Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.
Pollock, G.G.
1997-01-28
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
A Concept for In-space, System-level Validation of Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Leitner, Jesse; Carpenter, J. Russell; Naasz, Bo J.; Scharf, Daniel P.; Hadaegh, Fred Y.; Ahmed, Asif
2007-01-01
A number of international space agencies and organizations, to include the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Centre National d'Etudes Spatiales (CNES), to name a few, have embraced the concept of spacecraft formation flying to revolutionize the capabilities of astronomy and Earth remote sensing from space. The concept has been around well over a decade and a wide array of technologies and capabilities have been developed to enable multiple spacecraft to collaborate in a highly-coupled manner as would be required for a formation flying mission. Furthermore, many relevant capabilities for formation flying have been demonstrated in the area of rendezvous and docking, loosely-controlled formations, and in missions with collaborating spacecraft with very precise metrology. .However, in considering the case of precision formation flying (PFF), i.e, when the relative geometry of multiple vehicles must be controlled on-board in a continuous and precise manner, there have been several missions proposed, but the realization in space has not yet occurred due to a range of issues. This paper will briefly examine those issues and present a concept for demonstrating a core capability for performing PFF, necessary for virtually any PFF mission concept, that will help to overcome the problems encountered in prior attempts and help to allay the risks to enable future PFF science missions.
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
Optogenetic feedback control of neural activity
Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M
2015-01-01
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329
Thermoelectric technique to precisely control hyperthermic exposures of human whole blood.
DuBose, D A; Langevin, R C; Morehouse, D H
1996-12-01
The need in military research to avoid exposing humans to harsh environments and reduce animal use requires the development of in vitro models for the study of hyperthermic injury. A thermoelectric module (TEM) system was employed to heat human whole blood (HWB) in a manner similar to that experienced by heat-stroked rats. This system precisely and accurately replicated mild, moderate, and extreme heat-stress exposures. Temperature changes could be monitored without the introduction of a test sample thermistor, which reduced contamination problems. HWB with hematocrits of 45 or 50% had similar heating curves, indicating that the system compensated for differences in sample character. The unit's size permitted its containment within a standard carbon dioxide incubator to further control sample environment. These results indicate that the TEM system can precisely control temperature change in this heat stress in vitro model employing HWB. Information obtained from such a model could contribute to military preparedness.
Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay
2017-10-01
Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren
2011-01-01
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813
NASA Astrophysics Data System (ADS)
Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan
2018-04-01
Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5 × 5 mm2 . We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ˜156 K , observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.
MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication.
Weidlich, Sabrina; Krause, Kay J; Schnitker, Jan; Wolfrum, Bernhard; Offenhäusser, Andreas
2017-01-31
Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell-electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1989-01-01
A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.
Sawtooth pacing by real-time auxiliary power control in a tokamak plasma.
Goodman, T P; Felici, F; Sauter, O; Graves, J P
2011-06-17
In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.
Parallel Estimation and Control Architectures for Deep-Space Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, Fred Y.; Smith, Roy S.
2006-01-01
The formation flying of precisely controlled spacecraft in deep space can be used to implement optical instruments capable of imaging planets in other solar systems. The distance of the formation from Earth necessitates a significant level of autonomy and each spacecraft must base its actions on its estimates of the location and velocity of the other spacecraft. Precise coordination and control is the key requirement in such missions and the flow of information between spacecraft must be carefully designed. Doing this in an efficient and optimal manner requires novel techniques for the design of the on-board estimators. The use of standard Kalman filter-based designs can lead to unanticipated dynamics--which we refer to as disagreement dynamics--in the estimators' errors. We show how communication amongst the spacecraft can be designed in order to control all of the dynamics within the formation. We present several results relating the topology of the communication network to the resulting closed-loop control dynamics of the formation. The consequences for the design of the control, communication and coordination are discussed.
Convergent microRNA actions coordinate neocortical development.
Barca-Mayo, Olga; De Pietri Tonelli, Davide
2014-08-01
Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.
Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan
2018-04-27
Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5×5 mm^{2}. We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ∼156 K, observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.
Reduction to Outside the Atmosphere and Statistical Tests Used in Geneva Photometry
NASA Technical Reports Server (NTRS)
Rufener, F.
1984-01-01
Conditions for creating a precise photometric system are investigated. The analytical and discriminatory potentials of a photometry obviously result from the localization of the passbands in the spectrum; they do, however, also depend critically on the precision attained. This precision is the result of two different types of precautions. Two procedures which contribute in an efficient manner to achieving greater precision are examined. These two methods are known as hardware related precision and software related precision.
System Applies Polymer Powder To Filament Tow
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.
1993-01-01
Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.
G-Quadruplexes in DNA Replication: A Problem or a Necessity?
Valton, Anne-Laure; Prioleau, Marie-Noëlle
2016-11-01
DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-01-01
Inspired by the concept of living polymerization reaction, we are able to produce silver–gold–silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes. PMID:26134470
A biotin-triggered genetic switch in mammalian cells and mice.
Weber, Wilfried; Lienhart, Cédric; Baba, Marie Daoud-El; Fussenegger, Martin
2009-03-01
Adjustable and reversible transgene expression systems enabling precise control of metabolic pathways and tunable production of specific target proteins have been essential for conditional reprogramming of mammalian cells to achieve progress in basic and applied bioengineering disciplines. Most of the currently available transgene control modalities have been designed to be responsive to clinically licensed pharmacologically active drugs which were expected to prevail in future clinical trials yet raised concerns about side effects when administered long term at subclinical doses. We have chosen vitamin H, also known as biotin, to control target gene transcription in mammalian cells in a potentially side effect-free manner. BirA, the Escherichia coli repressor of the biotin biosynthesis operon, was fused to the Herpes simplex transactivation domain to generate a biotin-dependent transactivator(BIT), which, in the presence of biotin, binds and activates chimeric target promoters (P(BIT)) harboring BirA-specific operator sites 5' of a minimal promoter. Biotin-inducible transgene expression was functional in a variety of rodent, monkey and human cell lines, showed excellent adjustability and reversibility in transgenic Chinese hamster ovary cell lines, provided precise product gene control in standard bioreactor cultures and enabled dose-dependent vitamin H control of a human glycoprotein in mice. The combination of a side effect-free inducer, precise and reversible transcription tunability and broad functionality in different cell types as well as in entire animals represents a unique asset for the use of biotin-inducible transgene control in future gene therapy, tissue engineering and biopharmaceutical manufacturing scenarios.
Li, Chun-Yan; Guo, Zheng; Wang, Zhaohui
2007-09-01
Elucidating the regulatory mechanism of cell proliferation is central to the understanding of cancer development or organ size control. Drosophila spermatogenesis provides an excellent model to study cell proliferation since the germline cells mitotically amplify in a precise manner. However, the underlying molecular mechanism remains elusive. Germ cells derived from each gonialblast develop synchronously as one unit encapsulated by two somatic support cells (called cyst cells). Components of TGFbeta pathway have previously been found to restrict germ cell proliferation via their functions in cyst cells. Here we report that saxophone (sax), a TGFbeta type I receptor, is required in somatic cells to prevent the mitotically dividing spermatogonia from over-amplifying. Using various approaches, we demonstrate that Mad (Mothers against Dpp), a receptor-Smad usually associated with Sax-mediated TGFbeta/BMP signaling, is dispensable in this process. Instead, Smox (Smad on X, Drosophila Smad2), the other receptor-Smad formerly characterized in TGFbeta/activin signaling, is necessary for the precise mitotic divisions of spermatogonia. Furthermore, over-expressing Smox in cyst cells can partially rescue the proliferation phenotype induced by sax mutation. We propose that Smox acts downstream of Sax to prevent spermatogonial over-proliferation in Drosophila.
Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.
Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka
2015-11-02
In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.
An Electromagnetically-Controlled Precision Orbital Tracking Vehicle (POTV)
1992-12-01
assume that C > B > A. Then 0 1(t) is purely sinusoidal. tk2 (t) is also sinusoidal because the forcing function z(t) is sinusoidal. 03 (t) is more...an unpredictable -manner. The problem arises from the rank deficiency of the G input matrix as shown below. Remember we have shown already that its...rank can never exceed five because rows two, four, and six are linearly dependent. The rank deficiency arises from the "translational part" of the input
Interfacing Neural Network Components and Nucleic Acids
Lissek, Thomas
2017-01-01
Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat. PMID:29255707
Surface colour photometry of galaxies with Schmidt telescopes.
NASA Technical Reports Server (NTRS)
Wray, J. D.
1972-01-01
A method is described which owes its practicality to the capability of Schmidt telescopes to record a number of galaxy images on a single plate and to the existence of high speed computer controlled area-scanning precision microdensitometers such as the Photometric Data Systems model 1010. The method of analysis results in quantitative color-index information which is displayed in a manner that allows any user to effectively study the morphological properties of the distribution of color-index in galaxies.
NASA Technical Reports Server (NTRS)
Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.
2013-01-01
Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingfeng; Han, Lili; Jing, Hao
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold
NASA Technical Reports Server (NTRS)
Breen, Daniel P.
2012-01-01
This document discusses a technique that provides a means for suspending large, awkward loads, instrument packages, components, and machinery in a stable, controlled, and precise manner. In the baseplate of the test machine, a pattern of grooves and ports is installed that when pressurized generates an attenuated- fluent gas fold providing a low-cost, near-zero-coefficient-of-friction lubrication boundary layer that supports the object evenly, and in a predictable manner. Package movement control requires minimal force. Aids to repeatable travel and positional accuracy can be added via the addition of simple guide bars and stops to the floor or object being moved. This allows easily regulated three-axis motions. Loads of extreme weight and size can be moved and guided by a single person, or by automated means, using minimal force. Upon removal of the attenuated fluent gas fold, the object returns to a stable resting position without impact forces affecting the object.
Nucleic acid-based nanoengineering: novel structures for biomedical applications
Li, Hanying; LaBean, Thomas H.; Leong, Kam W.
2011-01-01
Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson–Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular recognition capability can give rise to interesting nanostructures that are only limited by our imagination. Over the past years, creative assembly of nucleic acids has fashioned a plethora of two-dimensional and three-dimensional nanostructures with precisely controlled size, shape and spatial functionalization. These nanostructures have been precisely patterned with molecules, proteins and gold nanoparticles for the observation of chemical reactions at the single molecule level, activation of enzymatic cascade and novel modality of photonic detection, respectively. Recently, they have also been engineered to encapsulate and release bioactive agents in a stimulus-responsive manner for therapeutic applications. The future of nucleic acid-based nanoengineering is bright and exciting. In this review, we will discuss the strategies to control the assembly of nucleic acids and highlight the recent efforts to build functional nucleic acid nanodevices for nanomedicine. PMID:23050076
Facet control of gold nanorods
Zhang, Qingfeng; Han, Lili; Jing, Hao; ...
2016-01-21
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
Eguchi, Asuka; Lee, Garrett O.; Wan, Fang; Erwin, Graham S.; Ansari, Aseem Z.
2014-01-01
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate. PMID:25145439
Gupta, Tripti; Kumar, Arun; Cattenoz, Pierre B.; VijayRaghavan, K; Giangrande, Angela
2016-01-01
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI: http://dx.doi.org/10.7554/eLife.15983.001 PMID:27740455
UAS remote sensing for precision agriculture: An independent assessment
USDA-ARS?s Scientific Manuscript database
Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. Oregon State U...
A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed
Lee, Euna
2014-01-01
By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565
NASA Astrophysics Data System (ADS)
Dong, Da; Lu, Yang; Yuan, Yueming; Fan, Xuejun
2018-06-01
An experimental facility was designed to simulate the heat exchange between the hot gas and the fuel-cooled wall in a scramjet combustor. Thermal radiation from an electrically heated graphite plate is employed to unilaterally heat up a multi-channeled cooling plate. A maximum heat flux of over 0.8 MW/m2 was achieved for an effective heating area up to 1000 mm × 40 mm. Precise control of the back pressure of a coolant (up to 5 MPa) in a unique way was also demonstrated. With this facility, studies of flow and heat transfer in hydrocarbon-cooled structures can be performed under a well-controlled manner.
Chen, Chih-Yang; Tian, Xiaoguang; Idrees, Saad; Münch, Thomas A.
2017-01-01
Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements’ kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients’ timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known “main sequence” relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic “Go” system driving eye movements but also a “Pause” system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general. NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control. PMID:28202573
Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist.
Donthamsetti, Prashant C; Winter, Nils; Schönberger, Matthias; Levitz, Joshua; Stanley, Cherise; Javitch, Jonathan A; Isacoff, Ehud Y; Trauner, Dirk
2017-12-27
Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.
In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.
Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng
2016-01-01
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.
Sub-cell turning to accomplish micron-level alignment of precision assemblies
NASA Astrophysics Data System (ADS)
Kumler, James J.; Buss, Christian
2017-08-01
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Hydrodynamic fabrication of structurally gradient ZnO nanorods.
Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok
2016-02-26
We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.
Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries
2017-01-01
The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner. SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For example, in HVC (proper name), androgens regulate variability in syntax but not phonology, whereas androgens in the robust nucleus of the arcopallium (RA) regulate variability in phonology but not syntax. Temporal aspects of song were also differentially affected by androgen signaling in HVC versus RA. Thus, androgen signaling may reduce vocal plasticity by acting in a nonredundant and precise manner in the brain. PMID:28821656
Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo
Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan
2014-01-01
The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735
Precision production: enabling deterministic throughput for precision aspheres with MRF
NASA Astrophysics Data System (ADS)
Maloney, Chris; Entezarian, Navid; Dumas, Paul
2017-10-01
Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.
Implantable optoelectronic probes for in vivo optogenetics.
Iseri, Ege; Kuzum, Duygu
2017-06-01
More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.
Implantable optoelectronic probes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Iseri, Ege; Kuzum, Duygu
2017-06-01
More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Atsushi; Saito, Yuika; Watanabe, Koichi
Localized surface plasmon resonances were controlled at deep-ultraviolet (DUV) wavelengths by fabricating aluminum (Al) nanostructures in a size-controllable manner. Plasmon resonances were obtained at wavelengths from near-UV down to 270 nm (4.6 eV) depending on the fabricated structure size. Such precise size control was realized by the nanosphere lithography technique combined with additional microwave heating to shrink the spaces in a close-packed monolayer of colloidal nanosphere masks. By adjusting the microwave heating time, the sizes of the Al nanostructures could be controlled from 80 nm to 50 nm without the need to use nanosphere beads of different sizes. With themore » outstanding controllability and versatility of the presented fabrication technique, the fabricated Al nanostructure is promising for use as a DUV plasmonic substrate, a light-harvesting platform for mediating strong light-matter interactions between UV photons and molecules placed near the metal nanostructure.« less
Off and back-on again: a tumor suppressor's tale.
Acosta, Jonuelle; Wang, Walter; Feldser, David M
2018-06-01
Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.
Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles.
Lawrence, Jimmy; Pham, Jonathan T; Lee, Dong Yun; Liu, Yujie; Crosby, Alfred J; Emrick, Todd
2014-02-25
Precisely positioning and assembling nanoparticles (NPs) into hierarchical nanostructures is opening opportunities in a wide variety of applications. Many techniques employed to produce hierarchical micrometer and nanoscale structures are limited by complex fabrication of templates and difficulties with scalability. Here we describe the fabrication and characterization of conductive nanoparticle ribbons prepared from surfactant-free organosoluble gold nanoparticles (Au NPs). We used a flow-coating technique in a controlled, stick-slip assembly to regulate the deposition of Au NPs into densely packed, multilayered structures. This affords centimeter-scale long, high-resolution Au NP ribbons with precise periodic spacing in a rapid manner, up to 2 orders-of-magnitude finer and faster than previously reported methods. These Au NP ribbons exhibit linear ohmic response, with conductivity that varies by changing the binding headgroup of the ligands. Controlling NP percolation during sintering (e.g., by adding polymer to retard rapid NP coalescence) enables the formation of highly conductive ribbons, similar to thermally sintered conductive adhesives. Hierarchical, conductive Au NP ribbons represent a promising platform to enable opportunities in sensing, optoelectronics, and electromechanical devices.
Nanoscopic Electrofocusing for Bio-Nanoelectronic Devices
NASA Astrophysics Data System (ADS)
Lakshmanan, Shanmugamurthy
2015-01-01
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
Comparison of tongue interface with keyboard for control of an assistive robotic arm.
Struijk, Lotte N S Andreasen; Lontis, Romulus
2017-07-01
This paper demonstrates how an assistive 6 DoF robotic arm with a gripper can be controlled manually using a tongue interface. The proposed method suggests that it possible for a user to manipulate the surroundings with his or her tongue using the inductive tongue control system as deployed in this study. The sensors of an inductive tongue-computer interface were mapped to the Cartesian control of an assistive robotic arm. The resulting control system was tested manually in order to compare manual control of the robot using a standard keyboard and using the tongue interface. Two healthy subjects controlled the robotic arm to precisely move a bottle of water from one location to another. The results shows that the tongue interface was able to fully control the robotic arm in a similar manner as the standard keyboard resulting in the same number of successful manipulations and an average increase in task duration of up to 30% as compared with the standard keyboard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, R. J.; Monteiro-Riviere, N. A.; Brigmon, R. L.
2009-06-01
Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO{sub 2}-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materialsmore » prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
Programmable control means for providing safe and controlled medication infusion
NASA Technical Reports Server (NTRS)
Fischell, Robert E. (Inventor)
1988-01-01
An implantable programmable infusion pump (IPIP) is disclosed and generally includes: a fluid reservoir filled with selected medication; a pump for causing a precise volumetric dosage of medication to be withdrawn from the reservoir and delivered to the appropriate site within the body; and, a control means for actuating the pump in a safe and programmable manner. The control means includes a microprocessor, a permanent memory containing a series of fixed software instructions, and a memory for storing prescription schedules, dosage limits and other data. The microprocessor actuates the pump in accordance with programmable prescription parameters and dosage limits stored in the memory. A communication link allows the control means to be remotely programmed. The control means incorporates a running integral dosage limit and other safety features which prevent an inadvertent or intentional medication overdose. The control means also monitors the pump and fluid handling system and provides an alert if any improper or potentially unsafe operation is detected.
Precision Farming and Precision Pest Management: The Power of New Crop Production Technologies
Strickland, R. Mack; Ess, Daniel R.; Parsons, Samuel D.
1998-01-01
The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage. PMID:19274236
Microbiopsy/precision cutting devices
Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.
1999-01-01
Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.
The multi-spectral line-polarization MSE system on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
The multi-spectral line-polarization MSE system on Alcator C-Mod
Mumgaard, R. T.; Scott, S. D.; Khoury, M.
2016-08-17
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
Machine Vision Applied to Navigation of Confined Spaces
NASA Technical Reports Server (NTRS)
Briscoe, Jeri M.; Broderick, David J.; Howard, Ricky; Corder, Eric L.
2004-01-01
The reliability of space related assets has been emphasized after the second loss of a Space Shuttle. The intricate nature of the hardware being inspected often requires a complete disassembly to perform a thorough inspection which can be difficult as well as costly. Furthermore, it is imperative that the hardware under inspection not be altered in any other manner than that which is intended. In these cases the use of machine vision can allow for inspection with greater frequency using less intrusive methods. Such systems can provide feedback to guide, not only manually controlled instrumentation, but autonomous robotic platforms as well. This paper serves to detail a method using machine vision to provide such sensing capabilities in a compact package. A single camera is used in conjunction with a projected reference grid to ascertain precise distance measurements. The design of the sensor focuses on the use of conventional components in an unconventional manner with the goal of providing a solution for systems that do not require or cannot accommodate more complex vision systems.
McClintock, Carlee S; Hettich, Robert L.
2012-01-01
Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708
NASA Astrophysics Data System (ADS)
Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay
2017-03-01
Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).
Population control of self-replicating systems
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1982-01-01
The literature concerning fibonacci sequence and the mathematics of self replication are reviewed. One option allows each primary to generate n-replicas, one in each sequential time frame after its own generation with no restrictions on the number of ancestors per replica. The state vector of the replicas in an efficient manner is determined. Option-B has a fixed number of replicas per primary and no restrictions on the number of ancestors for a replica. Any element fij represents the number of elements of type-j in time frame k+1 generated from type-i in time frame k. Option-D is a diagonal matrix whose eigenvalues are precisely those of f.
Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses.
Fondong, Vincent N; Nagalakshmi, Ugrappa; Dinesh-Kumar, Savithramma P
2016-10-01
Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.
VALVES FOR THE HIGH PRESSURE-HIGH TEMPERATURE (HP-HT) FLUORINATION SYSTEM. (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
This package contains two drawings of valves which eliminate errors in the gravimetric oxide dilution procedure of U/sup 235/ measurement. Isotopic contaminatioNonen in the high pressure fluorination reactor was corrected by changing the manner in which the Cu tubing joins the valve and by modification of the bellows. The compact inlet system was modified to improve the precision of the spectrometer analyses. Changes were raade in the basic leak and the air operator, which is a diaphragm-type valve, so that the setting of the flow level is controlled by the closure spring adjustment screw. This capillary-type leak has increased controlmore » range and sraooth control characteristics. It is simple to construct, is remotely operated and is free from corrosion failure. (F.S.)« less
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3D Printed Multimaterial Microfluidic Valve.
Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri
2016-01-01
We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.
System Estimates Radius of Curvature of a Segmented Mirror
NASA Technical Reports Server (NTRS)
Rakoczy, John
2008-01-01
A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.
Universal inverse design of surfaces with thin nematic elastomer sheets.
