
2009-01-01
The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
NASA Astrophysics Data System (ADS)
Dodov, B.
2017-12-01
Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon seasons implemented in a flood risk model for Japan.
Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa
NASA Astrophysics Data System (ADS)
Shiferaw, A. S.; Tadesse, T.; Oglesby, R. J.; Rowe, C. M.
2017-12-01
The precipitation extremes were generated over the Greater Horn of Africa (GHA) using the Regional Climate Models (RCMs) simulations from the Coordinated Regional Downscaling Experiment (CORDEX). To assess how well the RCM simulations are capturing the historical observed precipitation extremes, they were compared with the precipitation extremes derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2). The result shows that RCM simulations have reasonably captured observed patterns of the precipitation extremes (i.e., the pattern correlation is greater than 0.5). However, significant overestimations or underestimations were observed over some localized areas in the region. The study then assessed the projected changes in these precipitation extremes during 2069-2098 and compared to the 1976-2005 period that were both derived from the RCM simulations. Projected changes in total annual precipitation (PRCPTOT), annual number of heavy (>10mm) and very heavy (>20mm) precipitation days by 2069-2098 show a general north-south pattern with a decrease over southern-half and increase over the northern-half of GHA. These changes are often greatest over parts of Somalia, Eritrea, Ethiopian highlands and southern Tanzania. Maximum 1 and 5-day total precipitation in a year and "Simple Daily Precipitation Intensity Index" (ratio of PRCPTOT to rainy days) are projected to increase over majority of GHA, including areas where PRCPTOT is projected to decrease, suggesting fewer but heavier rainy days in the future. Changes in annual sum of daily precipitation above 95th and 99th percentile are not statistically significant except Eritrea and northwestern Sudan/Somalia. Projected changes in consecutive dry days (CDD) suggest longer periods of dryness over majority of GHA. Among these areas, a substantial increases in CDD are located over southern Tanzania and Ethiopian highlands.
NASA Astrophysics Data System (ADS)
Sham, E.; Mantle, M. D.; Mitchell, J.; Tobler, D. J.; Phoenix, V. R.; Johns, M. L.
2013-09-01
A range of nuclear magnetic resonance (NMR) techniques are employed to provide novel, non-invasive measurements of both the structure and transport properties of porous media following a biologically mediated calcite precipitation reaction. Both a model glass bead pack and a sandstone rock core were considered. Structure was probed using magnetic resonance imaging (MRI) via a combination of quantitative one-dimensional profiles and three-dimensional images, applied before and after the formation of calcite in order to characterise the spatial distribution of the precipitate. It was shown through modification and variations of the calcite precipitation treatment that differences in the calcite fill would occur but all methods were successful in partially blocking the different porous media. Precipitation was seen to occur predominantly at the inlet of the bead pack, whereas precipitation occurred almost uniformly along the sandstone core. Transport properties are quantified using pulse field gradient (PFG) NMR measurements which provide probability distributions of molecular displacement over a set observation time (propagators), supplementing conventional permeability measurements. Propagators quantify the local effect of calcite formation on system hydrodynamics and the extent of stagnant region formation. Collectively, the combination of NMR measurements utilised here provides a toolkit for determining the efficacy of a biological-precipitation reaction for partially blocking porous materials.
NASA Astrophysics Data System (ADS)
Arp, Gernot; Thiel, Volker; Reimer, Andreas; Michaelis, Walter; Reitner, Joachim
1999-07-01
Calcium carbonate precipitation and microbialite formation at highly supersaturated mixing zones of thermal spring waters and alkaline lake water have been investigated at Pyramid Lake, Nevada. Without precipitation, pure mixing should lead to a nearly 100-fold supersaturation at 40°C. Physicochemical precipitation is modified or even inhibited by the properties of biofilms, dependent on the extent of biofilm development and the current precipitation rate. Mucus substances (extracellular polymeric substances, EPS, e.g., of cyanobacteria) serve as effective Ca 2+-buffers, thus preventing seed crystal nucleation even in a highly supersaturated macroenvironment. Carbonate is then preferentially precipitated in mucus-free areas such as empty diatom tests or voids. After the buffer capacity of the EPS is surpassed, precipitation is observed at the margins of mucus areas. Hydrocarbon biomarkers extracted from (1) a calcifying Phormidium-biofilm, (2) the stromatolitic carbonate below, and (3) a fossil `tufa' of the Pleistocene pinnacles, indicate that the cyanobacterial primary producers have been subject to significant temporal changes in their species distribution. Accordingly, the species composition of cyanobacterial biofilms does not appear to be relevant for the formation of microbial carbonates in Pyramid Lake. The results demonstrate the crucial influence of mucus substances on carbonate precipitation in highly supersaturated natural environments.
Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers
NASA Astrophysics Data System (ADS)
Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.
2017-12-01
Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally, we compare observed spatial patterns of precipitation accumulations to those in a topographically-aided gridded precipitation dataset to understand how atmospheric moisture transport may inform methods to downscale precipitation to high resolution for use in hydrologic modeling.
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2014-12-01
Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily temperature or precipitation. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by 'heavy tailed' distributed variables such as daily precipitation. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those extreme precipitation days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results identify regionally consistent patterns which, dependent on location, show systematic increase in precipitation on the wettest days, shifts in precipitation patterns to less moderate days and more heavy days, and drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013 Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, S. C. Chapman, N. W. Watkins, 2013 Environ. Res. Lett. 8, 034031 [2] Haylock et al. 2008 J. Geophys. Res (Atmospheres), 113, D20119
Cacao, Eliedonna E.; Nasrullah, Azeem; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E.; Willson, Richard C.
2013-01-01
In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol) (SH-PEG) monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR) spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5–60 µC/cm2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm−1 and 2870 cm−1, respectively. X-ray Photoelectron Spectroscopy (XPS) spectra showed that increasing beam doses destroy ether (C–O) bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C–C) signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP). Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver nanoparticles. PMID:23717382
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin
This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC)U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scalemore » patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1)MERRAshows a spurious negative trend in Nebraska andKansas, which ismost likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. The increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.« less
Identifying Patterns in Extreme Precipitation Risk and the Related Impacts
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2017-12-01
Extreme precipitation can harm human life and assets through flooding, hail, landslides, or debris flows. Flood risk assessments typically concentrate on river or mountain torrent channels, using water depth, flow velocity, and/or sediment deposition to quantify the risk. In addition, extreme events with high recurrence intervals are often the main focus. However, damages from short-term and localized convective showers often occur away from watercourses. Also, damages from more frequent small scale extremes, although usually less disastrous, can accumulate to considerable financial burdens. Extreme convective precipitation is expected to intensify in a warmer climate, and vulnerability patterns might change in tandem with changes in the character of precipitation and flood types. This has consequences for adaptation planners who want to establish effective protection measures and reduce the cost from natural hazards. Here we merge hydrological and exposure data to identify patterns of risk under varying synoptic conditions. Exposure is calculated from a database of 76k damage claims reported to the national disaster fund in 480 municipalities in south eastern Austria from 1990-2015. Hydrological data comprise sub-daily precipitation (59 gauges) and streamflow (62 gauges) observations. We use synoptic circulation types to identify typical precipitation patterns. They indicate the character of precipitation even if a gauge is not in close proximity, facilitating potential future research with regional climate model data. Results show that more claims are reported under synoptic conditions favouring convective precipitation (on average 1.5-3 times more than on other days). For agrarian municipalities, convective precipitation damages are among the costliest after long low-intensity precipitation events. In contrast, Alpine communities are particularly vulnerable to convective high-intensity rainfall. In addition to possible observational error, uncertainty is present in damage reporting errors, claims from private insurers and adaptation effects after damaging events. As for the latter, preliminary results indicate that investments regularly occur after big events, which may skew subsequent damage claims. Their effectiveness, though, needs to be analyzed in future research.
Rainfall pattern variability as climate change impact in The Wallacea Region
NASA Astrophysics Data System (ADS)
Pujiastuti, I.; Nurjani, E.
2018-04-01
The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.
Patterned Ground in Wetlands of the Maya Lowlands: Anthropogenic and Natural Causes
NASA Astrophysics Data System (ADS)
Beach, T.; Beach, S. L.
2004-12-01
We use geological and archaeological evidence to understand the formation of patterned ground in perennial and seasonal wetlands in the karst depressions of Belize and Guatemala. Some scholars have argued that these features are the remnants of ancient Maya wetland fields, chinampas, on which intensive cultivation produced food that could begin to nourish the extremely high population of the Late Classic (A.D. 550-850). Others have argued that these were natural features or that they represent landscape manipulation for rising sea level in the Preclassic (1000 B.C. -A.D. 250). We present the evidence for ancient intensive agriculture and natural landscape formation with multiple proxies: excavated field and canal features, artifacts, pollen, soil stratigraphy, and water chemistry. Evidence thus far suggests that many regional depressions have Preclassic (1200 BC to AD 200) or earlier paleosols, buried from 1-2 m by eroded soils induced by Maya land use practices. These paleosols were buried by eroded sediments from uplands and by precipitation of gypsum from rising groundwater. The sedimentation occurred largely between the Preclassic and Late Classic, when ancient Maya farmers built canals in pre-existing low spots to reclaim these wetlands. Thus, stable natural processes, environmental change, and human manipulation have acted together to form patterned wetland ground over the later Holocene.
López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie
2014-01-01
Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.
The GPM Common Calibrated Brightness Temperature Product
NASA Technical Reports Server (NTRS)
Stout, John; Berg, Wesley; Huffman, George; Kummerow, Chris; Stocker, Erich
2005-01-01
The Global Precipitation Measurement (GPM) project will provide a core satellite carrying the GPM Microwave Imager (GMI) and will use microwave observations from a constellation of other satellites. Each partner with a satellite in the constellation will have a calibration that meets their own requirements and will decide on the format to archive their brightness temperature (Tb) record in GPM. However, GPM multi-sensor precipitation algorithms need to input intercalibrated Tb's in order to avoid differences among sensors introducing artifacts into the longer term climate record of precipitation. The GPM Common Calibrated Brightness Temperature Product is intended to address this problem by providing intercalibrated Tb data, called "Tc" data, where the "c" stands for common. The precipitation algorithms require a Tc file format that is both generic and flexible enough to accommodate the different passive microwave instruments. The format will provide detailed information on the processing history in order to allow future researchers to have a record of what was done. The format will be simple, including the main items of scan time, latitude, longitude, and Tc. It will also provide spacecraft orientation, spacecraft location, orbit, and instrument scan type (cross-track or conical). Another simplification is to store data in real numbers, avoiding the ambiguity of scaled data. Finally, units and descriptions will be provided in the product. The format is built on the concept of a swath, which is a series of scans that have common geolocation and common scan geometry. Scan geometry includes pixels per scan, sensor orientation, scan type, and incidence angles. The Tc algorithm and data format are being tested using the pre-GPM Precipitation Processing System (PPS) software to generate formats and 1/0 routines. In the test, data from SSM/I, TMI, AMSR-E, and WindSat are being processed and written as Tc products.
Relationship between Precipitation Components and Teleconnection Patterns in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
María Ruiz, Ana; Maqueda, Gregorio
2016-04-01
The study of precipitation components is of increasing interest due to the differences that involve each of the correspondent consequences. On one hand, the stratiform component, weak and light, causes regular and long-lasting precipitation. On the other hand, the convective one, stronger and intense, is associated with more local precipitation, produced in short periods of time. In this work, the separated components of precipitation, obtained through the distribution of cumulated rain as its intensity has been analyzed for five sectors with different climate characteristic in Spain. The sectors may initially be of Atlantic or Mediterranean influence, besides having others geographical and orographic dependence. The aim of this study is to determine the influence of different teleconnection patterns over the stratiform and convective precipitation for each sector. The dataset have been a 17 years time series (1998-2014) of hourly rain data from the AEMET network (Spanish Meteorological Agency) consistent of 63 rain gauge stations that cover all the study area. Results show, in autumn-winter season, a clear influence of NAO in the stratiform precipitation for every sector except the closest to the Mediterranean sea. High correlation between EA, SCAND and EA/WR patterns with the stratiform component also it is observed. In the case of convective precipitation only the WeMO index keeps some influence in the near Mediterranean sector.
Numerical simulation on the southern flood and northern drought in summer 2014 over Eastern China
NASA Astrophysics Data System (ADS)
Xu, Lianlian; He, Shengping; Li, Fei; Ma, Jiehua; Wang, Huijun
2017-12-01
In summer 2014, Eastern China suffered a typical "southern flood and northern drought" anomalous climate. Observational analyses indicated that the anomalous vertical motion, East Asian subtropical westerly jet stream, and the East Asian summer monsoon (EASM) played important roles in the formation of such precipitation anomaly. Furthermore, using the climate model (IAP-AGCM-4.1) perturbed by simultaneous observed sea surface temperature anomalies (SSTAs) in global scale and four different regions (North Pacific, Indian Ocean, North Atlantic, and Equatorial Pacific), this study investigated the potential contribution of ocean to such "southern flood and northern drought" over Eastern China in summer 2014. The simulations forced by global-scale SSTAs or North Pacific SSTAs displayed the most similarity to the observed "southern flood and northern drought" over Eastern China. It was revealed that the global-scale and North Pacific SSTAs influenced the rainfall over Eastern China via modulating the EASM. The related simulations successfully reproduced the associated atmospheric circulation anomalies. The experiment driven by Indian Ocean SSTAs could also reproduce the similar precipitation anomaly pattern and suggested that the Indian Ocean exerted pronounced influence on the North Pacific Subtropical High. Additionally, the simulations forced by SSTAs in the North Atlantic and Equatorial Pacific successfully reproduced the northern drought but failed to capture the southern flood. The simulations suggested that precipitation anomaly over Eastern China in summer 2014 was a comprehensive effect of global SSTAs and the dominant contribution to the "southern flood and northern drought" pattern came from the North Pacific and Indian Ocean.
Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies
NASA Astrophysics Data System (ADS)
Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu
2016-10-01
Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.
NASA Astrophysics Data System (ADS)
Tan, Xuezhi; Gan, Thian Yew; Chen, Yongqin David
2018-01-01
Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified. Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading of moisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.
NASA Astrophysics Data System (ADS)
Gan, T. Y. Y.; Tan, X.; Chen, Y. D.
2017-12-01
Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified.Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading ofmoisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.
Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuefeng; Leung, Lai-Yung R.
2013-02-01
After the end of the 1970s, there has been a tendency for enhanced summer precipitation over South China and the Yangtze River valley and drought over North China and Northeastern China. Coincidentally, Arctic ice concentration has decreased since the late 1970s, with larger reduction in summer than spring. However, the Arctic warming is more significant in spring than summer, suggesting that spring Arctic conditions could be more important in their remote impacts. This study investigates the potential impacts of the Arctic on summer precipitation in China. The leading spatial patterns and time coefficients of the unfiltered, interannual, and interdecadal precipitationmore » (1960-2008) modes were analyzed and compared using empirical orthogonal function (EOF) analysis, which shows that the first three EOFs can capture the principal precipitation patterns (northern, central and southern patterns) over eastern China. Regression of the Arctic spring and summer temperature onto the time coefficients of the leading interannual and interdecadal precipitation modes shows that interdecadal summer precipitation in China is related to the Arctic spring warming, but the relationship with Arctic summer temperature is weak. Moreover, no notable relationships were found between the first three modes of interannual precipitation and Arctic spring or summer temperatures. Finally, correlations between summer precipitation and the Arctic Oscillation (AO) index from January to August were investigated, which indicate that summer precipitation in China correlates with AO only to some extent. Overall, this study suggests important relationships between the Arctic spring temperature and summer precipitation over China at the interdecadal time scale.« less
NASA Astrophysics Data System (ADS)
Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei
2017-08-01
Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.
Aerosol loading impact on Asian monsoon precipitation patterns
NASA Astrophysics Data System (ADS)
Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco
2017-04-01
Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and found typical patterns characterizing different Indian regions in late summer. Analyzing the AERONET data we have also separated the black carbon and dust contribution to the total aerosol loading based on aerosol spectral optical properties for investigating the link between different aerosol types and precipitation patterns.
NASA Technical Reports Server (NTRS)
Collow, Allison B. Marquardt; Mahanama, Sarith P.; Bosilovich, Michael G.; Koster, Randal D.; Schubert, Siegfried D.
2017-01-01
The atmospheric general circulation model that is used in NASA's Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) is evaluated with respect to the relationship between large-scale teleconnection patterns and daily temperature and precipitation over the United States (US) using a ten-member ensemble of simulations, referred to as M2AMIP. A focus is placed on four teleconnection patterns that are known to influence weather and climate in the US: El Nino Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation, and the Pacific-North American Pattern. The monthly and seasonal indices associated with the patterns are correlated with daily temperature and precipitation statistics including: (i) monthly mean 2 m temperature and precipitation, (ii) the frequency of extreme temperature events at the 90th, 95th, and 99th percentiles, and (iii) the frequency and intensity of extreme precipitation events classified at the 90th, 95th, and 99th percentiles.Correlations obtained with M2AMIP data and thus the strength of teleconnections in the free-running model are evaluated through comparison against corresponding correlations computed from observations and from MERRA-2. Overall, the strongest teleconnections in all datasets occur during the winter and coincide with the largest agreement between the observations, MERRA-2, and M2AMIP. When M2AMIP does capture the correlation seen in observations, there is a tendency for the spatial extent to be exaggerated. The weakest agreement between the data sources, for all teleconnection patterns, is in the correlation with extreme precipitation; however there are discrepancies between the datasets in the number of days with at least 1 mm of precipitation: M2AMIP has too few days with precipitation in the Northwest and the Northern Great Plains and too many days in the Northeast. In JJA, M2AMIP has too few days with precipitation in the western two-thirds of the country and too many days with precipitation along the east coast.
NASA Astrophysics Data System (ADS)
Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio
2017-10-01
The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome Fuji with a shorter data set using the same methods.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.
2015-12-01
This study develops a novel methodology to resolve the cause of typhoon-induced precipitation using principle component analysis (PCA) and to develop a long lead-time precipitation prediction model. The discovered spatial and temporal features of rainfall are utilized to develop a state-of-the-art descriptive statistical model which can be used to predict long lead-time precipitation during typhoons. The time series of 12-hour precipitation from different types of invasive moving track of typhoons are respectively precede the signal analytical process to qualify the causes of rainfall and to quantify affected degree of each induced cause. The causes include: (1) interaction between typhoon rain band and terrain; (2) co-movement effect induced by typhoon wind field with monsoon; (3) pressure gradient; (4) wind velocity; (5) temperature environment; (6) characteristic distance between typhoon center and surface target station; (7) distance between grade 7 storm radius and surface target station; and (8) relative humidity. The results obtained from PCA can detect the hidden pattern of the eight causes in space and time and can understand the future trends and changes of precipitation. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse terrain formation and height. Results show that: (1) for the typhoon moving toward the direction of 245° to 330°, Causes (1), (2) and (6) are the primary ones to generate rainfall; and (2) for the direction of 330° to 380°, Causes (1), (4) and (6) are the primary ones. Besides, the developed precipitation prediction model by using PCA with the distributed moving track approach (PCA-DMT) is 32% more accurate by that of PCA without distributed moving track approach, and the former model can effectively achieve long lead-time precipitation prediction with an average predicted error of 13% within average 48 hours of forecasted lead-time.
Younger Dryas equilibrium line altitudes and precipitation patterns in the Alps
NASA Astrophysics Data System (ADS)
Kerschner, Hanns; Moran, Andrew; Ivy-Ochs, Susan
2016-04-01
Moraine systems of the "Egesen Stadial" are widespread and easily identifiable features in the Alps. Absolute dating with terrestrial cosmogenic radionuclides shows that the maximum extent was reached during the early Younger Dryas (YD), probably as a reaction to the intense climatic downturn subsequent to Lateglacial Interstadial. In recent years, several new studies and the availability of high-quality laser-scan hillshades and orthophotos allowed a significant extension of the database of YD glaciers as "palaeoprecipitation gauges" to large hitherto unmapped regions in the Austrian and Swiss Alps. The equilibrium line altitude (ELA) of the glaciers and its lowering relative to the Little Ice Age ELA (dELA) shows a distinct and systematic spatial pattern. Along the northern slope of the Alps, dELAs are usually large (around 400 m and perhaps even more), while dELAs range around 200 m in the well sheltered areas of the central Alps, e.g. in the Engadine and in western Tyrol. Both stochastic glacier-climate models (e.g. Ohmura et al. 1992) and the heat- and mass balance equation (Kuhn 1981) allow the reconstruction of precipitation change under the assumption of a spatially constant summer temperature depression, which in turn can be estimated from biological proxies. This allows to draw the spatial pattern of precipitation change with considerable detail. Precipitation change is clearly controlled by the local relief like high mountain chains, deeply incised and long valleys and mountain passes. Generally the contrast between the northern fringe of the Alps and the interior was more pronounced than today. Climate in the Northern and and Northwestern Alps was rather wet with precipitation totals eventually exceeding modern annual sums. The central Alps received 20 - 30% less precipitation than today, mainly due to reduced winter precipitation. In the southern Alps, still scarce spatial information points to precipitation sums which were approximately similar to modern values. As winter precipitation was probably much smaller than today, seasonal contrasts were more pronounced. In total, the pattern of YD precipitation change is remarkably similar to precipitation patterns caused by westerly and northwesterly cyclonic airflow during the present-day hydrologic winter (October - March). Kerschner, H., G. Kaser, R. Sailer (2000): Alpine Younger Dryas glaciers as paleo-precipitation gauges. Annals of Glaciology 31, 80-84. Kerschner, H. and S. Ivy-Ochs (2007): Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60, 58-71.
NASA Astrophysics Data System (ADS)
Floyd, J. G.; Beeler, S. R.; Mors, R. A.; Kraus, E. A.; 2016, G.; Piazza, O.; Frantz, C. M.; Loyd, S. J.; Berelson, W.; Stevenson, B. S.; Marenco, P. J.; Spear, J. R.; Corsetti, F. A.
2016-12-01
Hot spring environments exhibit unique redox/physical gradients that may create favorable conditions for the presence of life and commonly contain mineral precipitates that could provide a geologic archive of such ecosystems on Earth and potentially other planets. However, it is critical to discern biologic from abiotic formation mechanisms if hot spring-associated minerals are to be used as biosignatures. The study of modern hot spring environments where mineral formation can be directly observed is necessary to better interpret the biogenicity of ancient/extraterrestrial examples. Little Hot Creek (LHC), a hot spring located in the Long Valley Caldera, California, contains mineral precipitates composed of a carbonate base covered with amorphous silica and minor carbonate in close association with microbial mats/biofilms. Geological, geochemical, and microbiological techniques were integrated to investigate the role of biology in mineral formation at LHC. Geochemical measurements indicate that the waters of the spring are near equilibrium with respect to carbonate and undersaturated with respect to silica, implying additional processes are necessary to initiate cap formation. Geochemical modeling, integrating elemental and isotopic data from hot spring water and mineral precipitates, indicate that the abiotic processes of degassing and evaporation drive mineral formation at LHC, without microbial involvement. However, petrographic analysis of LHC caps revealed microbial microfabrics within silica mineral phases, despite the fact that microbial metabolism was not required for mineral precipitation. Our results show that microorganisms in hot spring environments can shape mineral precipitates even in the absence of a control on authigenesis, highlighting the need for structural as well as geochemical investigation in similar systems.
Kinetic Fractionation of Stable Isotopes in Carbonates on Mars: Terrestrial Analogs
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Gibson, Everett K., Jr.; Golden, D. C.; Ming, Douglas W.; McKay, Gordon A.
2003-01-01
An ancient Martian hydrosphere consisting of an alkali-rich ocean would likely produce solid carbonate minerals through the processes of evaporation and/or freezing. We postulate that both (or either) of these kinetically-driven processes would produce carbonate minerals whose stable isotopic compositions are highly fractionated (enriched) with respect to the source carbon. Various scenarios have been proposed for carbonate formation on Mars, including high temperature formation, hydrothermal alteration, precipitation from evaporating brines, and cryogenic formation. 13C and 18O -fractionated carbonates have previously been shown to form kinetically under some of these conditions, ie.: 1) alteration by hydrothermal processes, 2) low temperature precipitation (sedimentary) from evaporating bicarbonate (brine) solutions, and 3) precipitation during the process of cryogenic freezing of bicarbonate-rich fluids. Here we examine several terrestrial field settings within the context of kinetically controlled carbonate precipitation where stable isotope enrichments have been observed.
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China
NASA Astrophysics Data System (ADS)
Zhong, Yu; Wang, Binbin; Zou, Chris B.; Hu, Bill X.; Liu, Youcun; Hao, Yonghong
2017-11-01
The Tianshan Mountains are known as the "water tower" in the arid region of Central Asia. Change in precipitation amount and pattern can have a profound impact on regional civilization and life supporting ecosystems. For this study, a systematic analysis of long-term precipitation data for the eastern Tianshan Mountains was conducted to investigate the influence of climate teleconnections on annual and intra-annual precipitation using data collected between 1951 and 2014 from 39 meteorological stations. Annual precipitation has increased during the past six decades at an average rate of 6.7 mm/10 years largely due to the increase in precipitation during the intra-annual wet period (May-October). The annual precipitation and its rate of increase were higher in the northwestern region. Annual precipitation was found to be most strongly correlated with index of Indian Summer Monsoon (ISM), and partially correlated with indices of Pacific Decadal Oscillation (PDO), Pacific North American Teleconnection Pattern (PNA), Arctic Oscillation (AO), El Nino-Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO). ISM was positively correlated with the precipitation in almost the entire region during the intra-annual wet period, while it showed positive correlations in the northern slope and the alpine region, and negative correlations in the southern slope during the intra-annual dry period (November to April). PDO had much weaker influence both in spatial scale and strength and primarily affected low elevations on the southern slopes of the middle and western regions. The impacts of PNA and AO on precipitation were weak and localized. ENSO and NAO indices were almost not correlated with annual precipitation observation in the eastern Tianshan Mountains.
Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.
Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi
2012-08-07
The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.
Calcium carbonate scale control, effect of material and inhibitors.
Macadam, J; Parsons, S A
2004-01-01
This paper focuses on developing a reproducible method for reducing calcium carbonate scale formation on heated surfaces where scaling can cause serious problems. It is known that calcium carbonate precipitation is sensitive to impurity ions, such as iron and zinc, even at trace concentration levels. In this paper two sets of experiments are reported. The first experiments were undertaken to investigate the effect of zinc, copper and iron dosing on CaCO3 nucleation and precipitation. Results from the experiments showed that the most effective inhibitor of CaCO3 precipitation was zinc and the effect was linked to dose levels and temperature. Copper and iron had little effect on precipitation in the dose range investigated. The second trial was undertaken to translate the precipitation data to scale formation. These tests were undertaken at 70 degrees C. 5 mg x L(-1) zinc dose reduced the scale formation by 35%. The effect of iron on calcium carbonate scaling rate was not significant. The physical nature of the material on which the scale is formed also influences the scaling. The scaling experiment was also used to investigate the effect of different surface material (stainless steel, copper and aluminium) on CaCO3 scale formation. Copper surface scaled the most.
Nonlinear response in runoff magnitude to fluctuating rain patterns.
Curtu, R; Fonley, M
2015-03-01
The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.
USDA-ARS?s Scientific Manuscript database
Precipitation is a key driver of ecosystem net primary productivity and carbon cycling. Global warming is altering precipitation patterns globally, and longer and more intense drought episodes are projected for many temperate and Mediterranean regions. The challenge of predicting the effects of alt...
Applying complex networks to evaluate precipitation patterns over South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja
2016-04-01
The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)
NASA Technical Reports Server (NTRS)
Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.
2016-01-01
Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.
Biogeography in the air: fungal diversity over land and oceans
NASA Astrophysics Data System (ADS)
Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.
2011-07-01
Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.
Preparation of U.sub.3 O.sub.8
Johnson, David R.
1980-01-01
A method is described for the preparation of U.sub.3 O.sub.8 nuclear fuel material by direct precipitation of uranyl formate monohydrate from uranyl nitrate solution. The uranyl formate monohydrate precipitate is removed, dried and calcined to produce U.sub.3 O.sub.8 having a controlled particle size distribution.
Mineral precipitates in zero-valent iron PRBs can be classified by formation processes into three groups: 1) those that result from changes in chemical conditions (i.e., change in pH, e.g., calcite); 2) those that are a consequence of microbial activity (i.e., sulfate reduction, ...
NASA Astrophysics Data System (ADS)
Prywer, Jolanta; Olszynski, Marcin; Mielniczek-Brzóska, Ewa
2015-11-01
Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca2+ ions and causes the formation of CaCit- and Ca10(PO4)6CO3 complexes. Trisodium citrate binds Ca2+ ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed.
The Influence of Ultrasonic Cavitation on the Formation of Fe-Rich Intermetallics in A383 Alloy
NASA Astrophysics Data System (ADS)
Xuan, Yang; Liu, Tao; Nastac, Laurentiu; Brewer, Luke; Levin, Ilya; Arvikar, Vish
2018-06-01
The effect of ultrasonic treatment (UST) on the formation of Fe-rich intermetallics (including sludge) in the A383 alloy is investigated for different processing temperatures in the present study. Differential scanning calorimetry is used to analyze the precipitation temperature of the sludge phase. The results revealed that the sludge will precipitate at a temperature above that of the Al matrix and the precipitation temperature decreases with an increasing cooling rate. UST cavitation applied at different temperatures (600 °C to 750 °C) during the solidification process breaks the sludge into small island-like pieces. However, the aggregation trend of the sludge is not changed. Sludge with small size and uniform distribution is obtained when UST is applied at 600 °C, which is lower than the precipitation temperature of the sludge. At the highest temperature (850 °C), the application of UST has no effect on the formation of either sludge or α-Fe intermetallics. At 750 °C, UST promotes the formation of the sludge when applied at 750 °C.
Oilfield scales: controls on precipitation and crystal morphology of barite (barium sulphate)
NASA Astrophysics Data System (ADS)
Stark, A. I. R.; Wogelius, R. A.; Vaughan, D. J.
2003-04-01
The precipitation and subsequent build up of barite (barium sulphate) inside extraction tubing presents a costly problem for off shore oil wells which use seawater to mobilize oil during hydrocarbon recovery. Mixing of reservoir formation water containing Ba2+ ions and seawater containing SO_42- ions results in barite precipitation within the reservoir well-bore region and piping. Great effort has been expended in designing strategies to minimize scale formation but details of the reaction mechanism and sensitivity to thermodynamic variables are poorly constrained. Furthermore, few detailed studies have been carried out under simulated field conditions. Hence an experimental programme was designed to study barite formation under environmentally relevant conditions with control of several system variables during the precipitation reaction. Synthetic sea-water and formation-water brines containing sodium sulphate and barium chloride, respectively, were mixed to induce BaSO_4 precipitation. Experiments were carried out at high temperature (100^oC) and high pressure (500 bars) in double rocking autoclave bombs. Barite formation as a function of the addition of calcium, magnesium, and a generic phosphonate based scale inhibitor was investigated whilst maintaining constant pH, temperature and ionic strength (0.5159). Additional experiments were performed at ambient conditions for comparison. Data concerning nucleation, growth rates, and crystal morphology were obtained. ICP-AES data from the supernatant product solutions showed considerable variation in quantity of barium sulphate precipitated as a function of the listed experimental variables. For example, ESEM analysis of barium sulphate crystals showed a dramatic shift in crystal habit from the typical tabular habit produced in control experiments; experiments performed in the presence of foreign cations produced more equant crystals, while those experiments completed in the presence of the phosphonate scale inhibitor produced precipitates with distorted anhedral shapes. Based on these preliminary results, further experiments which monitor rate and morphology as a function of Ba/Ca ratio, ionic strength, and ion activity product for barite will also be completed.
NASA Astrophysics Data System (ADS)
Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.
2016-12-01
High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces.
Precipitation regime classification for the Mojave Desert: Implications for fire occurrence
Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy
2016-01-01
Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Zachman, M.; Lehmann, J.
2016-12-01
An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption complexes investigated in bulk using C Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Fourier Transform Infrared (FT-IR) spectroscopy. Ultimately, these observations of model co-precipitation systems will be used to better interpret observations of putative co-precipitated OM in natural soils.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.
2017-10-01
This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.
Hydrodynamic Fingering Instability Induced by a Precipitation Reaction
NASA Astrophysics Data System (ADS)
Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.
2014-07-01
We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.
NASA Astrophysics Data System (ADS)
Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana
2017-04-01
Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.
NASA Astrophysics Data System (ADS)
Tulenin, S. S.; Bakhteev, S. A.; Yusupov, R. A.; Maskaeva, L. N.; Markov, V. F.
2013-10-01
Boundary conditions and ranges of the formation of indium(III) sulfide and selenide upon precipitation by thiocarbamide and selenocarbamide are determined. Potentiometric titration of indium chloride (InCl3) in the concentration range of 0.0001 to 0.100 mol/L by a solution of sodium hydroxide is performed. It is found that the following pH ranges are optimal for In2S3 and In2Se3 film precipitation: from 3.0 to 4.5 and from 9.0 to 14.0. Indium selenide layers 100 to 300 nm thick are prepared on vitroceramic by hydrochemcial precipitation.
Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben
2018-01-01
Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.
Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less
Gatlin, Michael R.; Long, James M.; Turton, Donald J.
2015-01-01
The natural flow regime is important for structuring streams and their resident ichthyofauna and alterations to this regime can have cascading consequences. We sought to determine if changes in hydrology could be attributed to changes in precipitation in a minimally altered watershed (Lee Creek). The stream flow regime was analyzed using Indicators of Hydrologic Alteration (IHA) software, and data from a nearby climate station were used to summarize concurrent precipitation patterns. We discovered that Lee Creek hydrology had become flashier (i.e., increased frequency of extreme events of shorter duration) since 1992 coincident with changes in precipitation patterns. Specifically, our results show fewer but more intense rain events within the Lee Creek watershed. Our research provides evidence that climate-induced changes to the natural flow regime are currently underway and additional research on its effects on the fish community is warranted.
Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out
NASA Astrophysics Data System (ADS)
Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen
2014-05-01
The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.
NASA Astrophysics Data System (ADS)
Park, A. J.; Chan, M. A.; Parry, W. T.
2005-12-01
Modeling of how terrestrial concretions form can provide valuable insights into understanding water-rock interactions that led to the formation of hematite concretions at Meridiani Planum, Mars. Numerical simulations of iron oxide concretions in the Jurassic Navajo Sandstone of southern Utah provide physical and chemical input parameters for emulating conditions that may have prevailed on Mars. In the terrestrial example, iron oxide coatings on eolian sand grains are reduced and mobilized by methane or petroleum. Precipitation of goethite or hematite occurs as Fe interacts with oxygen. Conditions that produced Navajo Sandstone concretions can range from a regional scale that is strongly affected by advection of large pore volumes of water, to small sub-meter scale features that are dominantly controlled by diffusive processes. Hematite concretions are results of a small-scale cross-diffusional process, where Fe and oxygen are supplied from two opposite sides from the 'middle' zone of mixing where concretions precipitate. This is an ideal natural system where Liesegang banding and other self-organized patterns can evolve. A complicating variable here is the sedimentologic (both mineralogic and textural) heterogeneity that, in reality, may be the key factor controlling the nucleation and precipitation habits (including possible competitive growth) of hematite concretions. Sym.8 water-rock interaction simulator program was used for the Navajo Sandstone concretions. Sym.8 is a water-rock simulator that accounts for advective and diffusive mass-transfer, and equilibrium and kinetic reactions. The program uses a dynamic composite media texture model to address changing sediment composition and texture to be consistent with the reaction progress. Initial one-dimensional simulation results indicate precipitation heterogeneity in the range of sub-meters, e.g., possible banding and distribution of iron oxide nodules may be centimeters apart for published diffusivities and water chemistries of the solutes involved. This modeling effort underscores the importance of coupled reactions and mass-transfer in formation of iron oxide concretions in both terrestrial and Mars sediments. Methane is interpreted to be the reactive agent that mobilizes iron in Navajo Sandstone. On Mars volatile volcanic gases may be the reactive agents that mobilize iron from volcanic sediments. In both cases, subsequent diffusive and advective mass-transfer coupled to nonlinear chemical reactions produces localized precipitates.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy
2015-06-01
Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.
The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data
NASA Technical Reports Server (NTRS)
Wakimoto, R. M.
1982-01-01
This paper presents the time-dependent analysis of the thunderstorm gust front with the use of Project NIMROD data. RHI cross sections of reflectivity and Doppler velocity are constructed to determine the entire vertical structure. The life cycle of the gust front is divided into four stages: (1) the formative stage; (2) the early mature stage; (3) the late mature stage; and (4) the dissipation stage. A new finding is a horizontal roll detected in the reflectivity pattern resulting from airflow that is deflected upward by the ground, while carrying some of the smaller precipitation ahead of the main echo core of the squall line. This feature is called a 'precipitation roll'. As determined from rawinsonde data, the cold air behind the gust front accounts for the observed surface pressure rise. Calculations confirm that the collision of two fluids produce a nonhydrostatic pressure at the leading edge of the outflow. The equation governing the propagation speed of a density current accurately predicts the movement of the gust front.
Regionalization of precipitation characteristics in Iran's Lake Urmia basin
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn
2018-04-01
Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.
NASA Astrophysics Data System (ADS)
Mehmood, S.; Ashfaq, M.; Evans, K. J.; Black, R. X.; Hsu, H. H.
2017-12-01
Extreme precipitation during summer season has shown an increasing trend across South Asia in recent decades, causing an exponential increase in weather related losses. Here we combine a cluster analyses technique (Agglomerative Hierarchical Clustering) with a Lagrangian based moisture analyses technique to investigate potential commonalities in the characteristics of the large scale meteorological patterns (LSMP) and moisture anomalies associated with the observed extreme precipitation events, and their representation in the Department of Energy model ACME. Using precipitation observations from the Indian Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), and atmospheric variables from Era-Interim Reanalysis, we first identify LSMP both in upper and lower troposphere that are responsible for wide spread precipitation extreme events during 1980-2015 period. For each of the selected extreme event, we perform moisture source analyses to identify major evaporative sources that sustain anomalous moisture supply during the course of the event, with a particular focus on local terrestrial moisture recycling. Further, we perform similar analyses on two sets of five-member ensemble of ACME model (1-degree and ¼ degree) to investigate the ability of ACME model in simulating precipitation extremes associated with each of the LSMP patterns and associated anomalous moisture sourcing from each of the terrestrial and oceanic evaporative region. Comparison of low and high-resolution model configurations provides insight about the influence of horizontal grid spacing in the simulation of extreme precipitation and the governing mechanisms.
NASA Astrophysics Data System (ADS)
Chapman, Sandra; Stainforth, David; Watkins, Nick
2014-05-01
Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on a method to transform daily observations of precipitation into patterns of local climate change. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results show regionally consistent patterns of systematic increase in precipitation on the wettest days, and of drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013, S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, Environ. Res. Lett. 8, 034031 [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119
Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Petersen, Sven; Billstrom, Kjell; Stummeyer, Jens; Kamenov, G.; Shanks, W.
2011-01-01
Atacamite and paratacamite are ubiquitous minerals associated with Cu-rich massive sulfides at the Logatchev hydrothermal field (Mid-Atlantic Ridge). In this work we provide new details on the mineralogy and geochemistry of these basic cupric chlorides. Our data support the notion that atacamite and paratacamite formation at submarine vent fields is an alteration process of hydrothermal Cu-sulfides. Secondary Cu-sulfides (bornite, covellite) are unstable at ambient seawater conditions and will dissolve. Dissolution is focused at the sulfide–seawater contact, leading to release of Fe2+ and Cu+ and formation of residual chalcocite through an intermediate Cu5S4 phase. Most of the released Fe2+ oxidizes immediately and precipitates as FeOOH directly on the chalcocite rims whereas Cu as chloride complexes (CuCl2−, CuCl32-) remains in solution at the same Eh. Cuprous–chloride complexes migrate from the reaction zone and upon increasing Eh precipitate as Cu2Cl(OH)3. As a consequence of this, the sulfide–seawater reaction interface is clearly marked by thin chalcocite–FeOOH bands and the entire assemblage is mantled by atacamite (or paratacamite). Our mineralogical, petrographic, geochemical and isotopic studies suggest that there are two types of atacamite (and/or paratacamite) depending on their mode of precipitation. Type 1 atacamite precipitated directly on the parent sulfides as evidenced by mantling of the sulfides, absence of detrital mineral grains, a preserved conspicuous positive Eu anomaly and a negligible negative Ce anomaly similar to those of the parent sulfide. In addition, Au concentrations are slightly lower than those of the parent sulfides, which suggest minimal transport of Au-ions after their release from the sulfides. Furthermore, the low content of the rare earth elements implies short contact time with the ambient seawater. The Sr–Nd–Pb-isotopic signatures of type 1 atacamite confirm the genetic association with the parent sulfides and indicate formation spatially very close to the latter. Type 2 atacamite precipitated at some distance from the parent sulfides, which means that the cuprous–chloride complexes have moved away from the sulfide alteration zone before precipitation. The evidence for this is absence of direct association of atacamite with sulfides. In addition, this atacamite contains a substantial proportion of detrital minerals, which implies precipitation in the sediments, distal to the parent sulfides. As a consequence of the detrital impurities the contents of elements like Cr, Cs, Hf, Nb, Rb, Th and Zr are higher than in type 1 atacamite (and/or paratacamite). Au contents are lower than those of type 1 atacamite (and/or paratacamite) which implies prolonged Au transport in solution before precipitation. Furthermore, the rare earth element distribution patterns have no positive Eu anomaly suggesting that the positive Eu anomaly of the parent sulfide has been erased after dissolution and prolonged contact of the fluid with ambient seawater (with negative Eu anomaly). Finally, the Sr–Nd-isotope signature differs from that of the parent sulfide and indicates a considerable terrigenous input.
NASA Astrophysics Data System (ADS)
Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina
2018-05-01
The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.
Chemical composition of acid precipitation in central Texas
Hal B. H., Jr. Cooper; Jerry M. Demo
1976-01-01
Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...
NASA Technical Reports Server (NTRS)
Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.
2001-01-01
Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.
Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes
Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks
2013-01-01
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
NASA Astrophysics Data System (ADS)
Nordhoff, P.; Wiegand, B.; Simon, K.; Rosendahl, W.; Hansen, B. T.; Kempe, S.
2003-12-01
Speleothems (stalagmites, stalactites, flowstones) are important archives for Late Quaternary continental climatic and paleo-environmental reconstruction. Speleothems form when calcium carbonate precipitates from solutions seeping into caves hosted e.g. in limestone or dolomite complexes. Information of past climate variability and changes in local environmental conditions can be obtained from signatures of the stable isotopes of oxygen and carbon as well as trace element pattern recorded in speleothems. Reconstruction of paleo-temperature and past environmental conditions from stable isotopes, however, require isotopic equilibrium between the drip water and the precipitating calcium carbonate. Results from Dietzel et al. (1992) and Johnson and Ingram (2001) indicate that the formation of modern travertine and speleothem calcite occurs under isotopic equilibrium. Factors that influence the stable oxygen and carbon isotope composition during speleothem precipitation include e.g. the moisture source and precipitation, photosynthetic pathways, the bedrock proportion, and the drip rate. This often leads to a situation with several variables. However, a specific interpretation is possible when dealing with environments where only one of the factors is dominant, or specific settings are assumed to be invariant, or further proxies like trace element variations help to define the frame conditions during speleothem formation. Concentrations of trace elements (e.g. Sr, Mg) which are co-precipitated with calcite are related to changes in the composition of the solution and strongly depend on the dissolution/precipitation dynamics along drip water flow paths. In a multiproxy approach they are a valuable tool for the interpretation of the recorded stable isotope variations. We present first results from different cave systems located in the Swabian Alps and the Harz Mountains (Germany). Our study includes a high-resolution multiproxy approach, using U/Th-TIMS data, stable oxygen/carbon isotope data, and geochemical compositions of speleothems, covering ages from the Late Pleistocene to the Early Holocene. The results are compared to geochemical data from host rocks, soil zones, cave sediments, drip water compositions, and recent calcium carbonate precipitates. Understanding the response of a cave system to the actual climatic, hydrologic and environmental regimen is a main requirement for the interpretation of "paleo-information" conserved in speleothems in order to lead to a coherent picture of past continental climate dynamics. References: Dietzel M., Usdowski E., and Hoefs J., (1992): Applied Geochemistry 7: 177-184. Johnson, K.R. and Ingram, B.L. (2001): Abstract volume, 4th Internat. Symp. On Applied Isotope Geochemistry, Pacific Groove, USA: 70-72.
NASA Astrophysics Data System (ADS)
Tian, Fangxing; Dong, Buwen; Robson, Jon; Sutton, Rowan
2018-02-01
Since the mid-1990s precipitation trends over eastern China display a dipole pattern, characterized by positive anomalies in the south and negative anomalies in the north, named as the Southern-Flood-Northern-Drought (SFND) pattern. This work investigates the drivers of decadal changes of the East Asian summer monsoon (EASM), and the dynamical mechanisms involved, by using a coupled climate model (specifically an atmospheric general circulation model coupled to an ocean mixed layer model) forced by changes in (1) anthropogenic greenhouse gases (GHG), (2) anthropogenic aerosol (AA) and (3) the combined effects of both GHG and AA (All Forcing) between two periods across the mid-1990s. The model experiment forced by changes in All Forcing shows a dipole pattern of response in precipitation over China that is similar to the observed SFND pattern across the mid-1990s, which suggests that anthropogenic forcing changes played an important role in the observed decadal changes. Furthermore, the experiments with separate forcings indicate that GHG and AA forcing dominate different parts of the SFND pattern. In particular, changes in GHG increase precipitation over southern China, whilst changes in AA dominate in the drought conditions over northern China. Increases in GHG cause increased moisture transport convergence over eastern China, which leads to increased precipitation. The AA forcing changes weaken the EASM, which lead to divergent wind anomalies over northern China and reduced precipitation.
NASA Astrophysics Data System (ADS)
Wang, Jue
Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.
Microstructural characterization and mechanical properties of Excel alloy pressure tube material
NASA Astrophysics Data System (ADS)
Sattari, Mohammad
Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the alphaZr+betaZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa).
Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River
NASA Astrophysics Data System (ADS)
Du, Y.; Berndtsson, R.; An, D.; Yuan, F.
2017-12-01
Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.
Risk assessment of precipitation extremes in northern Xinjiang, China
NASA Astrophysics Data System (ADS)
Yang, Jun; Pei, Ying; Zhang, Yanwei; Ge, Quansheng
2018-05-01
This study was conducted using daily precipitation records gathered at 37 meteorological stations in northern Xinjiang, China, from 1961 to 2010. We used the extreme value theory model, generalized extreme value (GEV) and generalized Pareto distribution (GPD), statistical distribution function to fit outputs of precipitation extremes with different return periods to estimate risks of precipitation extremes and diagnose aridity-humidity environmental variation and corresponding spatial patterns in northern Xinjiang. Spatiotemporal patterns of daily maximum precipitation showed that aridity-humidity conditions of northern Xinjiang could be well represented by the return periods of the precipitation data. Indices of daily maximum precipitation were effective in the prediction of floods in the study area. By analyzing future projections of daily maximum precipitation (2, 5, 10, 30, 50, and 100 years), we conclude that the flood risk will gradually increase in northern Xinjiang. GEV extreme value modeling yielded the best results, proving to be extremely valuable. Through example analysis for extreme precipitation models, the GEV statistical model was superior in terms of favorable analog extreme precipitation. The GPD model calculation results reflect annual precipitation. For most of the estimated sites' 2 and 5-year T for precipitation levels, GPD results were slightly greater than GEV results. The study found that extreme precipitation reaching a certain limit value level will cause a flood disaster. Therefore, predicting future extreme precipitation may aid warnings of flood disaster. A suitable policy concerning effective water resource management is thus urgently required.
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, Dagbegnon C.; Singh, Vijay P.; Frauenfeld, Oliver W.
2014-04-01
With climate change, precipitation variability is projected to increase. The present study investigates the potential interactions between watershed characteristics and precipitation variability. The watershed is considered as a functional unit that may impact seasonal precipitation. The study uses historical precipitation data from 370 meteorological stations over the last five decades, and digital elevation data from regional watersheds in the southwestern United States. This domain is part of the North American Monsoon region, and the summer period (June-July-August, JJA) was considered. Based on an initial analysis for 1895-2011, the JJA precipitation accounts, on average, for 22-43% of the total annual precipitation, with higher percentages in the arid part of the region. The unique contribution of this research is that entropy theory is used to address precipitation variability in time and space. An entropy-based disorder index was computed for each station's precipitation record. The JJA total precipitation and number of precipitation events were considered in the analysis. The precipitation variability potentially induced by watershed topography was investigated using spatial regionalization combining principal component and cluster analysis. It was found that the disorder in precipitation total and number of events tended to be higher in arid regions. The spatial pattern showed that the entropy-based variability in precipitation amount and number of events gradually increased from east to west in the southwestern United States. Regarding the watershed topography influence on summer precipitation patterns, hilly relief has a stabilizing effect on seasonal precipitation variability in time and space. The results show the necessity to include watershed topography in global and regional climate model parameterizations.
Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L
2012-11-06
To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.
NASA Astrophysics Data System (ADS)
Yatagai, A.; Onda, Y.; Watanabe, A.
2012-04-01
The Great East Japan Earthquake caused a severe accident at the Fukushima-Daiichi nuclear power plant (NPP), leading to the emission of large amounts of radioactive pollutants into the environment. The transport and diffusion of these radioactive pollutants in the atmosphere caused a disaster for residents in and around Fukushima. Studies have sought to understand the transport, diffusion, and deposition process, and to understand the movement of radioactive pollutants through the soil, vegetation, rivers, and groundwater. However, a detailed simulation and understanding of the distribution of radioactive compounds depend on a simulation of precipitation and on the information on the timing of the emission of these radioactive pollutants from the NPP. Past nuclear expansion studies have demonstrated the importance of wet deposition in distributing pollutants. Hence, this study examined the quantitative precipitation pattern in March 2011 using rain-gauge observations and X-band radar data from Fukushima University. We used the AMeDAS rain-gauge network data of 1) the Japan Meteorological Agency (1273 stations in Japan) and 2) the Water Information System (47 stations in Fukushima prefecture) and 3) the rain-gauge data of the Environmental Information Network of NTT Docomo (30 stations in Fukushima) to construct 0.05-degree mesh data using the same method used to create the APHRODITE daily grid precipitation data (Yatagai et al., 2009). Since some AMeDAS data for the coastal region were lost due to the earthquake, the complementary network of 2) and 3) yielded better precipitation estimates. The data clarified that snowfall was observed on the night of Mar 15 into the morning of Mar 16 throughout Fukushima prefecture. This had an important effect on the radioactive contamination pattern in Fukushima prefecture. The precipitation pattern itself does not show one-on-one correspondence with the contamination pattern. While the pollutants transported northeast of the NPP and through north Kanto (about 200 km southwest of Fukushima and, 100 km north of Tokyo) went to the northwest, the timing of the precipitation causing the fallout, i.e., wet-deposition, is important. Although the hourly Radar-AMeDAS 1-km-mesh precipitation data of JMA are available publically, it does not represent the precipitation pattern in Nakadori, in central Fukushima prefecture. Hence, we used 10-minute interval X-band radar, located in north Nakadori to determine the start and detailed horizontal pattern (120-m mesh) of the precipitation. Since 1) and 3) are 10-minute intervals and 2) is hourly data, we are developing hourly gridded data and using 1-3) to verify and quantify the rain rate observed by the Fukushima University X-band data.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2009-01-01
The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons
NASA Astrophysics Data System (ADS)
Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.