Aharoni, Hillel; Xia, Yu; Zhang, Xinyue; Kamien, Randall D; Yang, Shu
2018-06-21
Programmable shape-shifting materials can take different physical forms to achieve multifunctionality in a dynamic and controllable manner. Although morphing a shape from 2D to 3D via programmed inhomogeneous local deformations has been demonstrated in various ways, the inverse problem-finding how to program a sheet in order for it to take an arbitrary desired 3D shape-is much harder yet critical to realize specific functions. Here, we address this inverse problem in thin liquid crystal elastomer (LCE) sheets, where the shape is preprogrammed by precise and local control of the molecular orientation of the liquid crystal monomers. We show how blueprints for arbitrary surface geometries can be generated using approximate numerical methods and how local extrinsic curvatures can be generated to assist in properly converting these geometries into shapes. Backed by faithfully alignable and rapidly lockable LCE chemistry, we precisely embed our designs in LCE sheets using advanced top-down microfabrication techniques. We thus successfully produce flat sheets that, upon thermal activation, take an arbitrary desired shape, such as a face. The general design principles presented here for creating an arbitrary 3D shape will allow for exploration of unmet needs in flexible electronics, metamaterials, aerospace and medical devices, and more.
Rotary fast tool servo system and methods
Montesanti, Richard C.; Trumper, David L.
2007-10-02
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Rotary fast tool servo system and methods
Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-08-18
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Genome engineering and plant breeding: impact on trait discovery and development.
Nogué, Fabien; Mara, Kostlend; Collonnier, Cécile; Casacuberta, Josep M
2016-07-01
New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-01-01
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260
Etching radical controlled gas chopped deep reactive ion etching
Olynick, Deidre; Rangelow, Ivo; Chao, Weilun
2013-10-01
A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.
Microbiopsy/precision cutting devices
Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.
1999-07-27
Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.
Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M
2018-06-09
Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.
Establishment of Tools for Neurogenetic Analysis of Sexual Behavior in the Silkmoth, Bombyx mori
Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki
2014-01-01
Background Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. Results In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. Conclusion These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods. PMID:25396742
Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.
Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki
2014-01-01
Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods.
Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S
2017-10-01
In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.
An electrically actuated molecular toggle switch
NASA Astrophysics Data System (ADS)
Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf
2017-03-01
Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.
3D Printed Multimaterial Microfluidic Valve
Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri
2016-01-01
We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809
Leavitt, Victoria M; Lengenfelder, Jean; Moore, Nancy B; Chiaravalloti, Nancy D; DeLuca, John
2011-06-01
Cognitive symptoms of multiple sclerosis (MS) include processing-speed deficits and working memory impairment. The precise manner in which these deficits interact in individuals with MS remains to be explicated. We hypothesized that providing more time on a complex working memory task would result in performance benefits for individuals with MS relative to healthy controls. Fifty-three individuals with clinically definite MS and 36 matched healthy controls performed a computerized task that systematically manipulated cognitive load. The interval between stimuli presentations was manipulated to provide increasing processing time. The results confirmed that individuals with MS who have processing-speed deficits significantly improve in performance accuracy when given additional time to process the information in working memory. Implications of these findings for developing appropriate cognitive rehabilitation interventions are discussed.
Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
Park, Haesung; LeBrun, Thomas W
2016-12-21
We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.
A fungicide-responsive kinase as a tool for synthetic cell fate regulation.
Furukawa, Kentaro; Hohmann, Stefan
2015-08-18
Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic 'suicide attack' system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A; Correig, Xavier; Arola, Lluís; Bladé, Cinta
2016-04-22
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.
Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A.; Correig, Xavier; Arola, Lluís; Bladé, Cinta
2016-01-01
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD+) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD+ precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD+. Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD+ availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD+ levels. PMID:27102823
Lee, Sang-Wook; Noh, Ji-Yoon; Park, Seung Chul; Chung, Jin-Ho; Lee, Byoungho; Lee, Sin-Doo
2012-05-22
We develop a biomimetic cell-on-membrane architecture in close-volume format which allows the interfacial biocompatibility and the reagent delivery capability for on-chip bioassays. The key concept lies in the microfluidic engraving of lipid membranes together with biological cells on a supported substrate with topographic patterns. The simultaneous engraving process of a different class of fluids is promoted by the front propagation of an air-water interface inside a flow-cell. This highly parallel, microfluidic cell-on-membrane approach opens a door to the natural biocompatibility in mimicking cellular stimuli-response behavior essential for diverse on-chip bioassays that can be precisely controlled in the spatial and temporal manner.
ESIP Documentation Cluster Session: GCMD Keyword Update
NASA Technical Reports Server (NTRS)
Stevens, Tyler
2018-01-01
The Global Change Master Directory (GCMD) Keywords are a hierarchical set of controlled Earth Science vocabularies that help ensure Earth science data and services are described in a consistent and comprehensive manner and allow for the precise searching of collection-level metadata and subsequent retrieval of data and services. Initiated over twenty years ago, the GCMD Keywords are periodically analyzed for relevancy and will continue to be refined and expanded in response to user needs. This talk explores the current status of the GCMD keywords, the value and usage that the keywords bring to different tools/agencies as it relates to data discovery, and how the keywords relate to SWEET (Semantic Web for Earth and Environmental Terminology) Ontologies.
Microelectromechanical reciprocating-tooth indexing apparatus
Allen, James J.
1999-01-01
An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.
Chaos and the Double Function of Communication
NASA Astrophysics Data System (ADS)
Aula, P. S.
Since at least the needle model age, communication researchers have systematically sought means to explain, control and predict communication behavior between people. For many reasons, the accuracy of constructed models and the studies based upon them has not risen very high. It can be claimed that the reasons for the inaccuracy of communication models, and thus the poor predictability of everyday action, originate from the processes' innate chaos, apparent beneath their behavior. This leads to the argument that communication systems, which appear stable and have precisely identical starting points and identical operating environments, can nevertheless behave in an exceptional and completely different manner, despite the fact that their behavior is ruled or directed by the same rules or laws.
Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick
2018-03-10
Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.
Heliostat kinematic system calibration using uncalibrated cameras
NASA Astrophysics Data System (ADS)
Burisch, Michael; Gomez, Luis; Olasolo, David; Villasante, Cristobal
2017-06-01
The efficiency of the solar field greatly depends on the ability of the heliostats to precisely reflect solar radiation onto a central receiver. To control the heliostats with such a precision accurate knowledge of the motion of each of them modeled as a kinematic system is required. Determining the parameters of this system for each heliostat by a calibration system is crucial for the efficient operation of the solar field. For small sized heliostats being able to make such a calibration in a fast and automatic manner is imperative as the solar field potentially contain tens or even hundreds of thousands of them. A calibration system which can rapidly recalibrate a whole solar field would also allow reducing costs. Heliostats are generally designed to provide stability over a large period of time. Being able to relax this requirement and compensate any occurring error by adapting parameters in a model, the costs of the heliostat can be reduced. The presented method describes such an automatic calibration system using uncalibrated cameras rigidly attached to each heliostat. The cameras are used to observe targets spread out through the solar field; based on this the kinematic system of the heliostat can be estimated with high precision. A comparison of this approach to similar solutions shows the viability of the proposed solution.
Camera Control and Geo-Registration for Video Sensor Networks
NASA Astrophysics Data System (ADS)
Davis, James W.
With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.
Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin
2007-02-01
This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.
In praise of vagueness: malleability of vague information as a performance booster.
Mishra, Himanshu; Mishra, Arul; Shiv, Baba
2011-06-01
Is the eternal quest for precise information always worthwhile? Our research suggests that, at times, vagueness has its merits. Previous research has demonstrated that people prefer precise information over vague information because it gives them a sense of security and makes their environments more predictable. However, we show that the fuzzy boundaries afforded by vague information can actually help individuals perform better than can precise information. We document these findings across two laboratory studies and one quasi-field study that involved different performance-related contexts (mental acuity, physical strength, and weight loss). We argue that the malleability of vague information allows people to interpret it in the manner they desire, so that they can generate positive response expectancies and, thereby, perform better. The rigidity of precise information discourages desirable interpretations. Hence, on certain occasions, precise information is not as helpful as vague information in boosting performance.
Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D.
Huang, Gaoshan; Mei, Yongfeng
2018-04-01
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass-production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self-assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patterned Arrays of Functional Lateral Heterostructures via Sequential Template-Directed Printing.
Li, Yifan; Su, Meng; Li, Zheng; Huang, Zhandong; Li, Fengyu; Pan, Qi; Ren, Wanjie; Hu, Xiaotian; Song, Yanlin
2018-04-30
The precise integration of microscale dots and lines with controllable interfacing connections is highly important for the fabrication of functional devices. To date, the solution-processible methods are used to fabricate the heterogeneous micropatterns for different materials. However, for increasingly miniaturized and multifunctional devices, it is extremely challenging to engineer the uncertain kinetics of a solution on the microstructures surfaces, resulting in uncontrollable interface connections and poor device performance. Here, a sequential template-directed printing process is demonstrated for the fabrication of arrayed microdots connected by microwires through the regulation of the Rayleigh-Taylor instability of material solution or suspension. Flexibility in the control of fluidic behaviors can realize precise interface connection between the micropatterns, including the microwires traversing, overlapping or connecting the microdots. Moreover, various morphologies such as circular, rhombic, or star-shaped microdots as well as straight, broken or curved microwires can be achieved. The lateral heterostructure printed with two different quantum dots displays bright dichromatic photoluminescence. The ammonia gas sensor printed by polyaniline and silver nanoparticles exhibits a rapid response time. This strategy can construct heterostructures in a facile manner by eliminating the uncertainty of the multimaterials interface connection, which will be promising for the development of novel lateral functional devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals
Koos, Tibor; Buzsáki, György
2012-01-01
Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions. PMID:22496529
Xu, Xuehua; Gera, Nidhi; Li, Hongyan; Yun, Michelle; Zhang, Liyong; Wang, Youhong; Wang, Q. Jane; Jin, Tian
2015-01-01
Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis. PMID:25568344
Analyzing cell fate control by cytokines through continuous single cell biochemistry.
Rieger, Michael A; Schroeder, Timm
2009-10-01
Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.
Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon
2015-01-01
Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284
Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon
2015-10-29
Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.
Scalable lithography from Natural DNA Patterns via polyacrylamide gel
NASA Astrophysics Data System (ADS)
Qu, Jiehao; Hou, Xianliang; Fan, Wanchao; Xi, Guanghui; Diao, Hongyan; Liu, Xiangdon
2015-12-01
A facile strategy for fabricating scalable stamps has been developed using cross-linked polyacrylamide gel (PAMG) that controllably and precisely shrinks and swells with water content. Aligned patterns of natural DNA molecules were prepared by evaporative self-assembly on a PMMA substrate, and were transferred to unsaturated polyester resin (UPR) to form a negative replica. The negative was used to pattern the linear structures onto the surface of water-swollen PAMG, and the pattern sizes on the PAMG stamp were customized by adjusting the water content of the PAMG. As a result, consistent reproduction of DNA patterns could be achieved with feature sizes that can be controlled over the range of 40%-200% of the original pattern dimensions. This methodology is novel and may pave a new avenue for manufacturing stamp-based functional nanostructures in a simple and cost-effective manner on a large scale.
Matsugo, S; Yan, L J; Han, D; Packer, L
1995-01-05
We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.
Dynamic control of chirality in phosphine ligands for enantioselective catalysis
Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.
2015-01-01
Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856
Optogenetic control of ATP release
NASA Astrophysics Data System (ADS)
Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.
2013-03-01
Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-05-05
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Electromagnetic variable degrees of freedom actuator systems and methods
Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-02-17
The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.
Applications of Microfluidics in Quantitative Biology.
Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang
2018-05-01
Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Natural photoreceptors and their application to synthetic biology.
Schmidt, Daniel; Cho, Yong Ku
2015-02-01
The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level. Published by Elsevier Ltd.
Coding/decoding and reversibility of droplet trains in microfluidic networks.
Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M
2007-02-09
Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.
Kallenberger, Stefan M.; Beaudouin, Joël; Claus, Juliane; Fischer, Carmen; Sorger, Peter K.; Legewie, Stefan; Eils, Roland
2014-01-01
Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8, and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis. PMID:24619646
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, R.
2009-05-05
Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Inmore » addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less
Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M
2000-05-01
Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.
Xin, Qiuhong; Ogura, Yukiko; Matsushima, Toshiya
2017-07-01
To examine how resource competition contributes to patch-use behaviour, we examined domestic chicks foraging in an I-shaped maze equipped with two terminal feeders. In a variable interval schedule, one feeder supplied grains three times more frequently than the other, and the sides were reversed midway through the experiment. The maze was partitioned into two lanes by a transparent wall, so that chicks fictitiously competed without actual interference. Stay time at feeders was compared among three groups. The "single" group contained control chicks; the "pair" group comprised the pairs of chicks tested in the fictitious competition; "mirror" included single chicks accompanied by their respective mirror images. Both "pair" and "mirror" chicks showed facilitated running. In terms of the patch-use ratio, "pair" chicks showed precise matching at approximately 3:1 with significant mutual dependence, whereas "single" and "mirror" chicks showed a comparable under-matching. The facilitated running increased visits to feeders, but failed to predict the patch-use ratio of the subject. At the reversal, quick switching occurred similarly in all groups, but the "pair" chicks revealed a stronger memory-based matching. Perceived competition therefore contributes to precise matching and lasting memory of the better feeder, in a manner dissociated from socially facilitated food search. Copyright © 2017 Elsevier B.V. All rights reserved.
Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly
2016-01-01
Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.
Dual transcriptional-translational cascade permits cellular level tuneable expression control
Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil
2016-01-01
The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200
Multi-Cellular Logistics of Collective Cell Migration
Yamao, Masataka; Naoki, Honda; Ishii, Shin
2011-01-01
During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems. PMID:22205934
NASA Astrophysics Data System (ADS)
Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.
2014-09-01
Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.
Marine Corps Aviation Intelligence: A DOTMLPF-P Analysis
2015-06-12
forms of raw intelligence data into a usable format that can be disseminated to OAAW planners in a timely manner.26 The execution of air defense...used to conduct reconnaissance for developing precise targeting and up to date mapping against enemy formations .62 USMC intelligence can be traced...
Detection of nitrogen deficiency in potatoes using small unmanned aircraft systems
USDA-ARS?s Scientific Manuscript database
Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. We set up a ni...
75 FR 41369 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD Revision 1; Withdrawal
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
...) Number 1030. The NRC is taking this action because the applicant identified that a certain Technical Specification (TS) for Boral characterization was not written precisely and in a manner that could be readily... cavity water removal operations, and making [[Page 41370
USSR Report, Political and Sociological Affairs, No. 1438.
1983-08-02
organized manner in spite of a considerable increase in the volume of work. Animal productivity was increased. The plan for procurement of meat, milk ...possible to talk about evidence under conditions of blatant falsification of the facts—has been the culture, or more precisely, the literature, of Central
NASA Astrophysics Data System (ADS)
Hyde, B. C.; Tait, K. T.; Nicklin, I.; Day, J. M. D.; Ash, R. D.; Moser, D. E.
2013-09-01
Sectioning of meteorites is usually done in an arbitrary manner. We used micro-computed tomography to view the interior of brachinite NWA 4872. A cut was then made through an area of interest. Heterogeneity and modal abundance are discussed.
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Web Application to Monitor Logistics Distribution of Disaster Relief Using the CodeIgniter Framework
NASA Astrophysics Data System (ADS)
Jamil, Mohamad; Ridwan Lessy, Mohamad
2018-03-01
Disaster management is the responsibility of the central government and local governments. The principles of disaster management, among others, are quick and precise, priorities, coordination and cohesion, efficient and effective manner. Help that is needed by most societies are logistical assistance, such as the assistance covers people’s everyday needs, such as food, instant noodles, fast food, blankets, mattresses etc. Logistical assistance is needed for disaster management, especially in times of disasters. The support of logistical assistance must be timely, to the right location, target, quality, quantity, and needs. The purpose of this study is to make a web application to monitorlogistics distribution of disaster relefusing CodeIgniter framework. Through this application, the mechanisms of aid delivery will be easily controlled from and heading to the disaster site.
Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis
2017-01-01
ABSTRACT Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo. PMID:28292844
First Light of the Renovated Thacher Observatory
NASA Astrophysics Data System (ADS)
O'Neill, Katie; Yin, Yao; Edwards, Nick; Swift, Jonathan
2017-01-01
The Thacher Observatory, originally a collaboration between UCLA (P.I. G. Abell), Caltech, Pomona College, and the Thacher School, was built in the early 1960s. The goal of the facility was to serve as a training ground for undergraduate and graduate students in Los Angeles area colleges and also to provide hands-on technical training and experience for Thacher students. It was the birthplace of the Summer Science Program which continues today at other campuses. The observatory has now been fully renovated and modernized with a new, 0.7m telescope and dome that can be controlled remotely and in an automated manner. Science programs involving accurate and precise photometry have been initiated, and we project that we will be presenting the first scientific results of the renovated observatory at this meeting.
Size-exclusion chromatography system for macromolecular interaction analysis
Stevens, Fred J.
1988-01-01
A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.
Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying
2018-03-28
Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.
De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario
2017-08-01
Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.
Composite panel development at JPL
NASA Technical Reports Server (NTRS)
Mcelroy, Paul; Helms, Rich
1988-01-01
Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.
Multiple functions of the E3 ubiquitin ligase CHIP in immunity.
Zhan, Shaohua; Wang, Tianxiao; Ge, Wei
2017-09-03
The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication.
Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S
2016-06-28
Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.
Directing Matter: Toward Atomic-Scale 3D Nanofabrication
Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; ...
2016-05-16
Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...
2017-03-08
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
CARMENES. IV: instrument control software
NASA Astrophysics Data System (ADS)
Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger
2012-09-01
The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.
Human-arm-and-hand-dynamic model with variability analyses for a stylus-based haptic interface.
Fu, Michael J; Cavuşoğlu, M Cenk
2012-12-01
Haptic interface research benefits from accurate human arm models for control and system design. The literature contains many human arm dynamic models but lacks detailed variability analyses. Without accurate measurements, variability is modeled in a very conservative manner, leading to less than optimal controller and system designs. This paper not only presents models for human arm dynamics but also develops inter- and intrasubject variability models for a stylus-based haptic device. Data from 15 human subjects (nine male, six female, ages 20-32) were collected using a Phantom Premium 1.5a haptic device for system identification. In this paper, grip-force-dependent models were identified for 1-3-N grip forces in the three spatial axes. Also, variability due to human subjects and grip-force variation were modeled as both structured and unstructured uncertainties. For both forms of variability, the maximum variation, 95 %, and 67 % confidence interval limits were examined. All models were in the frequency domain with force as input and position as output. The identified models enable precise controllers targeted to a subset of possible human operator dynamics.
Influence in Action in "Catch Me if You Can"
ERIC Educational Resources Information Center
Meyer, Gary; Roberto, Anthony J.
2005-01-01
For decades, scholars have worked to understand the precise manner in which messages affect attitudes and ultimately behaviors. The dominant paradigm suggests that there are two methods or routes to attitude change, one based on careful consideration of the messages and the other based on simple decision rules, often referred to as heuristics…
Commentary: Can This Evaluation Be Saved?
ERIC Educational Resources Information Center
Ginsberg, Pauline E.
2004-01-01
Can this evaluation be saved? More precisely, can this evaluation be saved in such a way that both evaluator and client feel satisfied that their points of view were respected and both agree that the evaluation itself provides valid information obtained in a principled manner? Because the scenario describes a preliminary discussion and no contract…
Measuring Disorientation Based on the Needleman-Wunsch Algorithm
ERIC Educational Resources Information Center
Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel
2015-01-01
This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…
Understanding Implicit Bias: What Educators Should Know
ERIC Educational Resources Information Center
Staats, Cheryl
2016-01-01
The desire to ensure the best for children is precisely why educators should become aware of the concept of implicit bias: the attitudes or stereotypes that affect our understanding, actions, and decisions in an unconscious manner. Operating outside of our conscious awareness, implicit biases are pervasive, and they can challenge even the most…
Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography
NASA Astrophysics Data System (ADS)
Li, Sen-Sen; Shen, Yuan; Chang, Zhen-Ni; Li, Wen-Song; Xu, Yan-Chao; Fan, Xing-Yu; Chen, Lu-Jian
2017-12-01
A convenient approach to modulate the fingerprint textures of methyl red (MR) doped cholesteric liquid crystals by asymmetric photoalignment in the green-light waveband is presented, resulting in the generation of voltage-controllable helical superstructures. The interaction between the MR molecules and the incident light polarization determines the initial twisted planar geometry, providing a multivariant control over the stripe directions of fingerprint textures by applying a proper electric field. The key factors for precise manipulation of fingerprint stripes in a predictable and rewritable manner are analyzed theoretically and investigated experimentally, which involves the alignment asymmetry, the ratio of cell gap to natural pitch length, and the chirality of chiral dopant. Dynamic periodic fingerprint textures in shapes of dashed curve and dashed line are further demonstrated by utilizing a facile one-step polarization holography process using two beams with orthogonal circular and orthogonal linear polarizations, respectively. It is believed that the practical approach described in this study would enrich the research contents of self-assembled hierarchical superstructures using soft liquid crystal building blocks.
NASA Technical Reports Server (NTRS)
Wilcox, Margaret
2008-01-01
A CSEA is similar to a Failure Modes Effects Analysis (FMEA). A CSEA tracks risk, deterrence, and occurrence of sources of contamination and their mitigation plans. Documentation is provided spanning mechanical and electrical assembly, precision cleaning, thermal vacuum bake-out, and thermal vacuum testing. These facilities all may play a role in contamination budgeting and reduction ultimately affecting test and flight. With a CSEA, visibility can be given to availability of these facilities, test sequencing and trade-offs. A cross-functional team including specialty engineering, contamination control, electrostatic dissipation, manufacturing, testing, and material engineering participate in an exercise that identifies contaminants and minimizes the complexity of scheduling these facilities considering their volatile schedules. Care can be taken in an efficient manner to insure correct cleaning processes are employed. The result is reduction in cycle time ("schedule hits"), reduced cost due to rework, reduced risk and improved communication and quality while achieving adherence to the Contamination Control Plan.