2015-08-01
Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.
NASA Astrophysics Data System (ADS)
Zhang, Chonghong; Li, Fuchun; Lv, Jiejie
2017-11-01
Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.
NASA Astrophysics Data System (ADS)
Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael
2017-01-01
We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.
Yongqiang Liu
2003-01-01
It was suggested in a recent statistical correlation analysis that predictability of monthly-seasonal precipitation could be improved by using coupled singular value decomposition (SVD) pattems between soil moisture and precipitation instead of their values at individual locations. This study provides predictive evidence for this suggestion by comparing skills of two...
Mapping ENSO: Precipitation for the U.S. Affiliated Pacific Islands
NASA Astrophysics Data System (ADS)
Wright, E.; Price, J.; Kruk, M. C.; Luchetti, N.; Marra, J. J.
2015-12-01
The United States Affiliated Pacific Islands (USAPI) are highly susceptible to extreme precipitation events such as drought and flooding, which directly affect their freshwater availability. Precipitation distribution differs by sub-region, and is predominantly influenced by phases of the El Niño Southern Oscillation (ENSO). Forecasters currently rely on ENSO climatologies from sparse in situ station data to inform their precipitation outlooks. This project provided an updated ENSO-based climatology of long-term precipitation patterns for each USAPI Exclusive Economic Zone (EEZ) using the NOAA PERSIANN Climate Data Record (CDR). This data provided a 30-year record (1984-2015) of daily precipitation at 0.25° resolution, which was used to calculate monthly, seasonal, and yearly precipitation. Results indicated that while the PERSIANN precipitation accurately described the monthly, seasonal, and annual trends, it under-predicted the precipitation on the islands. Additionally, maps showing percent departure from normal (30 year average) were made for each three month season based on the Oceanic Niño Index (ONI) for five ENSO phases (moderate-strong El Niño and La Niña, weak El Niño and La Niña, and neutral). Local weather service offices plan on using these results and maps to better understand how the different ENSO phases influence precipitation patterns.
Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine.
Sommer, Stephan; Dickescheid, Christian; Harbertson, James F; Fischer, Ulrich; Cohen, Seth D
2016-09-14
The aim of this study was to identify the source of haze formation in red wine after the addition of carboxymethyl cellulose (CMC) and to characterize the dynamics of precipitation. Ninety commercial wines representing eight grape varieties were collected, tested with two commercial CMC products, and analyzed for susceptibility to haze formation. Seventy-four of these wines showed a precipitation within 14 days independent of the CMC product used. The precipitates of four representative samples were further analyzed for elemental composition (CHNS analysis) and solubility under different conditions to determine the nature of the solids. All of the precipitates were composed of approximately 50% proteins and 50% CMC and polyphenols. It was determined that the interactions between CMC and bovine serum albumin are pH dependent in wine-like model solution. Furthermore, it was found that the color loss associated with CMC additions required the presence of proteins and cannot be observed with CMC and anthocyanins alone.
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.; ...
2016-12-21
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
NASA Astrophysics Data System (ADS)
Singhania, Shalabh; Wang, Qiankun; Filippou, Dimitrios; Demopoulos, George P.
2005-06-01
Arsenic is a major contaminant in the nonferrous extractive metallurgy. In the past 20 years, many studies have shown that it can be precipitated as relatively stable crystalline scorodite (FeAsO4·2H2O) by precipitation under ambient or elevated pressures. In the present study, an extensive program of scorodite precipitation tests under ambient pressure has shown that the rate of scorodite formation increases dramatically by a small increase in temperature from 85 °C to 100 °C. The beneficial effects of temperature are attributed to the higher thermodynamic stability of scorodite at elevated temperatures, but also to higher rates of secondary nuclei formation and crystal growth. In any case, irrespective of the precipitation temperature, the leachability of all scorodite precipitates observed in toxicity characterization leaching procedure (TCLP) tests is below 5 mg/L As. Another parameter examined in this study was seeding. It was observed that the higher the initial concentration of seed, the faster the precipitation. Precipitation of well-crystallized scorodite can be effected equally well on heterogeneous seed such as hematite (Fe2O3) or gypsum (CaSO4·2H2O) added externally or formed in situ.
Formation and evolution of platelet-like Ti-rich precipitates in the V–4Cr–4Ti alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Boling; Yang, Shanwu, E-mail: yangsw@mater.ustb.edu.cn; Zhang, Mengqi
The goal of the present investigation is to explain the obviously different appearances of Ti-rich precipitates in vanadium alloy and in steels. To achieve the goal, the formation and evolution of the precipitates in the as-cast and the heat treated V–4Cr–4Ti samples were investigated using optical and electron microscopies. The precipitates were found to be rare in the as-cast samples, and a high density of the precipitates occur in the samples subjected to isothermal holding at 600–1300 °C. The precipitates preferentially distribute within the grains rather than at the grain boundaries. All of the precipitates are platelet-like, with NaCl structure,more » in three-dimensional space. The further observation using high-resolution electron microscopy (HREM) reveals that a high density of twins occurs in the growth front of the precipitates, whereas the middle of the precipitates is twin-free. Meanwhile, enrichment of titanium atoms was observed in the middle of the precipitates. These results indicate that the precipitates form by a displacive transformation, followed by a diffusional process to enrich titanium further and eliminate the twined structure. - Highlights: • Precipitates in the V–4Cr–4Ti alloy are Ti-(CN) with NaCl structure. • The Ti-rich precipitates are platelet-like in three dimensional space. • Twins occur in both ends of the precipitates and the midst of these is twin-free. • Twinning and its elimination is explained by displacive followed by diffusion.« less
The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.
Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua
2015-03-01
Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. © 2015 Poultry Science Association Inc.
Rain use efficiency across a precipitation gradient on the Tibetan Plateau
USDA-ARS?s Scientific Manuscript database
Rain use efficiency (RUE), commonly described as the ratio of aboveground net primary production (ANPP) to mean annual precipitation (MAP), is a critical indicator for predicting potential responses of grassland ecosystems to changing precipitation regimes. However, current understanding on patterns...
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.
2014-05-01
Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.
Myocardial Infarction. Pathological Relevance and Relationship with Coronary Risk Factors.
Leone, Aurelio
2017-01-01
Three types of necrosis characterize MI: coagulation necrosis, typically due to a coronarogenic mechanism, coagulative myocytolysis with formation of contract bands as an effect of sympathetic nervous system and adrenergic stimulation, and colliquative myocytolysis, characterized by myocardial fiber lysis, which is a close result of hydrolytic enzyme activity deriving from the material reaching the infarct area. Although a multifactorial etiology may be identified, nevertheless coronary alterations, which are a consequence of atherosclerotic plaque formation and complications with a reduced blood flow supply to the myocardium, are the benchmark of MI. Evidence indicates a close relationship between the MI and some coronary risk factors, associated with this pathologic pattern with a different, but high rate. Precipitating events to cause acute myocardial pathology need, however, to develop an acute myocardial infarction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Guo, H.; Xu, S. S.; Mao, M. J.; Chen, L.; Gokhman, O.; Zhang, Z. W.
2018-05-01
Solid solution treatment (SST) and age hardening are the two main treatments used to produce nanoscale precipitation-strengthened steels. In this work, solution treatment and aging are employed to develop a nanoscale precipitation-strengthened steel displaying high degrees of strength, ductility, and toughness. The effects of SST on the microstructure and mechanical properties of the produced steel are investigated. The results show that the solution temperature strongly influences the matrix microstructure. Partial austenitization between A_{{{c}1}} and A_{{{c}3}} favors the formation of granular ferrite, while complete austenitization above A_{{{c}3}} leads to the formation of polygonal ferrite. Refined granular ferrite with a low dislocation density can effectively improve the plasticity and low-temperature toughness of steel. Precipitation strengthening is mainly related to the nature of the nano-precipitates, specifically their size and number density, independently of the matrix microstructure.
NASA Astrophysics Data System (ADS)
Kobayashi, Satoru; Kawagoe, Riko; Murakami, Hiroaki
2018-05-01
We have measured first-order reversal curves (FORCs) for Fe-1wt%Cu alloy thermally aged at 753 K up to 20000 min. While hardness exhibits a maximum at around 1000 min, reflecting the formation and growth of Cu precipitates, major-loop coercivity monotonically decreases and becomes almost constant above 100 min.; an increase of coercivity associated with Cu precipitation is masked by a large decrease due to recovery. On the other hand, FORC diagrams exhibit two distribution peaks at low and high switching fields after aging. While the former shifts towards a lower switching field after aging, reflecting recovery, the latter shows up after aging up to ˜1000 min, possibly due to the formation of Cu precipitates. These observations demonstrate that FORCs are useful to separately evaluate competing microstructural changes in thermally aged Fe-Cu alloy where recovery and Cu precipitation take place simultaneously.
Effects of the Pacific Decadal Oscillation and global warming on drought in the US Southwest
NASA Astrophysics Data System (ADS)
Grossmann, I.
2012-12-01
Droughts are among the most expensive weather related disasters in the US. In the semi-arid regions of the US Southwest, where average annual rainfall is already very low, multiyear droughts can have large economic, societal and ecological impacts. The US Southwest relies on annual precipitation maxima during winter and the North American Monsoon (NAM), both of which undergo considerable interannual variability associated with large-scale climate patterns, in particular ENSO, the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The region is also part of the subtropical belt projected to become more arid in a warming climate. These impacts have not been combined and compared with projections of long-term variations due to natural climate patterns. This study addresses this need by deriving future projections of rainfall departures for Arizona and New Mexico with the PDO and AMO and combining these with projected global warming impacts. Depending on the precipitation dataset used, the impacts for the ongoing negative PDO phase are projected to be between 1-1.6 times as large as the multi-model means projection of precipitation minus evaporation during 2020-2040 in the IPCC A1B Scenario. The projected precipitation impacts of a combined negative PDO and positive AMO phase are between 1-2 times as large as the A1B Scenario projection. The study also advances earlier work by addressing problems in detecting the effect of the PDO on precipitation. Given the different mechanisms with which the PDO affects precipitation during winter and the NAM season, precipitation impacts are here investigated on a monthly scale. The impacts of the PDO also vary with other climate patterns. This can be partly addressed by investigating precipitation departures in dependence on other patterns. It is further found that the long-term effect of the PDO can be more clearly separated from short-term variability by considering return periods of multi-year drought measures rather than return periods of simple drought measures.
NASA Astrophysics Data System (ADS)
Barron, J. A.; Metcalfe, S. E.; Davies, S. J.
2014-12-01
We evaluate proxy reconstructions of Holocene records precipitation in the North American Monsoon region (SW US and northern Mexico) and regions to the south (southern Mexico, Central America, and the Caribbean). Seventy-seven precipitation records are tabulated at 2-3 kyr increments for the past 12 kyr, with results displayed mainly on maps. Sites currently dominated by summer precipitation, coupled with proxy records that distinguish summer vs. winter vegetation are used to estimate summer precipitation. Resulting patterns of precipitation variability are evaluated against SST reconstructions from surrounding tropical seas -eastern tropical Pacific, Gulf of California (GoC), Caribbean, and Gulf of Mexico (GoM), which are source areas for summer precipitation. During the Younger Dryas, ca. 12 ka, widespread drying in southern regions contrasted with evidence for wetter conditions in multiple records from the SW US. By 9 ka wetter conditions had spread to the southern regions, likely reflecting an increased Caribbean low-level jet associated with an enhanced Bermuda High. Pacific westerlies contributed significant winter precipitation to the southwestern US and northernmost Mexico at 9 ka. The modern geographical pattern of summer precipitation was established by 6 ka, as the Bermuda High moved northward following the demise of the Laurentide Ice Sheet. SSTs in the GoC and GoM increased, and the NAM strengthened. Increased regional precipitation differences are apparent by 4 ka, likely reflecting enhanced ENSO variability. Most of the southern region experienced increased precipitation during the Medieval Climate Anomaly (MCA), whereas winter drought dominated in the north. In contrast, much of the Little Ice Age (LIA) was characterized by generally drier conditions in Central America and Mexico, with wetter conditions in the SW US. Results are broadly supportive of enhanced La Niña-like conditions during the MCA vs. increased ENSO variability during the LIA.
Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
Airborne bacteria in the atmosphere: Presence, purpose, and potential
NASA Astrophysics Data System (ADS)
Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah
2016-08-01
Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.
NASA Astrophysics Data System (ADS)
Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda
2018-05-01
Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual precipitation is expected to decrease in southeastern China. Therefore, flood risk in northern China and drought risk in southern China should draw more attention for a global air temperature increase from 1.5 °C to 2.0 °C.
NASA Astrophysics Data System (ADS)
Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina
2015-12-01
Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.
NASA Astrophysics Data System (ADS)
Sanchez, J. L.; Merino, A.; Melcón, P.; García-Ortega, E.; Fernández-González, S.; Berthet, C.; Dessens, J.
2017-12-01
In the context of a warming climate, one of the variables currently under investigation is related to the detection of possible changes in hail precipitation. In this work, we analyze hail frequencies in one of the most affected areas by this phenomenon in Europe, southern France. Here, an extensive hail detection network has been in operation since 1988. In general, the detection of hailfall is very uncertain. To overcome the constraints of scarcity and poor standardization of hail detection and monitoring systems, some relationships between hailstorm occurrence and synoptic, mesoscale or thermodynamic atmospheric characteristics have been proposed in different areas. Therefore, we analyzed meteorological fields at synoptic scale that are related to the formation of hailstorms in the study area, i.e., geopotential height at 500 hPa, sea level pressure, and lapse-rate between 850 and 500 hPa. These fields describe the state of the atmosphere at low and mid levels, and facilitate the evaluation of thermal and dynamic instability. Using the Mann-Kendall test and Sen estimator, we examined trends in the three fields during the period 1948-2015 and their spatial patterns, revealing an evolution toward synoptic environments that favor hail precipitation in the Mediterranean region.
NASA Astrophysics Data System (ADS)
Rodriguez, L.; El-Askary, H. M.; Rakovski, C.; Allai, M.
2015-12-01
California is an area of diverse topography and has what many scientists call a Mediterranean climate. Various precipitation patterns exist due to El Niño Southern Oscillation (ENSO) which can cause abnormal precipitation or droughts. As temperature increases mainly due to the increase of CO2 in the atmosphere, it is rapidly changing the climate of not only California but the world. An increase in temperature is leading to droughts in certain areas as other areas are experiencing heavy rainfall/flooding. Droughts in return are providing a foundation for fires harming the ecosystem and nearby population. Various natural hazards can be induced due to the coupling effects from inconsistent precipitation patterns and vice versa. Using wavelets and ARIMA modeling, we were able to identify anomalies of high precipitation and droughts within California's 7 climate divisions using NOAA's hourly precipitation data from rain gauges and compared the results with modeled data, SOI, PDO, and AMO. The identification of anomalies can be used to compare and correct remote sensing measurements of precipitation and droughts.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Spatiotemporal variability of summer precipitation in southeastern Arizona
USDA-ARS?s Scientific Manuscript database
The Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona covers ~150 km2 and receives the majority of its annual precipitation from highly variable and intermittent summer storms during the North American Monsoon. In this study the patterns of precipitation in the United States Departm...
The response of the East Asia summer precipitation to greenhouse gases and anthropogenic aerosols
NASA Astrophysics Data System (ADS)
Tian, Fangxing; Dong, Buwen; Robson, Jon; Sutton, Rowan
2017-04-01
The changes of precipitation over China since the mid-20th century display a dipole trend pattern over eastern China, which is known as Southern-Flood-Northern-Drought (SFND) pattern. The trends have been attributed to different factors, such as the changes of aerosol and greenhouse gas emissions. However much less is known about the different effects of these factors on generating the SFND pattern. This work investigated the drivers and dynamical mechanisms by using a atmosphere-ocean-mixed-layer model forced by anthropogenic greenhouse gase (GHG), anthropogenic aerosol (AA) and the combined effects. The model experiments with different forcings indicates that the GHG forcing dominates the precipitation increase, which is stronger over south China than over north China. On the other hand, the drought over north China is dominated by the AA forcing. Analysis of physical processes indicates that the GHG forcing increases the moisture and leads to strong convergence over east China, and then more precipitation. The AA forcing leads to north wind anomalies and generates divergent anomalies over north China, which reduces the precipitation. Further analysis indicates that the changes of the circulation which related to the SFND pattern are forced by the enhancement of the Western North Pacific Subtropical High (WNPSH). Both GHG and AA forcing can enhance the WNPSH by changing the local Hadley cell.
Hydrodynamic fingering instability induced by a precipitation reaction
NASA Astrophysics Data System (ADS)
De Wit, Anne; Nagatsu, Yuichiro
2014-05-01
We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A+B → C type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.
2014-01-03
Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations aremore » carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.« less
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Grützun, Verena
2018-03-01
In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s-1. At such altitudes with corresponding temperatures below -40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1) additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2) contact and deposition freezing in comparison to immersion freezing, and (3) small fractions of biological ice nucleating particles (INPs) in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages coupled with approximately 50 % more precipitation in the cloud center. The modifications depend on the active freezing modes, the fractions of active INP, and the composition of the internal mixtures in the drops.
NASA Astrophysics Data System (ADS)
Sanhueza, J. P.; Rojas, D.; Prat, O.; García, J.; Meléndrez, M. F.; Suarez, S.
2018-07-01
A 12 pct Cr martensitic/ferritic steel was designed and produced to study Laves and Z-phase as precipitation hardening particles under creep conditions (650 °C). According to thermodynamic calculations, W and Cu additions were selected to ensure the precipitation of Laves after tempering. It is known that Z-phase formation does not follow the classical nucleation theory. Indeed, MX particles are transformed into Z-phase by Cr diffusion from the matrix to the precipitate. Therefore, to promote fast Z-phase formation, Ta, Co, and N additions were used to produce Ta-MX, which will be transformed into Z-phase. The main result achieved was the precipitation of Laves after tempering, with a particle size of 196 nm. As regards to Z-phase, the transformation of Ta-MX into Z-phase after tempering was confirmed by the formation of hybrid nanoparticles of 30 nm. Although W and Ta have a low diffusion in the martensitic/ferritic matrix, characterization of the precipitates after isothermal aging revealed that Laves and Z-phase have fast growth kinetics, reaching 400 and 143 nm, respectively, at 8760 hours. Consequently, creep test at 650 °C showed premature failures after few thousand hours. Therefore, it is expected that future research in the field of martensitic/ferritic steels will focus on the growth and coarsening behavior of Laves and Z-phase.
NASA Astrophysics Data System (ADS)
Sanhueza, J. P.; Rojas, D.; Prat, O.; García, J.; Meléndrez, M. F.; Suarez, S.
2018-05-01
A 12 pct Cr martensitic/ferritic steel was designed and produced to study Laves and Z-phase as precipitation hardening particles under creep conditions (650 °C). According to thermodynamic calculations, W and Cu additions were selected to ensure the precipitation of Laves after tempering. It is known that Z-phase formation does not follow the classical nucleation theory. Indeed, MX particles are transformed into Z-phase by Cr diffusion from the matrix to the precipitate. Therefore, to promote fast Z-phase formation, Ta, Co, and N additions were used to produce Ta-MX, which will be transformed into Z-phase. The main result achieved was the precipitation of Laves after tempering, with a particle size of 196 nm. As regards to Z-phase, the transformation of Ta-MX into Z-phase after tempering was confirmed by the formation of hybrid nanoparticles of 30 nm. Although W and Ta have a low diffusion in the martensitic/ferritic matrix, characterization of the precipitates after isothermal aging revealed that Laves and Z-phase have fast growth kinetics, reaching 400 and 143 nm, respectively, at 8760 hours. Consequently, creep test at 650 °C showed premature failures after few thousand hours. Therefore, it is expected that future research in the field of martensitic/ferritic steels will focus on the growth and coarsening behavior of Laves and Z-phase.
Assessment of WRF Simulated Precipitation by Meteorological Regimes
NASA Astrophysics Data System (ADS)
Hagenhoff, Brooke Anne
This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.
Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan
2018-08-01
Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960-2010 period. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bullón, T.
2011-08-01
This study presents the results of a historic reconstruction based upon documentary sources of precipitation and floods during the last fifty years of the 16th century in Central Spain. We used data from primary sources contemporary to the events rather than compilations or secondary references. These documents belong to the institutions that administered the study area during the time period of interest and consist of municipal or monastic minute books and administrative texts from properties belonging to the nobility and royal family. Direct data that explicitly describe meteorological or flood-related events are haphazardly distributed throughout personal correspondence and various reports, and the sizes of floods or precipitation events can also be deduced from indirect data. We analysed the qualitative data by transforming them into numerical indices of intensity/duration for precipitation and intensity/area for floods. We differentiated three sets of years that presented different hydrological patterns. The first period, from 1554 to 1575, exhibited regular precipitation patterns associated with low-intensity floods. The second, from 1576 to 1584, was characterised by low precipitation levels and few floods. The third, from 1585 to 1599, showed intense precipitation with large floods interspersed with long-lasting droughts. We interpret these results in the context of the environmental and land-use patterns of the time period studied, which coincided with a period of low temperatures.
NASA Astrophysics Data System (ADS)
Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun
2018-05-01
Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.
NASA Astrophysics Data System (ADS)
Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.
2013-12-01
The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these precipitation patterns will be used for the development of a statistical model for climate prediction for each of these regions, with which it is expected an improvement of up to 20% of climate prediction in these basins. In this first stage was evident a high correlation between precipitation in the basins of SIN and SST Pacific anomalies over the region of Niños, as well as on the coast of Chile and Peru. The effect of SST anomalies in the Niños region on precipitation in the South America is already known, however its quantification was not yet well understood. The coast of Chile determines the positioning and movement of cold fronts directly affecting rainfall in southern and southeastern of Brazil, then the correlation and rain pattern indicate the parameters for the climate prediction model. The anomalies over the Atlantic ocean present high correlation with the precipitation in North and Northeast of Brazil, as well as its connection with the Pacific anomalies. This quantification generated climatic parameters for predictions for these regions. The relationship between the canonical ENSO events and precipitation regime on the basins were also quantified which represents a high degree of assertiveness in predicting climate of these regions.
NASA Astrophysics Data System (ADS)
Cavagnaro, D. B.; Doughty, A. M.; Hatchett, B.
2016-12-01
The Rwenzori Mountains of Uganda and Democratic Republic of the Congo are one of only three remaining glaciated sites in Africa. Because of their remoteness and sparsity of meteorological data, the climate patterns are not well-known or well understood, which may lead to high uncertainty in glacier mass-balance estimates and paleoclimate reconstructions. This project uses remotely-sensed precipitation data, automatic weather station data, and back-trajectory modeling of air parcels to characterize the diurnal and seasonal climate patterns at the Rwenzori. Of the two wet seasons, we estimate that the short-rains (SON) provide up to 500% more snow accumulation. Precipitation is highly diurnal and driven by convection to the east of the Rwenzori as well as local up-valley convection (Mölg et al., 2003). Back-trajectory modeling shows that precipitation tends to occur at the Rwenzori when airstreams are able to pick up moisture during peak daytime convection on the East African Plateau the day before arriving at the Rwenzori. This relationship is supported by the fact that precipitation rates at the western end of the plateau follow a stronger diurnal cycle than precipitation rates at the eastern end, at Mount Kenya.
Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Böhme, M.
2004-05-01
The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.
Stan Lebow
2014-01-01
There is a need to develop improved accelerated test methods for evaluating the leaching of wood preservatives from treated wood exposed to precipitation. In this study the effects of rate of rainfall and length of intervals between rainfall events on leaching was evaluated by exposing specimens to varying patterns of simulated rainfall under controlled laboratory...
Sea level rise, precipitation, and eutrophication (3 X 3 X 2 factorial design) were simulated in tidal mesocosms in the US EPA Narragansett greenhouse. Each precipitation treatment (storm, drought, ambient rain) was represented in one of two tanks (control, fertilized). The contr...
NASA Astrophysics Data System (ADS)
Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang
2017-11-01
In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.
Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada
Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.
1996-01-01
The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl; Olszynski, Marcin; Mielniczek-Brzóska, Ewa
2015-11-15
Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation ofmore » carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.« less
NASA Astrophysics Data System (ADS)
Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid
2017-04-01
In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.
NASA Astrophysics Data System (ADS)
Franz, Gerhard; Morteani, Giulio; Rhede, Dieter
2015-10-01
We present an example where xenotime-(Y) together with metamorphic zircon replaces detrital zircon in a phosphatic sandstone from the Mesoproterozoic Espinhaço fold belt, Brazil, in a dissolution-precipitation reaction: {{zircon}}1 ( {{relict}} ) + {{P-}}{{bearing fluid}} = {{zircon}}2 ( {{metamorphic}} ) + {{xenotime}}. During the Brasiliano orogeny at 634 ± 19 Ma, the rocks experienced amphibolite facies metamorphism at ≥0.6 GPa/ 550 ± 37 °C (Southern Espinhaço) and ≥0.6 GPa/ 570 ± 35 °C (Northern Espinhaço), constrained by Zr-in-rutile and Ti-in-quartz thermometry and the presence of kyanite + muscovite + quartz. Many of the rocks show unusual rare earth element (REE) patterns with a hump at Gd-Tb-Dy and depletion in light REE. Detrital zircons (with relict ages between 1.5 and 3.3 Ga) show varying degrees of replacement as indicated by the presence of xenotime and associated porosity, from almost pristine to complete alteration. Textural evidence indicates local mobility of Zr and REE at the scale of the thin section. Xenotime-(Y) occurs together with other phosphates, mainly augelite, lazulite, and minerals of the svanbergite-crandallite-goyacite-florencite group. Xenotime-(Y) is very heterogeneous and reaches unusually high contents of up to 14 wt% Gd2O3, 13 wt% Dy2O3, and 3 wt% Tb2O3, corresponding to ≤0.36 REE atoms per formula unit due to the exchange Y = REE. The heavy REE patterns of xenotime-(Y) therefore show variable enrichment in individual elements, which explains the characteristic hump at Gd-Tb-Dy in the REE patterns of the whole rock. Although the rocks reached amphibolite facies conditions, textures indicate that formation of xenotime likely occurred during the early stages of diagenesis—metamorphism. Comparison with REE concentrations in xenotime-(Y) from the literature shows that selective REE incorporation into xenotime-(Y) is controlled by interaction with P-bearing hydrous fluids.
NASA Astrophysics Data System (ADS)
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.
2012-01-01
This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202
Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M
2012-02-15
This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.
Improving Access to Precipitation Data for GIS Users: Designing for Ease of Use
NASA Technical Reports Server (NTRS)
Stocker, Erich F.; Kelley, Owen A.
2007-01-01
The Global Precipitation Measurement Mission (GPM) is a NASA/JAXA led international mission to configure a constellation of space-based radiometers to monitor precipitation over the globe. The GPM goal of making global 3-hour precipitation products available in near real-time will make such global products more useful to a broader community of modelers and Geographic Information Systems (GIS) users than is currently the case with remote sensed precipitation products. Based on the existing interest to make Tropical Rainfall Measuring Mission (TRMM) data available to a growing community of GIS users as well as what will certainly be an expanded community during the GPM era, it is clear that data systems must make a greater effort to provide data in formats easily used by GIS. We describe precipitation GIS products being developed for TRMM data. These products will serve as prototypes for production efforts during the GPM era. We describe efforts to convert TRMM precipitation data to GeoTIFF, Shapefile, and ASCII grid. Clearly, our goal is to format GPM data so that it can be easily used within GIS applications. We desire feedback on these efforts and any additions or direction changes that should be undertaken by the data system.
USDA-ARS?s Scientific Manuscript database
Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of...
Are weather models better than gridded observations for precipitation in the mountains? (Invited)
NASA Astrophysics Data System (ADS)
Gutmann, E. D.; Rasmussen, R.; Liu, C.; Ikeda, K.; Clark, M. P.; Brekke, L. D.; Arnold, J.; Raff, D. A.
2013-12-01
Mountain snowpack is a critical storage component in the water cycle, and it provides drinking water for tens of millions of people in the Western US alone. This water store is susceptible to climate change both because warming temperatures are likely to lead to earlier melt and a temporal shift of the hydrograph, and because changing atmospheric conditions are likely to change the precipitation patterns that produce the snowpack. Current measurements of snowfall in complex terrain are limited in number due in part to the logistics of installing equipment in complex terrain. We show that this limitation leads to statistical artifacts in gridded observations of current climate including errors in precipitation season totals of a factor of two or more, increases in wet day fraction, and decreases in storm intensity. In contrast, a high-resolution numerical weather model (WRF) is able to reproduce observed precipitation patterns, leading to confidence in its predictions for areas without measurements and new observations support this. Running WRF for a future climate scenario shows substantial changes in the spatial patterns of precipitation in the mountains related to the physics of hydrometeor production and detrainment that are not captured by statistical downscaling products. The stationarity in statistical downscaling products is likely to lead to important errors in our estimation of future precipitation in complex terrain.
Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.
Leight, A K; Hood, R; Wood, R; Brohawn, K
2016-02-01
Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of shellfish harvest waters should account for changes in climate conditions and that SLP patterns may be particularly important for predicting years with extremely high levels of fecal coliforms. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian
2010-01-01
SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type, and are specific to each river basin. Thus, while most of the water supply in the Upper CRB originates from winter snowpack, statistically significant indictors of relative magnitude of upcoming precipitation and runoff are evident in the fall, well before appreciable snow accumulation. Results of this study suggest strategies that may integrated into existing forecast methods to potentially improve forecast accuracy and advance lead time by as much as six months (i.e., from April 1 to October 1 of the previous year). These techniques also have applications in downscaling climate models and in river restoration and management.
In Situ Clay Formation: Evaluation of a Proposed New Technology for Stable Containment Barriers
2004-03-01
situ layered double hydroxide precipitation........... 23 4.2.1 Solution preparation and column mixing...22 Table 4.2 Summary of in situ precipitation of layered double hydroxide (LDH...effect on permeability for the smallest volume precipitated is sheet silicates or layered -clay phases (hereafter called “clays”). In natural
NASA Astrophysics Data System (ADS)
Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi
2017-12-01
Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.
NASA Technical Reports Server (NTRS)
Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie
2010-01-01
This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.
Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick
2010-04-20
A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.
Zonal wind indices to reconstruct United States winter precipitation during El Niño
NASA Astrophysics Data System (ADS)
Farnham, D. J.; Steinschneider, S.; Lall, U.
2017-12-01
The highly discussed 2015/16 El Niño event, which many likened to the similarly strong 1997/98 El Niño event, led to precipitation impacts over the continental United States (CONUS) inconsistent with general expectations given past events and model-based forecasts. This presents a challenge for regional water managers and others who use seasonal precipitation forecasts who previously viewed El Niño events as times of enhanced confidence in seasonal water availability and flood risk forecasts. It is therefore useful to understand the extent to which wintertime CONUS precipitation during El Niño events can be explained by seasonal sea surface temperature heating patterns and the extent to which the precipitation is a product of natural variability. In this work, we define two seasonal indices based on the zonal wind field spanning from the eastern Pacific to the western Atlantic over CONUS that can explain El Niño precipitation variation spatially throughout CONUS over 11 historic El Niño events from 1950 to 2016. The indices reconstruct El Niño event wintertime (Jan-Mar) gridded precipitation over CONUS through cross-validated regression much better than the traditional ENSO sea surface temperature indices or other known modes of variability. Lastly, we show strong relationships between sea surface temperature patterns and the phases of the zonal wind indices, which in turn suggests that some of the disparate CONUS precipitation during El Niño events can be explained by different heating patterns. The primary contribution of this work is the identification of intermediate variables (in the form of zonal wind indices) that can facilitate further studies into the distinct hydroclimatic response to specific El Niño events.
Recent variations in seasonality of temperature and precipitation in Canada, 1976-95
NASA Astrophysics Data System (ADS)
Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.
2002-11-01
A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.
NASA Astrophysics Data System (ADS)
Ormö, Jens; Komatsu, Goro; Chan, Marjorie A.; Beitler, Brenda; Parry, William T.
2004-10-01
In order to understand the formation of the few but large, hematite deposits on Mars, comparisons are often made with terrestrial hematite occurrences. In southern Utah, hematite concretions have formed within continental sandstones and are exposed as extensive weathered-out beds. The hematite deposits are linked to geological and geomorphological features such as knobs, buttes, bleached beds, fractures and rings. These terrestrial features are visible in aerial and satellite images, which enables a comparison with similar features occurring extensively in the martian hematite-rich areas. The combination of processes involved in the movement and precipitation of iron in southern Utah can provide new insights in the context of the hematite formation on Mars. Here we present a mapping of the analogue geological and geomorphological features in parts of Meridiani Planum and Aram Chaos. Based on mapping comparisons with the Utah occurrences, we present models for the formation of the martian analogues, as well as a model for iron transport and precipitation on Mars. Following the Utah model, high albedo layers and rings in the mapped area on Mars are due to removal or lack of iron, and precipitation of secondary diagenetic minerals as fluids moved up along fractures and permeable materials. Hematite was precipitated intraformationally where the fluid transporting the reduced iron met oxidizing conditions. Our study shows that certain geological/geomorphological features can be linked to the hematite formation on Mars and that pH differences could suffice for the transport of the iron from an orthopyroxene volcanoclastic source rock. The presence of organic compounds can enhance the iron mobilization and precipitation processes. Continued studies will focus on possible influence of biological activity and/or methane in the formation of the hematite concretions in Utah and on Mars.
Evaluation of photogrammetric flight under icing conditions on March 23, 1978
NASA Technical Reports Server (NTRS)
Fuchs, W.; Kaluza, J.
1981-01-01
In a double passage through a route laid out in a stagnation zone of the Bavarian forest, it was found that the stagnation and attendant elevation increases the danger of icing. Conversely, it turned out that formation of precipitation reduces the icing intensity. A comparison of both factors showed: the reduction of ice formation through precipitation equals the increase due to stagnation, or even exceeds it.
Study of different atmospheric environments associated to storms development in the Madeira Island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago do
The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 - 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects causing significant precipitation over the Island.
E.S. Kane; E.F. Betts; A.J. Burgin; H.M. Cliverd; C.L. Crenshaw; J.B. Fellman; I.H. Myers-Smith; J.A. O' Donnell; D.J. Sobota; W.J. Van Verseveld; J.B. Jones
2008-01-01
We investigated long-term and seasonal patterns of N imports and exports, as well as patterns following climate perturbations, across biomes using data from 15 watersheds from nine Long-Term Ecological Research (LTER) sites in North America. Mean dissolved inorganic nitrogen (DIN) import-export budgets (N import via precipitation-N export via stream flow) for common...
Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford
2013-01-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....
Low-Sulfate Seawater Injection into Oil Reservoir to Avoid Scaling Problem
NASA Astrophysics Data System (ADS)
Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam
This study presents the results of laboratory experiments carried out to investigate the formation of calcium, strontium and barium sulfates from mixing Angsi seawater or low sulfate seawater with the following sulfate contents (75, 50, 25, 5 and 1%) and formation water contain high concentration of calcium, strontium and barium ions at various temperatures (40-90°C) and atmospheric pressure. The knowledge of solubility of common oil field scale formation and how their solubilities are affected by changes in salinity and temperatures is also studied. Results show a large of precipitation occurred in all jars containing seawater while the amount of precipitation decreased when the low sulfate seawater was used. At higher temperatures the mass of precipitation of CaSO4 and SrSO4 scales increases and the mass of precipitation of BaSO4 scale decreases since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. It can be concluded that even at sulfate content of 1% there may still be a scaling problem.
Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.
NASA Astrophysics Data System (ADS)
Mock, Cary Jeffrey
This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.
Facilitation drives 65 years of vegetation change in the Sonoran Desert
Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.
2010-01-01
Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.
NASA Astrophysics Data System (ADS)
Shi, Jian; Yan, Qing; Jiang, Dabang; Min, Jinzhong; Jiang, Ying
2016-10-01
Multiproxies suggest a tripole humidity pattern in Asia in the Medieval Climate Anomaly (MCA, 950-1250 A.D.) and Little Ice Age (LIA, 1500-1800 A.D.), with drier (wetter) conditions in arid central Asia (ACA), wetter (drier) conditions in North China, and drier (wetter) conditions in South China. However, the mechanisms behind this reconstructed humidity variation remain unclear. In this study, we investigate Asian humidity changes by using the last millennium simulations of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). The results indicate that only one out of nine PMIP3 models (Meteorological Research Institute Coupled ocean-atmosphere General Circulation Model version 3) can well reproduce the reconstructed humidity pattern. This model indicates that the tripole humidity pattern is mainly caused by precipitation changes in spring and summer and is prominent in the past millennium on a multidecadal time scale. In spring, the reduction (increase) of precipitation in ACA and South China is attributed to the northward (southward) shift of the westerlies and a weakened (strengthened) western Pacific subtropical high in the MCA (LIA). In summer, precipitation over ACA decreases (increases) due to a local descending (ascending) motion, while abundant (deficient) precipitation over eastern China results from the enhanced (depressed) summer monsoon. Moreover, we suggest that a La Niña (El Niño)-like condition may be the primary reason the tripole precipitation pattern was maintained in the MCA (LIA), although a warmer (colder) North Pacific and North Atlantic also play a role. The mechanisms must be further validated since most simulations fail to reproduce the reconstructed humidity condition in the MCA/LIA, making model-model comparisons difficult.
NASA Astrophysics Data System (ADS)
Wilson, A. M.; Duan, Y.; Barros, A.
2015-12-01
The Southern Appalachian Mountains (SAM) region is a biodiversity hot-spot that is vulnerable to land use/land cover changes due to its proximity to the rapidly growing population in the Southeast U.S. Persistent near surface moisture and associated microclimates observed in this region have been documented since the colonization of the area. The landform in this area, in particular in the inner mountain region, is highly complex with nested valleys and ridges. The geometry of the terrain causes distinct diurnal and seasonal local flow patterns that result in highly complex interactions of this low level moisture with meso- and synoptic-scale cyclones passing through the region. The Weather Research and Forecasting model (WRF) was used to conduct high resolution simulations of several case studies of warm season precipitation in the SAM with different synoptic-scale conditions to investigate this interaction between local and larger-scale flow patterns. The aim is to elucidate the microphysical interactions among these shallow orographic clouds and preexisting precipitating cloud systems and identify uncertainties in the model microphysics using in situ measurements. Findings show that ridge-valley precipitation gradients, in particular the "reverse" to the classical orographic effect observed in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level cloud and precipitation promoted through landform controls on local flow. Moisture convergence patterns follow the peaks and valleys as represented by WRF terrain, and the topography effectively controls their timing and spatial structure. The simulations support the hypothesis that ridge-valley precipitation gradients, and in particular the reverse orographic enhancement effect in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level clouds and precipitation promoted through landform controls on moisture convergence.
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
Effects of variability in probable maximum precipitation patterns on flood losses
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul
2018-05-01
The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.
Pilliod, David S; Welty, Justin L; Arkle, Robert S
2017-10-01
Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years' growth. Consequently, multiyear weather patterns, including precipitation in the previous 1-3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.
Ecohydrology of dry regions: storage versus pulse soil water dynamics
Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.
2014-01-01
Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in soil water regimes between the IM and GP regions may be useful for understanding the potential influence of climate changes on soil water patterns and resulting dominant plant functional groups in both regions.
Pilliod, David S.; Welty, Justin; Arkle, Robert
2017-01-01
Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Consequently, multiyear weather patterns, including precipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.
Future changes of interannual variation of the Asian summer monsoon precipitation using the CMIP5
NASA Astrophysics Data System (ADS)
Kamizawa, Nozomi; Takahashi, Hiroshi G.
2015-04-01
The Asian summer monsoon (ASM) region is one of the most populated areas in the world. Since the life of people who live in the region and the industry are strongly dependent on the ASM precipitation, it is interested that how it would change under the circumstance of global warming. Many studies have reported that the mean ASM precipitation would increase by comparing the CMIP models' climatology. Although the changes in mean climate are important, the long-term changes of interannual variability in precipitation are also significant. This study investigated the long-term trend of interannual precipitation variation over the ASM region by using 22 CMIP5 models. The RCP4.5 scenario was used. To investigate the long-term trend of the interannual variation of the ASM precipitation, each model data was recreated to 2.5 degree resolution and a running standard deviation for 21 years of June-July-August (JJA) precipitation were calculated. Next, we created the coefficient variation (CV) by dividing the running standard deviation by the mean JJA precipitation. Then we run a Mann-Kendall test for the CV at each grid. There were more areas which were indicated a statistically significant increasing trend than a decreasing trend in the ASM region. 40.6% of the region indicated an increasing trend in the future. On the other hand, 16.8% of the area was indicated to have a decreasing trend. It was also common in the global scale that the there were more areas that indicated an increasing trend than a decreasing trend. We also divided the area into three groups: land, shore and open ocean. In the ASM region, the shore areas particularly had an increasing CV trend. To investigate the long-term changes of the interannual variability of the precipitation and the atmospheric circulation over the ASM region, we conducted a composite analysis for the five wettest and driest years for two periods: the early 21st century (2007-2031) and the late 21st century (2076-2100). The special patterns of the interannual variation of the precipitation and the atmospheric circulation between the two periods had differed only slightly. A positive deviation precipitation band with a cyclonic circulation was recognized from across the Bay of Bengal to the equatorial Northwest Pacific. The none-big-difference of the patterns may suggest that interannual variation in the ASM region would increase not because the pattern changes, but because the pattern's strength gets stronger or its frequency gets higher.
NASA Astrophysics Data System (ADS)
Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric
2012-07-01
YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.
A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels
NASA Astrophysics Data System (ADS)
Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.
2010-04-01
This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.
Seasonal climate change patterns due to cumulative CO2 emissions
NASA Astrophysics Data System (ADS)
Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.
2017-07-01
Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.
PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS
Newby, B.J.
1963-06-11
A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)
NASA Astrophysics Data System (ADS)
Tong, Guoxiu; Du, Fangfang; Xiang, Lingjing; Liu, Fangting; Mao, Lulu; Guan, Jianguo
2013-12-01
This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production.This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production. Electronic supplementary information (ESI) available: Nitrogen adsorption-desorption isotherms, the corresponding pore size distribution curves, TG-DSC curves, XRD pattern, and IR spectra for the precursors; XRD patterns of the samples obtained at various temperatures under N2; XRD pattern, reduction rate, and reactive oxygen species production of ZnO-ZnFe2O4 XRD patterns, SEM images, EDX patterns, nitrogen adsorption-desorption isotherms, and the corresponding pore size distribution curves of CoFe2O4-NiFe2O4-Co1.29Ni1.71O4 polyhedra and NiO-ZnFe2O4. See DOI: 10.1039/c3nr03745b
NASA Astrophysics Data System (ADS)
Council, Todd C.; Bennett, Philip C.
1993-11-01
The mineral ikaite (CaCO3 ṡ 6H2O), not previously observed in lake environments, precipitates seasonally along the shore of Mono Lake, California, where Ca-HCO3 spring water mixes with cold Na-CO3 lake water. During the winter, cold water temperatures and high concentrations of PO43- and organic carbon inhibit calcite precipitation, allowing the metastable ikaite to form. During the spring warming, however, ikaite decomposes to form calcium carbonate and water, occasionally leaving pseudomorphs of the primary precipitate. The identification of modern ikaite suggests that both Pleistocene and Holocene tufas in the Mono basin originally precipitated as ikaite. This mineral may also form in other lake environments, but rapid recrystallization after warming destroys the physical, chemical, and isotopic evidence of formation, and alters the geochemical record.
NASA Astrophysics Data System (ADS)
Barbero, Renaud; Abatzoglou, John T.; Fowler, Hayley J.
2018-02-01
Midlatitude synoptic weather regimes account for a substantial portion of annual precipitation accumulation as well as multi-day precipitation extremes across parts of the United States (US). However, little attention has been devoted to understanding how synoptic-scale patterns contribute to hourly precipitation extremes. A majority of 1-h annual maximum precipitation (AMP) across the western US were found to be linked to two coherent midlatitude synoptic patterns: disturbances propagating along the jet stream, and cutoff upper-level lows. The influence of these two patterns on 1-h AMP varies geographically. Over 95% of 1-h AMP along the western coastal US were coincident with progressive midlatitude waves embedded within the jet stream, while over 30% of 1-h AMP across the interior western US were coincident with cutoff lows. Between 30-60% of 1-h AMP were coincident with the jet stream across the Ohio River Valley and southeastern US, whereas a a majority of 1-h AMP over the rest of central and eastern US were not found to be associated with either midlatitude synoptic features. Composite analyses for 1-h AMP days coincident to cutoff lows and jet stream show that an anomalous moisture flux and upper-level dynamics are responsible for initiating instability and setting up an environment conducive to 1-h AMP events. While hourly precipitation extremes are generally thought to be purely convective in nature, this study shows that large-scale dynamics and baroclinic disturbances may also contribute to precipitation extremes on sub-daily timescales.
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.
2012-12-01
Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.
Connection between ENSO and Asian Summer Monsoon Precipitation Oxygen Isotope
NASA Astrophysics Data System (ADS)
Cai, Z.; Tian, L.
2016-12-01
In an effort to understand the connection between El Niño Southern Oscillation (ENSO) and Asian Summer Monsoon (ASM) precipitation oxygen isotope, this study investigates the spatial and interannual patterns in summer (JJAS) monsoon precipitation δ18O and satellite water vapor isotope retrievals, especially those patterns associated with convection and vapor transport. Both precipitation and vapor isotope values exhibit a "V" shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along vapor transport routes. In order to understand interannual variations, an ASM precipitation δ18O index (ASMOI) is introduced to measure the temporal variations in regional precipitation δ18O; and these variations are consistent with central Indo-Pacific convection and cloud-top height. The counter variations in the ASMOI in El Niño and La Niña years confirm the existence of a positive isotope- ENSO response (e.g., high values corresponding to warm phases) over the eastern Indian Ocean and southeastern Asia (80°E-120°E/10°S-30°N) as a response to changes in convection. However, JJAS vapor δD over the western Pacific (roughly east of 120oE) varies in opposition, due to the influence of water vapor transport. This opposite variation does not support the interpretation of precipitation isotope-ENSO relationship as changing proportion of vapor transported from different regions, but rather condensation processes associated with convection. These findings are important for studying past ASM and ENSO activity from various isotopic archives and have implications for the study of the atmospheric water cycle.
Coherence among climate signals, precipitation, and groundwater.
Ghanbari, Reza Namdar; Bravo, Hector R
2011-01-01
Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Choudhuri, D; Banerjee, R; Srinivasan, S G
2017-01-17
The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β 1 -Mg 3 Nd precipitates, that grow along 〈110〉 Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β 1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces- {112} β1 /{100} Mg and {111} β1 /{110} Mg - that are commensurate with β 1 /hcp-Mg orientation relationship via first principles calculations. We find that β 1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112} β1 /{100} Mg interfaces, and predict that β 1 grows along 〈110〉 Mg on dislocation lines due to the migration of metastable {111} β1 /{110} Mg . Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β 1 -like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces.
Choudhuri, D.; Banerjee, R.; Srinivasan, S. G.
2017-01-01
The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β1-Mg3Nd precipitates, that grow along 〈110〉Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces– {112}β1/{100}Mg and {111}β1/{110}Mg– that are commensurate with β1/hcp-Mg orientation relationship via first principles calculations. We find that β1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112}β1/{100}Mg interfaces, and predict that β1 grows along 〈110〉Mg on dislocation lines due to the migration of metastable {111}β1/{110}Mg. Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β1-like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces. PMID:28094302
NASA Astrophysics Data System (ADS)
Walther, A.; Jeong, J.-H.; Chen, D.
2009-04-01
Rainfall events exhibit diurnal cycle in both frequency and amount, of which phase and amplitude show substantial geographic and seasonal variation. Although the diurnal cycle of precipitation is one of the fundamental characteristics to determine local weather and climate, most of sophisticated climate models still have great deficiencies in reproducing it. Thus more exact understanding of the diurnal precipitation cycle and its mechanisms is thought to be very important to improve climate models and their prediction results. In this work we investigate the diurnal cycle of precipitation in Sweden using ground based hourly observations for 1996-2008. For the precipitation amount and frequency, mean diurnal cycles are computed, and the peak timing and amplitude of the diurnal and semi-diurnal cycle of precipitation are estimated by the harmonic analysis method. Clear mean diurnal precipitation cycles as well as distinct spatial patterns for all seasons are derived. In summer, showing the most distinct pattern, the majority of the stations show a clear rainfall maximum in the afternoon (12-18 LST) except for the coastal part of Central Sweden where we see an early-morning peak (00-06 LST) and the east coast of southern Sweden where we find a morning peak (06-12 LST). The clear afternoon peak may be due to high insolation accumulated during the day time in summer leading to a local convection activity later on that day. These coastal bands mostly consist of the stations closest to the Baltic Sea. Meso-scale convection connected to temperature differences between sea and land combined with a favorable wind pattern seems to play a role here. In the transition seasons, spring and autumn, the amplitude is weaker and the spatial pattern of peak timing is less distinct than in summer. In spring the westcoast stations have a morning peak and stations in southeastern Sweden show an afternoon peak. In autumn we see a zonal division with a clear afternoon peak in southern Sweden. This might be due to a steeply decreasing energy input from the solar insolation in the northern parts causing less convection activity but still enough insolation to cause an afternoon peak in southern Sweden. In both seasons, spring and autumn, north of 60 degrees the pattern is mixed showing early-morning, morning and afternoon peaks. The winter pattern is characterized by afternoon peaks along the eastcoast and central South Sweden and morning peaks over the most of the other parts of the country. However, the amplitude of the diurnal cycle is much weaker compared to that in summer or autumn. In order to examine the large scale circulation which might modulate the diurnal cycle, the Lamb weather types are computed based on sea level pressure fields from the NCEP/NCAR reanalysis 2 dataset with daily and 6-hourly resolution, respectively. The Lamb types based on 6-hourly SLP underline the high temporal variability of atmospheric conditions over the research area. Throughout all seasons, on about 45% of the days two or more circulation classes are different. In 6.3% (JJA) to 8.4% (DJF) of the days can observe 4 different Lamb classes. Using Lamb types with 6-hourly resolution leads to a somewhat finer classification. On average, for about one third of the days with precipitation the daily Lamb type and the appropriate 6-hourly one are different. The most frequent large-scale circulation classes coupled to precipitation events are of cyclonic or directional type. The atmospheric circulation patterns do not follow a diurnal cycle, whereas the local observed precipitation does. Knowledge about the timing of the rainfall is important in order to assign the right underlying circulation patterns to precipitation events.
NASA Astrophysics Data System (ADS)
Chiang, F.; AghaKouchak, A.