Three-dimensional manipulation of single cells using surface acoustic waves.
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-02-09
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.
Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing
Lu, Jia; Zhao, Chen; Zhao, Yingze; Zhang, Jingfang; Zhang, Yue; Chen, Li; Han, Qiyuan; Ying, Yue; Peng, Shuai; Ai, Runna; Wang, Yu
2018-01-01
Abstract Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes. PMID:29237052
[Implementation of precision control to achieve the goal of schistosomiasis elimination in China].
Zhou, Xiao-nong
2016-02-01
The integrated strategy for schistosomiasis control with focus on infectious source control, which has been implemented since 2004, accelerated the progress towards schistosomiasis control in China, and achieved transmission control of the disease across the country by the end of 2015, which achieved the overall objective of the Mid- and Long-term National Plan for Prevention and Control of Schistosomiasis (2004-2015) on schedule. Then, the goal of schistosomiasis elimination by 2025 was proposed in China in 2014. To achieve this new goal on schedule, we have to address the key issues, and implement precision control measures with more precise identification of control targets, so that we are able to completely eradicate the potential factors leading to resurgence of schistosomiasis transmission and enable the achievement of schistosomiasis elimination on schedule. Precision schistosomiasis control, a theoretical innovation of precision medicine in schistosomiasis control, will provide new insights into schistosomiasis control based on the conception of precision medicine. This paper describes the definition, interventions and the role of precision schistosomiasis control in the elimination of schistosomiasis in China, and demonstrates that sustainable improvement of professionals and integrated control capability at grass-root level is a prerequisite to the implementation of schistosomiasis control, precision schistosomiasis control is a key to the further implementation of the integrated strategy for schistosomiasis control with focus on infectious source control, and precision schistosomiasis control is a guarantee of curing schistosomiasis patients and implementing schistosomiasis control program and interventions.
Carey, Robert I; Kyle, Christopher C; Carey, Donna L; Leveillee, Raymond J
2008-01-01
To prepare artificial kidney stones of defined shape, size, mass, and material composition via precision injection molding of Ultracal 30 cement slurries into an inexpensive biodegradable mold. A calcium alginate and silica-based mold was used to prepare casts of varying shapes in a reproducible manner. Ultracal 30 cement slurries mixed 1:1 with water were injected into these casts and allowed to harden. The artificial stones were recovered and their physical properties determined. Ex-vivo and in-vivo responses to holmium laser lithotripsy were examined. Spheres, half spheres, cylinders, cubes, tapered conical structures, and flat angulated structures were prepared with high precision without post-molding manipulations. Large spheres of average mass 0.661 g (+/- 0.037), small spheres of average mass 0.046 g (+/- 0.0026), and hexagons of average mass 0.752 g (+/- 0.0180) were found to have densities (1610-1687 kg/m(3)) within the expected range for Ultracal 30 cement stones. Ex-vivo holmium laser lithotripsy of small spheres in saline showed uniformly reproducible efficiencies of comminution. Implantation of a tapered conical stone into the ureter of a porcine model demonstrated stone comminution in vivo consistent with that seen in the ex-vivo models. We present an environmentally safe, technically simple procedure for the formation of artificial kidney stones of predetermined size and shape. The technique does not require the use of hazardous solvents or postprocedural processing of the stones. These stones are intended for use in standardized experiments of lithotripsy efficiency in which the shape of the stone as well as the mass can be predetermined and precisely controlled.
NASA Astrophysics Data System (ADS)
Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin
2018-01-01
We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.
Huang, Yin; Zheng, Ning; Cheng, Zhiqiang; Chen, Ying; Lu, Bingwei; Xie, Tao; Feng, Xue
2016-12-28
Flexible and stretchable electronics offer a wide range of unprecedented opportunities beyond conventional rigid electronics. Despite their vast promise, a significant bottleneck lies in the availability of a transfer printing technique to manufacture such devices in a highly controllable and scalable manner. Current technologies usually rely on manual stick-and-place and do not offer feasible mechanisms for precise and quantitative process control, especially when scalability is taken into account. Here, we demonstrate a spatioselective and programmable transfer strategy to print electronic microelements onto a soft substrate. The method takes advantage of automated direct laser writing to trigger localized heating of a micropatterned shape memory polymer adhesive stamp, allowing highly controlled and spatioselective switching of the interfacial adhesion. This, coupled to the proper tuning of the stamp properties, enables printing with perfect yield. The wide range adhesion switchability further allows printing of hybrid electronic elements, which is otherwise challenging given the complex interfacial manipulation involved. Our temperature-controlled transfer printing technique shows its critical importance and obvious advantages in the potential scale-up of device manufacturing. Our strategy opens a route to manufacturing flexible electronics with exceptional versatility and potential scalability.
Induction Consolidation of Thermoplastic Composites Using Smart Susceptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc R
2012-06-14
This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies.more » Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.« less
Pseudoscaffolds and anchoring proteins: the difference is in the details
Aggarwal-Howarth, Stacey; Scott, John D.
2017-01-01
Pseudokinases and pseudophosphatases possess the ability to bind substrates without catalyzing their modification, thereby providing a mechanism to recruit potential phosphotargets away from active enzymes. Since many of these pseudoenzymes possess other characteristics such as localization signals, separate catalytic sites, and protein–protein interaction domains, they have the capacity to influence signaling dynamics in local environments. In a similar manner, the targeting of signaling enzymes to subcellular locations by A-kinase-anchoring proteins (AKAPs) allows for precise and local control of second messenger signaling events. Here, we will discuss how pseudoenzymes form ‘pseudoscaffolds’ and compare and contrast this compartment-specific regulatory role with the signal organization properties of AKAPs. The mitochondria will be the focus of this review, as they are dynamic organelles that influence a broad range of cellular processes such as metabolism, ATP synthesis, and apoptosis. PMID:28408477
3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation
Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei
2017-01-01
Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner. PMID:28205596
ERIC Educational Resources Information Center
Scheitle, Christopher P.; Hahn, Bryanna B.
2011-01-01
It is often assumed that the religious culture of a state can shape policies within the state, particularly concerning morality issues such as abortion or homosexuality. However, the precise manner in which religion shapes these policies has not been clearly specified. Drawing from social movements and policy literature, we argue that the…
3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation
NASA Astrophysics Data System (ADS)
Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei
2017-02-01
Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner.
Next Steps in Network Time Synchronization For Navy Shipboard Applications
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements
ERIC Educational Resources Information Center
Economou, A.; Tzanavaras, P. D.; Themelis, D. G.
2005-01-01
The sequential-injection analysis (SIA) is an approach to sample handling that enables the automation of manual wet-chemistry procedures in a rapid, precise and efficient manner. The experiments using SIA fits well in the course of Instrumental Chemical Analysis and especially in the section of Automatic Methods of analysis provided by chemistry…
ERIC Educational Resources Information Center
Loucks, Susan F.; Crandall, David P.
The practice profile is a standardized, systematic, cost-effective tool for summarizing the components and requirements of a program in a manner that permits comparison with other programs or selection of discrete components from various programs. It provides a component checklist, a precise list of implementation requirements, and a system for…
ERIC Educational Resources Information Center
Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis
2006-01-01
Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis
2017-01-01
Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.
The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio)
Parra, Kevin V.; Adrian, James C.; Gerlai, Robert
2009-01-01
Zebrafish, one of the preferred study species of geneticists, is gaining increasing popularity in behavioral neuroscience. This small and prolific species may be an excellent tool with which the biological mechanisms of vertebrate brain function and behavior are investigated. Zebrafish has been proposed as a model organism in the analysis of fear responses and human anxiety disorders. Species-specific cues signaling the presence of predators have been successfully utilized in such research. Zebrafish has been shown to respond to its natural alarm substance with species-typical fear reactions. However, the extraction of this alarm substance and ascertaining its consistent dosing has been problematic. A synthetic substance with a known chemical identity and molecular weight would allow precise dosing and experimental control. Previously, the chemical component, hypoxanthine 3-N-oxide, common to several fish alarm substances has been identified and has been shown to elicit alarm reactions in fish species belonging to the Osteriophysan superorder. In the current study we investigate the effect of hypoxanthine 3-N-oxide by exposing zebrafish to three different concentrations of this synthetic substance. Our results show that the substance efficaciously induces species-typical fear reactions increasing the number of erratic movement episodes and jumps in zebrafish. We discuss the translational relevance of our findings and conclude that hypoxanthine 3-N-oxide will have utility to elicit fear responses in the laboratory in a precisely controlled manner in zebrafish. PMID:19583985
NASA Astrophysics Data System (ADS)
Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie
2018-02-01
The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.
Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors
Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.
2014-01-01
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. PMID:23142759
Personnel Data Analysis and Retrieval of Phase 1 Move To LC-39 Area
NASA Technical Reports Server (NTRS)
Davis, Derrick D.
2013-01-01
As a technology major from Jackson State University (JSU) I was called in as a summer intern at Kennedy Space Center (KSC) to work in the NASA Engineering, Control and Data Systems (NE-C) Division supporting the Spaceport Command and Control System (SCCS) at the Space Station Processing Facility (SSPF). I was given a two-part project; the first consisted of lending support relocating SCCS Computer Equipment and Project Personnel to the Launch Control Center (LCC). This task involved me using a Microsoft Office data processing tool to assist with the analysis and information management of logistics worth millions of dollars. With the assistance of two other interns, I was responsible for collecting data on equipment used, on a daily basis, by over 200 KSC employees. The many network servers, enterprise switches, desktop computers, and fiber optics had to be handled in an equally prompt and precise manner in order to ensure a minimal amount of equipment down time; which is critical in ensuring a properly secured networking environment. The second part of my project was to assist KSC in developing a more cost effective way of maintaining and taking full advantage of the functionality of some new kiosk units. Since KSC currently has no expert on the servicing and maintenance of the units, I, as a computer technology major, was given the opportunity to assess the hardware and software of the machines. The goal was to learn to establish a secure and remote environment for the kiosks; a goal highly valuing convenience by preserving valuable man-hours saved by not having to travel to each individual kiosk location. In addition, I was to leave a clear and precise plan for future users and administrators of the devices to follow.
Shared internal models for feedforward and feedback control.
Wagner, Mark J; Smith, Maurice A
2008-10-15
A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.
A three stage sampling model for remote sensing applications
NASA Technical Reports Server (NTRS)
Eisgruber, L. M.
1972-01-01
A conceptual model and an empirical application of the relationship between the manner of selecting observations and its effect on the precision of estimates from remote sensing are reported. This three stage sampling scheme considers flightlines, segments within flightlines, and units within these segments. The error of estimate is dependent on the number of observations in each of the stages.
Distinguishing Provenance Equivalence of Earth Science Data
NASA Technical Reports Server (NTRS)
Tilmes, Curt; Yesha, Ye; Halem, M.
2010-01-01
Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.
Walker, Jennifer L; Monjaraz-Fuentes, Fernanda; Pedrow, Christi R; Rector, David M
2011-03-15
We developed a high speed voice coil based whisker stimulator that delivers precise deflections of a single whisker or group of whiskers in a repeatable manner. The device is miniature, quiet, and inexpensive to build. Multiple stimulators fit together for independent stimulation of four or more whiskers. The system can be used with animals under anesthesia as well as awake animals with head-restraint, and does not require trimming the whiskers. The system can deliver 1-2 mm deflections in 2 ms resulting in velocities up to 900 mm/s to attain a wide range of evoked responses. Since auditory artifacts can influence behavioral studies using whisker stimulation, we tested potential effects of auditory noise by recording somatosensory evoked potentials (SEP) with varying auditory click levels, and with/without 80 dBa background white noise. We found that auditory clicks as low as 40 dBa significantly influence the SEP. With background white noise, auditory clicks as low as 50 dBa were still detected in components of the SEP. For behavioral studies where animals must learn to respond to whisker stimulation, these sounds must be minimized. Together, the stimulator and data system can be used for psychometric vigilance tasks, mapping of the barrel cortex and other electrophysiological paradigms. Copyright © 2010 Elsevier B.V. All rights reserved.
Throughput and latency programmable optical transceiver by using DSP and FEC control.
Tanimura, Takahito; Hoshida, Takeshi; Kato, Tomoyuki; Watanabe, Shigeki; Suzuki, Makoto; Morikawa, Hiroyuki
2017-05-15
We propose and experimentally demonstrate a proof-of-concept of a programmable optical transceiver that enables simultaneous optimization of multiple programmable parameters (modulation format, symbol rate, power allocation, and FEC) for satisfying throughput, signal quality, and latency requirements. The proposed optical transceiver also accommodates multiple sub-channels that can transport different optical signals with different requirements. Multi-degree-of-freedom of the parameters often leads to difficulty in finding the optimum combination among the parameters due to an explosion of the number of combinations. The proposed optical transceiver reduces the number of combinations and finds feasible sets of programmable parameters by using constraints of the parameters combined with a precise analytical model. For precise BER prediction with the specified set of parameters, we model the sub-channel BER as a function of OSNR, modulation formats, symbol rates, and power difference between sub-channels. Next, we formulate simple constraints of the parameters and combine the constraints with the analytical model to seek feasible sets of programmable parameters. Finally, we experimentally demonstrate the end-to-end operation of the proposed optical transceiver with offline manner including low-density parity-check (LDPC) FEC encoding and decoding under a specific use case with latency-sensitive application and 40-km transmission.
CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells.
Skvarova Kramarzova, Karolina; Osborn, Mark J; Webber, Beau R; DeFeo, Anthony P; McElroy, Amber N; Kim, Chong Jai; Tolar, Jakub
2017-06-14
Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 ( FANCD1 ) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase). FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
Laser-based direct-write techniques for cell printing
Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B
2016-01-01
Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088
Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan
2016-06-01
This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.
Zheng, Y.
2013-01-01
Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724
Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A
2010-03-01
The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the successful scale-up of DPN and the novel chemistries and systems to facilitate the production of homogeneously patterned substrates (5 mm2) that are applicable for use in in vitro cell conditions over prolonged periods for complete control of material driven cell responses.
Real-time animation software for customized training to use motor prosthetic systems.
Davoodi, Rahman; Loeb, Gerald E
2012-03-01
Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test neural prostheses for patients with paralysis or amputations.
Precision digital control systems
NASA Astrophysics Data System (ADS)
Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.
This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.
Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.
Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.
Ground water hydraulics as a geophysical aid
Ferris, John G.
1948-01-01
The publication of the non-equilibrium formula in 1935 in a paper by Theis marked the opening of a new era in the analysis and understanding of the hydraulics of percolating ground waters. Through the past decade 9 an ever-increasing number of engineers and geologists have become familiar-with the application of this formula to practical problems of ground-water flow and have tested it in the field, against precise observations, under controlled conditions. Although the highly idealized aquifer assumed for the derivation of this formula is not of widespread occurrence in the field, we gain increasing confidence in the use of the Theis method as our backlog of proven data accumulates until we now look askance at test data which do not conform to this theory. In many cases, careful study of these anomalous data will reveal the means for estimating the degree or manner in which an observed aquifer diverges from the idealized aquifer.
Determinants of Propranolol's Selective Effect on Loss Aversion.
Sokol-Hessner, Peter; Lackovic, Sandra F; Tobe, Russell H; Camerer, Colin F; Leventhal, Bennett L; Phelps, Elizabeth A
2015-07-01
Research on emotion and decision making has suggested that arousal mediates risky decisions, but several distinct and often confounded processes drive such choices. We used econometric modeling to separate and quantify the unique contributions of loss aversion, risk attitudes, and choice consistency to risky decision making. We administered the beta-blocker propranolol in a double-blind, placebo-controlled within-subjects study, targeting the neurohormonal basis of physiological arousal. Matching our intervention's pharmacological specificity with a quantitative model delineating decision-making components allowed us to identify the causal relationships between arousal and decision making that do and do not exist. Propranolol selectively reduced loss aversion in a baseline- and dose-dependent manner (i.e., as a function of initial loss aversion and body mass index), and did not affect risk attitudes or choice consistency. These findings provide evidence for a specific, modulatory, and causal relationship between precise components of emotion and risky decision making. © The Author(s) 2015.
Germline Modification and Engineering in Avian Species
Lee, Hong Jo; Lee, Hyung Chul; Han, Jae Yong
2015-01-01
Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies. PMID:26333275
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
NASA Astrophysics Data System (ADS)
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua
2018-03-20
Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.
Varifocal liquid lens based on microelectrofluidic technology.
Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae
2012-11-01
This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining
Geisinger, Jonathan M.; Turan, Sören; Hernandez, Sophia; Spector, Laura P.; Calos, Michele P.
2016-01-01
The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches. PMID:26762978
Approximation methods for control of structural acoustics models with piezoceramic actuators
NASA Astrophysics Data System (ADS)
Banks, H. T.; Fang, W.; Silcox, R. J.; Smith, R. C.
1993-01-01
The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam) is considered. Specifically, this control is implemented via piezoceramic patches on the beam which produces pure bending moments. The incorporation of the feedback control in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input team. Approximation methods in the context of linear quadratic regulator (LQR) state space control formulation are discussed and numerical results demonstrating the effectiveness of this approach in computing feedback controls for noise reduction are presented.
Three-dimensional manipulation of single cells using surface acoustic waves
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-01-01
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444
Controlled levels of protein modification through a chromatography-mediated bioconjugation
Kwant, Richard L.; Jaffe, Jake; Palmere, Peter J.; ...
2015-02-27
Synthetically modified proteins are increasingly finding applications as well-defined scaffolds for materials. In practice it remains difficult to construct bioconjugates with precise levels of modification because of the limited number of repeated functional groups on proteins. This article describes a method to control the level of protein modification in cases where there exist multiple potential modification sites. A protein is first tagged with a handle using any of a variety of modification chemistries. This handle is used to isolate proteins with a particular number of modifications via affinity chromatography, and then the handle is elaborated with a desired moiety usingmore » an oxidative coupling reaction. This method results in a sample of protein with a well-defined number of modifications, and we find it particularly applicable to systems like protein homomultimers in which there is no way to discern between chemically identical subunits. We demonstrate the use of this method in the construction of a protein-templated light-harvesting mimic, a type of system which has historically been difficult to make in a well-defined manner.« less
Choi, Jin Ho; Lee, Hyun; Jin, Hee Kyung; Bae, Jae-sung; Kim, Gyu Man
2012-12-07
A new fabrication method of a polydimethylsiloxane (PDMS) stencil embedded microwell plate is proposed and applied to a localized culture of Purkinje neurons (PNs) and neural stem cells (NSCs). A microwell plate combines a PDMS stencil and well plate. The PDMS stencil was fabricated by spin casting from an SU-8 master mold. Gas blowing using nitrogen was adopted to perforate the stencil membrane. An acrylic well plate compartment mold was fabricated using computer numerical control (CNC) machining. By PDMS casting using a stencil placed on an acrylic mold, microwell plates were fabricated without punching or the use of a plasma bonding process. By using the stencil as a physical mask for the cell culture, PNs and NSCs were successfully cultured into micropatterns. The microwell plate could be applied to the localizing and culturing of a cell. The micropatterned NSCs were differentiated into neurons, astrocytes, and oligodendrocytes. The results showed that cells could be cultured and differentiated into micropatterns in a precisely controlled manner in any shape and in specific sizes for bioscience study and bioengineering applications.
NASA Astrophysics Data System (ADS)
Hao, Xiang; Allgeyer, Edward S.; Velasco, Mary Grace M.; Booth, Martin J.; Bewersdorf, Joerg
2016-03-01
The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or "super-resolution" microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.
Harnessing wake vortices for efficient collective swimming via deep reinfrcement learning
NASA Astrophysics Data System (ADS)
Verma, Siddartha; Novati, Guido; Koumoutsakos, Petros; ChairComputing Science Team
2017-11-01
Collective motion may bestow evolutionary advantages to a number of animal species. Soaring flocks of birds, teeming swarms of insects, and swirling masses of schooling fish, all to some extent enjoy anti-predator benefits, increased foraging success, and enhanced problem-solving abilities. Coordinated activity may also provide energetic benefits, as in the case of large groups of fish where swimmers exploit unsteady flow-patterns generated in the wake. Both experimental and computational investigations of such scenarios are hampered by difficulties associated with studying multiple swimmers. Consequentially, the precise energy-saving mechanisms at play remain largely unknown. We combine high-fidelity numerical simulations of multiple, self propelled swimmers with novel deep reinforcement learning algorithms to discover optimal ways for swimmers to interact with unsteady wakes, in a fully unsupervised manner. We identify optimal flow-interaction strategies devised by the resulting autonomous swimmers, and use it to formulate an effective control-logic. We demonstrate, via 3D simulations of controlled groups that swimmers exploiting the learned strategy exhibit a significant reduction in energy-expenditure. ERC Advanced Investigator Award 341117.
Pundhir, Sachin; Bratt Lauridsen, Felicia Kathrine; Schuster, Mikkel Bruhn; Jakobsen, Janus Schou; Ge, Ying; Schoof, Erwin Marten; Rapin, Nicolas; Waage, Johannes; Hasemann, Marie Sigurd; Porse, Bo Torben
2018-05-29
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
JPRS Report, Soviet Union, International Affairs.
1987-10-07
condemning the Somali aggression , perceiving the principle of Muslim solidarity in their own way. The authorities of Pakistan frequently strive to... aggression of racist South Africa against neighboring states in the south are links in a single "neoglobalist" chain. South Africa, among the most...as fixed in international legal documents. The Hitlerite fascists behaved in precisely the same manner, killing prisoners of war in their
The NASA Meter Class Autonomous Telescope: Ascension Island
2013-09-01
understand the debris environment by providing high fidelity data in a timely manner to protect satellites and spacecraft in orbit around the Earth...gigabytes of image data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry ...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for
NASA Astrophysics Data System (ADS)
Aprelev, Pavel; McKinney, Bonni; Walls, Chadwick; Kornev, Konstanin G.