2017-12-01
While many studies have explored the predictive capabilities of teleconnections associated with North American climate, currently established teleconnections offer limited predictability for rainfall in the Western United States. A recent example was the 2015-16 California drought in which a strong ENSO signal did not lead to above average precipitation as was expected. From an exploration of climate and ocean variables available from satellite data, we hypothesize that ocean currents can provide additional information to explain precipitation variability and improve seasonal predictability on the West Coast. Since ocean currents are influenced by surface wind and temperatures, characterizing connections between currents and precipitation patterns has the potential to further our understanding of coastal weather patterns. For the study, we generated gridded point correlation maps to identify ocean areas with high correlation to precipitation time series corresponding to climate regions in the West Coast region. We also used other statistical measures to evaluate ocean `hot spot' regions with significant correlation to West Coast precipitation. Preliminary results show that strong correlations can be found in the tropical regions of the globe.
PMP Estimations at Sparsely Controlled Andinian Basins and Climate Change Projections
NASA Astrophysics Data System (ADS)
Lagos Zúñiga, M. A.; Vargas, X.
2012-12-01
Probable Maximum Precipitation (PMP) estimation implies an extensive review of hydrometeorological data and understandig of precipitation formation processes. There exists different methodology processes that apply for their estimations and all of them require a good spatial and temporal representation of storms. The estimation of hydrometeorological PMP on sparsely controlled basins is a difficult task, specially if the studied area has an important orographic effect due to mountains and the mixed precipitation occurrence in the most several storms time period, the main task of this study is to propose and estimate PMP in a sparsely controlled basin, affected by abrupt topography and mixed hidrology basin; also analyzing statystic uncertainties estimations and possible climate changes effects in its estimation. In this study the PMP estimation under statistical and hydrometeorological aproaches (watershed-based and traditional depth area duration analysis) was done in a semi arid zone at Puclaro dam in north Chile. Due to the lack of good spatial meteorological representation at the study zone, we propose a methodology to consider the orographic effects of Los Andes due to orographic effects patterns based in a RCM PRECIS-DGF and annual isoyetal maps. Estimations were validated with precipitation patterns for given winters, considering snow route and rainfall gauges at the preferencial wind direction, finding good results. The estimations are also compared with the highest areal storms in USA, Australia, India and China and with frequency analysis in local rain gauge stations in order to decide about the most adequate approach for the study zone. Climate change projections were evaluated with ECHAM5 GCM model, due to its good quality representation in the seasonality and the magnitude of meteorological variables. Temperature projections, for 2040-2065 period, show that there would be a rise in the catchment contributing area that would lead to an increase of the average liquid precipitation over the basin. Temperature projections would also affect the maximization factors in the calculation of the PMP, increasing it up to 126.6% and 62.5% in scenarios A2 and B1, respectively. These projections are important to be studied due to the implications of PMP in hydrologic design of great hydraulic works as Probable Maximum Flood (PMF). We propose that the methodology presented in this study could be also used in other basins of similar characteristics.
NASA Astrophysics Data System (ADS)
Revel, M.; Utsumi, N.; Yoshikawa, S.; Kanae, S.
2016-12-01
Summer Monsoon precipitation provide support for the livelihood of the people of Southeast Asia where the population density is very high. Monsoon precipitation shows high variation in seasonal and yearly time scales affecting daily life of the people in the regions such Indo-China peninsula where most of the countries depend on agricultural economy. Predictability of seasonal extreme events such as flooding and droughts by different climatic conditions will enhance the ability to mitigate the risk of natural disasters in Indo-China peninsula. In addition lower tropospheric (850hPa) wind flow pattern is very useful in understanding the seasonal variability of Southeastern Asian Summer Monsoon. Furthermore summer monsoon in the Indo-China peninsula is strongly influenced by the local wind-terrain-precipitation interaction. Recently a set of Monsoon Indices has been developed by several researches, Indo China Monsoon Indices (ICMIs) as a representation of lower tropospheric wind flow patterns around Southeast Asian. On the other hand different precipitation providing weather systems vary according to the global position and local weather system. Responses of ICMIs to different precipitation providing weather systems may vary in temporal and spatial scales. Hence the seasonal responses of differentiated precipitation with ICMIs in Indo-China peninsula are being investigated. Objective detection methods are been adopted in order to identify the locations of tropical cyclones (TCs), and westward propagating disturbances (WDs) using a Japanese 25-year ReAnalysis data and the Global Precipitation Climatology Project One-Degree Daily data is differentiated into TCs, and WDs related precipitation. TCs contribute highly over the east coast of Indo China peninsula where WDs contributed all over land area of Indo-China peninsula but more towards Bay of Bengal. Correlations and regressions suggest that the indices which is calculated using the wind patterns, situated west of Indo-China peninsula tend to increase the moisture production to precipitation which is produced by seasonal winds and local convections. The increment of indices in the east of the peninsula tends withdraw the moisture of TCs and WDs related precipitation in Indo-China peninsula, as those originate from east of the peninsula.
Mercurio, Meagan D; Dambergs, Robert G; Herderich, Markus J; Smith, Paul A
2007-06-13
The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.
Moore, R.L.
1958-07-15
An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.
Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh
2012-01-01
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073
NASA Astrophysics Data System (ADS)
Ramakrishna, K. S.; Srinivas, Ch.; Tirupanyam, B. V.; Ramesh, P. N.; Meena, S. S.; Potukuchi, D. M.; Sastry, D. L.
2017-05-01
Spinel ferrite nanoparticles with chemical equation NixCu0.1Zn0.9-xFe2O4 (x = 0.5, 0.6, 0.7) have been synthsized using co-precipitation method followed by heat treatment at a temperature of 200 °C for 2h. The results of XRD, FE-SEM and VSM studies are reported. XRD patterns confirm the formation of cubic spinel phase of ferrite samples along with small amount of a secondary phase of α-Fe2O3 whose concentration decreases as Ni2+ concentration increases. The crystallite sizes (in the range of 7.5-13.9 nm) increase and the lattice parameter decreases with increase in Ni2+ ion concentration. These values are comparable to those of NiZn ferrite without Cu substitution. It has been observed that there is a considerable reduction in saturation magnetisation (Ms). This and differences in other magnetic parameters are attributed to considerable changes in cation distribution or core shell interactions of NiZn ferrite with 10 mole% Cu substitution in the place of Zn.
Long Time Evolution of Sequestered CO2 in Porous Media
NASA Astrophysics Data System (ADS)
Cohen, Y.; Rothman, D.
2013-12-01
CO2 sequestration is important for mitigating climate change and reducing atmospheric CO2 concentration. However, a complete physical picture able to predict both the pattern formation and the structure developing within the porous medium is lacking. We propose a theoretical model that couples transport, reaction, and the intricate geometry of the rock, in order to study the long time evolution of carbon in the brine-rock environment. As CO2 is injected into a brine-rock environment, it becomes initially trapped, and isolated bubbles are formed. Within the high CO2 phase, minerals dissolve and migrate from high concentration to low concentration regions, along with other carbonate species. The change in the concentrations at the interface moves the system out of equilibrium, drives up the saturation level, and leads to mineral precipitation. We argue that mineral precipitation in a small boundary layer may lead to lower diffusivity, slower kinetics, and eventually to a mechanical trapping of the CO2 bubbles. We investigate the reactive transport model and study the conditions that cause the mechanical separation of these two reactive fluids in porous media.
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin
2017-09-01
This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2017-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
Hereford, Richard; Bennett, Glenn E.; Fairley, Helen C.
2014-01-01
A daily precipitation dataset covering a large part of the American Southwest was compiled for online electronic distribution (http://pubs.usgs.gov/of/2014/1006/). The dataset contains 10.8 million observations spanning January 1893 through January 2009 from 846 weather stations in six states and 13 climate divisions. In addition to processing the data for distribution, water-year totals and other statistical parameters were calculated for each station with more than 2 years of observations. Division-wide total precipitation, expressed as the average deviation from the individual station means of a climate division, shows that the region—including the Grand Canyon, Arizona, area—has been affected by alternating multidecadal episodes of drought and wet conditions. In addition to compiling and analyzing the long-term regional precipitation data, a second dataset consisting of high-temporal-resolution precipitation measurements collected between November 2003 and January 2009 from 10 localities along the Colorado River in Grand Canyon was compiled. An exploratory study of these high-temporal-resolution precipitation measurements suggests that on a daily basis precipitation patterns are generally similar to those at a long-term weather station in the canyon, which in turn resembles the patterns at other long-term stations on the canyon rims; however, precipitation amounts recorded by the individual inner canyon weather stations can vary substantially from station to station. Daily and seasonal rainfall patterns apparent in these data are not random. For example, the inner canyon record, although short and fragmented, reveals three episodes of widespread, heavy precipitation in late summer 2004, early winter 2005, and summer 2007. The 2004 event and several others had sufficient rainfall to initiate potentially pervasive erosion of the late Holocene terraces and related archeological features located along the Colorado River in Grand Canyon.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2016-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENS0 variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 deg. latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is discussed. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present). A real-time version of this merged product is being produced and is available at 0.25 deg. latitude-longitude resolution over the latitude range from 5O deg. N-50 deg. S. Examples are shown, including its use in monitoring flood conditions.
Understanding the Role of Reservoir Size on Probable Maximum Precipitation
NASA Astrophysics Data System (ADS)
Woldemichael, A. T.; Hossain, F.
2011-12-01
This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the formation of mesoscale convective systems (MCS) in the vicinity of dams/reservoirs that may have explicitly been triggered by their presence. The significance of this finding is that water resources managers need to consider the post-dam impact of water cycle and local climate due to the very reservoir and land use change triggered if efficient water resources management is desired. Future works of the study will include incorporation of the anthropogenic changes that occur as a result of the presence of dams/reservoirs in the forms of irrigation, urbanization and downstream wetland reduction. Similar hypothesis testing procedures will be applied to understand the combined effects of the reservoir size variation and anthropogenic changes in the extreme precipitation patterns.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
ERIC Educational Resources Information Center
Tykodi, R. J.
1990-01-01
The use of the thiosulfate ion in teaching the concepts of gas formation, precipitate formation, complex formation, acid-base interaction, redox interaction, time evolution of chemical processes, catalysis, and stoichiometry is discussed. Several demonstrations and activities are detailed. (CW)
NASA Astrophysics Data System (ADS)
Ragavan, Anpalaki J.; Adams, Dean V.
2009-06-01
Equilibrium constants for modeling surface precipitation of trivalent metal cations ( M) onto hydrous ferric oxide and calcite were estimated from linear correlations of standard state Gibbs free energies of formation, ( ΔGf,MvX(ss)0) of the surface precipitates. The surface precipitation reactions were derived from Farley et. al. [K.J. Farley, D.A. Dzombak, F.M.M. Morel, J. Colloid Interface Sci. 106 (1985) 226] surface precipitation model, which are based on surface complexation model coupled with solid solution representation for surface precipitation on the solid surface. The ΔGf,MvX(ss)0 values were correlated through the following linear free energy relations ΔGf,M(OH)3(ss)0-791.70r=0.1587ΔGn,M0-1273.07 and ΔGf,M2(CO3)3(ss)0-197.241r=0.278ΔGn,M0-1431.27 where 'ss' stands for the end-member solid component of surface precipitate, ΔGf,MvX(ss)0 is in kJ/mol, r is the Shannon-Prewitt radius of M in a given coordination state (nm), and ΔGn,M0 is the non-solvation contribution to the Gibbs free energy of formation of the aqueous M ion. Results indicate that the above surface precipitation correlations are useful tools where experimental data are not available.
Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation
NASA Astrophysics Data System (ADS)
Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang
2016-08-01
Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.
Effect of high-latitude ionospheric convection on Sun-aligned polar caps
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.
1994-01-01
A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore, above the threshold, the single current sheet pair splits into multiple current sheet pairs. For the fixed initial ionospheric and magnetospheric conditions used in this study, the separation distance between the current pairs was found to be almost independent of the background electric field strength. For either three-cell or distorted two-cell background convection patterns the arc formation favored the positive B(sub y) case in the northern hemisphere.
Increases in tropical rainfall driven by changes in frequency of organized deep convection.
Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George
2015-03-26
Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.
Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling
NASA Astrophysics Data System (ADS)
Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.
2009-04-01
With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of the surface waters can be deduced from the isotopic composition of the diols, we can calculate the degree of mixing between freshwater (isotopically light) and seawater (isotopically heavy) in the surface waters. This way we quantify Eocene Arctic surface water salinity, which in turn will shed light on the degree of (seasonal) mixing and stratification.
Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying
2015-11-01
Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.
2012-12-01
Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long-term average streamflow isotopic composition indicates a disproportionately large contribution of this trade-wind precipitation to streamflow, highlighting the importance of this climate pattern to the hydrology of the watersheds. Isotopic composition of groundwater suggests a slightly higher proportion of convective precipitation, but still smaller than in total rainfall. Hydrograph separation experiments yielded information on stormflow characteristics, with quantification of contributing sources determined from water isotopes and solute chemistry. The evidence that intense convective rain events run off and light trade-wind showers appear to contribute much of the baseflow indicates that the area may undergo a change in water supply if the trade-wind orographic precipitation dynamics in the Caribbean are affected by future climate change.
Verifying Diurnal Variations of Global Precipitation in Three New Global Reanalyses
NASA Astrophysics Data System (ADS)
Wu, S.; Xie, P.; Sun, F.; Joyce, R.
2013-12-01
Diurnal variations of global precipitation and their representation in three sets of new generation global reanalyses are examined using the reprocessed and bias corrected CMORPH satellite precipitation estimates. The CMORPH satellite precipitation estimates are produced on an 8km by 8km grid over the globe (60oS-60oN) and in a 30-min interval covering a 15-year period from 1998 to the present through combining information from IR and PMW observations from all available satellites. Bias correction is performed for the raw CMORPH precipitation estimates through calibration against an gauge-based analysis over land and against the pentad GPCP analysis over ocean. The reanalyses examined here include the NCEP CFS reanalysis (CFSR), NASA/GSFC MERRA, and ECMWF Interim. The bias-corrected CMORPH is integrated from its original resolution to the reanalyses grid systems to facilitate the verification. First, quantitative agreements between the reanalysis precipitation fields and the CMORPH satellite observation are examined over the global domain. Precipitation structures associated with the large-scale topography are well reproduced when compared against the observation. Evolution of precipitation patterns with the development of transient weather systems are captured by the CFSR and two other reanalyses. The reanalyses tend to generate precipitation fields with wider raining areas and reduced intensity for heavy rainfall cases compared the observations over both land and ocean. Seasonal migration of global precipitation depicted in the 15-year CMORPH satellite observations is very well captured by the three sets of new reanalyses, although magnitude of precipitation is larger, especially in the CFSR, compared to that in the observations. In general, the three sets of new reanalyses exhibit substantial improvements in their performance to represent global precipitation distributions and variations. In particular, the new reanalyses produced precipitation variations of fine time/space scales collated in the observations. The diurnal cycle of the precipitation is reasonably well reproduced by the reanalyses over many global oceanic and land areas. Diurnal amplitude of the reanalyses precipitation, defined as the standard deviation of the 24 hourly mean values, is smaller than that in the observations over most of the oceanic regions, attributable largely to the continuous weak precipitation throughout the diurnal cycle in all of the three reanalyses. Over ocean, the pattern of diurnal variations of precipitation in the reanalyses is quite similar to that in the observations, with the timing of maximum precipitation shifted by1-3 hours. Over land especially over Africa, the reanalyses tend to produce maximum precipitation around noon, much earlier than that in the observations. Particularly noticeable is the diurnal cycle of warm season precipitation over CONUS in association with the eastward propagation of meso-scale systems distinct in the observations. None of the three new reanalyses are capable of detecting this pattern of diurnal variations. A comprehensive description and diagnostic discussions will be given at the AGU meeting.
NASA Astrophysics Data System (ADS)
Lazzara, M. A.; Tsukernik, M.; Gorodetskaya, I.
2016-12-01
Recent studies confirmed that atmospheric rivers (ARs) reach the continent of Antarctica and thus influence the Antarctic accumulation patterns and the ice sheet mass balance (Gorodetskaya et al. 2014, GRL). Similar to mid-latitude ARs, Antarctic ARs are associated with a blocking pattern downstream of a cyclone, which allows channeling of moisture toward the continent. However, due to the extremely cold atmosphere, Antarctic ARs possess some unique features. First, the existence of an AR in high latitudes is always associated with warm advection. Second, in order for an AR to penetrate the continent, it needs to overcome strong low-level outflow winds - katabatic winds - coming from the interior of the continent. Thirdly, sea ice surrounding the Antarctic ice sheet introduces an additional "cold barrier" decreasing the tropospheric moisture holding capacity and promoting precipitation before reaching the ice sheet. We believe these factors contribute to the scarcity of AR events influencing the ice sheet surface mass balance. Nevertheless, their presence is clearly seen in the long-term record. In particular, anomalous accumulation in 2009 and 2011 in Dronning Maud Land in East Antarctica has been linked to atmospheric rivers. We performed a detailed investigation of several AR storm events from 2009 and 2011 using the Weather Research and Forecasting (WRF) model simulations. These simulations depicted the synoptic scale development of storms that led to an anomalous precipitation pattern in the East Antarctic. We investigated the role of the upper level vs. lower level forcing in the formation of the contributing storms. The moisture and temperature anomalies of each case are evaluated in the context of synoptic and large-scale atmospheric forcing. We also performed sensitivity studies to determine the role of sea ice in the development of these systems.
Large‐scale heavy precipitation over central Europe and the role of atmospheric cyclone track types
Lexer, Annemarie; Homann, Markus; Blöschl, Günter
2017-01-01
ABSTRACT Precipitation patterns over Europe are largely controlled by atmospheric cyclones embedded in the general circulation of the mid‐latitudes. This study evaluates the climatologic features of precipitation for selected regions in central Europe with respect to cyclone track types for 1959–2015, focusing on large‐scale heavy precipitation. The analysis suggests that each of the cyclone track types is connected to a specific pattern of the upper level atmospheric flow, usually characterized by a major trough located over Europe. A dominant upper level cut‐off low (COL) is found over Europe for strong continental (CON) and van Bebber's type (Vb) cyclones which move from the east and southeast into central Europe. Strong Vb cyclones revealed the longest residence times, mainly due to circular propagation paths. The central European cyclone precipitation climate can largely be explained by seasonal track‐type frequency and cyclone intensity; however, additional factors are needed to explain a secondary precipitation maximum in early autumn. The occurrence of large precipitation totals for track events is strongly related to the track type and the region, with the highest value of 45% of all Vb cyclones connected to heavy precipitation in summer over the Czech Republic and eastern Austria. In western Germany, Atlantic winter cyclones are most relevant for heavy precipitation. The analysis of the top 50 precipitation events revealed an outstanding heavy precipitation period from 2006 to 2011 in the Czech Republic, but no gradual long‐term change. The findings help better understand spatio‐temporal variability of heavy precipitation in the context of floods and may be used for evaluating climate models.
Processes and mechanisms of persistent extreme precipitation events in East China
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Chen, Yang
2014-11-01
This study mainly presents recent progresses on persistent extreme precipitation events (PEPEs) in East China. A definition focusing both persistence and extremity of daily precipitation is firstly proposed. An identification method for quasi-stationary regional PEPEs is then designed. By utilizing the identified PEPEs in East China, typical circulation configurations from the lower to the upper troposphere are confirmed, followed by investigations of synoptic precursors for key components with lead time of 1-2 weeks. Two characteristic circulation patterns responsible for PEPEs in East China are identified: a double blocking high type and a single blocking high type. They may account for occurrence of nearly 80% PEPEs during last 60 years. For double blocking high type, about two weeks prior to PEPEs, two blockings developed and progressed towards the Ural Mountains and the Sea of Okhotsk, respectively. A northwestward progressive anomalous anticyclone conveying abundant moisture and eastward-extended South Asia High favoring divergence can be detected about one week in advance. A dominant summertime teleconnection over East Asia, East Asia/ Pacific (EAP) pattern, is deemed as another typical regime inducing PEPEs in the East China. Key elements of the EAP pattern initiated westward movement since one week prior to PEPEs. Eastward energy dispersion and poleward energy dispersion contributed to early development and subsequent maintenance of this teleconnection pattern, respectively. These typical circulation patterns and significant precursors may offer local forecasters some useful clues in identifying and predicting such high-impact precipitation events about 1-2 weeks in advance.
PRECIPITATION OF ZIRCONIUM, NIOBIUM, AND RUTHENIUM FROM AQUEOUS SOLUTIONS
Wilson, A.S.
1958-08-12
An improvement on the"head end process" for decontaminating dissolver solutions of their Zr, Ni. and Ru values. The process consists in adding a water soluble symmetrical dialkyl ketone. e.g. acetone, before the formation of the manganese dioxide precipitate. The effect is that upon digestion, the ruthenium oxide does not volatilize, but is carried on the manganese dioxide precipitate.
Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic
NASA Astrophysics Data System (ADS)
Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.
2017-12-01
Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.
Sopori, Bhushan
2014-05-27
Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.
MJO influence on ENSO effects in precipitation and temperature over South America
NASA Astrophysics Data System (ADS)
Shimizu, M. H.; Bombardi, R. J.; Ambrizzi, T.
2013-12-01
Researches on the effects of the El Niño Southern Oscillation (ENSO) over precipitation and temperature, such as drought, flood, and anomalous high or cold temperatures, have great importance because of the impact of ENSO on the environment, society, and economy. Several studies have reported the influences of ENSO over South American precipitation and temperature climatological patterns, such as drier than normal conditions over northeast Brazil during the warm phase (El Niño) and wetter than normal conditions over northeast Brazil in the cold phase (La Niña). However, some recent studies focusing on the Northern Hemisphere have indicated that the basic response of ENSO is dependent on the phase of the Madden-Julian Oscillation (MJO). The MJO is characterized by the eastward propagation of the convection from Indian to Central Pacific Ocean and is related to variations in the position and intensity of the South Atlantic Convergence Zone (SACZ). The present work investigates the combined response of the phases of these two distinct phenomena, ENSO and MJO, over South America. Our goal is to explore the relative importance of the MJO to precipitation and temperature anomalies during ENSO events. MJO events were defined using the MJO index created by Jones and Carvalho (2012) based on empirical orthogonal functions analysis. ENSO phases were defined according to the Oceanic Niño Index provided by the National Oceanic and Atmospheric Administration (NOAA). A composite analysis with each combination of the phases of ENSO and MJO was performed to obtain the mean patterns of temperature and precipitation over South America for the months of November to March (austral summer). The results showed that the precipitation and temperature anomalies patterns observed during ENSO events, without the concurrent occurrence of the MJO, can be strengthened or weakened during events where ENSO and MJO occur simultaneously. Moreover, the effect on the anomalies patterns in these events depends on the MJO phase. During El Niño events, MJO phases 1 and 5 seem to intensify the anomaly patterns over northwest and northeast of South America, respectively. In addition, during the MJO phase 3, these patterns are weaker over northern and stronger over southern South America. During Niña events, MJO phases 3 and 5 presented more precipitation in the region of the SACZ. These results suggest that the influence of ENSO over South America depends on the MJO phase and on the position of convection over the Tropical Indian/Pacific Oceans associated with this phase, which triggers eastward propagating wave trains.
Geometrical constraint on the localization of deep water formation
NASA Astrophysics Data System (ADS)
Ferreira, D.; Marshall, J.
2008-12-01
That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).
NASA Astrophysics Data System (ADS)
Blázquez, Josefina; Solman, Silvina A.
2017-04-01
The interannual variability of the frontal activity over the western Southern Hemisphere and its linkage with the variability of the atmospheric circulation and precipitation over southern South America is studied. The analysis is focused on the austral winter and spring seasons. The frontal activity is represented by an index defined as the product between the horizontal gradient of temperature and the relative vorticity at 850 hPa (FI) and is computed from the ERA Interim and NCEP2 reanalysis. For the two seasons the main mode of variability of FI, as depicted by the first Empirical Orthogonal Function, presents centres of action located in the southern part of the western Southern Hemisphere. This pattern is present in the two reanalysis datasets. The correlation coefficients between the principal component of the leading mode of FI and the two main modes of the 500 hPa geopotential height indicate that both the ENSO-mode and the SAM modulate the leading pattern of FI in winter while during the spring season the ENSO-mode controls the FI variability. The variability of the FI has a robust influence on the interannual variability of precipitation over southern South America and adjacent oceans. Over the continent, it was found that the pattern of precipitation anomalies associated with the variability of the FI depicts significant signals over southeastern South America (SESA), centre and south of Chile for winter and over SESA and southeastern Brazil for spring and agrees with the pattern of the leading mode of precipitation variability over southern South America.
Climate change and water availability for vulnerable agriculture
NASA Astrophysics Data System (ADS)
Dalezios, Nicolas; Tarquis, Ana Maria
2017-04-01
Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of an integrated climate adaptation strategy.
NASA Astrophysics Data System (ADS)
Kalimeris, Anastasios; Ranieri, Ezio; Founda, Dimitra; Norrant, Caroline
2017-12-01
This study analyses a century-long set of precipitation time series in the Central Mediterranean (encompassing the Greek Ionian and the Italian Puglia regions) and investigates the statistically significant modes of the interannual precipitation variability using efficient methods of spectral decomposition. The statistical relations and the possible physical couplings between the detected modes and the global or hemispheric patterns of climatic variability (the El Niño Southern Oscillation or ENSO, the North Atlantic Oscillation or NAO, the East Atlantic or EA, the Scandinavian or SCAND, and others) were examined in the time-frequency domain and low-order synchronization events were sought. Significant modes of precipitation variability were detected in the Taranto Gulf and the southern part of the Greek Ionian region at the sub-decadal scales (mostly driven by the SCAND pattern) and particularly at the decadal and quasi-decadal scales, where strong relations found with the ENSO activity (under complex implications of EA and NAO) prior to the 1930s or after the early-1970s. The precipitation variations in the Adriatic stations of Puglia are dominated by significant bi-decadal modes which found to be coherent with the ENSO activity and also weakly related with the Atlantic Ocean sea surface temperature intrinsic variability. Additionally, important discontinuities characterize the evolution of precipitation in certain stations of the Taranto Gulf and the Greek Ionian region during the early-1960s and particularly during the early-1970s, followed by significant reductions in the mean annual precipitation. These discontinuities seem to be associated with regional effects of NAO and SCAND, probably combined with the impact of the 1970s climatic shift in the Pacific and the ENSO variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Riley, W.J.