2017-07-01
A novel design of a low-field magnetic stage for optical microscopy of droplets and films within a controlled environment is described. The stage consists of five magnetic coils with a 3D magnetic sensor in a feedback control loop, which allows one to manipulate magnetic nano- and microprobes with microtesla fields. A locally uniform time-dependent field within the focal plane of the microscope objective enables one to rotate the probes in a precisely set manner and observe their motion. The probe tracking protocol was developed to follow the probe rotation in real time and relate it with the viscosity of the host liquid. Using this magnetic stage, a method for measuring mPa s-level viscosity of nanoliter droplets and micron thick films in a 10-20 s timeframe is presented and validated. The viscosity of a rapidly changing liquid can be tracked by using only a few visible probes rotating simultaneously. Vapor pressure and temperature around the sample can be controlled to directly measure viscosity as a function of equilibrium vapor pressure; this addresses a significant challenge in characterization of volatile nanodroplets and thin films. Thin films of surfactant solutions undergoing phase transitions upon solvent evaporation were studied and their rheological properties were related to morphological changes in the material.
Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon
2015-10-22
The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.
A biologically inspired approach to modeling unmanned vehicle teams
NASA Astrophysics Data System (ADS)
Cortesi, Roger S.; Galloway, Kevin S.; Justh, Eric W.
2008-04-01
Cooperative motion control of teams of agile unmanned vehicles presents modeling challenges at several levels. The "microscopic equations" describing individual vehicle dynamics and their interaction with the environment may be known fairly precisely, but are generally too complicated to yield qualitative insights at the level of multi-vehicle trajectory coordination. Interacting particle models are suitable for coordinating trajectories, but require care to ensure that individual vehicles are not driven in a "costly" manner. From the point of view of the cooperative motion controller, the individual vehicle autopilots serve to "shape" the microscopic equations, and we have been exploring the interplay between autopilots and cooperative motion controllers using a multivehicle hardware-in-the-loop simulator. Specifically, we seek refinements to interacting particle models in order to better describe observed behavior, without sacrificing qualitative understanding. A recent analogous example from biology involves introducing a fixed delay into a curvature-control-based feedback law for prey capture by an echolocating bat. This delay captures both neural processing time and the flight-dynamic response of the bat as it uses sensor-driven feedback. We propose a comparable approach for unmanned vehicle modeling; however, in contrast to the bat, with unmanned vehicles we have an additional freedom to modify the autopilot. Simulation results demonstrate the effectiveness of this biologically guided modeling approach.
An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.
Guo, Jianying; Ma, Dacheng; Huang, Rujin; Ming, Jia; Ye, Min; Kee, Kehkooi; Xie, Zhen; Na, Jie
2017-05-01
Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.
An image-processing software package: UU and Fig for optical metrology applications
NASA Astrophysics Data System (ADS)
Chen, Lujie
2013-06-01
Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.
Is the Cell Nucleus a Necessary Component in Precise Temporal Patterning?
Albert, Jaroslav; Rooman, Marianne
2015-01-01
One of the functions of the cell nucleus is to help regulate gene expression by controlling molecular traffic across the nuclear envelope. Here we investigate, via stochastic simulation, what effects, if any, does segregation of a system into the nuclear and cytoplasmic compartments have on the stochastic properties of a motif with a negative feedback. One of the effects of the nuclear barrier is to delay the nuclear protein concentration, allowing it to behave in a switch-like manner. We found that this delay, defined as the time for the nuclear protein concentration to reach a certain threshold, has an extremely narrow distribution. To show this, we considered two models. In the first one, the proteins could diffuse freely from cytoplasm to nucleus (simple model); and in the second one, the proteins required assistance from a special class of proteins called importins. For each model, we generated fifty parameter sets, chosen such that the temporal profiles they effectuated were very similar, and whose average threshold time was approximately 150 minutes. The standard deviation of the threshold times computed over one hundred realizations were found to be between 1.8 and 7.16 minutes across both models. To see whether a genetic motif in a prokaryotic cell can achieve this degree of precision, we also simulated five variations on the coherent feed-forward motif (CFFM), three of which contained a negative feedback. We found that the performance of these motifs was nowhere near as impressive as the one found in the eukaryotic cell; the best standard deviation was 6.6 minutes. We argue that the significance of these results, the fact and necessity of spatio-temporal precision in the developmental stages of eukaryotes, and the absence of such a precision in prokaryotes, all suggest that the nucleus has evolved, in part, under the selective pressure to achieve highly predictable phenotypes.
NASA Astrophysics Data System (ADS)
Zhao, Ping
The Rydberg constant {rm R }_infty is determined to a very high accuracy of 3 parts in 10^{10 } by a direct comparison of the four hydrogen and deuterium Balmer-beta transitions with a standard laser from the National Bureau of Standards. This experiment is now the most precise measurement for {rm R}_infty and approaches the limits of accuracy for wavelength or frequency measurements in the visible region. The result is {rm R}_infty = 109 737.315 73 (3) {rm cm}^{-1} with the definition of the meter: c = 299 792 458 m/sec. The experiment also yields the following results: The fine structure splittings 4{rm P}_ {1/2} rightarrow {rm 4P}_{3/2} in H: 1370.9 (3) MHz and in D: 1371.8 (3) MHz. The isotope shifts between H and D in the transitions {rm 2S}_{1/2} rightarrow {rm 4P}_{1/2}: 167 752.4 (3) MHz and {rm 2S}_{1/2 } rightarrow {rm 4P}_{3/2}: 167 753.3 (3) MHz. The experiment utilizes atomic beam laser spectroscopy. A beam of atomic hydrogen (or deuterium) is excited by electron bombardment to the metastable {rm 2S }_{1/2} state and is detected by a secondary electron emission detector. A chopped cw dye laser beam crosses the atomic beam at an angle of 90^circ to eliminate Doppler broadening. The metastables are quenched by laser excitation to {rm 4P}_{1/2} or {rm 4P}_{3/2 } states. The signal is monitored by a lock -in amplifier with the chopper as reference. An iodine (^{127}{ rm I}_2) stabilized helium-neon (He-Ne) laser is the primary standard with an accuracy of 1.6 times 10^{ -10}. Another He-Ne laser is locked to the standard laser with a variable offset frequency controlled by an oscillator. A frequency chain is established by locking together a dye laser, a piezoelectrically controlled measuring etalon and the offset laser. This chain allows the dye laser to scan across the Balmer-beta line in a precisely controllable manner. The lineshape and offset frequency are recorded simultaneously. Possible sources of systematic shifts and errors are carefully investigated. Hydrogen energy levels are calculated according to most recent values of physical constants. {rm R}_infty is obtained by comparing the measured and calculated hydrogen Balmer-beta transition. The result is in good agreement with the two most recent, but less precise experiments.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
[What kind of information do German health information pamphlets provide on mammography screening?].
Kurzenhäuser, Stephanie
2003-02-01
To make an informed decision on participation in mammography screening, women have to be educated about all the risks and benefits of the procedure in a manner that is detailed and understandable. But an analysis of 27 German health pamphlets on mammography screening shows that many relevant pieces of information about the benefits, the risks, and especially the meaning of screening results are only insufficiently communicated. Many statements were presented narratively rather than as precise statistics. Depending on content, 17 to 62% of the quantifiable statements were actually given as numerical data. To provide comprehensive information and to avoid misunderstandings, it is necessary to supplement the currently available health pamphlets and make the information on mammography screening more precise.
Precision control of multiple quantum cascade lasers for calibration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.
We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
Composite adaptive control of belt polishing force for aero-engine blade
NASA Astrophysics Data System (ADS)
Zhsao, Pengbing; Shi, Yaoyao
2013-09-01
The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.
NASA Astrophysics Data System (ADS)
Mascarenas, David; Stull, Christopher; Farrar, Charles
2011-06-01
In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.
Dolphin natures, human virtues: MacIntyre and ethical naturalism.
Glackin, Shane Nicholas
2008-09-01
Can biological facts explain human morality? Aristotelian 'virtue' ethics has traditionally assumed so. In recent years Alasdair MacIntyre has reintroduced a form of Aristotle's 'metaphysical biology' into his ethics. He argues that the ethological study of dependence and rationality in other species--dolphins in particular--sheds light on how those same traits in the typical lives of humans give rise to the moral virtues. However, some goal-oriented dolphin behaviour appears both dependent and rational in the precise manner which impresses MacIntyre, yet anything but ethically 'virtuous'. More damningly, dolphin ethologists consistently refuse to evaluate such behaviour in the manner MacIntyre claims is appropriate to moral judgement. In light of this, I argue that virtues--insofar as they name a biological or ethological category--do not name a morally significant one.
Hong, Guosong; Fu, Tian-Ming; Zhou, Tao; Schuhmann, Thomas G; Huang, Jinlin; Lieber, Charles M
2015-10-14
Syringe-injectable mesh electronics with tissue-like mechanical properties and open macroporous structures is an emerging powerful paradigm for mapping and modulating brain activity. Indeed, the ultraflexible macroporous structure has exhibited unprecedented minimal/noninvasiveness and the promotion of attractive interactions with neurons in chronic studies. These same structural features also pose new challenges and opportunities for precise targeted delivery in specific brain regions and quantitative input/output (I/O) connectivity needed for reliable electrical measurements. Here, we describe new results that address in a flexible manner both of these points. First, we have developed a controlled injection approach that maintains the extended mesh structure during the "blind" injection process, while also achieving targeted delivery with ca. 20 μm spatial precision. Optical and microcomputed tomography results from injections into tissue-like hydrogel, ex vivo brain tissue, and in vivo brains validate our basic approach and demonstrate its generality. Second, we present a general strategy to achieve up to 100% multichannel I/O connectivity using an automated conductive ink printing methodology to connect the mesh electronics and a flexible flat cable, which serves as the standard "plug-in" interface to measurement electronics. Studies of resistance versus printed line width were used to identify optimal conditions, and moreover, frequency-dependent noise measurements show that the flexible printing process yields values comparable to commercial flip-chip bonding technology. Our results address two key challenges faced by syringe-injectable electronics and thereby pave the way for facile in vivo applications of injectable mesh electronics as a general and powerful tool for long-term mapping and modulation of brain activity in fundamental neuroscience through therapeutic biomedical studies.
Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon
2016-06-22
We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.
Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan
2012-10-08
One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.
Soft network materials with isotropic negative Poisson's ratios over large strains.
Liu, Jianxing; Zhang, Yihui
2018-01-31
Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.
Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-02-24
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.
Bengochea-Guevara, José M.; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-01-01
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them. PMID:26927102
High precision locating control system based on VCM for Talbot lithography
NASA Astrophysics Data System (ADS)
Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song
2016-10-01
Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.
Mind your "smoking manners": the tobacco industry tactics to normalize smoking in Japan.
Kashiwabara, Mina; Armada, Francisco
2013-11-09
The tobacco industry has adapted its promotional strategies as tobacco-control measures have increased. This paper describes the tobacco industry's strategies on smoking manners and illustrates how these interfere with tobacco-control policy in Japan where tobacco control remains weak. Information on the tobacco industry's promotional strategies in Japan was collected through direct observation, a review of tobacco industry documents and a literature review. The limitation of the study would be a lack of industry documents from Japan as we relied on a database of a U.S. institution to collect internal documents from the tobacco industry. Japan Tobacco began using the manners strategies in the early 1960s. Collaborating with wide range of actors -including local governments and companies- the tobacco industry has promoted smoking manners to wider audiences through its advertising and corporate social responsibility activities. The tobacco industry in Japan has taken advantage of the cultural value placed on manners in Japan to increase the social acceptability of smoking, eventually aiming to diminish public support for smoke-free policies that threatens the industry's business. A stronger enforcement of the WHO Framework Convention on Tobacco Control is critical to counteracting such strategies.
Computing Generalized Matrix Inverse on Spiking Neural Substrate.
Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen
2018-01-01
Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.
Whilde, Jenny; Martindale, Mark Q; Duffy, David J
2017-05-01
The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human-induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal-human-ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary-based understanding of both wildlife and human diseases. © 2016 John Wiley & Sons Ltd.
Quaternion error-based optimal control applied to pinpoint landing
NASA Astrophysics Data System (ADS)
Ghiglino, Pablo
Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.
Auto-Coding UML Statecharts for Flight Software
NASA Technical Reports Server (NTRS)
Benowitz, Edward G; Clark, Ken; Watney, Garth J.
2006-01-01
Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Hand-translating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM).
Integrated analysis of remote sensing products from basic geological surveys. [Brazil
NASA Technical Reports Server (NTRS)
Dasilvafagundesfilho, E. (Principal Investigator)
1984-01-01
Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.
An efficient multilevel optimization method for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.
1988-01-01
An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.
Jia, Chao; Luo, Bowen; Wang, Haoyu; Bian, Yongqian; Li, Xueyong; Li, Shaohua; Wang, Hongjun
2017-09-01
Advances in nano-/microfabrication allow the fabrication of biomimetic substrates for various biomedical applications. In particular, it would be beneficial to control the distribution of cells and relevant biomolecules on an extracellular matrix (ECM)-like substrate with arbitrary micropatterns. In this regard, the possibilities of patterning biomolecules and cells on nanofibrous matrices are explored here by combining inkjet printing and electrospinning. Upon investigation of key parameters for patterning accuracy and reproducibility, three independent studies are performed to demonstrate the potential of this platform for: i) transforming growth factor (TGF)-β1-induced spatial differentiation of fibroblasts, ii) spatiotemporal interactions between breast cancer cells and stromal cells, and iii) cancer-regulated angiogenesis. The results show that TGF-β1 induces local fibroblast-to-myofibroblast differentiation in a dose-dependent fashion, and breast cancer clusters recruit activated stromal cells and guide the sprouting of endothelial cells in a spatially resolved manner. The established platform not only provides strategies to fabricate ECM-like interfaces for medical devices, but also offers the capability of spatially controlling cell organization for fundamental studies, and for high-throughput screening of various biomolecules for stem cell differentiation and cancer therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Hyung-Su; Cho, Hye-Yeon; Augustine, George J; Han, Jin-Hee
2016-01-01
Evidence from rodent and human studies has identified the ventromedial prefrontal cortex, specifically the infralimbic cortex (IL), as a critical brain structure in the extinction of conditioned fear. However, how IL activity controls fear expression at the time of extinction memory retrieval is unclear and controversial. To address this issue, we used optogenetics to precisely manipulate the activity of genetically targeted cells and to examine the real-time contribution of IL activity to expression of auditory-conditioned fear extinction in mice. We found that inactivation of IL, but not prelimbic cortex, impaired extinction retrieval. Conversely, photostimulation of IL excitatory neurons robustly enhanced the inhibition of fear expression after extinction, but not before extinction. Moreover, this effect was specific to the conditioned stimulus (CS): IL activity had no effect on expression of fear in response to the conditioned context after auditory fear extinction. Thus, in contrast to the expectation from a generally held view, artificial activation of IL produced no significant effect on expression of non-extinguished conditioned fear. Therefore, our data provide compelling evidence that IL activity is critical for expression of fear extinction and establish a causal role for IL activity in controlling fear expression in a CS-specific manner after extinction. PMID:26354044
System precisely controls oscillation of vibrating mass
NASA Technical Reports Server (NTRS)
Hancock, D. J.
1967-01-01
System precisely controls the sinusoidal amplitude of a vibrating mechanical mass. Using two sets of coils, the system regulates the drive signal amplitude at the precise level to maintain the mechanical mass when it reaches the desired vibration amplitude.
Inferior olive mirrors joint dynamics to implement an inverse controller.
Alvarez-Icaza, Rodrigo; Boahen, Kwabena
2012-10-01
To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex's various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex's (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint's underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint's inverse model onto an MZMC's biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint's natural dynamics, as observed by motor output ringing at the joint's natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum-in particular an MZMC-is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.
Study of Systems Using Inertia Wheels for Precise Attitude Control of a Satellite
NASA Technical Reports Server (NTRS)
White, John S.; Hansen, Q. Marion
1961-01-01
Systems using inertia wheels are evaluated in this report to determine their suitability for precise attitude control of a satellite and to select superior system configurations. Various possible inertia wheel system configurations are first discussed in a general manner. Three of these systems which appear more promising than the others are analyzed in detail, using the Orbiting Astronomical Observatory as an example. The three systems differ from each other only by the method of damping, which is provided by either a rate gyro, an error-rate network, or a tachometer in series with a high-pass filter. An analytical investigation which consists of a generalized linear analysis, a nonlinear analysis using the switching-time method, and an analog computer study shows that all three systems are theoretically capable of producing adequate response and also of maintaining the required pointing accuracy for the Orbiting Astronomical Observatory of plus or minus 0.1 second of arc. Practical considerations and an experimental investigation show, however, that the system which uses an error-rate network to provide damping is superior to the other two systems. The system which uses a rate gyro is shown to be inferior because the threshold level causes a significant amount of limit-cycle operation, and the system which uses a tachometer with a filter is shown to be inferior because a device with the required dynamic range of operation does not appear to be available. The experimental laboratory apparatus used to investigate the dynamic performance of the systems is described, and experimental results are included to show that under laboratory conditions with relatively large extraneous disturbances, a dynamic tracking error of less than plus or minus 0.5 second of arc was obtained.
de la Fuente-Núñez, César; Lu, Timothy K
2017-02-20
The development of CRISPR-Cas9 technology has revolutionized our ability to edit DNA and to modulate expression levels of genes of interest, thus providing powerful tools to accelerate the precise engineering of a wide range of organisms. In addition, the CRISPR-Cas system can be harnessed to design "precision" antimicrobials that target bacterial pathogens in a DNA sequence-specific manner. This capability will enable killing of drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, biofilm formation and virulence. Here, we review the origins and mechanistic basis of CRISPR-Cas systems, discuss how this technology can be leveraged to provide a range of applications in both eukaryotic and prokaryotic systems, and finish by outlining limitations and future prospects.
1993-04-01
34 in the remainder of this "• IPS. Ensure that system safety, Section refer to the DoD format paragraph health hazards, and environmental for the...hazardous materials is controlled in the manner which protects human health and the environment at the least cost. Hazardous Material Control and Management...of hazardous materials is controlled in a manner which protects human health and the environment at the least cost. Hazardous Material Control and
Open-source, small-animal magnetic resonance-guided focused ultrasound system.
Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F
2016-01-01
MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.
Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality
Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.
2014-01-01
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397
Moisture-triggered physically transient electronics
Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang
2017-01-01
Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237
Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate.
Kim, Hae-Won; Kong, Young-Min; Bae, Chang-Jun; Noh, Yoon-Jung; Kim, Hyoun-Ee
2004-07-01
Fluor-hydroxyapatite (FHA) film was coated on a zirconia (ZrO(2)) substrate by a sol-gel method. An appropriate amount of F ions was incorporated into the hydroxyapatite (HA) during the preparation of the sols. The apatite phase began to crystallize after heat treatment at 400 degrees C, and increased in intensity above 500 degrees C. No decomposition was detected by X-ray diffraction analyses up to 800 degrees C, which illustrates the high thermal stability of the FHA films. The films showed a uniform and dense morphology with a thickness of approximately 1 microm after a precisely controlled heat treatment process. These FHA films adhered firmly to the zirconia substrate, representing notable adhesion strengths of approximately 70 MPa after heat treatment above 500 degrees C. The dissolution rate of the FHA coating layer varied according to the heat treatment temperature, which was closely related to the film crystallinity. The dissolution rate of the FHA film was lower than that of the HA film, suggesting the possibility of a functional gradient coating of HA and FHA. The MG63 cells seeded onto the FHA films proliferated in a similar manner to those seeded onto pure HA ceramic and a plastic control.
Versatile synthesis and rational design of caged morpholinos.
Ouyang, Xiaohu; Shestopalov, Ilya A; Sinha, Surajit; Zheng, Genhua; Pitt, Cameron L W; Li, Wen-Hong; Olson, Andrew J; Chen, James K
2009-09-23
Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies.
Versatile Synthesis and Rational Design of Caged Morpholinos
2009-01-01
Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies. PMID:19708646
NASA Technical Reports Server (NTRS)
Stevens, T.; Ritz, S.; Aleman, A.; Genazzio, M.; Morahan, M.; Wharton, S.
2016-01-01
NASA's Global Change Master Directory (GCMD) develops and expands a hierarchical set of controlled vocabularies (keywords) covering the Earth sciences and associated information (data centers, projects, platforms, instruments, etc.). The purpose of the keywords is to describe Earth science data and services in a consistent and comprehensive manner, allowing for the precise searching of metadata and subsequent retrieval of data and services. The keywords are accessible in a standardized SKOSRDFOWL representation and are used as an authoritative taxonomy, as a source for developing ontologies, and to search and access Earth Science data within online metadata catalogues. The keyword development approach involves: (1) receiving community suggestions, (2) triaging community suggestions, (3) evaluating the keywords against a set of criteria coordinated by the NASA ESDIS Standards Office, and (4) publication/notification of the keyword changes. This approach emphasizes community input, which helps ensure a high quality, normalized, and relevant keyword structure that will evolve with users changing needs. The Keyword Community Forum, which promotes a responsive, open, and transparent processes, is an area where users can discuss keyword topics and make suggestions for new keywords. The formalized approach could potentially be used as a model for keyword development.
Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment
Xiao, Yun; Ahadian, Samad
2017-01-01
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960
Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M
2013-05-01
The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Presence of Mind... A Reaction to Sheridan's "Musing on Telepresence"
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Null, Cynthia H. (Technical Monitor)
1995-01-01
What are the benefits and significance of developing a scientifically useful measure of the human sense of presence in an environment? Such a scale could be conceived to measure the extent to which users of telerobotics interfaces feel or behave as if they were present at the site of a remotely controlled robot. The essay examines some issues raised in order to identify characteristics, a scale of 'presence' ought to have to be useful as an explanatory scientific concept. It also addresses the utility of worrying about developing such a scale at all. To be useful in the same manner as a traditional scientific concept such as mass, for example, it is argued that such scales not only need to be precisely defined and co-vary with determinative factors but also need to establish equivalence classes of its independent constituents. This simplifying property is important for either subjective or objective scales of presence and arises if the constituents of presence are truly independent.
Control of large thermal distortions in a cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Gustafson, J. C.
1983-01-01
The National Transonic Facility (NTF) is a research wind tunnel capable of operation at temperatures down to 89K (160 R) and pressures up to 900,000 Pa (9 atmospheres) to achieve Reynolds numbers approaching 120,000,000. Wide temperature excursions combined with the precise alignment requirements of the tunnel aerodynamic surfaces imposed constraints on the mechanisms supporting the internal structures of the tunnel. The material selections suitable for this application were also limited. A general design philosophy of utilizing a single fixed point for each linear degree of freedom and guiding the expansion as required was adopted. These support systems allow thermal expansion to take place in a manner that minimizes the development of thermally induced stresses while maintaining structural alignment and resisting high aerodynamic loads. Typical of the support mechanisms are the preload brackets used in the fan shroud system and the Watts linkage used to support the upstream nacelle. The design of these mechanisms along with the basic design requirements and the constraints imposed by the tunnel system are discussed.
Inhibition of viscous fluid fingering: A variational scheme for optimal flow rates
NASA Astrophysics Data System (ADS)
Miranda, Jose; Dias, Eduardo; Alvarez-Lacalle, Enrique; Carvalho, Marcio
2012-11-01
Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but not at all obvious, pattern controlling process. J.A.M., E.O.D. and M.S.C. thank CNPq/Brazil for financial support. E.A.L. acknowledges support from Secretaria de Estado de IDI Spain under project FIS2011-28820-C02-01.
Rubin, Beverly S.; Paranjpe, Maneesha; DaFonte, Tracey; Schaeberle, Cheryl; Soto, Ana M.; Obin, Martin; Greenberg, Andrew S.
2017-01-01
Body weight (BW) and body composition were examined in CD-1 mice exposed perinatally or perinatally and peripubertally to 0, 0.25, 2.5, 25, or 250 μg BPA/kg BW/day. Our goal was to identify the BPA dose (s) and the exposure window(s) that increased BW and adiposity, and to assess potential sex differences in this response. Both perinatal exposure alone and perinatal plus peripubertal exposure to environmentally relevant levels of BPA resulted in lasting effects on body weight and body composition. The effects were dose specific and sex specific and were influenced by the precise window of BPA exposure. The addition of peripubertal BPA exposure following the initial perinatal exposure exacerbated adverse effects in the females but appeared to reduce differences in body weight and body composition between control and BPA exposed males. Some effects of BPA on body weight and body composition showed a non-linear dose response. PMID:27496714
Jones, Scott L; To, Minh-Son; Stuart, Greg J
2017-10-23
Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.
Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.
Ji, Shen; Guvendiren, Murat
2017-01-01
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a "bioink" to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions.
Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs
Ji, Shen; Guvendiren, Murat
2017-01-01
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a “bioink” to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions. PMID:28424770
Doi, Motomichi; Iwasaki, Kouichi
2008-01-01
Na+/K+ ATPase is a plasma membrane-localized sodium pump that maintains the ion gradients between the extracellular and intracellular environments, which in turn controls the cellular resting membrane potential. Recent evidence suggests that the pump is also localized at synapses and regulates synaptic efficacy. However, its precise function at the synapse is unknown. Here we show that two mutations in the α subunit of the eat-6 Na+/K+ ATPase in Caenorhabditis elegans dramatically increase the sensitivity to acetylcholine (Ach) agonists and alter the localization of nicotinic Ach receptors at the neuromuscular junction (NMJ). These defects can be rescued by mutated EAT-6 proteins which lack its pump activity, suggesting the presence of a novel function for Ach signaling. The Na+/K+ ATPase accumulates at postsynaptic sites and appears to surround Ach receptors to maintain rigid clusters at the NMJ. Our findings suggest a critical pump activity-independent, allele –specific role for Na+/K+ ATPase on postsynaptic organization and synaptic efficacy. PMID:18599311
Determinants of propranolol’s selective effect on loss aversion
Sokol-Hessner, Peter; Lackovic, Sandra F.; Tobe, Russell H.; Camerer, Colin F.; Leventhal, Bennett L.; Phelps, Elizabeth A.
2015-01-01
Research on emotion and decision-making has suggested that arousal mediates risky decisions (e.g., Bechara et al., 1997), but several distinct and often confounded processes drive such choices. Here, we used econometric modeling to separate and quantify the unique contributions of loss aversion, risk sensitivity and choice consistency to risky decision-making. We administered the beta-blocker propranolol in a double-blind, placebo-controlled within-subjects study, targeting the neurohormonal basis of physiological arousal. Matching our intervention’s pharmacological specificity with a quantitative model delineating decision-making components allowed us to identify the causal relationships between arousal and decision-making that do and do not exist. Propranolol selectively reduced loss aversion in a baseline- and dose-dependent manner (i.e. as a function of initial loss aversion and body-mass index), and did not affect risk sensitivity or choice consistency. These findings provide evidence for a specific, modulatory, and causal relationship between precise components of both emotion and risky decision-making. PMID:26063441
Baubec, Tuncay; Pecinka, Ales; Rozhon, Wilfried; Mittelsten Scheid, Ortrun
2009-01-01
Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin. PMID:18826433
Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY
2007-02-13
A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.
Barillas, Edgar
2003-01-01
In recent years, agencies that provide technical cooperation in health have increased their contractual relationships with private consulting entities. This has made it possible to respond in a timely manner to the support needs that countries have, to develop skills at the national level, and to reduce the operating costs for the cooperation agencies. However, these relationships risk moving the cooperation agencies away from generating ideas and new knowledge, which, until recently, was considered one of their essential roles. Contracting with private enterprises will almost certainly increase in the coming years. This makes it worth reviewing the tasks that correspond to the cooperation agencies in this scenario as well as mechanisms to see that these relationships result in the greatest benefit for deprived groups. Actions that can be undertaken immediately include organizing the "structural capital" (such as programs, databases, strategies, and organizational "culture," structure, systems, and procedures) of the technical cooperation agencies, precisely identifying tasks that cannot be delegated, and adequately designing and controlling terms of reference.
Jang, Mihue; Han, Hee Dong; Ahn, Hyung Jun
2016-01-01
Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy. PMID:27562435
Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition
NASA Astrophysics Data System (ADS)
Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping
Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.
Stability switches of arbitrary high-order consensus in multiagent networks with time delays.
Yang, Bo
2013-01-01
High-order consensus seeking, in which individual high-order dynamic agents share a consistent view of the objectives and the world in a distributed manner, finds its potential broad applications in the field of cooperative control. This paper presents stability switches analysis of arbitrary high-order consensus in multiagent networks with time delays. By employing a frequency domain method, we explicitly derive analytical equations that clarify a rigorous connection between the stability of general high-order consensus and the system parameters such as the network topology, communication time-delays, and feedback gains. Particularly, our results provide a general and a fairly precise notion of how increasing communication time-delay causes the stability switches of consensus. Furthermore, under communication constraints, the stability and robustness problems of consensus algorithms up to third order are discussed in details to illustrate our central results. Numerical examples and simulation results for fourth-order consensus are provided to demonstrate the effectiveness of our theoretical results.
29 CFR 1926.152 - Flammable and combustible liquids.
Code of Federal Regulations, 2010 CFR
2010-07-01
... access way to permit approach of fire control apparatus. (3) The storage area shall be graded in a manner... to permit approach of fire control apparatus. (5) Storage areas shall be kept free of weeds, debris... wooden storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides...
29 CFR 1926.152 - Flammable and combustible liquids.
Code of Federal Regulations, 2011 CFR
2011-07-01
... access way to permit approach of fire control apparatus. (3) The storage area shall be graded in a manner... to permit approach of fire control apparatus. (5) Storage areas shall be kept free of weeds, debris... wooden storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides...
Groh, Edward F.; McDowell, William; Modjeski, Norbert S.; Keefe, Donald J.; Groer, Peter
1979-01-01
A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.
2009-12-01
events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2004-08-10
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2005-04-19
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Hierarchical decomposition of burn body diagram based on cutaneous functional units and its utility.
Richard, Reg; Jones, John A; Parshley, Philip
2015-01-01
A burn body diagram (BBD) is a common feature used in the delivery of burn care for estimating the TBSA burn as well as calculating fluid resuscitation and nutritional requirements, wound healing, and rehabilitation intervention. However, little change has occurred for over seven decades in the configuration of the BBD. The purpose of this project was to develop a computerized model using hierarchical decomposition (HD) to more precisely determine the percentage burn within a BBD based on cutaneous functional units (CFUs). HD is a process by which a system is degraded into smaller parts that are more precise in their use. CFUs were previously identified fields of the skin involved in the range of motion. A standard Lund/Browder (LB) BBD template was used as the starting point to apply the CFU segments. LB body divisions were parceled down into smaller body area divisions through a HD process based on the CFU concept. A numerical pattern schema was used to label the various segments in a cephalo/caudal, anterior/posterior, medial/lateral manner. Hand/fingers were divided based on anatomical landmarks and known cutaneokinematic function. The face was considered using aesthetic units. Computer code was written to apply the numeric hierarchical schema to CFUs and applied within the context of the surface area graphic evaluation BBD program. Each segmented CFU was coded to express 100% of itself. The CFU/HD method refined the standard LB diagram from 13 body segments and 33 subdivisions into 182 isolated CFUs. Associated CFUs were reconstituted into 219 various surface area combinations totaling 401 possible surface segments. The CFU/HD schema of the body surface mapping is applicable to measuring and calculating percent wound healing in a more precise manner. It eliminates subjective assessment of the percentage wound healing and the need for additional devices such as planimetry. The development of CFU/HD body mapping schema has rendered a technologically advanced system to depict body burns. The process has led to a more precise estimation of the segmented body areas while preserving the overall TBSA information. Clinical application to date has demonstrated its worthwhile utility.
Modeling and Positioning of a PZT Precision Drive System.
Liu, Che; Guo, Yanling
2017-11-08
The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.
Modeling and Positioning of a PZT Precision Drive System
Liu, Che; Guo, Yanling
2017-01-01
The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140
A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development.
Kang, Yunsik; Bashirullah, Arash
2014-02-01
Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development. © 2013 Published by Elsevier Inc.
Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.
We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
29 CFR 1926.152 - Flammable liquids.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to permit approach of fire control apparatus. (3) The storage area shall be graded in a manner to... feet of each portable tank, there shall be a 12-foot-wide access way to permit approach of fire control... storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides, and top...
Protocol for Communication Networking for Formation Flying
NASA Technical Reports Server (NTRS)
Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren
2009-01-01
An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in diverse local-area networks, this protocol offers both (1) a random- access mode needed for the early PFF deployment phase and (2) a time-bounded-services mode needed during PFF-maintenance operations. Switching between these two modes could be controlled by upper-layer entities using standard link-management mechanisms. Because the early deployment phase of a PFF mission can be expected to involve multihop relaying to achieve network connectivity (see figure), the proposed protocol includes the open shortest path first (OSPF) network protocol that is commonly used in the Internet. Each spacecraft in a PFF network would be in one of seven distinct states as the mission evolved from initial deployment, through coarse formation, and into precise formation. Reconfiguration of the formation to perform different scientific observations would also cause state changes among the network nodes. The application protocol provides for recognition and tracking of the seven states for each node and for protocol changes under specified conditions to adapt the network and satisfy communication requirements associated with the current PFF mission phase. Except during early deployment, when peer-to-peer random access discovery methods would be used, the application protocol provides for operation in a centralized manner.
Microfluidic proportional flow controller
Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel
2011-01-01
Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096
Neural control and precision of flight muscle activation in Drosophila.
Lehmann, Fritz-Olaf; Bartussek, Jan
2017-01-01
Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Morota, Gota; Ventura, Ricardo V; Silva, Fabyano F; Koyama, Masanori; Fernando, Samodha C
2018-04-14
Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.
A new fabrication method for precision antenna reflectors for space flight and ground test
NASA Technical Reports Server (NTRS)
Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.
1991-01-01
Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.
Computing Generalized Matrix Inverse on Spiking Neural Substrate
Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen
2018-01-01
Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483
Shaping the spectrum of random-phase radar waveforms
Doerry, Armin W.; Marquette, Brandeis
2017-05-09
The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.
Knowledge Modeling in Prior Art Search
NASA Astrophysics Data System (ADS)
Graf, Erik; Frommholz, Ingo; Lalmas, Mounia; van Rijsbergen, Keith
This study explores the benefits of integrating knowledge representations in prior art patent retrieval. Key to the introduced approach is the utilization of human judgment available in the form of classifications assigned to patent documents. The paper first outlines in detail how a methodology for the extraction of knowledge from such an hierarchical classification system can be established. Further potential ways of integrating this knowledge with existing Information Retrieval paradigms in a scalable and flexible manner are investigated. Finally based on these integration strategies the effectiveness in terms of recall and precision is evaluated in the context of a prior art search task for European patents. As a result of this evaluation it can be established that in general the proposed knowledge expansion techniques are particularly beneficial to recall and, with respect to optimizing field retrieval settings, further result in significant precision gains.
Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.
2001-07-10
A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.
A device for automatic photoelectric control of the analytical gap for emission spectrographs
Dietrich, John A.; Cooley, Elmo F.; Curry, Kenneth J.
1977-01-01
A photoelectric device has been built that automatically controls the analytical gap between electrodes during excitation period. The control device allows for precise control of the analytical gap during the arcing process of samples, resulting in better precision of analysis.
Koh, Ahyeon; Gutbrod, Sarah R.; Meyers, Jason D.; Lu, Chaofeng; Webb, Richard Chad; Shin, Gunchul; Li, Yuhang; Kang, Seung-Kyun; Huang, Yonggang
2016-01-01
Knowledge of the distributions of temperature in cardiac tissue during and after ablation is important in advancing a basic understanding of this process, and for improving its efficacy in treating arrhythmias. Technologies that enable real-time temperature detection and thermal characterization in the transmural direction can help to predict the depths and sizes of lesion that form. Herein, materials and designs for an injectable device platform that supports precision sensors of temperature and thermal transport properties distributed along the length of an ultrathin and flexible needle-type polymer substrate are introduced. The resulting system can insert into the myocardial tissue, in a minimally invasive manner, to monitor both radiofrequency ablation and cryoablation, in a manner that has no measurable effects on the natural mechanical motions of the heart. The measurement results exhibit excellent agreement with thermal simulations, thereby providing improved insights into lesion transmurality. PMID:26648177
The recalculation of the original pulse produced by a partial discharge
NASA Technical Reports Server (NTRS)
Tanasescu, F.
1978-01-01
The loads on a dielectric or an insulation arrangement cannot be precisely rated without properly assessing the manner in which a pulse produced by a partial discharge is transmitted from the point of the event to the point where it is recorded. A number of analytical and graphic methods are presented, and computer simulations are used for specific cases of a few measurement circuits. It turns out to be possible to determine the effect of each circuit element and thus make some valid corrections.
Method of bundling rods so as to form an optical fiber preform
Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC
2004-03-30
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Advanced methods for the solution of differential equations
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Braun, W. H.
1973-01-01
This book is based on a course presented at the Lewis Research Center for engineers and scientists who were interested in increasing their knowledge of differential equations. Those results which can actually be used to solve equations are therefore emphasized; and detailed proofs of theorems are, for the most part, omitted. However, the conclusions of the theorems are stated in a precise manner, and enough references are given so that the interested reader can find the steps of the proofs.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
Hirsch, Gregory
2002-01-01
A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.
Technology of high-speed combined machining with brush electrode
NASA Astrophysics Data System (ADS)
Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.
2018-03-01
The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.
High-resolution flying-PIV with optical fiber laser delivery
NASA Astrophysics Data System (ADS)
Weichselbaum, Noah A.; André, Matthieu A.; Rahimi-Abkenar, Morteza; Manzari, Majid T.; Bardet, Philippe M.
2016-05-01
Implementation of non-intrusive optical measurement techniques, such as particle image velocimetry (PIV), in harsh environments requires specialized techniques for introducing controlled laser sheets to the region of interest. Large earthquake shake tables are a particularly challenging environment. Lasers must be mounted away from the table, and the laser sheet has to be delivered precisely and stably to the measurement station. Here, high-power multi-mode step-index fiber optics enable introduction of light from an Nd:YLF pulsed laser to a remote test section. Such lasers are suitable for coupling to optical fibers, which presents a portable, flexible, and safe manner to deliver a PIV light sheet. Best practices for their implementation are reviewed. Particular attention is focused on obtaining a collimated beam of acceptable quality at the output of the fiber. To achieve high spatial resolution, the PIV camera is directly mounted on the moving shake table with care to minimize its vibrations. A special arrangement of PIV planes is deployed for precise in-situ PIV alignment and to monitor and account for residual structure vibrations and beam wandering. The design of the instruments is detailed. Here, an experimental facility for the study of nuclear fuel bundle response to seismic forcing near prototypical conditions is instrumented. Only through integration of a high-resolution flying-PIV system can velocity fields be acquired. Data indicate that in the presence of a mean axial flow, a secondary oscillatory flow develops as the bundle oscillates. Instantaneous, phase-averaged, and fluctuating velocity fields illustrate this phenomenon.
A Mouse Geneticist’s Practical Guide to CRISPR Applications
Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina
2015-01-01
CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
Recent advances of controlled drug delivery using microfluidic platforms.
Sanjay, Sharma T; Zhou, Wan; Dou, Maowei; Tavakoli, Hamed; Ma, Lei; Xu, Feng; Li, XiuJun
2018-03-15
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and control of a high precision drive mechanism
NASA Astrophysics Data System (ADS)
Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong
2017-01-01
This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.
Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators
NASA Technical Reports Server (NTRS)
Zhou, Zhiqiang
2012-01-01
A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.
Active control of bearing preload using piezoelectric translators
NASA Technical Reports Server (NTRS)
Nye, Ted W.
1990-01-01
In many spacecraft applications, mechanisms are required to perform precision pointing operations or to sometimes dither about or track a moving object. These mechanisms perform in a predictable and repeatable manner in benign temperature environments. Severe thermal gradients experienced in actual space applications however, cause assemblies to expand and contract around their bearings. This results in unpredictable changes in bearing preload, and hence bearing friction. This becomes a limitation for servos controlling pointing accuracy. Likewise, uncontrollable vibrations may couple into fixed preload (hence, fixed stiffness) mechanisms and limit pointing accuracy. Consequently, a complex problem faced today is how to design mechanisms that remain insensitive to changing thermal and vibrational spacecraft environments. Research presented involves the simplified modeling and test results of an actuator module that used piezoelectrically preload controlled bearings. The feasibility of actively controlling bearing preload was demonstrated. Because bearing friction is related to preload, a thermally active system designed with aluminum components and a 440 C bearing, was friction tested at temperatures ranging from 0 to 70 C (32 to 158 F). Effectiveness of the translators were demonstrated by mapping a controllable friction range throughout tested temperatures. It was learned that constant preload for this system could be maintained over an approximate 44 C (79 F) temperature span. From testing, it was also discovered that at the more deviate temperatures, expansions were so large that radial clearances were taken up and the duplex bearing became radially preloaded. Thus, active control of bearing preload is feasible but may be limited by inherent geometry constraints and materials used in the system.
Optimal actuator placement in adaptive precision trusses
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.
1992-01-01
Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.
Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications
Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K.
2014-01-01
Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5–90 V), electrolyte temperature (10–50°C) and electrolyte NH4F content (0.025–0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0–1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15–70 nm) and length (45–1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants. PMID:25520180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebis, Joseph; Oliker, Leonid; Shalf, John
The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changesmore » to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.« less
Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.
Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K
2018-07-01
We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.
NASA Astrophysics Data System (ADS)
Milood Almelian, Mohamad; Mohd, Izzeldin I.; Asghaiyer Omran, Mohamed; Ullah Sheikh, Usman
2018-04-01
Power quality-related issues such as current and voltage distortions can adversely affect home and industrial appliances. Although several conventional techniques such as the use of passive and active filters have been developed to increase power quality standards, these methods have challenges and are inadequate due to the increasing number of applications. The Unified Power Quality Conditioner (UPQC) is a modern strategy towards correcting the imperfections of voltage and load current supply. A UPQC is a combination of both series and shunt active power filters in a back-to-back manner with a common DC link capacitor. The control of the voltage of the DC link capacitor is important in achieving a desired UPQC performance. In this paper, the UPQC with a Fuzzy logic controller (FLC) was used to precisely eliminate the imperfections of voltage and current harmonics. The results of the simulation studies using MATLAB/Simulink and Simpower system programming for R-L load associated through an uncontrolled bridge rectifier was used to assess the execution process. The UPQC with FLC was simulated for a system with distorted load current and a system with distorted source voltage and load current. The outcome of the comparison of %THD in the load current and source voltage before and after using UPQC for the two cases was presented.
Singh, Milind; Morris, Casey P.; Ellis, Ryan J.; Detamore, Michael S.
2008-01-01
Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1 h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1 ± 2.1%) and well connected, and their compressive stiffness ranged from 142 to 306 kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations. PMID:18795865
Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M
2017-12-19
The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.
Thermal energy effects on articular cartilage: a multidisciplinary evaluation
NASA Astrophysics Data System (ADS)
Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.
2002-05-01
Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... Proposing To Modify the NYSE Amex Options Fee Schedule Regarding the Manner in Which Funds From Marketing... respect to the manner in which funds from marketing charges are controlled. The text of the proposed rule... which funds from marketing charges are controlled.\\4\\ \\4\\ The Exchange is not proposing any changes to...