2009-11-01
Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Kug, Jong-Seong
2016-11-01
The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model's precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.
Intraseasonal variability in subtropical South America as depicted by precipitation data
NASA Astrophysics Data System (ADS)
González, P. L. M.; Vera, C. S.; Liebmann, B.; Kiladis, G.
2008-06-01
Daily precipitation data from three stations in subtropical Argentina are used to describe intraseasonal variability (20 90 days) during the austral summer. This variability is compared locally and regionally with that present in outgoing longwave radiation (OLR) data, in order to evaluate the performance of this variable as a proxy for convection in the region. The influence of the intraseasonal activity of the South American Seesaw (SASS) leading convection pattern on precipitation is also explored. Results show that intraseasonal variability explains a significant portion of summer precipitation variance, with a clear maximum in the vicinity of the SASS subtropical center. Correlation analysis reveals that OLR can explain only a small portion of daily precipitation variability, implying that it does not constitute a proper proxy for precipitation on daily timescales. On intraseasonal timescales, though, OLR is able to reproduce the main features of precipitation variability. The dynamical conditions that promote the development of intraseasonal variability in the region are further analyzed for selected summers. Seasons associated with a strong intraseasonal signal in precipitation variability show distinctive wet/dry intraseasonal periods in daily raw data, and are associated with a well defined SASS-like spatial pattern of convection. During these summers, strong large-scale forcing (such as warm El Niño/Southern Oscillation (ENSO) events and/or tropical intraseasonal convective activity), and Rossby-wave-like circulation anomalies extending across the Pacific Ocean, are also observed.
NASA Astrophysics Data System (ADS)
Comas-Bru, Laia; McDermott, Frank
2013-04-01
Much of the 20th century multi-decadal variability in the NAO-winter precipitation relationship over the N. Atlantic / European sector can be ascribed to the combined effects of the North Atlantic Oscillation (NAO) and either the East Atlantic pattern (EA) or the Scandinavian pattern (SCA). The NAO, EA and SCA indices employed here are defined as the three leading vectors of the cross-correlation matrix calculated from monthly sea-level pressure anomalies for 138 complete winters from the 20CRv2 dataset (Compo et al., 2011). Winter precipitation data over Europe for the entire 20th century is derived from the high resolution CRU-TS3.1 climate dataset (Mitchell and Jones, 2005). Here we document for the first time, that different NAO/EA and NAO/SCA combinations systematically influence winter precipitation conditions in Europe as a consequence of NAO dipole migrations. We find that the zero-correlated line of the NAO-winter precipitation relationship migrates southwards when the EA is in the opposite phase to the NAO. This can be related to a south-westwards migration of the NAO dipole under these conditions, as shown by teleconnectivity maps. Similarly, a clockwise movement of the NAO-winter climate correlated areas occurs when the phase of the SCA is opposite to that of the NAO, reflecting a clockwise movement of the NAO dipole under these conditions. An important implication of these migrations is that they influence the spatial and temporal stationarity of climate-NAO relationships. As a result, the link between winter precipitation patterns and the NAO is not straightforward in some regions such as the southern UK, Ireland and France. For instance, much of the inter-annual variability in the N-S winter precipitation gradient in the UK, originally attributed to inter-annual and inter-decadal variability of the NAO, reflects the migration of the NAO dipole, linked to linear combinations of the NAO and the EA. Our results indicate that when the N-S winter precipitation gradient is accentuated by the occurrence of a positive EA during positive NAO winters, drier conditions than normal are found in the southern UK. This is consistent, for example, with the severe winter drought of 1976, when computed NAO and EA indices were both positive (0.97 and 1.87, respectively), illustrating the modulating effect of NAO/EA combinations on winter precipitation patterns in the southern UK. References: Compo GP et al. 2011. The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137 (654), 1-28. Mitchell TD, Jones PD. 2005. An improved method for constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.
A General Precipitation-limited L X–T–R Relation among Early-type Galaxies
NASA Astrophysics Data System (ADS)
Voit, G. Mark; Ma, C. P.; Greene, J.; Goulding, A.; Pandya, V.; Donahue, M.; Sun, M.
2018-01-01
The relation between X-ray luminosity (L X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is determined primarily by cosmological structure formation. In less massive systems, it primarily reflects the feedback response to radiative cooling of circumgalactic gas. Here we present a simple but powerful model for the L X–T relation as a function of physical aperture R within which those measurements are made. The model is based on the precipitation framework for AGN feedback and assumes that the circumgalactic medium is precipitation-regulated at small radii and limited by cosmological structure formation at large radii. We compare this model with many different data sets and show that it successfully reproduces the slope and upper envelope of the L X–T–R relation over the temperature range from ∼0.2 keV through ≳ 10 {keV}. Our findings strongly suggest that the feedback mechanisms responsible for regulating star formation in individual massive galaxies have much in common with the precipitation-triggered feedback that appears to regulate galaxy-cluster cores.
Uysal, Ayla; Yilmazel, Y Dilsad; Demirer, Goksel N
2010-09-15
The formation of struvite (MgNH(4)PO(4).6H(2)O) in wastewater treatment plants can lead to scaling and thus operational problems reducing the treatment efficiency. However, struvite has significant commercial value as an agricultural fertilizer. Therefore, controlled struvite formation in wastewater treatment plants not only presents an opportunity to recover nutrients but also corresponds to the valorization of wastes. NH(4)-N and PO(4)-P removal and recovery from the effluent of a full-scale sewage sludge anaerobic digester via controlled struvite precipitation were investigated in this study. The effect of the residual heavy metal and micropollutant content of the formed struvite on fertilizer quality was also evaluated. Removal efficiencies of NH(4)-N, PO(4)-P and COD were 89.35%, 95% and 39.78% when Mg:N:P molar ratio was 1.5:1:1 and pH was 9.0. Mercury, nickel, zinc and chrome concentrations derived from struvite precipitation were below the regulatory limit for fertilizer usage in Turkey. The precipitate did not contain polychlorinated biphenyls (PCB). X-ray diffraction (XRD) analysis conducted on the precipitate indicated a struvite formation. Copyright 2010 Elsevier B.V. All rights reserved.
Non-pulsed electrochemical impregnation of flexible metallic battery plaques
Maskalick, Nicholas J.
1982-01-01
A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.
The Effect of Spatial Aggregation on the Skill of Seasonal Precipitation Forecasts.
NASA Astrophysics Data System (ADS)
Gong, Xiaofeng; Barnston, Anthony G.; Ward, M. Neil
2003-09-01
Skillful forecasts of 3-month total precipitation would be useful for decision making in hydrology, agriculture, public health, and other sectors of society. However, with some exceptions, the skill of seasonal precipitation outlooks is modest, leaving uncertainty in how to best make use of them. Seasonal precipitation forecast skill is generally lower than the skill of forecasts for temperature or atmospheric circulation patterns for the same location and time. This is attributable to the smaller-scale, more complex physics of precipitation, resulting in its `noisier' and hence less predictable character. By contrast, associated temperature and circulation patterns are larger scale, in keeping with the anomalous boundary conditions (e.g., sea surface temperature) that often give rise to them.Using two atmospheric general circulation models forced by observed sea surface temperature anomalies, the skill of simulations of total seasonal precipitation is examined as a function of the size of the spatial domain over which the precipitation total is averaged. Results show that spatial aggregation increases skill and, by the skill measures used here, does so to a greater extent for precipitation than for temperature. Corroborative results are presented in an observational framework at smaller spatial scales for gauge rainfalls in northeast Brazil.The findings imply that when seasonal forecasts for precipitation are issued, the accompanying guidance on their expected skills should explicitly specify to which spatial aggregation level the skills apply. Information about skills expected at other levels of aggregation should be supplied for users who may work at such levels.
Precipitate resolution in an electron irradiated ni-si alloy
NASA Astrophysics Data System (ADS)
Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.
1988-09-01
Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.
NASA Astrophysics Data System (ADS)
De Graaff, M.; vanderVeen, J.; Germino, M. J.
2011-12-01
Climate change is expected to alter the amount and timing of precipitation in semiarid ecosystems of the intermountain west, which can alter soil carbon dynamics. Specifically, an increase in precipitation in arid ecosystems promotes microbial activity, which can increase soil aggregate formation and enhance sequestration of soil organic carbon within stable aggregates. This study was conducted to assess: (1) how precipitation shifts affect soil aggregate formation and associated soil organic carbon contents in semi arid ecosystems, and (2) how plants mediate precipitation impacts on soil aggregate dynamics. Soil samples were collected from a long-term ecohydrology study located in the cold desert of the Idaho National Lab, USA. Precipitation treatments delivered during the previous 18 years consist of three regimes: (1) a control (ambient precipitation), (2) 200 mm irrigation added during the growing season, and (3) 200 mm irrigation added during the cold dormant season. Experimental plots were planted with a diverse native mix of big sagebrush (Artemisia tridentate) and associated shrubs, grasses, and forbs, but had also become invaded by crested wheatgrass (Agropyron cristatum). Soils were collected in February (2011) with a 4.8 cm diameter soil corer to a depth of 15 cm. Across all precipitation treatments we sampled both directly beneath sagebrush and crested wheatgrass and from relatively bare plant-interspaces. Subsamples (100 g) were sieved (4.75 mm) and air dried. Then, the soils were fractionated into (1) macro aggregates (> 250 μm), (2) free micro aggregates (53-250 μm) and (3) free silt and clay fractions (<53 μm), using a wet sieving protocol. Further, macro aggregates were separated into particulate organic matter (POM), micro aggregates and silt and clay fractions using a micro aggregate isolator. Soil fractions were analyzed for soil organic carbon contents after removal of soil carbonates using sulfurous acid. Our preliminary results indicate that supplemental precipitation enhanced macro aggregate formation by 20% under plants and by 70% in plant interspaces. In contrast, free silt and clay fractions decreased in response to supplemental precipitation. These preliminary findings suggest that increased precipitation in a cold desert ecosystem may significantly enhance soil structure, particularly in the interspaces separating plants where surface crusting, poor infiltration and reduced fertility otherwise prevail.
Simulation of South-Asian Summer Monsoon in a GCM
NASA Astrophysics Data System (ADS)
Ajayamohan, R. S.
2007-10-01
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagestad, Jerry; Brooks, Matthew; Cullinan, Valerie
Mojave Desert ecosystem processes are dependent upon the amount and seasonality of precipitation. Multi-decadal periods of drought or above-average rainfall affect landscape vegetation condition, biomass and susceptibility to fire. The seasonality of precipitation events can also affect the likelihood of lightning, a key ignition source for fires. To develop an understanding of precipitation regimes and fire patterns we used monthly average precipitation data and GIS data representing burned areas from 1971-2010. We applied a K-means cluster analysis to the monthly precipitation data identifying three distinct precipitation seasons; winter (October – March), spring (April-June) and summer (July-September) and four discrete precipitationmore » regimes within the Mojave ecoregion.« less
Moro, Marcelo Freire; Silva, Igor Aurélio; de Araújo, Francisca Soares; Nic Lughadha, Eimear; Meagher, Thomas R.; Martins, Fernando Roberto
2015-01-01
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity. PMID:25798584
NASA Astrophysics Data System (ADS)
Németh, A. A. N.; Crudden, D. J.; Collins, D. M.; Kuksenko, V.; Liebscher, C. H.; Armstrong, D. E. J.; Wilkinson, A. J.; Reed, R. C.
2018-05-01
The effect of Nb/Ti ratio on environmentally-assisted crack growth of three prototype Ni-based superalloys is studied. For these alloys, the yield strength is unaltered with increasing Nb/Ti ratio due to an increase in grain size. This situation has allowed the rationalization of the factors influencing damage tolerance at 700 °C. Primary intergranular cracks have been investigated using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope and the analysis of electron back-scatter diffraction patterns. Any possible detrimental effect of Nb on the observed crack tip damage due to Nb-rich oxide formation is not observed. Instead, evidence is presented to indicate that the tertiary γ'-precipitates are dissolving ahead of the crack consistent with the formation of oxides such as alumina and rutile. Our results have implications for alloy design efforts; at any given strength level, both more and less damage-tolerant variants of these alloys can be designed.
The response of a simulated Mesoscale Convective System to increased aerosol pollution
NASA Astrophysics Data System (ADS)
Clavner, Michal
This work focuses on the impacts of aerosols on the total precipitation amount, rates and spatial distribution of precipitation produced by a Mesoscale Convective System (MCS), as well as the characteristics of a derecho event. Past studies have shown that the impacts on MCS-produced precipitation to changes in aerosol concentration are strongly dependent on environmental conditions, primarily humidity and environmental wind shear. Changes in aerosol concentrations were found to alter MCS-precipitation production directly by modifying precipitation processes and indirectly by affecting the efficiency of the storm's self-propagation. Observational and numerical studies have been conducted that have examined the dynamics responsible for the generation of widespread convectively-induced windstorms, primarily focusing on environmental conditions and the MCS features that generate a derecho event. While the sensitivity of the formation of bow-echoes, the radar signature associated with derecho events, to changes in microphysics has been examined, a study on a derecho-producing MCS characteristics to aerosol concentrations has not. In this study different aerosol concentrations and their effects on precipitation and a derecho produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS. The MCS was simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that varied in their initial aerosol concentration, distribution and hygroscopicity as determined by their emission sources. The first simulation contained aerosols from only natural sources and the second with aerosols sourced from both natural and anthropogenic emissions The third simulation contained the same aerosol distribution as in the second simulation, however multiplied by a factor of 5 in order to represent a highly polluted scenario. In all three of the simulations aerosol concentrations were derived from the output of GEOS-Chem, a 3D chemical transport model. In the simulated MCS, the formation and propagation of the storm was not fundamentally modified by changes in the aerosol concentration, and the total MCS-produced precipitation was not significantly affected. However, the precipitation distribution (convective vs stratiform) and derecho-strength surface wind characteristics did vary among the simulations. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier convective precipitation and a smaller area with lighter stratiform precipitation. These differences arose because aerosol pollution enhanced precipitation in the convective region while suppressing precipitation from the stratiform-anvil. Higher aerosol concentrations led to the invigoration of convective updrafts which supported the formation of larger rain drops, and lofted more liquid cloud mass to higher levels, thereby increasing both collision-coalescence and riming processes. The presence of greater aerosol concentrations in the free troposphere, as well as in the boundary layer, reduced both collision-coalescence and riming within the stratiform-anvil region. As a consequence, the more polluted simulations produced the smallest precipitation from the MCS stratiform-anvil region. In order to understand the impact of changes in aerosol concentrations on the derecho characteristics, the dynamical processes which produced the strong surface wind were determined by performing back-trajectory analysis during different periods of the simulated storm. The analysis showed that two main air flows contributed to the formation of the derecho winds at the surface; a rear-inflow jet and an up-down downdraft associated with a mesovortex at the gust font. The changes in aerosol concentrations impacted the simulated derecho event by altering the main flow contributing to the formation of the derecho winds though the amount of melting and evaporation of hydrometeors. Earlier in the storm, changes in melting and evaporation altered the intensity of the storm-produced cold pool. This, in turn, modified the balance between the horizontal relative vertical vorticity generated by the cold pool and that of the low-level environmental shear. The smaller hail and rain hydrometeors in the cleaner simulation exhibited higher melting and evaporation rates due to the larger surface area, which contributed to the formation of a stronger cold pool and led to the tilting of the convective updraft upshear. This, in turn, shifted the flow associated with the derecho event to be predominantly from a Rear-Inflow Jet (RIJ). An increase in aerosol concentration led to a weaker cold pool and therefore an upright convective updraft which promoted the formation of a stronger mesovortex, and subsequently shifting the flow to be predominantly from strong downdrafts following an up-down downdraft (UDD) trajectory. The shift from a RIJ flow to a UDD led to stronger surface winds over a smaller area. As the storm matured, the derecho winds were found to be associated with the formation of a mesovortex at the gust front. At this time, a non-linear trend between aerosol concentrations to derecho intensity was apparent and was attributed to the non-linear trend in mesovortex strength. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Guan, H.; Feng, D.
2015-12-01
Authigenic carbonate rocks from an active seep (Site F) at 1120 m water depth of the South China Sea (SCS) were studied using mineralogical and lipid biomarker analyses. Carbonate mineral compositions, in specific samples, were predominantly aragonite, high-Mg calcite (HMC), or a mixture of both. Abundant 13C-depleted lipid biomarkers (various isoprenoids) diagnostic for archaea provide evidence that anaerobic oxidation of methane (AOM) mediated by anaerobic methane oxidizing archaea (ANME) and their bacterial partners is the major process leading to formation of the carbonates. Nearly a pure suite of AOM biomarkers was preserved in aragonitic carbonate in which predominant consortia were most likely ANME-2/Desulfosarcina & Desulfococcus (DSS) assemblages and a mixture of ANME-2/DSS and ANME-1/DSS consortia in the mixed mineral sample, the predominant consortia are in good accordance with the point that the relative higher methane seepage intensity favors the precipitation of aragonite over HMC. In contrast, the completely different biomarker patterns in HMC sample were mainly composed terrestrial organic matter and marine Thaumarchaea, which most likely originally within sediments accompanied with high organic matter input and low methane supply. This environment is known to be favored for archaea of ANME-1 and precipitation of HMC. High concentrations of 13C-depleted hopanoids, including diplopterol, hopanoic acids and hopanols were observed in the aragonite sample that may be sourced by the intermittent presence of oxic conditions in an overall anoxic condition, which was possibly induced by changing seepage intensities.
Analysis of Changes in the Lorenz Energy Budget of the Atmosphere
NASA Astrophysics Data System (ADS)
Ellis, T. D.
2009-12-01
Several recent papers have addressed the topic of changes in global precipitation rates related to changes in Earth's global energy balance. Less studied are the processes that may be governing the large-scale regional distribution of precipitation around the globe. This study uses the energy budget partition paradigm first put forth by Lorenz (1955) and follows the methodology of Arpé et al. (1986) and Oriol (1982) to identify latitude bands where the partition of energy amongst zonal and eddy kinetic and potential energy bins may account for the spatial patterns of precipitation change predicted by many IPCC AR4 models. In doing so, this study may help to identify whether or not the climate change predicted by these models is indeed creating enhanced baroclinic storms in the mid-latitudes or if there are other mechanisms at work producing the patterns of precipitation change.
NASA Astrophysics Data System (ADS)
Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.
2017-12-01
Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.
The effect of acid precipitation on tree growth in eastern North America
Charles V. Cogbill
1976-01-01
Detailed study of the history of forest tree growth by tree-ring analysis is used to assess the effect of acid precipitation. The pattern and historical trends of acid precipitation deposition are compared with growth trends from mature forest stands in New Hampshire and Tennessee. No clear indication of a regional, synchronized decrease in tree growth was found. The...
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
A Detailed Examination of the GPM Core Satellite Gridded Text Product
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz; Kelley, Owen A.; Kummerow, C.; Huffman, George; Olson, William S.; Kwiatowski, John M.
2015-01-01
The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid.
NASA Astrophysics Data System (ADS)
Jafar Nazemosadat, M.; Shahgholian, K.
2017-11-01
Some important characteristics of the November-April heavy precipitation in southwestern parts of Iran and their linkages to the Madden-Julian Oscillation (MJO) were assessed for the period of 1975-2011. Daily precipitation data in nine meteorological stations spread in various parts of the study area and the corresponding MJO indices were analyzed. For each station, precipitation data were sorted in descending order and those values that fell within 5% of the highest records were categorized as the heavy precipitation. Besides this, the 10% threshold was also analyzed as an axillary assessment. The considered heavy precipitation data (5% threshold) accounted from about 26-35% of total annual precipitation. About half of the heavy precipitation occurred during December-January period and the other half distributed within the months of March, February, November and April by about 17, 14, 13and 6%, respectively. The highest frequency of heavy precipitation was related to the MJO phase 8. After this, the more frequent precipitation events were respectively associated to the phases 2, 7, 1, 6, 5 and 4 of the MJO. For the phases 1, 2, 7 and 8 frequency of the heavy precipitation statistically increased when the MJO amplitude was greater than unity. In contrast, for phases 4 and 5, heavy precipitation was generally linked to the spells that the amplitude size was lower than unity. Formation of a strong north-south oriented cold front mainly in Saudi Arabia and west-east oriented warm fronts in the southwest of Iran were realized as the key elements for initiating heavy precipitation over the study area. Although development of the Mediterranean-based cyclonic circulation is essential for the formation of these fronts, moisture transport mostly originates from northern parts of the Arabian Sea, southern parts of the Red Sea and the Persian Gulf.
Controls of precipitation δ18O on the northwestern Tibetan Plateau: A case study at Ngari station
NASA Astrophysics Data System (ADS)
Guo, Xiaoyu; Tian, Lide; Wen, Rong; Yu, Wusheng; Qu, Dongmei
2017-06-01
The shifting atmospheric circulation between the Indian monsoon and the westerlies on the northwestern Tibetan Plateau (TP) influences precipitation as well as precipitation isotopes. Isotopic records will therefore show historical fluctuations. To understand better the factors controlling present day precipitation δ18O values on the northwestern TP, we made continuous observations of precipitation isotopes at Ngari station from 2010 to 2013. The drivers of precipitation δ18O were investigated using analyses of their statistical relations with temperature, precipitation amount, relative humidity, and convective activities based on outgoing longwave radiation (OLR) data from NOAA satellites, and downward shortwave radiation (DSR) data collected at the Ngari automatic weather station. Atmospheric circulation patterns from NCAR reanalysis, and moisture transport paths of individual events derived from the HYSPLIT model using NCEP data, were also used to trace moisture sources. The results of our study include: (1) The slope and intercept of the Local Meteoric Water Line (LMWL) at Ngari (δD = 8.51 δ18O + 11.57 (R2 = 0.97, p < 0.01)) were higher than for the Global Meteoric Water Line (GMWL), indicating drier local climatic conditions; (2) Precipitation δ18O values showed a weak ;temperature effect; and a weak ;precipitation amount effect; at Ngari; and (3) Convection (or temperature patterns) integrated over several days (0-20) preceding each event were determined to be the main driver of precipitation isotopic values in monsoon (or non-monsoon) season. The longer (shorter) periods of τm days when correlation coefficients between precipitation δ18O and OLR were at their maxima (minima) indicate deep convective activities (shorter moisture transportation pathways) in August (June, July, and September).
NASA Astrophysics Data System (ADS)
McCabe-Glynn, Staryl
Precipitation in southwestern North America has exhibited significant natural variability over the past few thousand years. This variability has been attributed to sea surface temperature regimes in the Pacific and Atlantic oceans, and to the attendant shifts in atmospheric circulation patterns. In particular, decadal variability in the North Pacific has influenced precipitation in this region during the twentieth century, but links to earlier droughts and pluvials are unclear. Here I assess these links using delta18 O measurements from a speleothem from southern California that spans AD 854-- 2007. I show that variations in the oxygen isotopes of the speleothem correlate to sea surface temperatures in the Kuroshio Extension region of the North Pacific, which affect the atmospheric trajectory and isotopic composition of moisture reaching the study site. Interpreting our speleothem data as a record of sea surface temperatures in the Kuroshio Extension, I find a strong 22-year periodicity, suggesting a persistent solar influence on North Pacific decadal variability. A comparison with tree-ring records of precipitation during the past millennium shows that some droughts occurred during periods of warmth in the Kuroshio Extension, similar to the instrumental record. However, other droughts did not and instead were likely influenced by other factors. The carbon isotope record indicates drier conditions are associated with higher delta13C values and may be a suitable proxy for reconstructing past drought variability. More research is needed to determine the controls on trace element concentrations. Finally, I find a significant increase in sea surface temperature variability over the past 150 years, which may reflect an influence of greenhouse gas concentrations on variability in the North Pacific. While drought is a common feature of climate in this region, most climate models also project extreme precipitation events to increase in frequency and severity because the climate changes largely due to increased water vapor content in a warmer atmosphere. I also utilize precipitation data and isotopic analysis from precipitation samples collected weekly from near the cave site at Giant Forest, Sequoia National Park, California, from 2001 to 2011, to analyze climate mode patterns during extreme precipitation events and to construct an isotopic data base of precipitation samples. Composite maps indicate extreme precipitation weeks consist of a weaker Aleutian Low, coupled with a deep low pressure cell located northwest of California and enhanced subtropical moisture. I find extreme precipitation weeks occur more often during the La Nina phase and less during the positive Eastern Pacific (EP) phase or during the Central Pacific (CP) neutral phase at our site. Analyses of climate mode patterns and precipitation amounts indicate that when the negative Arctic Oscillation (AO), negative and neutral Pacific North American pattern (PNA), and positive Southern Oscillation Index (SOI) (La Nina) are in sync, the maximum amount of precipitation anomalies are distributed along the Western US. Additionally, the central or eastern Pacific location of El Nino Southern Oscillation sea surface temperature anomalies can further enhance predictive capabilities of the landfall location of extreme precipitation.
Role of moisture transport for Central American precipitation
NASA Astrophysics Data System (ADS)
María Durán-Quesada, Ana; Gimeno, Luis; Amador, Jorge
2017-02-01
A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980-2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.
Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system
NASA Astrophysics Data System (ADS)
Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.
2016-02-01
This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.
NASA Astrophysics Data System (ADS)
Chang, W.; Stein, M.; Wang, J.; Kotamarthi, V. R.; Moyer, E. J.
2015-12-01
A growing body of literature suggests that human-induced climate change may cause significant changes in precipitation patterns, which could in turn influence future flood levels and frequencies and water supply and management practices. Although climate models produce full three-dimensional simulations of precipitation, analyses of model precipitation have focused either on time-averaged distributions or on individual timeseries with no spatial information. We describe here a new approach based on identifying and characterizing individual rainstorms in either data or model output. Our approach enables us to readily characterize important spatio-temporal aspects of rainstorms including initiation location, intensity (mean and patterns), spatial extent, duration, and trajectory. We apply this technique to high-resolution precipitation over the continental U.S. both from radar-based observations (NCEP Stage IV QPE product, 1-hourly, 4 km spatial resolution) and from model runs with dynamical downscaling (WRF regional climate model, 3-hourly, 12 km spatial resolution). In the model studies we investigate the changes in storm characteristics under a business-as-usual warming scenario to 2100 (RCP 8.5). We find that in these model runs, rainstorm intensity increases as expected with rising temperatures (approximately 7%/K, following increased atmospheric moisture content), while total precipitation increases by a lesser amount (3%/K), consistent with other studies. We identify for the first time the necessary compensating mechanism: in these model runs, individual precipitation events become smaller. Other aspects are approximately unchanged in the warmer climate. Because these spatio-temporal changes in rainfall patterns would impact regional hydrology, it is important that they be accurately incorporated into any impacts assessment. For this purpose we have developed a methodology for producing scenarios of future precipitation that combine observational data and model-projected changes. We statistically describe the future changes in rainstorm characteristics suggested by the WRF model and apply those changes to observational data. The resulting high spatial and temporal resolution scenarios have immediate applications for impacts assessment and adaptation studies.
Microphysical Properties and Water Budget for Summer Convective Clouds over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Guo, X.; Tang, J.; Chang, Y.
2017-12-01
During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the clouds and precipitation processes over the Tibetan Plateau have been intensively investigated. On basis of field campaign, the cloud microphysical structure, water transformation and budget properties for typical convective precipitation processes in the summer season of 2014 over the plateau are studied using mesoscale numerical prediction model (WRF) combined with observational data collected during the experiment. The results indicate that WRF model could reproduce the general characteristics of diurnal variation of clouds and precipitation process over the plateau, however, the temporal and spatial distribution and intensity of cloud bands and precipitation simulated by WRF model still had large differences with those observed. Ice process played a critical role in the development of summer convective clouds and precipitation over the plateau. The surface precipitation was primarily formed by the melting process of graupel particles. Although the warm cloud microphysical process had small direct contribution on the surface precipitation, it had an important contribution in the formation of graupel embryos. High amount of supercooled cloud water content and graupel particles could be found in the clouds. The formation and growth of snow particles relied on the conversion of ice crystal and the aggregation with ice crystal over 12 km (-40°), but the formation of snow particles below 12 km (-40°)was dependent on the conversion of Bergeron process of ice crystals and its growth resulted from riming process with supercooled cloud water. The accretion process of supercooled raindrops by ice crystal and snow particles contributed to the production of graupel embryos and their growth mainly relied on the riming process with supercooled cloud water and aggregation process with snow particles. The mean daily conversion rate from vapor to precipitation was as high as 27.27%, which is close to Yangtze River downstream, and is higher than the regions of northern and northwestern China. The contribution of daily mean surface evaporation to precipitation was 10.92%, indicating that the 90% rainfall was from the conversion of water vapor outside the plateau.
NASA Astrophysics Data System (ADS)
Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.
2017-12-01
Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.
Belmecheri, Soumaya; Babst, Flurin; Hudson, Amy R.; Betancourt, Julio L.; Trouet, Valerie
2017-01-01
The latitudinal position of the Northern Hemisphere jet stream (NHJ) modulates the occurrence and frequency of extreme weather events. Precipitation anomalies in particular are associated with NHJ variability; the resulting floods and droughts can have considerable societal and economic impacts. This study develops a new climatology of the 300-hPa NHJ using a bottom-up approach based on seasonally explicit latitudinal NHJ positions. Four seasons with coherent NHJ patterns were identified (January–February, April–May, July–August, and October–November), along with 32 longitudinal sectors where the seasonal NHJ shows strong spatial coherence. These 32 longitudinal sectors were then used as NHJ position indices to examine the influence of seasonal NHJ position on the geographical distribution of NH precipitation and temperature variability and their link to atmospheric circulation pattern. The analyses show that the NHJ indices are related to broad-scale patterns in temperature and precipitation variability, in terrestrial vegetation productivity and spring phenology, and can be used as diagnostic/prognostic tools to link ecosystem and socioeconomic dynamics to upper-level atmospheric patterns.
The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset
NASA Technical Reports Server (NTRS)
Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo
1997-01-01
The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.
NASA Astrophysics Data System (ADS)
Guilbert, Justin; Betts, Alan K.; Rizzo, Donna M.; Beckage, Brian; Bomblies, Arne
2015-03-01
We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.
Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.
2017-06-01
Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.
2014-01-01
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.
Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy
2017-10-05
A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.
A Northern Hemisphere perspective on Holocene hydroclimate trends in the tropical Andes
NASA Astrophysics Data System (ADS)
Larsen, D. J.; Polissar, P. J.; Abbott, M. B.
2016-12-01
Reconstructions of tropical precipitation are important for determining the sensitivity of rainfall patterns in the tropics to climate variability and improving the accuracy of projected hydrologic changes in a warming world. In tropical South America, precipitation is dominantly controlled by the South American Monsoon system (SAM), which operates in conjunction with the position of the Intertropical Convergence Zone (ITCZ) and the El Niño Southern Oscillation (ENSO) to deliver water resources to hundreds of millions of people. The classic model of South American hydroclimate evolution during the Holocene (past 11 ka) invokes an anti-phased pattern of precipitation between hemispheres, whereby orbital forcing drove a gradual displacement of the ITCZ, causing a southerly shift in seasonal convection and precipitation, and strengthening the SAM as Southern Hemisphere summer insolation increased. Indeed, paleoclimate records derived from multiple geologic archives support this pattern. However, the vast majority of existing records come from the southern tropics and emerging terrestrial datasets from the northern tropics appear contrary to the paradigm. Here, we present lake sediment evidence for coupled hydroclimate and environmental changes from the Venezuelan Andes, a key region for investigating interhemispheric linkages and drivers of tropical hydroclimate variability. Compound specific hydrogen isotope ratios from terrestrial plant waxes and algal lipids, together with supporting sedimentary indicators of runoff and aridity, provide a comprehensive reconstruction of Northern Hemisphere tropical precipitation at local and regional scales. Our results are consistent in sign and magnitude to precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability and calling into question the synchronicity and phasing of hydroclimate trends in South America.
NASA Astrophysics Data System (ADS)
Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko
2016-09-01
There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.
Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada
Leenheer, Jerry A.; Reddy, Michael M.
2008-01-01
Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.
NASA Astrophysics Data System (ADS)
Küttel, Marcel; Luterbacher, Jürg; Wanner, Heinz
2011-03-01
Using pressure fields classified by the SANDRA algorithm, this study investigates the changes in the relationship between North Atlantic/European sea level pressure (SLP) and gridded European winter (DJF) temperature and precipitation back to 1750. Important changes in the frequency of the SLP clusters are found, though none of them indicating significant long-term trends. However, for the majority of the SLP clusters a tendency toward overall warmer and partly wetter winter conditions is found, most pronounced over the last decades. This suggests important within-type variations, i.e. the temperature and precipitation fields related to a particular SLP pattern change their characteristics over time. Using a decomposition scheme we find for temperature and precipitation that within-type-related variations dominate over those due to changed frequencies of the SLP clusters: Approximately 70% (60%) of European winter temperature (precipitation) variations can be explained by within-type changes, most strongly expressed over Eastern Europe and Scandinavia. This indicates that the current European winter warming cannot be explained by changed frequencies of the SLP patterns alone, but to a larger degree by changed characteristics of the patterns themselves. Potential sources of within-type variations are discussed.
Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.
Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M
2016-11-15
The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deal, Eric; Braun, Jean
2015-04-01
A current challenge in landscape evolution modelling is to integrate realistic precipitation patterns and behaviour into longterm fluvial erosion models. The effect of precipitation on fluvial erosion can be subtle as well as nonlinear, implying that changes in climate (e.g. precipitation magnitude or storminess) may have unexpected outcomes in terms of erosion rates. For example Tucker and Bras (2000) show theoretically that changes in the variability of precipitation (storminess) alone can influence erosion rate across a landscape. To complicate the situation further, topography, ultimately driven by tectonic uplift but shaped by erosion, has a major influence on the distribution and style of precipitation. Therefore, in order to untangle the coupling between climate, erosion and tectonics in an actively uplifting orogen where fluvial erosion is dominant it is important to understand how the 'rain dial' used in a landscape evolution model (LEM) corresponds to real precipitation patterns. One issue with the parameterisation of rainfall for use in an LEM is the difference between the timescales for precipitation (≤ 1 year) and landscape evolution (> 103 years). As a result, precipitation patterns must be upscaled before being integrated into a model. The relevant question then becomes: What is the most appropriate measure of precipitation on a millennial timescale? Previous work (Tucker and Bras, 2000; Lague, 2005) has shown that precipitation can be properly upscaled by taking into account its variable nature, along with its average magnitude. This captures the relative size and frequency of extreme events, ensuring a more accurate characterisation of the integrated effects of precipitation on erosion over long periods of time. In light of this work, we present a statistical parameterisation that accurately models the mean and daily variability of ground based (APHRODITE) and remotely sensed (TRMM) precipitation data in the Himalayan orogen with only a few parameters. We also demonstrate over what spatial and temporal scales this parameterisation applies and is stable. Applying the parameterisation over the Himalayan orogen reveals large-scale strike-perpendicular gradients in precipitation variability in addition to the long observed strike-perpendicular gradient in precipitation magnitude. This observation, combined with the theoretical work mentioned above, suggests that variability is an integral part of the interaction between climate and erosion. References Bras, R. L., & Tucker, G. E. (2000). A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resources Research, 36(7), 1953-1964. doi:10.1029/2000WR900065 Lague, D. (2005). Discharge, discharge variability, and the bedrock channel profile. Journal of Geophysical Research, 110(F4), F04006. doi:10.1029/2004JF000259
The ENSO Effect on the Temporal and Spatial Distribution of Global Lightning Activity
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.
2007-01-01
The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.
2017-08-01
The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.
Ammonia induced precipitation of cobalt hydroxide: observation of turbostratic disorder
NASA Astrophysics Data System (ADS)
Ramesh, T. N.; Rajamathi, Michael; Kamath, P. Vishnu
2003-05-01
Cobalt hydroxide freshly precipitated from aqueous solutions of Co salts using ammonia, is a layered phase having a 9.17 Å interlayer spacing. DIFFaX simulations of the PXRD pattern reveal that it is turbostratically disordered.
THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.
Coburn, A F; Kapp, E M
1943-02-01
1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.
THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY
Coburn, Alvin F.; Kapp, Eleanor M.
1943-01-01
1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested. PMID:19871273
Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves
NASA Astrophysics Data System (ADS)
Thiele, Sebastian; Matlack, Kathryn H.; Kim, Jin-Yeon; Qu, Jianmin; Wall, James J.; Jacobs, Laurence J.
2014-02-01
Nonlinear ultrasonic waves have shown to be sensitive to various microstructural changes in metals including coherent precipitates; these precipitates introduce a strain field in the lattice structure. The thermal aging of certain alloy steels leads to the formation of coherent precipitates, which pin dislocations and contribute to the generation of a second harmonic component. A precipitate hardenable material namely 17-4 PH stainless steel is thermally treated in this research to obtain different precipitation stages, and then the influence of precipitates on the acoustic nonlinearity parameter is assessed. Conclusions about the microstrucutural changes in the material are drawn based on the results from a nonlinear Rayleigh surface wave measurement and complementary thermo-electric power, hardness and ultrasonic velocity measurements. The results show that the nonlinear parameter is sensitive to coherent precipitates in the material and moreover that precipitation characteristics can be characterized based on the obtained experimental data.
Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.
2016-01-01
Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive regional precipitation-δ18O responses to Pacific ocean–atmosphere variability, which in turn, will lead to a better understanding of internal Pacific ocean–atmosphere variability and its response to external climate forcing mechanisms.
Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika
2006-09-12
Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.
Seasonal climate change patterns due to cumulative CO 2 emissions
Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon
2017-06-28
Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less
Seasonal climate change patterns due to cumulative CO 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon
Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less
NASA Technical Reports Server (NTRS)
Comarazamy, Daniel E.; Gonzalez, Jorge E.; Luvall, Jeff; Rickman, Douglas L.
2007-01-01
Urban sprawls in tropical locations are rapidly accelerating and it is more evident in islands where a large percentage of the population resides along the coasts. This paper focuses on the analysis of the impacts of land use and land cover for urbanization in the tropical coastal city of San Juan, in the tropical island of Puerto Rico. A mesoscale numerical model, the Regional Atmospheric Modeling System (RAMS), is used to study specific characteristics and patterns of the urban heat island in the San Juan Metropolitan Area (SJMA), the most noticeable urban core of the Caribbean. The research present in this paper makes use of the observations obtained during the airborne San Juan Atlas Mission in two ways. First, surface and rawinsonde data are used to validate the atmospheric model yielding satisfactory results. Second, airborne remote sensing information is used to update the model's surface characteristics to obtain a detailed configuration of the SJMA in order to perform the LCLU changes impact analysis. This analysis showed that the presence of San Juan has an impact reflected in higher air temperatures over the area occupied by the city, with positive values of up to 2.5 C, for the simulations that have specified urban LCLU indexes in the bottom boundary. One interesting result of the impact analysis was the finding of a precipitation disturbance shown as a difference in total accumulated rainfall between simulation with the city and with a potential natural vegetation induced by the presence of the urban area. Model results indicate that the urban-induced cloud formation and precipitation development occur mainly downwind of the city, including the accumulated precipitation. This spatial pattern can be explained by the presence of a-larger urbanized area in the southwest sector of the city, and of the approaching northeasterly trade winds.
NASA Astrophysics Data System (ADS)
Kao, C.-Y. J.; Smith, W. S.
1999-05-01
A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.
Spatio-temporal seasonal drought patterns in Europe from 1950 to 2015
NASA Astrophysics Data System (ADS)
Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen
2016-04-01
Drought is one of the natural disasters with severe impacts in Europe, not only in areas which frequently experience water scarcity such as the Mediterranean, but also in temperate or continental climates such as Central and Eastern Europe and even in cold regions such as Scandinavia and Iceland. In this study the spatio-temporal patterns of seasonal meteorological droughts in Europe between 1950 and 2015 are investigated using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). Since the focus is on the analysis of seasonal drought trends, indicators were calculated for 3 monthly accumulation periods. The input variables of precipitation and temperature were derived from E-OBS grids (v11-v12) at a spatial resolution of 0.25°x0.25°. Seasonal trends of drought frequency and severity were analyzed for moderate (SPI or SPEI <-1.0) and extreme (SPI or SPEI <-2.0) events during the periods 1950-2015 and 1981-2015. For the moderate events, results of the SPI analysis (precipitation driven) demonstrate a significant tendency towards less frequent and severe droughts in Northern Europe and Russia, especially in winter and spring; oppositely, an increasing trend is visible in Southern Europe, mainly in spring and summer. According to the SPEI analysis (precipitation and temperature driven) Northern Europe shows wetting patterns, while Southern and Eastern Europe show a more remarkable drying tendency, especially in summer and autumn for drought frequency and in every season for drought severity. The evolution towards drier conditions is more relevant from 1981 onwards, both in terms of frequency and severity. This is especially true for Central Europe in spring, for the Mediterranean in summer, and for Eastern Europe in autumn. Extreme events follow similar patterns, but in autumn no spatially coherent trend can be found.
Seasonal patterns in acidity of precipitation and their implications for forest stream ecosystems
James W. Hornbeck; Gene E. Likens; John S. Eaton
1976-01-01
Data collected since 1965 at a network of 9 stations in the northeastern United States show that precipitation is most acid in the growing season (May-September) and least acid in winter (December-February). For the Hubbard Brook station in New Hampshire, where the mean hydrogen ion content of precipitation ranges between 46 μeq/l in winter and 102 μ...
NASA Astrophysics Data System (ADS)
Mehran, A.; AghaKouchak, A.; Phillips, T. J.
2014-02-01
The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.
ERIC Educational Resources Information Center
Hazen, Jeffery L.; Cleary, David A.
2014-01-01
Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…
Microstructural Development in HSLA-100 Steel Weld Metals
1990-01-01
martensite or austenitic particles contribute to the "granular appearance" of the ferrite grains. Copper precipitates ... copper precipitation , which conclusively suggests that the polygonal ferrite formation is not fully suppressed in the alloy . For the HSLA- 100 steel with a...Ava’Iablity Codes Avdi rid 1 or Di ’t’CIiJl A1 2 1. INTRODUCTION Precipitation strengthening of steel by finely dispersed copper
High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52
NASA Astrophysics Data System (ADS)
Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong
2017-08-01
Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.
Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels
NASA Astrophysics Data System (ADS)
Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George
2004-03-01
Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.
Serrated yielding in Al-Li alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; McShane, H.B.
1993-05-01
Serrated yielding (SY) during tensile testing has been observed in Al-Li alloys, both in the binary and the commercial quaternary alloys, in single crystal as well as polycrystalline materials. Serrated yielding is commonly explained by a dynamic strain aging (DSA) model developed by McCormick and van den Beukel. All the solute elements present in Al-Li alloys, viz., Mg, Cu and Li are known to give DSA and SY. Several researchers believe the DSA to be the cause of SY and they attribute the disappearance of SY simply to the removal of solute from the matrix with aging. However, this argumentmore » has serious flaws. The present paper examines this aspect critically. The authors concluded that Al-Li alloys the disappearance of serrated yielding at a certain stage of aging is not due to removal of the solute from the matrix but due to the change in the nature of the metastable [delta][prime] precipitates - from fine coherent shearable precipitates to larger noncoherent nonshearable precipitates - which prevents the formation of the deformation bands. The serrated yielding reappears with extensive over aging due to the dissolution of these precipitates in favor of the equilibrium precipitates. The equilibrium precipitates, being widely spaced, are ineffective in preventing the formation of deformation bands.« less
Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langelier, B., E-mail: langelb@mcmaster.ca
2016-10-15
The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. Itmore » has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.« less
Vidhya, Nirmal; Karthikeyan, Balasubramanian Saravana; Velmurugan, Natanasabapathy; Abarajithan, Mohan; Nithyanandan, Sivasankaran
2014-01-01
Background: Interaction between local anesthetic solution, lidocaine hydrochloride (with and without adrenaline), and root canal irrigants such as sodium hypochlorite (NaOCl), ethylene diamine tetra-acetic acid (EDTA), and chlorhexidine (CHX) has not been studied earlier. Hence, the purpose of this in vitro study was to evaluate the chemical interaction between 2% lidocaine hydrochloride (with and without adrenaline) and commonly used root canal irrigants, NaOCl, EDTA, and CHX. Materials and Methods: Samples were divided into eight experimental groups: Group I-Lidocaine hydrochloride (with adrenaline)/3% NaOCl, Group II-Lidocaine hydrochloride (with adrenaline)/17% EDTA, Group III- Lidocaine hydrochloride (with adrenaline)/2% CHX, Group IV-Lidocaine hydrochloride (without adrenaline)/3% NaOCl, Group V-Lidocaine hydrochloride (without adrenaline)/17% EDTA, Group VI-Lidocaine hydrochloride (without adrenaline)/2% CHX, and two control groups: Group VII-Lidocaine hydrochloride (with adrenaline)/deionized water and Group VIII-Lidocaine hydrochloride (without adrenaline)/deionized water. The respective solutions of various groups were mixed in equal proportions (1 ml each) and observed for precipitate formation. Chemical composition of the formed precipitate was then analysed by nuclear magnetic resonance spectroscopy (NMR) and confirmed with diazotation test. Results: In groups I and IV, a white precipitate was observed in all the samples on mixing the respective solutions, which showed a color change to reddish brown after 15 minutes. This precipitate was then analysed by NMR spectroscopy and was observed to be 2,6-xylidine, a reported toxic compound. The experimental groups II, III, V, and VI and control groups VII and VIII showed no precipitate formation in any of the respective samples, until 2 hours. Conclusion: Interaction between lidocaine hydrochloride (with and without adrenaline) and NaOCl showed precipitate formation containing 2,6-xylidine, a toxic compound. PMID:25097652
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures
NASA Astrophysics Data System (ADS)
Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar
2018-06-01
In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.
NASA Astrophysics Data System (ADS)
Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.
2017-12-01
Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.
The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events
NASA Astrophysics Data System (ADS)
Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.
2018-02-01
The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.
NASA Astrophysics Data System (ADS)
Dawn, S.; Mandal, M.
2014-08-01
In this paper an attempt is made to identify the mesoscale features in surface pressure pattern, if any, associated with thunderstorm over the Gangetic West Bengal region in India. The study was conducted over Kharagpur and the adjoining area in the Gangetic West Bengal, frequently affected by thunderstorms during the pre-monsoon seasons of April-May. Observations recorded at 50 m instrumented micro-meteorological tower and upper air sounding at Kharagpur under nationally coordinated Severe Thunderstorm Observations and Regional Modeling (STORM) Programme are used to study the variation in surface pressure, wind speed and direction, temperature and relative humidity associated with the squall lines with trailing stratiform precipitation region. In the surface pressure variation, pre-squall mesolow, mesohigh and wake low are identified with the passage of the squall line at Kharagpur. It is observed that in the squall line with trailing stratiform precipitation shield, the mesohigh is associated with convective line and wake low exists at the rear of the storms. The position of the mesohigh is typically found in the vicinity of the heavy rain directly beneath the downdraft. The mesohigh seems to be initiated by the cooling due to evaporation of precipitation in the downdraft and intensified due to the non-hydrostatic effect because of the rainfall directly beneath the downdraft. It is also observed that the passage of trailing edges of the stratiform precipitation coincided with the wake low. Upper air sounding shows mid-tropospheric cooling and lower tropospheric warming. It may be possible due to the dominance of evaporative cooling in the mid-levels and dynamically forced descending motion leading to adiabatic warming in the low levels which may lead to the formation of the wake low.
Classification and Space-Time Analysis of Precipitation Events in Manizales, Caldas, Colombia.
NASA Astrophysics Data System (ADS)
Suarez Hincapie, J. N.; Vélez, J.; Romo Melo, L.; Chang, P.
2015-12-01
Manizales is a mid-mountain Andean city located near the Nevado del Ruiz volcano in west-central Colombia, this location exposes it to earthquakes, floods, landslides and volcanic eruptions. It is located in the intertropical convergence zone (ITCZ) and presents a climate with a bimodal rainfall regime (Cortés, 2010). Its mean annual rainfall is 2000 mm, one may observe precipitation 70% of the days over a year. This rain which favors the formation of large masses of clouds and the presence of macroclimatic phenomenon as "El Niño South Oscillation", has historically caused great impacts in the region (Vélez et al, 2012). For example the geographical location coupled with rain events results in a high risk of landslides in the city. Manizales has a hydrometeorological network of 40 stations that measure and transmit data of up to eight climate variables. Some of these stations keep 10 years of historical data. However, until now this information has not been used for space-time classification of precipitation events, nor has the meteorological variables that influence them been thoroughly researched. The purpose of this study was to classify historical events of rain in an urban area of Manizales and investigate patterns of atmospheric behavior that influence or trigger such events. Classification of events was performed by calculating the "n" index of the heavy rainfall, describing the behavior of precipitation as a function of time throughout the event (Monjo, 2009). The analysis of meteorological variables was performed using statistical quantification over variable time periods before each event. The proposed classification allowed for an analysis of the evolution of rainfall events. Specially, it helped to look for the influence of different meteorological variables triggering rainfall events in hazardous areas as the city of Manizales.
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
NASA Astrophysics Data System (ADS)
Minihane, M. R.; Freyberg, D. L.
2011-08-01
Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.
NASA Astrophysics Data System (ADS)
Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.
2017-02-01
In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.
Onset of phase separation in the double perovskite oxide La2MnNiO6
NASA Astrophysics Data System (ADS)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.
Authigenic Carbonate Formation on the Peru Margin; New Insights from IODP Site 1230
NASA Astrophysics Data System (ADS)
Abdullajintakam, S.; Naehr, T. H.
2015-12-01
Fluid seepage of reduced organic compounds such as methane impacts the geology and biology of the seabed by inducing complex, microbially mediated biogeochemical processes. Authigenic carbonates serve as one of the few permanent records of these of dynamic biogeochemical interactions that involve methanogenesis, methanotrophy, sulfate reduction and carbonate precipitation. Meister et al. (2007) investigated deep-sea dolomite formation at Sites 1227-1229 on the Peru margin, where dolomite precipitation occurs in association with organic carbon-rich continental margin sediments. Geochemical and petrographic studies indicated episodic dolomite precipitation at a dynamic sulfate methane transition zone (SMTZ). Variations in δ13C values of these dolomites between +15‰ and -15‰ were attributed to non-steady state conditions as a result of the upward and downward migration of the SMTZ. Our study aims to better understand the biogeochemical processes associated with authigenic carbonate precipitation in this dynamic deep-sea setting. We focused our efforts on IODP Site 1230, which is a gas-hydrate-bearing site that shows sulphate consumption within the uppermost 10 m below the seafloor as well as high methane production. Using a multi proxy approach, we combined X-ray diffraction, stable isotope geochemistry, and trace metal analysis of authigenic carbonates to elucidate conditions for authigenic carbonate formation. Results from Site 1230 are compared to Sites 1227 and 1229, which lacks gas hydrates and is characterized by high pore water sulfate and low methane concentrations. This study contributes to a more comprehensive understanding of authigenic carbonate formation and associated biogeochemical processes in continental margin sediments. Meister, P., Mckenzie, J. A., Vasconcelos, C., Bernasconi, S., Frank, M., Gutjhar, M. and SCHRAG, D. P. (2007), Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology, 54: 1007-1032.