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Sovereignty and Collaboration: Affordable Strategies in Times of Austerity
2016-10-01
provide precision-guided bombs and a land-support SOVEREIGNTY—ANALYSIS 26 vehicle were delivered for more than 20 percent below the expenditure ini...weapon Precision-guided bomb Support vehicle Panther command & control vehicle Successor Identification Friend or Foe (IFF) Joint combat aircraft...GLMRS) Multi-role armoured vehicle (MRAV) Next-generation light anti-armoured weapon Precision-guided bomb Support vehicle Panther command & control
NASA Technical Reports Server (NTRS)
Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.
1994-01-01
The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.
Approximation methods for control of acoustic/structure models with piezoceramic actuators
NASA Technical Reports Server (NTRS)
Banks, H. T.; Fang, W.; Silcox, R. J.; Smith, R. C.
1991-01-01
The active control of acoustic pressure in a 2-D cavity with a flexible boundary (a beam) is considered. Specifically, this control is implemented via piezoceramic patches on the beam which produces pure bending moments. The incorporation of the feedback control in this manner leads to a system with an unbounded input term. Approximation methods in this manner leads to a system with an unbounded input term. Approximation methods in the context of linear quadratic regulator (LQR) state space control formulation are discussed and numerical results demonstrating the effectiveness of this approach in computing feedback controls for noise reduction are presented.
Following the dynamics of matter with femtosecond precision using the X-ray streaking method
David, C.; Karvinen, P.; Sikorski, M.; ...
2015-01-06
X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G
2015-08-28
We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0) MeV=(59.1±3.5) MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography
NASA Astrophysics Data System (ADS)
Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.
2015-03-01
Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-08-01
We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Sliding mode control of magnetic suspensions for precision pointing and tracking applications
NASA Technical Reports Server (NTRS)
Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl
1991-01-01
A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.
Córdoba-Chacón, José; Gahete, Manuel D.; Castaño, Justo P.; Kineman, Rhonda D.
2011-01-01
Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1–5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1–5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis. PMID:20943754
Qi, Lian-Wen; Yu, Qing-Tao; Yi, Ling; Ren, Mei-Ting; Wen, Xiao-Dong; Wang, Yu-Xia; Li, Ping
2008-01-01
An improved quality control method was developed to simultaneously determine 15 major constituents (eight flavonoids and seven saponins) in various radix Astragali preparations, using SPE for pretreatment of samples, HPLC with diode-array and evaporative light scattering detectors (DAD-ELSD) for quantification in one run, and HPLC-ESI-TOF/MS for definite identification of compounds in preparations. Optimum separations were obtained with a ZORBAX C(18) column, using a gradient elution with 0.3% aqueous formic acid and ACN. This established method was fully validated with respect to linearity, precision, repeatability, and accuracy, and was successfully applied to quantify the 15 compounds in 19 commercial samples, including 3 dosage forms, i. e., oral solution, injection, concentrated granule, and its processed products of radix Astragali. The results demonstrated that many factors might result in significant differences in quality of the final preparations, including crude drugs, pretreatment processes, manufacturing procedure, storage conditions, etc. Then the developed method provided a reasonable and powerful manner to ensure the efficacy, safety, and batch-to-batch uniformity of radix Astragali products by standardizing each procedure, and thus should be proposed as quality control for the clinical use and modernization of herbal preparations.
Using DNA nanotechnology to produce a drug delivery system
NASA Astrophysics Data System (ADS)
Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang
2013-03-01
Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.
Shuttling single metal atom into and out of a metal nanoparticle.
Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao
2017-10-10
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.
Domain wall oscillation in magnetic nanowire with a geometrically confined region
NASA Astrophysics Data System (ADS)
Sbiaa, R.; Bahri, M. Al; Piramanayagam, S. N.
2018-06-01
In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8 × 1012 A/m2 and 5.6 × 1012 A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc-current to an ac-voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.
NASA Astrophysics Data System (ADS)
Stevens, T.
2016-12-01
NASA's Global Change Master Directory (GCMD) curates a hierarchical set of controlled vocabularies (keywords) covering Earth sciences and associated information (data centers, projects, platforms, and instruments). The purpose of the keywords is to describe Earth science data and services in a consistent and comprehensive manner, allowing for precise metadata search and subsequent retrieval of data and services. The keywords are accessible in a standardized SKOS/RDF/OWL representation and are used as an authoritative taxonomy, as a source for developing ontologies, and to search and access Earth Science data within online metadata catalogs. The keyword curation approach involves: (1) receiving community suggestions; (2) triaging community suggestions; (3) evaluating keywords against a set of criteria coordinated by the NASA Earth Science Data and Information System (ESDIS) Standards Office; (4) implementing the keywords; and (5) publication/notification of keyword changes. This approach emphasizes community input, which helps ensure a high quality, normalized, and relevant keyword structure that will evolve with users' changing needs. The Keyword Community Forum, which promotes a responsive, open, and transparent process, is an area where users can discuss keyword topics and make suggestions for new keywords. Others could potentially use this formalized approach as a model for keyword curation.
ParseCNV integrative copy number variation association software with quality tracking
Glessner, Joseph T.; Li, Jin; Hakonarson, Hakon
2013-01-01
A number of copy number variation (CNV) calling algorithms exist; however, comprehensive software tools for CNV association studies are lacking. We describe ParseCNV, unique software that takes CNV calls and creates probe-based statistics for CNV occurrence in both case–control design and in family based studies addressing both de novo and inheritance events, which are then summarized based on CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex CNV overlap while maintaining precise association region. Using this approach, we avoid failure to converge and non-monotonic curve fitting weaknesses of programs, such as CNVtools and CNVassoc, and although Plink is easy to use, it only provides combined CNV state probe-based statistics, not state-specific CNVRs. Existing CNV association methods do not provide any quality tracking information to filter confident associations, a key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls underlying CNV associations is evaluated to verify significant results, including CNV overlap profiles, genomic context, number of probes supporting the CNV and single-probe intensities. When optimal quality control parameters are followed using ParseCNV, 90% of CNVs validate by polymerase chain reaction, an often problematic stage because of inadequate significant association review. ParseCNV is freely available at http://parsecnv.sourceforge.net. PMID:23293001
Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures.
Narayanan, Kannan Badri; Han, Sung Soo
2017-10-01
Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
ParseCNV integrative copy number variation association software with quality tracking.
Glessner, Joseph T; Li, Jin; Hakonarson, Hakon
2013-03-01
A number of copy number variation (CNV) calling algorithms exist; however, comprehensive software tools for CNV association studies are lacking. We describe ParseCNV, unique software that takes CNV calls and creates probe-based statistics for CNV occurrence in both case-control design and in family based studies addressing both de novo and inheritance events, which are then summarized based on CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex CNV overlap while maintaining precise association region. Using this approach, we avoid failure to converge and non-monotonic curve fitting weaknesses of programs, such as CNVtools and CNVassoc, and although Plink is easy to use, it only provides combined CNV state probe-based statistics, not state-specific CNVRs. Existing CNV association methods do not provide any quality tracking information to filter confident associations, a key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls underlying CNV associations is evaluated to verify significant results, including CNV overlap profiles, genomic context, number of probes supporting the CNV and single-probe intensities. When optimal quality control parameters are followed using ParseCNV, 90% of CNVs validate by polymerase chain reaction, an often problematic stage because of inadequate significant association review. ParseCNV is freely available at http://parsecnv.sourceforge.net.
Design and control of the precise tracking bed based on complex electromechanical design theory
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken
2010-05-01
The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.
Precision controllability of the F-15 airplane
NASA Technical Reports Server (NTRS)
Sisk, T. R.; Matheny, N. W.
1979-01-01
A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.
Bhadra, Dhiman; Daniels, Michael J.; Kim, Sungduk; Ghosh, Malay; Mukherjee, Bhramar
2014-01-01
In a typical case-control study, exposure information is collected at a single time-point for the cases and controls. However, case-control studies are often embedded in existing cohort studies containing a wealth of longitudinal exposure history on the participants. Recent medical studies have indicated that incorporating past exposure history, or a constructed summary measure of cumulative exposure derived from the past exposure history, when available, may lead to more precise and clinically meaningful estimates of the disease risk. In this paper, we propose a flexible Bayesian semiparametric approach to model the longitudinal exposure profiles of the cases and controls and then use measures of cumulative exposure based on a weighted integral of this trajectory in the final disease risk model. The estimation is done via a joint likelihood. In the construction of the cumulative exposure summary, we introduce an influence function, a smooth function of time to characterize the association pattern of the exposure profile on the disease status with different time windows potentially having differential influence/weights. This enables us to analyze how the present disease status of a subject is influenced by his/her past exposure history conditional on the current ones. The joint likelihood formulation allows us to properly account for uncertainties associated with both stages of the estimation process in an integrated manner. Analysis is carried out in a hierarchical Bayesian framework using Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms. The proposed methodology is motivated by, and applied to a case-control study of prostate cancer where longitudinal biomarker information is available for the cases and controls. PMID:22313248
Thermal protection for a self-sensing piezoelectric control system
NASA Astrophysics Data System (ADS)
Simmers, Garnett E., Jr.; Sodano, Henry A.; Park, Gyuhae; Inman, Daniel J.
2007-12-01
Piezoelectric materials exhibit high electromechanical coupling that allows them to both generate an electrical signal when strained and, conversely, to produce a strain under an applied electric field. This coupling has led to the use of these materials for a variety of sensing and actuation purposes. One unique application of these materials is their use as self-sensing actuators where both the sensing and actuation functions are performed by a single patch of material. Since the actuation and sensing voltages both exist simultaneously in the piezoelectric material, a specially designed electric circuit, referred to as a bridge circuit, is required to realize the concept. Configuration of the material in this manner is advantageous for control systems due to the enhanced stability associated when collocated control is applied. While certain advantages result from this type of system, precise equilibrium of the bridge circuit is required to achieve stability. This equilibrium is easy to achieve in theory, but difficult in practice due to the thermal dependence of the piezoelectric material's dielectric constant. This study will investigate a novel method of accounting for these changes through the use of thermal switches to passively adjust the bridge circuit and maintain a balanced state. The proposed concept will be theoretically modeled and simulated in a vibration control application to identify the thermal range for stability with and without the array of switches. It will be shown that, through the use of nine thermal switches, the stable operating range can be increased by 95 °C while maintaining vibration control performance.
Lichtenhan, J T; Hartsock, J; Dornhoffer, J R; Donovan, K M; Salt, A N
2016-11-01
Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichtenhan, JT; Hartsock, J; Dornhoffer, JR; Donovan, KM; Salt, AN
2016-01-01
Background Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. New method Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Results Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Conclusions Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. PMID:27506463
Delay times of a LiDAR-guided precision sprayer control system
USDA-ARS?s Scientific Manuscript database
Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...
Quality control of estrogen receptor assays.
Godolphin, W; Jacobson, B
1980-01-01
Four types of material have been used for the quality control of routine assays of estrogen receptors in human breast tumors. Pieces of hormone-dependent Nb rat mammary tumors gave a precision about 40%. Rat uteri and rat tumors pulverized at liquid nitrogen temperature and stored as powder yielded precision about 30%. Powdered and lyophilised human tumors appear the best with precision as good as 17%.
Sequential dynamics in visual short-term memory.
Kool, Wouter; Conway, Andrew R A; Turk-Browne, Nicholas B
2014-10-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects.
Sequential dynamics in visual short-term memory
Conway, Andrew R. A.; Turk-Browne, Nicholas B.
2014-01-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects. PMID:25228092
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
Intelligent Controls for Net-Zero Energy Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haorong; Cho, Yong; Peng, Dongming
2011-10-30
The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less
Precision controllability of the YF-17 airplane
NASA Technical Reports Server (NTRS)
Sisk, T. R.; Mataeny, N. W.
1980-01-01
A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.
Poor neuro-motor tuning of the human larynx: a comparison of sung and whistled pitch imitation
Johnson, Joseph F.; Kotz, Sonja A.
2018-01-01
Vocal imitation is a hallmark of human communication that underlies the capacity to learn to speak and sing. Even so, poor vocal imitation abilities are surprisingly common in the general population and even expert vocalists cannot match the precision of a musical instrument. Although humans have evolved a greater degree of control over the laryngeal muscles that govern voice production, this ability may be underdeveloped compared with control over the articulatory muscles, such as the tongue and lips, volitional control of which emerged earlier in primate evolution. Human participants imitated simple melodies by either singing (i.e. producing pitch with the larynx) or whistling (i.e. producing pitch with the lips and tongue). Sung notes were systematically biased towards each individual's habitual pitch, which we hypothesize may act to conserve muscular effort. Furthermore, while participants who sung more precisely also whistled more precisely, sung imitations were less precise than whistled imitations. The laryngeal muscles that control voice production are under less precise control than the oral muscles that are involved in whistling. This imprecision may be due to the relatively recent evolution of volitional laryngeal-motor control in humans, which may be tuned just well enough for the coarse modulation of vocal-pitch in speech. PMID:29765635
Image analysis software versus direct anthropometry for breast measurements.
Quieregatto, Paulo Rogério; Hochman, Bernardo; Furtado, Fabianne; Machado, Aline Fernanda Perez; Sabino Neto, Miguel; Ferreira, Lydia Masako
2014-10-01
To compare breast measurements performed using the software packages ImageTool(r), AutoCAD(r) and Adobe Photoshop(r) with direct anthropometric measurements. Points were marked on the breasts and arms of 40 volunteer women aged between 18 and 60 years. When connecting the points, seven linear segments and one angular measurement on each half of the body, and one medial segment common to both body halves were defined. The volunteers were photographed in a standardized manner. Photogrammetric measurements were performed by three independent observers using the three software packages and compared to direct anthropometric measurements made with calipers and a protractor. Measurements obtained with AutoCAD(r) were the most reproducible and those made with ImageTool(r) were the most similar to direct anthropometry, while measurements with Adobe Photoshop(r) showed the largest differences. Except for angular measurements, significant differences were found between measurements of line segments made using the three software packages and those obtained by direct anthropometry. AutoCAD(r) provided the highest precision and intermediate accuracy; ImageTool(r) had the highest accuracy and lowest precision; and Adobe Photoshop(r) showed intermediate precision and the worst accuracy among the three software packages.
A new, high-precision measurement of the X-ray Cu K α spectrum
NASA Astrophysics Data System (ADS)
Mendenhall, Marcus H.; Cline, James P.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald
2016-03-01
One of the primary measurement issues addressed with NIST Standard Reference Materials (SRMs) for powder diffraction is that of line position. SRMs for this purpose are certified with respect to lattice parameter, traceable to the SI through precise measurement of the emission spectrum of the X-ray source. Therefore, accurate characterization of the emission spectrum is critical to a minimization of the error bounds on the certified parameters. The presently accepted sources for the SI traceable characterization of the Cu K α emission spectrum are those of Härtwig, Hölzer et al., published in the 1990s. The structure of the X-ray emission lines of the Cu K α complex has been remeasured on a newly commissioned double-crystal instrument, with six-bounce Si (440) optics, in a manner directly traceable to the SI definition of the meter. In this measurement, the entire region from 8020 eV to 8100 eV has been covered with a highly precise angular scale and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement is in modest disagreement with reference values for the wavelength of the Kα1 line, and strong disagreement for the wavelength of the Kα2 line.
System for controlling the flow of gas into and out of a gas laser
Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.
1994-01-01
A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.
NASA Technical Reports Server (NTRS)
Blee, Kristopher A.; Choi, Joon W.; O'Connell, Ann P.; Schuch, Wolfgang; Lewis, Norman G.; Bolwell, G. Paul
2003-01-01
A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.
Tgif1 Counterbalances the Activity of Core Pluripotency Factors in Mouse Embryonic Stem Cells.
Lee, Bum-Kyu; Shen, Wenwen; Lee, Jiwoon; Rhee, Catherine; Chung, Haewon; Kim, Kun-Yong; Park, In-Hyun; Kim, Jonghwan
2015-10-06
Core pluripotency factors, such as Oct4, Sox2, and Nanog, play important roles in maintaining embryonic stem cell (ESC) identity by autoregulatory feedforward loops. Nevertheless, the mechanism that provides precise control of the levels of the ESC core factors without indefinite amplification has remained elusive. Here, we report the direct repression of core pluripotency factors by Tgif1, a previously known terminal repressor of TGFβ/activin/nodal signaling. Overexpression of Tgif1 reduces the levels of ESC core factors, whereas its depletion leads to the induction of the pluripotency factors. We confirm the existence of physical associations between Tgif1 and Oct4, Nanog, and HDAC1/2 and further show the level of Tgif1 is not significantly altered by treatment with an activator/inhibitor of the TGFβ/activin/nodal signaling. Collectively, our findings establish Tgif1 as an integral member of the core regulatory circuitry of mouse ESCs that counterbalances the levels of the core pluripotency factors in a TGFβ/activin/nodal-independent manner. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rubin, Beverly S; Paranjpe, Maneesha; DaFonte, Tracey; Schaeberle, Cheryl; Soto, Ana M; Obin, Martin; Greenberg, Andrew S
2017-03-01
Body weight (BW) and body composition were examined in CD-1 mice exposed perinatally or perinatally and peripubertally to 0, 0.25, 2.5, 25, or 250μg BPA/kg BW/day. Our goal was to identify the BPA dose (s) and the exposure window(s) that increased BW and adiposity, and to assess potential sex differences in this response. Both perinatal exposure alone and perinatal plus peripubertal exposure to environmentally relevant levels of BPA resulted in lasting effects on body weight and body composition. The effects were dose specific and sex specific and were influenced by the precise window of BPA exposure. The addition of peripubertal BPA exposure following the initial perinatal exposure exacerbated adverse effects in the females but appeared to reduce differences in body weight and body composition between control and BPA exposed males. Some effects of BPA on body weight and body composition showed a non-linear dose response. Copyright © 2016. Published by Elsevier Inc.
Microfluidics in Malignant Glioma Research and Precision Medicine
Logun, Meghan; Zhao, Wujun
2018-01-01
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12–15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM. PMID:29780878
Hao, Hailing; Li, Ying; Tzatzalos, Evangeline; Gilbert, Jordana; Zala, Dhara; Bhaumik, Mantu; Cai, Li
2014-01-01
Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development. PMID:24954155
Krishnan, Swathi; Smits, Arne H; Vermeulen, Michiel; Reinberg, Danny
2017-08-17
Precise control of sister chromatid separation during mitosis is pivotal to maintaining genomic integrity. Yet, the regulatory mechanisms involved are not well understood. Remarkably, we discovered that linker histone H1 phosphorylated at S/T18 decorated the inter-chromatid axial DNA on mitotic chromosomes. Sister chromatid resolution during mitosis required the eviction of such H1S/T18ph by the chaperone SET, with this process being independent of and most likely downstream of arm-cohesin dissociation. SET also directed the disassembly of Shugoshins in a polo-like kinase 1-augmented manner, aiding centromere resolution. SET ablation compromised mitotic fidelity as evidenced by unresolved sister chromatids with marked accumulation of H1S/T18ph and centromeric Shugoshin. Thus, chaperone-assisted eviction of linker histones and Shugoshins is a fundamental step in mammalian mitotic progression. Our findings also elucidate the functional implications of the decades-old observation of mitotic linker histone phosphorylation, serving as a paradigm to explore the role of linker histones in bio-signaling processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Bain, Gregory; Gupta, Prince; Phadnis, Joideep; Singhi, Prahalad K
2016-02-01
The humeral supracondylar process and Struthers ligament comprise a relatively rare but well-known anatomic variant. They are usually asymptomatic but may produce clinical symptoms related to compression of the median nerve or brachial artery below the ligament. Previously, surgery has been performed with an open ligament release and supracondylar process excision. This article reports on the use of endoscopic findings and the method of ligament release and process excision. Endoscopy is a minimally invasive technique that provides excellent visualization and enables the surgeon to perform dissection with magnification and precision. It allows the surgeon to introduce open surgical techniques into the depths of the wound in a controlled manner. Because of the dead space created, there is a risk of hematoma formation. Many of the concepts used in open surgery are now being used for endoscopic surgery, and vice versa. The barriers and differences among endoscopic, arthroscopic, and open procedures are being broken down. We report another endoscopic technique, which is part of the ongoing evolution of musculoskeletal surgery.
FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress
Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra
2013-01-01
Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis. PMID:24145170
Wang, Weishan; Yang, Tongjian; Li, Yihong; Li, Shanshan; Yin, Shouliang; Styles, Kathryn; Corre, Christophe; Yang, Keqian
2016-07-15
Precise control of gene expression using exogenous factors is of great significance. To develop ideal inducible expression systems for streptomycetes, new genetic parts, oxytetracycline responsive repressor OtrR, operator otrO, and promoter otrBp from Streptomyces rimosus, were selected de novo and characterized in vivo and in vitro. OtrR showed strong affinity to otrO (KD = 1.7 × 10(-10) M) and oxytetracycline induced dissociation of the OtrR/DNA complex in a concentration-dependent manner. On the basis of these genetic parts, a synthetic inducible expression system Potr* was optimized. Induction of Potr* with 0.01-4 μM of oxytetracycline triggered a wide-range expression level of gfp reporter gene in different Streptomyces species. Benchmarking Potr* against the widely used constitutive promoters ermE* and kasOp* revealed greatly enhanced levels of expression when Potr* was fully induced. Finally, Potr* was used as a tool to activate and optimize the expression of the silent jadomycin biosynthetic gene cluster in Streptomyces venezuelae. Altogether, the synthetic Potr* presents a new versatile tool for fine-tuning gene expression in streptomycetes.
Protecting and Diversifying the Germline
Gleason, Ryan J.; Anand, Amit; Kai, Toshie; Chen, Xin
2018-01-01
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development—a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development. PMID:29378808
NASA Astrophysics Data System (ADS)
Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.
2016-04-01
This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.
Neutrino Oscillations with the MINOS, MINOS+, T2K, and NOvA Experiments
Nakaya, Tsuyoshi; Plunkett, Robert K.
2016-01-18
Our paper discusses results and near-term prospects of the long-baseline neutrino experiments MINOS, MONOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle θ 13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal θ 23. Our current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
Variable-pulse switching circuit accurately controls solenoid-valve actuations
NASA Technical Reports Server (NTRS)
Gillett, J. D.
1967-01-01
Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.
A reactionless precision pointing actuator
NASA Technical Reports Server (NTRS)
Wiktor, Peter
1987-01-01
The applications, design, control and testing of an actuator that provides the precise motion control of a gimbal platform without torquing against the basebody to which it is attached are described. The reactionless actuator described was given the name reactuator.
NASA Astrophysics Data System (ADS)
Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan
2017-01-01
Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Jun, James J.; Longtin, André; Maler, Leonard
2014-01-01
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors. PMID:24637642
NASA Technical Reports Server (NTRS)
Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.
1990-01-01
The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.
Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A
2018-03-15
Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for controlled genetic vector release. We adjust the physiochemical properties of alginate for quicker or slower release, and we demonstrate how combining distinct formulations of microgels can tune the release of the overall composite microgel suspension. These composite suspensions are generated using a straightforward and powerful application of droplet microfluidics which allows for the real-time generation of a composite suspension. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming
2018-03-01
In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1989-01-01
In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved to converge to the minimum of a cost function. Finally, simulations will show the effectiveness of a variety of search techniques for the intelligent machine.
NASA Astrophysics Data System (ADS)
Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.; Torres, O.; Chang, L.; Hong, J.
2016-12-01
Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.
NASA Astrophysics Data System (ADS)
Gvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S.
2017-12-01
Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.
Autonomous execution of the Precision Immobilization Technique
NASA Astrophysics Data System (ADS)
Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.
2017-03-01
Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this control policy to execute the PIT maneuver was demonstrated both in simulation and experimentally. The results of this work can help inform the design of autonomous car with regards to ensuring their cyber-physical security.
Koh, Ahyeon; Gutbrod, Sarah R; Meyers, Jason D; Lu, Chaofeng; Webb, Richard Chad; Shin, Gunchul; Li, Yuhang; Kang, Seung-Kyun; Huang, Yonggang; Efimov, Igor R; Rogers, John A
2016-02-04
Knowledge of the distributions of temperature in cardiac tissue during and after ablation is important in advancing a basic understanding of this process, and for improving its efficacy in treating arrhythmias. Technologies that enable real-time temperature detection and thermal characterization in the transmural direction can help to predict the depths and sizes of lesion that form. Herein, materials and designs for an injectable device platform that supports precision sensors of temperature and thermal transport properties distributed along the length of an ultrathin and flexible needle-type polymer substrate are introduced. The resulting system can insert into the myocardial tissue, in a minimally invasive manner, to monitor both radiofrequency ablation and cryoablation, in a manner that has no measurable effects on the natural mechanical motions of the heart. The measurement results exhibit excellent agreement with thermal simulations, thereby providing improved insights into lesion transmurality. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung
2017-11-17
With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.
Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays
Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.
2014-01-01
Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D
2014-06-01
Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.
Atomically Precise Interfaces from Non-stoichiometric Deposition
NASA Astrophysics Data System (ADS)
Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell
2015-03-01
Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.
Precise attitude control of the Stanford relativity satellite.
NASA Technical Reports Server (NTRS)
Bull, J. S.; Debra, D. B.
1973-01-01
A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.
Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer
NASA Astrophysics Data System (ADS)
Liao, M.; Stubbins, A.; Haidekker, M.
2017-12-01
Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
NASA Astrophysics Data System (ADS)
Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst
2013-07-01
Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium. Electronic supplementary information (ESI) available: Images of the QDs, toxicity data and NMR spectra. See DOI: 10.1039/c3nr01520c
Hamilton-Jacobi modelling of relative motion for formation flying.
Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini
2005-12-01
A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.
Inequality across consonantal contrasts in speech perception: evidence from mismatch negativity.
Cornell, Sonia A; Lahiri, Aditi; Eulitz, Carsten
2013-06-01
The precise structure of speech sound representations is still a matter of debate. In the present neurobiological study, we compared predictions about differential sensitivity to speech contrasts between models that assume full specification of all phonological information in the mental lexicon with those assuming sparse representations (only contrastive or otherwise not predictable information is stored). In a passive oddball paradigm, we studied the contrast sensitivity as reflected in the mismatch negativity (MMN) response to changes in the manner of articulation, as well as place of articulation of consonants in intervocalic positions of nonwords (manner of articulation: [edi ~ eni], [ezi ~ eni]; place of articulation: [edi ~ egi]). Models that assume full specification of all phonological information in the mental lexicon posit equal MMNs within each contrast (symmetric MMNs), that is, changes from standard [edi] to deviant [eni] elicit a similar MMN response as changes from standard [eni] to deviant [edi]. In contrast, models that assume sparse representations predict that only the [ezi] ~ [eni] reversals will evoke symmetric MMNs because of their conflicting fully specified manner features. Asymmetric MMNs are predicted, however, for the reversals of [edi] ~ [eni] and [edi] ~ [egi] because either a manner or place property in each pair is not fully specified in the mental lexicon. Our results show a pattern of symmetric and asymmetric MMNs that is in line with predictions of the featurally underspecified lexicon model that assumes sparse phonological representations. We conclude that the brain refers to underspecified phonological representations during speech perception. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Subcortical Control of Precision Grip after Human Spinal Cord Injury
Bunday, Karen L.; Tazoe, Toshiki; Rothwell, John C.
2014-01-01
The motor cortex and the corticospinal system contribute to the control of a precision grip between the thumb and index finger. The involvement of subcortical pathways during human precision grip remains unclear. Using noninvasive cortical and cervicomedullary stimulation, we examined motor evoked potentials (MEPs) and the activity in intracortical and subcortical pathways targeting an intrinsic hand muscle when grasping a small (6 mm) cylinder between the thumb and index finger and during index finger abduction in uninjured humans and in patients with subcortical damage due to incomplete cervical spinal cord injury (SCI). We demonstrate that cortical and cervicomedullary MEP size was reduced during precision grip compared with index finger abduction in uninjured humans, but was unchanged in SCI patients. Regardless of whether cortical and cervicomedullary stimulation was used, suppression of the MEP was only evident 1–3 ms after its onset. Long-term (∼5 years) use of the GABAb receptor agonist baclofen by SCI patients reduced MEP size during precision grip to similar levels as uninjured humans. Index finger sensory function correlated with MEP size during precision grip in SCI patients. Intracortical inhibition decreased during precision grip and spinal motoneuron excitability remained unchanged in all groups. Our results demonstrate that the control of precision grip in humans involves premotoneuronal subcortical mechanisms, likely disynaptic or polysynaptic spinal pathways that are lacking after SCI and restored by long-term use of baclofen. We propose that spinal GABAb-ergic interneuronal circuits, which are sensitive to baclofen, are part of the subcortical premotoneuronal network shaping corticospinal output during human precision grip. PMID:24849366
Custos controls β-catenin to regulate head development during vertebrate embryogenesis.
Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond
2014-09-09
Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.
Li, Hongjie; Qi, Yanyan; Jasper, Heinrich
2016-01-01
The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process. PMID:27570230
Programming the Assembly of Unnatural Materials with Nucleic Acids
NASA Astrophysics Data System (ADS)
Mirkin, Chad
Nature directs the assembly of enormously complex and highly functional materials through an encoded class of biomolecules, nucleic acids. The establishment of a similarly programmable code for the construction of synthetic, unnatural materials would allow researchers to impart functionality by precisely positioning all material components. Although it is exceedingly difficult to control the complex interactions between atomic and molecular species in such a manner, interactions between nanoscale components can be directed through the ligands attached to their surface. Our group has shown that nucleic acids can be used as highly programmable surface ligands to control the spacing and symmetry of nanoparticle building blocks in structurally sophisticated and functional materials. These nucleic acids function as programmable ``bonds'' between nanoparticle ``atoms,'' analogous to a nanoscale genetic code for assembling materials. The sequence and length tunability of nucleic acid bonds has allowed us to define a powerful set of design rules for the construction of nanoparticle superlattices with more than 30 unique lattice symmetries, tunable defect structures and interparticle spacings, and several well-defined crystal habits. Further, the nature of the nucleic acid bond enables an additional level of structural control: temporal regulation of dynamic material response to external biomolecular and chemical stimuli. This control allows for the reversible transformation between thermodynamic states with different crystal symmetries, particle stoichiometries, thermal stabilities, and interparticle spacings on demand. Notably, our unique genetic approach affords functional nanoparticle architectures that, among many other applications, can be used to systematically explore and manipulate optoelectronic material properties, such as tunable interparticle plasmonic interactions, microstructure-directed energy emission, and coupled plasmonic and photonic modes.
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Merrick, V. K.
1990-01-01
Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
NASA Astrophysics Data System (ADS)
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian
2003-01-01
The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
Closed-Loop Aeromaneuvering for a Mars Precision Landing
NASA Technical Reports Server (NTRS)
Smith, Roy; Boussalis, Dhemetrios; Hadaegh, Fred Y.
1997-01-01
Controlled aeromaneuvering is considered as a means of achieving a precisely targeted landing on Mars. This paper presents a preliminary study of the control issues. The candidate vehicle is the existing Mars Pathfinder augmented with roll thrusters and a center of mass offset actuator. These allow control of both bank angle and lift force, giving the ability to control the range and cross-track during the aeromaneuvering entry. A preliminary control system structure is proposed and a design simulation illustrates significant targeting improvement under closed-loop control.
Measurement of whole tire profile
NASA Astrophysics Data System (ADS)
Yang, Yongyue; Jiao, Wenguang
2010-08-01
In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.
The Precision Field Lysimeter Concept
NASA Astrophysics Data System (ADS)
Fank, J.
2009-04-01
The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent respectively. The different soil horizons in the lysimeters are equipped with sensors to measure soil temperature, water content and soil tension. Suction cups are used to get soil water samples. The lower boundary of the lysimeter is designed to maintain equilibrium between the suction applied to the leachate collection system and soil matrix potential thus the suction applied may vary depending on natural conditions - measured using tensiometers - in the field. The lysimeters are built in directly in a test area of 1000 m2 with the same vegetation to prevent island effects on evotranspiration. The topmost part of the lysimeter is realized as a removable ring that mechanical cultivation is possible in the same manner as at the test field. In this presentation the concept and the implementation of the Precision Field Lysimeter is shown. First results on water and solute balances of a 4 years investigation period are discussed.
Experimental evaluation of active-member control of precision structures
NASA Technical Reports Server (NTRS)
Fanson, James; Blackwood, Gary; Chu, Cheng-Chih
1989-01-01
The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.
NASA Astrophysics Data System (ADS)
Tang, T. F.; Chong, S. H.
2017-06-01
This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.
Master-slave micromanipulator apparatus
Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.
1999-08-31
An apparatus is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it. 12 figs.
Master-slave micromanipulator method
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Master-slave micromanipulator apparatus
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Perception and acceptance of risk from radiation exposure in space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovic, P
There are a number of factors that influence how a person views a particular risk. These include whether the risk is judged to be voluntary and/or controllable, whether the effects are immediate or delayed, and the magnitude of the benefits that are to be gained as a result of being exposed to the risk. An important aspect of the last factor is whether those who suffer the risks are also those who stand to reap the benefits. The manner in which risk is viewed is also significantly influenced by the manner in which it is framed and presented. In short,more » risk does not exist in the world independent of our minds and cultures, waiting to be measured. Assessments of risk are based on models whose structure is subjective and associated evaluations are laden with assumptions whose inputs are dependent on judgments. In fact, subjectivity permeates every aspect of risk assessment. The assessment of radiation risks in space is no exception. The structuring of the problem includes judgments related to the probability, magnitude, and effects of the various types of radiation likely to be encountered and assumptions related to the quantitative relationship between dose and a range of specific effects, all of which have associated uncertainties. For these reasons, there is no magic formula that will lead us to a precise level of acceptable risk from exposure to radiation in space. Acceptable risk levels must evolve through a process of negotiation that integrates a large number of social, technical, and economic factors. In the end, a risk that is deemed to be acceptable will be the outgrowth of the weighing of risks and benefits and the selection of the option that appears to be best.« less
Open core control software for surgical robots.
Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo
2010-05-01
In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.
Study on Controls of Fluids in Nanochannel via Hybrid Surface
NASA Astrophysics Data System (ADS)
Ye, Ziran
This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.
Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak
2015-11-01
Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.
Schema generation in recurrent neural nets for intercepting a moving target.
Fleischer, Andreas G
2010-06-01
The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.
High level continuity for coordinate generation with precise controls
NASA Technical Reports Server (NTRS)
Eiseman, P. R.
1982-01-01
Coordinate generation techniques with precise local controls have been derived and analyzed for continuity requirements up to both the first and second derivatives, and have been projected to higher level continuity requirements from the established pattern. The desired local control precision was obtained when a family of coordinate surfaces could be uniformly distributed without a consequent creation of flat spots on the coordinate curves transverse to the family. Relative to the uniform distribution, the family could be redistributed from an a priori distribution function or from a solution adaptive approach, both without distortion from the underlying transformation which may be independently chosen to fit a nontrivial geometry and topology.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383
A standardized sampling protocol for channel catfish in prairie streams
Vokoun, Jason C.; Rabeni, Charles F.
2001-01-01
Three alternative gears—an AC electrofishing raft, bankpoles, and a 15-hoop-net set—were used in a standardized manner to sample channel catfish Ictalurus punctatus in three prairie streams of varying size in three seasons. We compared these gears as to time required per sample, size selectivity, mean catch per unit effort (CPUE) among months, mean CPUE within months, effect of fluctuating stream stage, and sensitivity to population size. According to these comparisons, the 15-hoop-net set used during stable water levels in October had the most desirable characteristics. Using our catch data, we estimated the precision of CPUE and size structure by varying sample sizes for the 15-hoop-net set. We recommend that 11–15 repetitions of the 15-hoop-net set be used for most management activities. This standardized basic unit of effort will increase the precision of estimates and allow better comparisons among samples as well as increased confidence in management decisions.
How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar, Aneesh; Nason, Paolo; Salam, Gavin P.
2016-12-09
It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (ep) scattering data, in effect viewing the ep → e + X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross sectionmore » in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of 1%–2% over a wide range of momentum fractions.« less
How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function.
Manohar, Aneesh; Nason, Paolo; Salam, Gavin P; Zanderighi, Giulia
2016-12-09
It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (ep) scattering data, in effect viewing the ep→e+X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2016-01-01
Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.
1979-01-01
A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.
Pekala, Ronald J
2016-01-01
Wickramasekera II (2015) has penned a comprehensive and thoughtful review article demonstrating how empathy is intimately involved in the psychology and neurophysiology of hypnosis and the self. Hypnosis is a very "mental" or subjective phenomenon for both the client and the research participant. To better assess the mind of the client/participant during hypnosis, it is my belief that we need to generate more "precise" phenomenological descriptors of the mind during hypnosis and related empathic conditions, as Wickramasekera II (2015) has suggested in his article. Although any phenomenological methodology will have its limits and disadvantages, noetics (as defined in the article below) can help us better understand hypnosis, empathic involvement theory, and the brain/mind/behavior interface. By quantifying the mind in a comprehensive manner, just as the brain is comprehensively quantified via fMRI and qEEG technologies, noetic analysis can help us more precisely assess the mind and relate it to the brain and human behavior and experience.
Developing web-based data analysis tools for precision farming using R and Shiny
NASA Astrophysics Data System (ADS)
Jahanshiri, Ebrahim; Mohd Shariff, Abdul Rashid
2014-06-01
Technologies that are set to increase the productivity of agricultural practices require more and more data. Nevertheless, farming data is also being increasingly cheap to collect and maintain. Bulk of data that are collected by the sensors and samples need to be analysed in an efficient and transparent manner. Web technologies have long being used to develop applications that can assist the farmers and managers. However until recently, analysing the data in an online environment has not been an easy task especially in the eyes of data analysts. This barrier is now overcome by the availability of new application programming interfaces that can provide real-time web based data analysis. In this paper developing a prototype web based application for data analysis using new facilities in R statistical package and its web development facility, Shiny is explored. The pros and cons of this type of data analysis environment for precision farming are enumerated and future directions in web application development for agricultural data are discussed.
The processing of mispredicted and unpredicted sensory inputs interact differently with attention.
Hsu, Yi-Fang; Hämäläinen, Jarmo A; Waszak, Florian
2018-03-01
Prediction and attention are fundamental brain functions in the service of perception. Interestingly, previous investigations found prediction effects independent of attention in some cases but attention-dependent in other cases. The discrepancy might be related to whether the prediction effect was revealed by comparing mispredicted event (where there is incorrect prediction) or unpredicted event (where there is no precise prediction) against predicted event, which are associated with different precision-weighted prediction error. Here we conducted a joint analysis on four published electroencephalography (EEG) datasets which allow for proper dissociation of mispredicted and unpredicted conditions when there was orthogonal manipulation of prediction and attention. We found that the mispredicted-versus-predicted contrast revealed an attention-independent effect of prediction suppression, whereas the unpredicted-versus-predicted contrast revealed a prediction effect that was reversed by attention on auditory N1. The results suggest that mispredicted and unpredicted processing interact with attention in distinct manners. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nano/microfluidics for diagnosis of infectious diseases in developing countries
Lee, Won Gu; Kim, Yun-Gon; Chung, Bong Geun; Demirci, Utkan; Khademhosseini, Ali
2010-01-01
Nano/microfluidic technologies are emerging as powerful enabling tools for diagnosis and monitoring of infectious diseases in both developed and developing countries. Miniaturized nano/microfluidic platforms that precisely manipulate small fluid volumes can be used to enable medical diagnosis in a more rapid and accurate manner. In particular, these nano/microfluidic diagnostic technologies are potentially applicable to global health applications, because they are disposable, inexpensive, portable, and easy-to-use for detection of infectious diseases. In this paper, we review recent developments in nano/microfluidic technologies for clinical point-of-care applications at resource-limited settings in developing countries. PMID:19954755
NASA Astrophysics Data System (ADS)
Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong
2012-04-01
A microfluidic device is developed to transport microbubbles (MBs) along a desired trajectory in fluid by introducing the phase-shift to a planar standing surface acoustic wave (SSAW). The radiation force of SSAW due to the acoustic pressure gradient modulated by a phase-shift can move MBs to anticipated potential wells in a programmable manner. The resolution of the transportation is approximately 2.2 µm and the estimated radiation force on the MBs is on the order of 10-9 N. This device can be used for manipulation of bioparticles, cell sorting, tissue engineering, and other biomedical applications.
Cobalt: Development and Maturation of GN&C Technologies for Precision Landing
NASA Technical Reports Server (NTRS)
Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin
2016-01-01
The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
Localization of an Underwater Control Network Based on Quasi-Stable Adjustment.
Zhao, Jianhu; Chen, Xinhua; Zhang, Hongmei; Feng, Jie
2018-03-23
There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results' accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method.
Localization of an Underwater Control Network Based on Quasi-Stable Adjustment
Chen, Xinhua; Zhang, Hongmei; Feng, Jie
2018-01-01
There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method. PMID:29570627
Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya
2016-01-01
Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883
29 CFR 1926.152 - Flammable liquids.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tank, unless control valves and their connections to the tank are of a type designed to prevent... storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides, and top... extinguishing system is provided, the system shall be designed and installed in an approved manner. Openings to...
29 CFR 1926.152 - Flammable liquids.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tank, unless control valves and their connections to the tank are of a type designed to prevent... storage cabinets shall be constructed in the following manner, or equivalent: The bottom, sides, and top... extinguishing system is provided, the system shall be designed and installed in an approved manner. Openings to...
49 CFR 192.605 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maintenance activities and for emergency response. For transmission lines, the manual must also include... and effective manner. (5) Starting up and shutting down any part of the pipeline in a manner designed... control room management procedures required by § 192.631. (c) Abnormal operation. For transmission lines...
Cooke Bailey, Jessica N; Crawford, Dana C; Goldenberg, Aaron; Slaven, Anne; Pencak, Julie; Schachere, Marleen; Bush, William S; Sedor, John R; O'Toole, John F
2018-06-26
Multiple ongoing, government-funded national efforts longitudinally collect health data and biospecimens for precision medicine research with ascertainment strategies increasingly emphasizing underrepresented groups in biomedical research. We surveyed chronic kidney disease patients from an academic, public integrated tertiary care system in Cleveland, Ohio, to examine local attitudes toward participation in large-scale government-funded studies. Responses ( n = 103) indicate the majority (71%) would participate in a hypothetical national precision medicine cohort and were willing to send biospecimens to a national repository and share de-identified data, but <50% of respondents were willing to install a phone app to track personal data. The majority of participants (62%) indicated that return of research results was very important, and the majority (54%) also wanted all of their research-collected health and genetic data returned. Response patterns did not differ by race/ethnicity. Overall, we found high willingness to participate among this Cleveland patient population already participating in a local genetic study. These data suggest that despite common perceptions, subjects from communities traditionally underrepresented in genetic research will participate and agree to store samples and health data in repositories. Furthermore, most participants want return of research results, which will require a plan to provide these data in a secure, accessible, and understandable manner.
Initiating head development in mouse embryos: integrating signalling and transcriptional activity.
Arkell, Ruth M; Tam, Patrick P L
2012-03-01
The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior-posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.