Pseudowollastonite Carbonation Could Enable New Frontiers in Carbon Storage
NASA Astrophysics Data System (ADS)
Plattenberger, D.; Tao, Z.; Ling, F. T.; Peters, C. A.; Clarens, A. F.
2017-12-01
One of the primary challenges of CO2 mineral trapping is that precipitation reactions are reversible. A wide range of solid magnesium, iron, or calcium carbonates (such as magnesite, MgCO3) can be synthesized by reacting mineral silicates (such as olivine, Mg2SiO4) with CO2 to produce mineral carbonates. However, if CO2 remains present at high concentrations, as would be the case in many subsurface environments, the carbonate minerals could re-dissolve, making the precipitated carbonates impermanent forms of storage. In this work, we study pseudowollastonite (CaSiO3), a crystalline form of calcium silicate that is common in slags, cement, and calcium-rich volcanic formations, for its potential to produce other secondary mineral phases that may be resistant to dissolution under low pH conditions. These secondary mineral precipitation phases have morphologies and X-ray diffraction patterns that resemble both calcium silicate hydrate gels as well as crystalline calcium silicate carbonate hydrates. The combination of these phases forms a complex system that may resist acid attack while providing strength and limiting flow in the subsurface environment. High pressure and temperature column experiments carried out in our lab show that pseudowollastonite carbonation effectively lowers permeability in columns of sintered glass beads. Many of the pore throats are clogged by precipitates, as seen using micro X-ray tomography of intact columns and electron microscopy of thin sections. The spatial distribution of the products suggests that calcite forms toward the inlet of the columns where the pCO2 is highest. This forms a barrier that reduces, but does not eliminate, the availability of CO2 deeper in the porous media where the secondary phases precipitate. The existence of the calcite zone drives the reduction in permeability and the depth of this zone is self-limiting, which could have important implications for limiting leakage and unwanted migration of CO2 in some instances.
Investigation of mesoscale precipitation processes in the Carolinas using a radar-based climatology
NASA Astrophysics Data System (ADS)
Boyles, Ryan Patrick
The complex topography, shoreline, soils, and land use patterns makes the Carolinas a unique location to study mesoscale processes. Using gage-calibrated radar estimates and a series of numerical model simulations, warm season mesoscale precipitation patterns are analyzed over the Carolinas. Gage-calibrated radar precipitation estimates are compared with surface gage observations. Stage IV estimates generally compared better than Stage II estimates, but some Stage II and Stage IV estimates have gross errors during autumn, winter, and spring seasons. Analysis of days when sea breeze is observed suggests that sea breeze induced precipitation occurs on nearly 40% of days in June, July, and August, but only 18% in May and 6% of days in April. Precipitation on days with sea breeze convection can contribute to over 50% of seasonal precipitation. Rainfall associated with sea breeze is generally maximized along east-facing shores 10-20 km inland, and minimized along south-facing shores in North Carolina. The shape of the shoreline along Cape Fear is associated with a local precipitation maximum that may be caused by the convergence of two sea breeze fronts from the south and east shores. Differential heating associated with contrasting soils along the Carolina Sandhills is suggested as a mechanism for enhancement in local precipitation. A high-resolution summer precipitation climatology suggests that precipitation is enhanced along the Sandhills region in both wet and dry years. Analysis of four numerical simulations suggests that contrasts in soils over the Carolinas Sandhills dominates over vegetation contrasts to produce heat flux gradients and a convergence zone along the sand-to-clay transition. Orographically induced precipitation is consistently observed in the summer, and appears to be isolated along windward slopes at 20km--40km from the ridge line. Amounts over external ridges are generally 50-100% higher than amounts observed over the foothills. Precipitation amounts over interior ridges and valleys are lower than observed on exterior ridges and are similar to values observed over the foothills. When compared with Stage IV estimates, the PRISM (Precipitation-elevation Regressions on Independent Slopes Model) method for estimating precipitation in complex terrain appears to largely over-estimate precipitation amounts over the interior ridges.
Microbial Reduction and Precipitation of Vanadium by Shewanella oneidensis
Carpentier, W.; Sandra, K.; De Smet, I.; Brigé, A.; De Smet, L.; Van Beeumen, J.
2003-01-01
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid. PMID:12788772
Celen, Ipek; Buchanan, John R; Burns, Robert T; Robinson, R Bruce; Raman, D Raj
2007-04-01
Precipitation of phosphate minerals from liquid swine manure is an established means of reducing the orthophosphate (OP) concentration. This project investigated the usefulness of a chemical equilibrium model, Visual Minteq, for prescribing the amendments needed to maximize struvite precipitation from liquid swine manure and thus reduce the OP phosphorus concentration. The actual concentrations of Mg(2+), Ca(2+), K(+), OP, NH(4)(+), alkalinity and pH from a liquid swine manure system were used as inputs to the model. The model was modified to remove species with extremely low formation rates, because they would not significantly precipitate in the reaction occurring in a short retention-time process such as those envisioned for swine manure struvite-formation reactors. Using the model's output, a series of 19-L reactors were used to verify the results. Verification results demonstrated that Visual Minteq can be used to pre-determine the concentration of amendments required to maximize struvite recovery.
Molten tin reprocessing of spent nuclear fuel elements
Heckman, Richard A.
1983-01-01
A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.
Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?
NASA Technical Reports Server (NTRS)
Sumner, D. Y.; Grotzinger, J. P.
1996-01-01
Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.
Hydrology of the cavernous limestones of the Mammoth Cave area, Kentucky
Brown, Richmond F.
1966-01-01
The Mammoth Cave National Park in central Kentucky offers a unique opportunity to study the occurrence of ground water in limestone under natural conditions. Ground water occurs as perched and semiperched bodies in alternate sandstone, shale, and limestone formations and under water-table conditions at the approximate level of the Green River in thick soluble limestone. Three continuous recorders that operated for 5 years indicate that precipitation on the Mammoth Cave plateau recharges the underlying sandstone rapidly. Ground water from the sandstone discharges horizontally to the edges of the plateau and vertically to underlying formations. Some of the precipitation recharges underlying formations almost immediately through overland flow to sinkholes and free fall through open shafts to pools at the water table. Much of the precipitation on the Pennyroyal plain flows overland into sinkholes and then through solution openings to the Green River. Water from the Green River flows into limestone solution channels under Mammoth Cave plateau at some stages, and this water discharges again to the Green River downstream. The presence of salt water, high in chloride in the Green River, makes it possible to trace the movement of the river water through the underground streams. Graphs show relationships of chloride concentration, stage of the Green River, time, precipitation, ground-water levels, and stratigraphy.
Characterization of airborne ice-nucleation-active bacteria and bacterial fragments
NASA Astrophysics Data System (ADS)
Šantl-Temkiv, Tina; Sahyoun, Maher; Finster, Kai; Hartmann, Susan; Augustin-Bauditz, Stefanie; Stratmann, Frank; Wex, Heike; Clauss, Tina; Nielsen, Niels Woetmann; Sørensen, Jens Havskov; Korsholm, Ulrik Smith; Wick, Lukas Y.; Karlson, Ulrich Gosewinkel
2015-05-01
Some bacteria have the unique capacity of synthesising ice-nucleation-active (INA) proteins and exposing them at their outer membrane surface. As INA bacteria enter the atmosphere, they may impact the formation of clouds and precipitation. We studied members of airborne bacterial communities for their capacity to catalyse ice formation and we report on the excretion of INA proteins by airborne Pseudomonas sp. We also observed for the first time that INA biological fragments <220 nm were present in precipitation samples (199 and 482 INA fragments per L of precipitation), which confirms the presence of submicron INA biological fragments in the atmosphere. During 14 precipitation events, strains affiliated with the genus Pseudomonas, which are known to carry ina genes, were dominant. A screening for INA properties revealed that ∼12% of the cultivable bacteria caused ice formation at ≤-7 °C. They had likely been emitted to the atmosphere from terrestrial surfaces, e.g. by convective transport. We tested the ability of isolated INA strains to produce outer membrane vesicles and found that two isolates could do so. However, only very few INA vesicles were released per INA cell. Thus, the source of the submicron INA proteinaceous particles that we detected in the atmosphere remains to be elucidated.
Swain, Daniel L; Horton, Daniel E; Singh, Deepti; Diffenbaugh, Noah S
2016-04-01
Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.
Swain, Daniel L.; Horton, Daniel E.; Singh, Deepti; Diffenbaugh, Noah S.
2016-01-01
Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949–2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949–2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012–2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California’s most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years. PMID:27051876
NASA Technical Reports Server (NTRS)
Sharber, J. R.; Hones, E. W., Jr.; Heelis, R. A.; Craven, J. D.; Frank, L. A.; Maynard, N. C.; Slavin, J. A.; Birn, J.
1992-01-01
As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region of a pattern referred to as 'horse-collar' aurora (Hones et al., 1989). In this report we use the Dynamics Explorer data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager, while at the same time DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. Our analysis shows that, in general, there is close agreement between the optical signatures and the particle precipitation patterns. In many instances, over scales ranging from tens to a few hundred kilometers, electron precipitation features and upward field-aligned currents are observed at locations where the plasma flow gradients indicate negative V-average x E. The particle, plasma, and field measurements made along the satellite track and the 2D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin;
2010-01-01
Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.
NASA Technical Reports Server (NTRS)
Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.
1990-01-01
The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic sparites are most depleted in 13C. Carbonates in oxide-rich iron-formations are more depleted in 13C than those in siderite-rich iron-formation whereas the kerogens in oxide banded iron-formations (BIF) are more enriched. This implies that the siderite-rich iron-formations were not derived from oxide-rich iron-formation through reduction of ferric iron by organic matter. Organic matter oxidation by ferric iron did, however, decrease the abundance of kerogen in oxide-rich iron-formation and led to the formation of isotopically very light sparry carbonates. Siderite and calcmicrosparite both represent recrystallized primary micritic precipitates but differ in their 13C composition, with the siderites depleted in 13C by 4.6 per mil on average relative to calcmicrosparite. This means that the siderites were precipitated from water with dissolved inorganic carbon depleted in 13C by about 9 per mil relative to that from which the limestones precipitated. This implies an ocean system stratified with regard to total carbonate, with the deeper water, from which siderite-rich iron-formation formed, depleted in 13C. Iron-formations were deposited in areas of very low organic matter supply. Depletion of 13C may, therefore, derive not from degradation of organic matter but from hydrothermal activity, a conclusion which is supported by 18O composition of the carbonate minerals and trace element and rare earth element (REE) compositions of the iron-formations.
Li, Dong Xiao; Hu, Hai Yan; Li, Gan; Ru, Zhen Gang; Tian, Hui Qiao
2017-09-01
Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca 2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.
Enhancing droplet deposition through in-situ precipitation
Damak, Maher; Mahmoudi, Seyed Reza; Hyder, Md Nasim; Varanasi, Kripa K.
2016-01-01
Retention of agricultural sprays on plant surfaces is an important challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of soil and groundwater pollution and pesticide overuse. Here we report a method to increase droplet deposition through in-situ formation of hydrophilic surface defects that can arrest droplets during impact. Defects are created by simultaneously spraying oppositely charged polyelectrolytes that induce surface precipitation when two droplets come into contact. Using high-speed imaging, we study the coupled dynamics of drop impact and surface precipitate formation. We develop a physical model to estimate the energy dissipation by the defects and predict the transition from bouncing to sticking. We demonstrate macroscopic enhancements in spray retention and surface coverage for natural and synthetic non-wetting surfaces and provide insights into designing effective agricultural sprays. PMID:27572948
NASA Astrophysics Data System (ADS)
Shi, Qianying; An, Ning; Huo, Jiajie; Zheng, Yunrong; Feng, Qiang
2017-05-01
The effect of Co on discontinuous precipitation (DP) transformation involving the formation of topologically close-packed (TCP) phase was investigated in three Ni-Cr-Re model alloys containing different levels of Co. One typical TCP phase, σ, was generated within DP cellular colonies along the migrating grain boundaries in experimental alloys during aging treatment. As a result of the increased solubility of Re in the γ matrix and enlarged interlamellar spacing of σ precipitates inside of growing DP colonies, Co addition suppressed the formation of σ phase and associated DP colonies. This study suggests that Co could potentially serve as a microstructural stabilizer in Re-containing Ni-base superalloys, which provides an alternative method for the composition optimization of superalloys.
Enhancing droplet deposition through in-situ precipitation
NASA Astrophysics Data System (ADS)
Damak, Maher; Mahmoudi, Seyed Reza; Hyder, Md Nasim; Varanasi, Kripa K.
2016-08-01
Retention of agricultural sprays on plant surfaces is an important challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of soil and groundwater pollution and pesticide overuse. Here we report a method to increase droplet deposition through in-situ formation of hydrophilic surface defects that can arrest droplets during impact. Defects are created by simultaneously spraying oppositely charged polyelectrolytes that induce surface precipitation when two droplets come into contact. Using high-speed imaging, we study the coupled dynamics of drop impact and surface precipitate formation. We develop a physical model to estimate the energy dissipation by the defects and predict the transition from bouncing to sticking. We demonstrate macroscopic enhancements in spray retention and surface coverage for natural and synthetic non-wetting surfaces and provide insights into designing effective agricultural sprays.
Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure
NASA Astrophysics Data System (ADS)
Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.
2011-12-01
The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.
The role of extracellular DNA in uranium precipitation and biomineralisation.
Hufton, Joseph; Harding, John H; Romero-González, Maria E
2016-10-26
Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
The effect of a local source on the composition of precipitation in south-central Maine
Scott D. Boyce; Samuel S. Butcher
1976-01-01
Bulk precipitation samples were collected from ten sites in south-central Maine during the period 18 June to 30 September 1974. Data from the chemical analyses of the precipitation were used to determine regional deposition patterns of the ionic constituents. Acidic pH values ranging from 3.8 to 5.0 are characteristic of the region, but relatively alkaline pH values of...
Cuo, Lan; Zhang, Yongxin
2017-07-11
The Tibetan Plateau and the surrounding (TPS) with its vast land mass and high elevation affects regional climate and weather. The TPS is also the headwater of 9 major Asian rivers that provide fresh water for 1.65 billion people and many ecosystems, with wet season (May-September) precipitation being the critical component of the fresh water. Using station observations, ERA-Interim and MERRA2 reanalysis, we find that wet season precipitation displays vertical gradients (i.e., changes with elevation) that vary within the region on the TPS. The decrease of precipitation with elevation occurs in the interior TPS with elevation larger than 4000 m, little or no change over the southeastern TPS, and increase elsewhere. The increase of precipitation with elevation is caused by increasing convective available potential energy (CAPE) and decreasing lifting condensation level (LCL) with elevation overwhelming the effects of decreasing total column water vapor (TCWV) with elevation. The decreasing precipitation with elevation is due to the combined effects of increasing LCL and decreasing TCWV. LCL and CAPE play a more important role than TCWV in determining the spatial patterns. These findings are important for hydrology study in observation scarce mountainous areas, water resources and ecosystem managements in the region.
Adjustment of spatio-temporal precipitation patterns in a high Alpine environment
NASA Astrophysics Data System (ADS)
Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter
2018-01-01
This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.
Will climate change affect weather types associated with flooding in the Elbe river basin?
NASA Astrophysics Data System (ADS)
Nissen, Katrin M.; Pardowitz, Tobias; Ulbrich, Uwe; Nied, Manuela
2013-04-01
This study investigates the effects of anthropogenic climate change on weather types associated with flooding in the Elbe river basin. The study is based on an ensemble of 3 simulations with the ECHAM5 MPIOM coupled model forced with historical and SRES A1B greenhouse gas concentrations. Relevant weather types, occuring in association with recent flood events, are identified in the ERA40 reanalysis data set. The weather types are classified with the SANDRA cluster algorithm. Distributions of tropospheric humidity content, 500 hPa geopotential height and 500 hPa temperature over Europe are taken as input parameters. 8 (out of 40) weather types are found to be associated with flooding events in the Elbe river basin. The majority of these (6) typically occur during winter, while 2 are warm season patterns. Downscaling reveals characteristic precipitation anomalies associated with the individual patterns. The 8 flood relevant weather types are then identified in the ECHAM5 simulations. The effect of climate change on these patterns is investigated by comparing the last 30 years of the previous century to the last 30 years of the 21st century. According to the model the frequency of most patterns will not change. 5 patterns may experience a statistically significant increase in the mean precipitation over the catchment area and 4 patterns an increase in extreme precipitation. Persistence may slightly decrease for 2 patterns and remain unchanged for the others. Overall, this indicates a moderate increase in the risk for Elbe river flooding, related to changes in the weather patterns, in the coming decades.
NASA Astrophysics Data System (ADS)
Sankaré, Housseyni; Thériault, Julie M.
2016-11-01
Winter precipitation types can have major consequences on power outages, road conditions and air transportation. The type of precipitation reaching the surface depends strongly on the vertical temperature of the atmosphere, which is often composed of a warm layer aloft and a refreezing layer below it. A small variation of the vertical structure can lead to a change in the type of precipitation near the surface. It has been shown in previous studies that the type of precipitation depends also on the precipitation rate, which is directly linked to the particle size distribution and that a difference as low as 0.5 °C in the vertical temperature profile could change the type of precipitation near the surface. Given the importance of better understanding the formation of winter precipitation type, the goal of this study is to assess the impact of the snowflake habit aloft on the type of precipitation reaching the surface when the vertical temperature is near 0 °C. To address this, a one dimensional cloud model coupled with a bulk microphysics scheme was used. Four snowflake types (dendrite, bullet, column and graupel) have been added to the scheme. The production of precipitation at the surface from these types of snow has been compared to available observations. The results showed that the thickness of the snow-rain transition is four times deeper when columns and graupel only fall through the atmosphere compared to dendrites. Furthermore, a temperature of the melting layer that is three (four) times warmer is required to completely melt columns and graupel (dendrites). Finally, the formation of freezing rain is associated with the presence of lower density snowflakes (dendrites) aloft compared to the production of ice pellets (columns). Overall, this study demonstrated that the type of snowflakes has an impact on the type of precipitation reaching the surface when the temperature is near 0 °C.
The Fate of Aspen in a World with Diminishing Snowpacks
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.
2010-12-01
Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried D.
2013-01-01
The dominant pattern of annual mean SST variability in the Pacific (in its cold phase) produces pronounced precipitation deficits over the continental United States (U.S.) throughout the annual cycle. This study investigates the physical and dynamical processes through which the cold Pacific pattern affects the U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results, based on observations and reanalyses, show that the peak precipitation deficit over the U.S. during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern U.S., and secondarily due to a reduction in local evaporation from land-atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern U.S. that counteracts the northwest branch of the climatological flow associated with the north Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby Intra-American Seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the U.S. is mainly the result of local land-atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the U.S. make little contribution. An evaluation of NSIPP-1 AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the Intra-American Seas to the cold Pacific pattern and thereby the precipitation responses over the U.S., a problem that appears to be common to many AGCMs.
Nanus, L.; Williams, M.W.; Campbell, D.H.; Elliott, E.M.; Kendall, C.
2008-01-01
In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 μeq/L, δ18O (NO3) ranged from −5.7 to +21.3‰, and δ15N (NO3) ranged from −6.6 to +4.6‰. δ18O (NO3) in precipitation ranged from +71 to +78‰. δ15N (NO3) in precipitation and lakes overlap; however, δ15N (NO3) in precipitation is more depleted than δ15N (NO3) in lakes, ranging from −5.5 to −2.0‰. δ15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of δ15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and δ15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO3 and enriched δ15N (NO3) in precipitation with high NO3and enriched δ15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification.
Effectiveness of Two Forecast Models for Stratiform Precipitation
2004-04-01
an enhanced release of precipitation in clouds containing a mixture of droplets and ice crystals (Bergeron- Findeisen mechanism), he adds another...Fcrc c COF H w gg r ρρ (16) where COF = Parameter to include Bergeron- Findeisen mechanism for precipitation formation ρw = density of water The...subscript F in the term Q(c,cr)F indicates that the additional parameter for the coalescence and Bergeron- Findeisen mechanism are included. The final
Precipitation of sparingly soluble salts in packed sandbeds
NASA Astrophysics Data System (ADS)
Pavlakou, Efstathia I.; Sygouni, Varvara; Paraskeva, Christakis A.
2015-04-01
One of the main problems encountered by the oil extraction industry, is the reduction of the local permeability of the rock formation near the extraction wells because of salt deposition in the pores of the rocks during the injection of brine water to displace the trapped oil ganglia within the oil formations. This phenomenon makes the oil recovery less efficient and under extreme cases the well is abandoned with a large amount of oil entrapped. Several detailed studies have been conducted in the past concerning sand bed consolidation using sparingly soluble salts for varying conditions (e.g. temperature, grain size, sand type, salt concentrations etc) and various salts [1]. Nevertheless, salt precipitation in the rock formation pores under the presence of other miscible or immiscible substances with water has not been investigated in details yet. In the present study, salt (CaCO3) precipitation experiments were performed in small beds packed with sea sand mixed with a low amount of CaCO3 seed grains. The experiments were performed using pure solutions (NaHCO3, CaCl2.2H2O) and solutions mixed with Ethylene Glycol in sand beds. Additionally, precipitation experiments were performed using pure solutions in sand beds saturated with oil phase (n-dodecane) for a wide range of solution supersaturation. During the experiments the ionic strength was kept constant. pH and concentration values of calcium ion of the effluent were measured and the precipitated salt crystals were identified using X-ray Diffraction (XRD) method. At the end of each experiment Scanning Electron Microscope (SEM) was conducted using a sample of the precipitated sand to identify the morphology of the precipitated crystals and their cohesion with sand grains. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420). References [1] Paraskeva C. A., Charalampous P. C., Stokka L. E., Klepetsanis P. G., Koutsoukos P. G., Read P., Ostvold, T. and Payatakes A. C. (2000), ''Sandbed Consolidation with Mineral Precipitation'', Journal of Colloid and Interface Science, 232, 326-339.
Diet patterns of island foxes on San Nicolas Island relative to feral cat removal
Cypher, Brian L.; Kelly, Erica C.; Ferrara, Francesca J.; Drost, Charles A.; Westall, Tory L.; Hudgens, Brian
2017-01-01
Island foxes (Urocyon littoralis) are a species of conservation concern that occur on six of the Channel Islands off the coast of southern California. We analysed island fox diet on San Nicolas Island during 2006–12 to assess the influence of the removal of feral cats (Felis catus) on the food use by foxes. Our objective was to determine whether fox diet patterns shifted in response to the cat removal conducted during 2009–10, thus indicating that cats were competing with foxes for food items. We also examined the influence of annual precipitation patterns and fox abundance on fox diet. On the basis of an analysis of 1975 fox scats, use of vertebrate prey – deer mice (Peromyscus maniculatus), birds, and lizards – increased significantly during and after the complete removal of cats (n = 66) from the island. Deer mouse abundance increased markedly during and after cat removal and use of mice by foxes was significantly related to mouse abundance. The increase in mice and shift in item use by the foxes was consistent with a reduction in exploitative competition associated with the cat removal. However, fox abundance declined markedly coincident with the removal of cats and deer mouse abundance was negatively related to fox numbers. Also, annual precipitation increased markedly during and after cat removal and deer mouse abundance closely tracked precipitation. Thus, our results indicate that other confounding factors, particularly precipitation, may have had a greater influence on fox diet patterns.
NASA Astrophysics Data System (ADS)
Di Martino, S. F.; Thewlis, G.
2014-02-01
Transformation characteristics and morphological features of ferrite/carbide aggregate (FCA) in low carbon-manganese steels have been investigated. Work shows that FCA has neither the lamellae structure of pearlite nor the lath structure of bainite and martensite. It consists of a fine dispersion of cementite particles in a smooth ferrite matrix. Carbide morphologies range from arrays of globular particles or short fibers to extended, branched, and densely interconnected fibers. Work demonstrates that FCA forms over similar cooling rate ranges to Widmanstätten ferrite. Rapid transformation of both phases occurs at temperatures between 798 K and 973 K (525 °C and 700 °C). FCA reaction is not simultaneous with Widmanstätten ferrite but occurs at temperatures intermediate between Widmanstätten ferrite and bainite. Austenite carbon content calculations verify that cementite precipitation is thermodynamically possible at FCA reaction temperatures without bainite formation. The pattern of precipitation is confirmed to be discontinuous. CCT diagrams have been constructed that incorporate FCA. At low steel manganese content, Widmanstätten ferrite and bainite bay sizes are significantly reduced so that large amounts of FCA are formed over a wide range of cooling rates.
NASA Astrophysics Data System (ADS)
Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.
2018-05-01
In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.
Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O
2013-05-01
Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Detrois, Martin; Tin, Sammy
2018-01-01
A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.
Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi
2012-09-01
In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the functional groups but also as a substrate inducing the nucleation of phosphate nanoparticles. Stable nano-sized Yb phosphate precipitates formed on yeast cell surfaces in the present study, which implies that this post-adsorption nano-particle formation process caused by microbial cells should be one of the important processes governing the long-term migration of heavy rare earth elements and presumably trivalent actinides in geological repository.
Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N
2017-11-01
We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.