Zhang, Chengfeng; Liu, Ziyuan; Wang, Haiye; Feng, Xiaofeng; He, Chunju
2017-07-01
A unique l-cysteine conjugated antifouling amphiphilic conetwork (APCN) is synthesized through end-crosslinking of well-defined triblock copolymers poly(allyl methacrylate)-b-poly(ethylene glycol)-b-poly(allyl methacrylate) via a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene "click" chemistry. The synthesized poly(ethylene glycol) macro-RAFT agent initiates the polymerization of allyl methacrylate in a controlled manner. The vinyl pendant groups of the precursor partially conjugate with l-cysteine and the rest fully crosslink with mercaptopropyl-containing siloxane via thiol-ene click chemistry under UV irradiation into APCNs, which show distinguished properties, that is, excellent biocompatibility, more than 39.6% water content, 101 barrers oxygen permeability, optimized mechanical properties, and more than 93% visible light transmittance. What's more, the resultant APCNs exhibit eminent resistance to protein adsorption, where the bovine serum albumin and lysozyme adsorption are decreased to 12 and 21 µg cm -2 , respectively. The outstanding properties of APCNs depend on the RAFT controlled method, which precisely designs the hydrophilic/hydrophobic segments and eventually greatly improves the crosslinking efficiency and homogeneity. Meantime, the l-cysteine monolayer can effectively reduce the surface hydrophobicity and prevent protein adsorption, which exhibits the viability for antifouling surface over and under ophthalmic devices, suggesting a promising soft contact lens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tron, François; Gilbert, Danièle; Mouquet, Hugo; Joly, Pascal; Drouot, Laurent; Makni, Sondès; Masmoudi, Hatem; Charron, Dominique; Zitouni, Mondher; Loiseau, Pascale; Ben Ayed, Mourad
2005-06-01
Epidemiological studies performed in different ethnic populations and family studies, notably based on a partial phenotype of the autoimmune process, indicate that genetic factors are involved in the occurrence of pemphigus. However, the precise heritability remains uncertain in the absence of twin concordance rate studies. Among the different strategies available to identify genetic factors participating in autoimmune disease susceptibility, only population studies based on case-control design have been performed in pemphigus. These studies consistently showed that MHC locus, in particular HLA class II alleles, are associated with pemphigus vulgaris and pemphigus foliaceus. Other genes of the MHC locus may also participate in disease susceptibility as shown by studies using microsatellite markers across different regions of the MHC. It is likely that other non-MHC genes are involved in the pathogenesis of pemphigus. In particular, involvement of a polymorphic variant of desmoglein 1 gene was shown to be associated with pemphigus foliaceus and to interact in an epistatic manner with MHC class II genes to contribute to the autoimmune process. Other candidate genes to which a role can be assigned in the disease pathogenesis should be considered to design case-control or family-based association studies. Genome scan studies which require a large number of multiplex families to reach statistical power, should also be considered in the endemic form of pemphigus foliaceus because of the high number of familial cases.
Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C.
Hitrik, Anna; Popliker, Malka; Gancz, Dana; Mukamel, Zohar; Lifshitz, Aviezer; Schwartzman, Omer; Tanay, Amos; Gilboa, Lilach
2016-11-01
The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation.
Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C
Gancz, Dana; Lifshitz, Aviezer; Tanay, Amos
2016-01-01
The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation. PMID:27846223
Case studies in machine vision integration
NASA Astrophysics Data System (ADS)
Ahlers, Rolf-Juergen
1991-09-01
Many countries in the world, e.g. Germany and Japan, depend on high export rates. It is therefore necessary for them to strive for a high degree of quality in the products and processes exported. The example of Japan shows in a significant manner that a competitor should not be feared just because he can offer cheaper products. They become a "source of danger" when these products also achieve a high degree of quality. Thus, survival in the market depends on the ability to recognize the implications of technical and economic developments, to draw the perhaps unpopular conclusions for production, and to make the right decisions. This particularly applies to measurement and inspection equipment for quality control. Here, besides electro-optical sensors in general, image processing systems play an important role because they can emulate the conventional form of visual inspection by a human operator — i.e., the methods used in industry when dealing with quality inspection and control. In combination with precision indexing tables and industrial robots, image processing systems can be extended to new fields of application. The great awareness of the potential applications of vision and image processing systems has led to a variety of realized applications, some of which will be described below under three topics: • electro-optical measurement systems, • automation of visual inspection tasks, and • robot guidance.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
NASA Technical Reports Server (NTRS)
Cunningham, William C. (Inventor)
1987-01-01
A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
Development of a laser-guided embedded-computer-controlled air-assisted precision sprayer
USDA-ARS?s Scientific Manuscript database
An embedded computer-controlled, laser-guided, air-assisted, variable-rate precision sprayer was developed to automatically adjust spray outputs on both sides of the sprayer to match presence, size, shape, and foliage density of tree crops. The sprayer was the integration of an embedded computer, a ...
Guidance and Control Aspects of Tactical Air-Launched Missiles
1980-10-01
information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence pusture; -- Improving the co...Symposium on Precision Delivery Systems was held at Eglin Air Force Base , Florida. USA. Many important advances in guidance sensor technology, control system...paper concentrates primarily or the US Army Missile Command’s technology base for development of the precision pointing and tracking or fire control
Growth promotion effect of steelmaking slag on Spirulina platensis
NASA Astrophysics Data System (ADS)
Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.
2016-04-01
A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Keller, Dennis J.
2002-01-01
The purpose of this study on micro-scale secondary flow control (MSFC) is to study the aerodynamic behavior of micro-vane effectors through their factor (i.e., the design variable) interactions and to demonstrate how these statistical interactions, when brought together in an optimal manner, determine design robustness. The term micro-scale indicates the vane effectors are small in comparison to the local boundary layer height. Robustness in this situation means that it is possible to design fixed MSFC robust installation (i.e.. open loop) which operates well over the range of mission variables and is only marginally different from adaptive (i.e., closed loop) installation design, which would require a control system. The inherent robustness of MSFC micro-vane effector installation designs comes about because of their natural aerodynamic characteristics and the manner in which these characteristics are brought together in an optimal manner through a structured Response Surface Methodology design process.
21 CFR 820.70 - Production and process controls.
Code of Federal Regulations, 2011 CFR
2011-04-01
... process control procedures that describe any process controls necessary to ensure conformance to specifications. Where process controls are needed they shall include: (1) Documented instructions, standard operating procedures (SOP's), and methods that define and control the manner of production; (2) Monitoring...
21 CFR 820.70 - Production and process controls.
Code of Federal Regulations, 2013 CFR
2013-04-01
... process control procedures that describe any process controls necessary to ensure conformance to specifications. Where process controls are needed they shall include: (1) Documented instructions, standard operating procedures (SOP's), and methods that define and control the manner of production; (2) Monitoring...
Bonnard, M; Galléa, C; De Graaf, J B; Pailhous, J
2007-02-01
The corticospinal system (CS) is well known to be of major importance for controlling the thumb-index grip, in particular for force grading. However, for a given force level, the way in which the involvement of this system could vary with increasing demands on precise force control is not well-known. Using transcranial magnetic stimulation and functional magnetic resonance imagery, the present experiments investigated whether increasing the precision demands while keeping the averaged force level similar during an isometric dynamic low-force control task, involving the thumb-index grip, does affect the corticospinal excitability to the thumb-index muscles and the activation of the motor cortices, primary and non-primary (supplementary motor area, dorsal and ventral premotor and in the contralateral area), at the origin of the CS. With transcranial magnetic stimulation, we showed that, when precision demands increased, the CS excitability increased to either the first dorsal interosseus or the opponens pollicis, and never to both, for similar ongoing electromyographic activation patterns of these muscles. With functional magnetic resonance imagery, we demonstrated that, for the same averaged force level, the amplitude of blood oxygen level-dependent signal increased in relation to the precision demands in the hand area of the contralateral primary motor cortex in the contralateral supplementary motor area, ventral and dorsal premotor area. Together these results show that, during the course of force generation, the CS integrates online top-down information to precisely fit the motor output to the task's constraints and that its multiple cortical origins are involved in this process, with the ventral premotor area appearing to have a special role.
Mitz, Andrew R
2005-10-15
Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.
Qi, Shile; Calhoun, Vince D.; van Erp, Theo G. M.; Bustillo, Juan; Damaraju, Eswar; Turner, Jessica A.; Du, Yuhui; Chen, Jiayu; Yu, Qingbao; Mathalon, Daniel H.; Ford, Judith M.; Voyvodic, James; Mueller, Bryon A.; Belger, Aysenil; Ewen, Sarah Mc; Potkin, Steven G.; Preda, Adrian; Jiang, Tianzi
2017-01-01
Multimodal fusion is an effective approach to take advantage of cross-information among multiple imaging data to better understand brain diseases. However, most current fusion approaches are blind, without adopting any prior information. To date, there is increasing interest to uncover the neurocognitive mapping of specific behavioral measurement on enriched brain imaging data; hence, a supervised, goal-directed model that enables a priori information as a reference to guide multimodal data fusion is in need and a natural option. Here we proposed a fusion with reference model, called “multi-site canonical correlation analysis with reference plus joint independent component analysis” (MCCAR+jICA), which can precisely identify co-varying multimodal imaging patterns closely related to reference information, such as cognitive scores. In a 3-way fusion simulation, the proposed method was compared with its alternatives on estimation accuracy of both target component decomposition and modality linkage detection. MCCAR+jICA outperforms others with higher precision. In human imaging data, working memory performance was utilized as a reference to investigate the covarying functional and structural brain patterns among 3 modalities and how they are impaired in schizophrenia. Two independent cohorts (294 and 83 subjects respectively) were used. Interestingly, similar brain maps were identified between the two cohorts, with substantial overlap in the executive control networks in fMRI, salience network in sMRI, and major white matter tracts in dMRI. These regions have been linked with working memory deficits in schizophrenia in multiple reports, while MCCAR+jICA further verified them in a repeatable, joint manner, demonstrating the potential of such results to identify potential neuromarkers for mental disorders. PMID:28708547
Cancer-cells on a chip for label-free optic detection of secreted molecules
NASA Astrophysics Data System (ADS)
Berthuy, Ophélie I.; Blum, Loïc. J.; Marquette, Christophe A.
2015-05-01
To unravel cell complexity, living-cell chips have been developed that allow delivery of experimental stimuli but also measurement of the resulting cellular responses. We have been developing a new concept for multiplexed detection of biomolecules secreted by different cancer cells. In the present report, we are making the proof of concept of cell small populations (from 1 to 100 cells) spotting, culture and secretion detection on a gold surface. For that purpose, antibodies and different cell lines were spotted using a piezoelectric spotter. In order to keep the cells in a hydrated environment during the robotized micropipetting and to address different cell lines on a single chip, a biocompatible alginate polymer was used. This approach enables the encapsulation of the cell in a very small volume (30 nL), directly on the substrate and permits a precise control of the number of cells in each alginate bead. After 24h of culture, the adherent cells are ready for surface plasmon resonance imaging (SPRi) experimentation. To enable the detection of secreted proteins, various antibodies are immobilized in an organized manner on a SPRi sensor and permitted the multiplex detection of different proteins secreted by the different cultured cell lines. Evidence of the real-time detection will be presented for Prostate Specific Antigen (PSA) and β-2-microglobulin (B2M) secreted by prostate cancer cells following induction by dihydrotestosterone (DHT). Different kinetics for the two secreted proteins were then demonstrated and precisely determined using the chip. There is no doubt that our chip will, in a near future, be applied to more multiplexed and complex biological secretion systems for which kinetic data are at the moment not reachable using standard cellular biology tools.
The Need for Intelligent Control of Space Power Systems
NASA Technical Reports Server (NTRS)
May, Ryan David; Soeder, James F.; Beach, Raymond F.; McNelis, Nancy B.
2013-01-01
As manned spacecraft venture farther from Earth, the need for reliable, autonomous control of vehicle subsystems becomes critical. This is particularly true for the electrical power system which is critical to every other system. Autonomy can not be achieved by simple scripting techniques due to the communication latency times and the difficulty associated with failures (or combinations of failures) that need to be handled in as graceful a manner as possible to ensure system availability. Therefore an intelligent control system must be developed that can respond to disturbances and failures in a robust manner and ensure that critical system loads are served and all system constraints are respected.
ERIC Educational Resources Information Center
Couch, Richard W.
Precision teaching (PT) is an approach to the science of human behavior that focuses on precise monitoring of carefully defined behaviors in an attempt to construct an environmental analysis of that behavior and its controlling variables. A variety of subjects have been used with PT, ranging in academic objectives from beginning reading to college…
Early Huntington's Disease Affects Movements in Transformed Sensorimotor Mappings
ERIC Educational Resources Information Center
Boulet, C.; Lemay, M.; Bedard, M.A.; Chouinard, M.J.; Chouinard, S.; Richer, F.
2005-01-01
This study examined the effect of transformed visual feedback on movement control in Huntington's disease (HD). Patients in the early stages of HD and controls performed aiming movements towards peripheral targets on a digitizing tablet and emphasizing precision. In a baseline condition, HD patients were slower but showed few precision problems in…
The Los Alamos National Laboratory precision double crystal spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, D.V.; Stevens, C.J.; Liefield, R.J.
1994-03-01
This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.
Automation of Precise Time Reference Stations (PTRS)
NASA Astrophysics Data System (ADS)
Wheeler, P. J.
1985-04-01
The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-10
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-04
VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao
2008-12-01
In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.
Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback
NASA Technical Reports Server (NTRS)
Leitner, Jesse A.; Cheng, Victor H. L.
2003-01-01
Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Baicalin protects against thrombin induced cell injury in SH-SY5Y cells
Ju, Xiao-Ning; Mu, Wei-Na; Liu, Yuan-Tao; Wang, Mei-Hong; Kong, Feng; Sun, Chao; Zhou, Qing-Bo
2015-01-01
Baicalin, an extract from the dried root of Scutellaria baicalensis Georgi, was shown to be neuroprotective. However, the precise mechanisms are incompletely known. In this study, we determined the effect of baicalin on thrombin induced cell injury in SH-SY5Y cells, and explored the possible mechanisms. SH-SY5Y cells was treated with thrombin alone or pre-treated with baicalin (5, 10, 20 μM) for 2 h followed by thrombin treatment. Cells without thrombin and baicalin treatment were used as controls. Cell viability was detected by MTT assay. Cell apoptosis was analyzed by flow cytometry. Real-time PCR was performed to determine the mRNA expression of protease-activated receptor-1 (PAR-1). Western blotting was conducted to determine the protein expression of PAR-1, Caspase-3 and NF-κB. Baicalin reduced cell death following thrombin treatment in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of PAR-1 expression. In addition, baicalin reduced Caspase-3 expression. The above findings indicated that baicalin prevents against cell injury after thrombin stimulation possibly through inhibition of PAR-1 expression and NF-κB activation. PMID:26823714
Acoustic duetting in Drosophila virilis relies on the integration of auditory and tactile signals
LaRue, Kelly M; Clemens, Jan; Berman, Gordon J; Murthy, Mala
2015-01-01
Many animal species, including insects, are capable of acoustic duetting, a complex social behavior in which males and females tightly control the rate and timing of their courtship song syllables relative to each other. The mechanisms underlying duetting remain largely unknown across model systems. Most studies of duetting focus exclusively on acoustic interactions, but the use of multisensory cues should aid in coordinating behavior between individuals. To test this hypothesis, we develop Drosophila virilis as a new model for studies of duetting. By combining sensory manipulations, quantitative behavioral assays, and statistical modeling, we show that virilis females combine precisely timed auditory and tactile cues to drive song production and duetting. Tactile cues delivered to the abdomen and genitalia play the larger role in females, as even headless females continue to coordinate song production with courting males. These data, therefore, reveal a novel, non-acoustic, mechanism for acoustic duetting. Finally, our results indicate that female-duetting circuits are not sexually differentiated, as males can also produce ‘female-like’ duets in a context-dependent manner. DOI: http://dx.doi.org/10.7554/eLife.07277.001 PMID:26046297
Gratias, Ariane; Lepère, Gersende; Garnier, Olivier; Rosa, Sarah; Duharcourt, Sandra; Malinsky, Sophie; Meyer, Eric; Bétermier, Mireille
2008-01-01
Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants. PMID:18420657
Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials
Menzel, Friederike; Conradi, Bianca; Rodenacker, Karsten; Gorbushina, Anna A.; Schwibbert, Karin
2016-01-01
Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. PMID:28773891
E-beam column monitoring for improved CD SEM stability and tool matching
NASA Astrophysics Data System (ADS)
Hayes, Timothy S.; Henninger, Randall S.
2000-06-01
Tool matching is an important metric for in-line semiconductor metrology systems. The ability to obtain the same measurement results on two or more systems allows a semiconductor fabrication facility (fab) to deploy product in an efficient manner improving overall equipment efficiency (OEE). Many parameters on the critical dimension scanning electron microscopes (CDSEMs) can affect the long-term precision component to the tool-matching metric. One such class of parameters is related to the electron beam column stability. The alignment and condition of the gun and apertures, as well as astigmatism correction, have all been found to affect the overall measurements of the CDSEM. These effects are now becoming dominant factors in sub-3nm tool-matching criteria. This paper discusses the methodologies of column parameter monitoring and actions and controls for improving overall stability. Results have shown that column instabilities caused by contamination, gun fluctuations, component failures, detector efficiency, and external issues can be identified through parameter monitoring. The Applied Materials (AMAT) 7830 Series CDSEMs evaluated at IBM's Burlington, Vermont manufacturing facility have demonstrated 5 nm tool matching across 11 systems, which has resulted in non-dedicated product deployment and has significantly reduced cost of ownership.
A novel toolbox for E. coli lysis monitoring.
Rajamanickam, Vignesh; Wurm, David; Slouka, Christoph; Herwig, Christoph; Spadiut, Oliver
2017-01-01
The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.
Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
Hu, Liwen; Song, Yang; Jiao, Shuqiang; Liu, Yingjun; Ge, Jianbang; Jiao, Handong; Zhu, Jun; Wang, Junxiang; Zhu, Hongmin; Fray, Derek J
2016-03-21
Producing graphene through the electrochemical reduction of CO2 remains a great challenge, which requires precise control of the reaction kinetics, such as diffusivities of multiple ions, solubility of various gases, and the nucleation/growth of carbon on a surface. Here, graphene was successfully created from the greenhouse gas CO2 using molten salts. The results showed that CO2 could be effectively fixed by oxygen ions in CaCl2-NaCl-CaO melts to form carbonate ions, and subsequently electrochemically split into graphene on a stainless steel cathode; O2 gas was produced at the RuO2-TiO2 inert anode. The formation of graphene in this manner can be ascribed to the catalysis of active Fe, Ni, and Cu atoms at the surface of the cathode and the microexplosion effect through evolution of CO in between graphite layers. This finding may lead to a new generation of proceedures for the synthesis of high value-added products from CO2, which may also contribute to the establishment of a low-carbon and sustainable world. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of respiratory system mechanics in mice using the forced oscillation technique.
McGovern, Toby K; Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F; Martin, James G
2013-05-15
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
Bioinks for 3D bioprinting: an overview.
Gungor-Ozkerim, P Selcan; Inci, Ilyas; Zhang, Yu Shrike; Khademhosseini, Ali; Dokmeci, Mehmet Remzi
2018-05-01
Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. It is a relatively new approach that provides high reproducibility and precise control over the fabricated constructs in an automated manner, potentially enabling high-throughput production. During the bioprinting process, a solution of a biomaterial or a mixture of several biomaterials in the hydrogel form, usually encapsulating the desired cell types, termed the bioink, is used for creating tissue constructs. This bioink can be cross-linked or stabilized during or immediately after bioprinting to generate the final shape, structure, and architecture of the designed construct. Bioinks may be made from natural or synthetic biomaterials alone, or a combination of the two as hybrid materials. In certain cases, cell aggregates without any additional biomaterials can also be adopted for use as a bioink for bioprinting processes. An ideal bioink should possess proper mechanical, rheological, and biological properties of the target tissues, which are essential to ensure correct functionality of the bioprinted tissues and organs. In this review, we provide an in-depth discussion of the different bioinks currently employed for bioprinting, and outline some future perspectives in their further development.
NASA Astrophysics Data System (ADS)
Weber, Michael; Shandas, Robin
2005-11-01
Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.
Automated search method for AFM and profilers
NASA Astrophysics Data System (ADS)
Ray, Michael; Martin, Yves C.
2001-08-01
A new automation software creates a search model as an initial setup and searches for a user-defined target in atomic force microscopes or stylus profilometers used in semiconductor manufacturing. The need for such automation has become critical in manufacturing lines. The new method starts with a survey map of a small area of a chip obtained from a chip-design database or an image of the area. The user interface requires a user to point to and define a precise location to be measured, and to select a macro function for an application such as line width or contact hole. The search algorithm automatically constructs a range of possible scan sequences within the survey, and provides increased speed and functionality compared to the methods used in instruments to date. Each sequence consists in a starting point relative to the target, a scan direction, and a scan length. The search algorithm stops when the location of a target is found and criteria for certainty in positioning is met. With today's capability in high speed processing and signal control, the tool can simultaneously scan and search for a target in a robotic and continuous manner. Examples are given that illustrate the key concepts.
Rapid and accurate estimation of release conditions in the javelin throw.
Hubbard, M; Alaways, L W
1989-01-01
We have developed a system to measure initial conditions in the javelin throw rapidly enough to be used by the thrower for feedback in performance improvement. The system consists of three subsystems whose main tasks are: (A) acquisition of automatically digitized high speed (200 Hz) video x, y position data for the first 0.1-0.2 s of the javelin flight after release (B) estimation of five javelin release conditions from the x, y position data and (C) graphical presentation to the thrower of these release conditions and a simulation of the subsequent flight together with optimal conditions and flight for the sam release velocity. The estimation scheme relies on a simulation model and is at least an order of magnitude more accurate than previously reported measurements of javelin release conditions. The system provides, for the first time ever in any throwing event, the ability to critique nearly instantly in a precise, quantitative manner the crucial factors in the throw which determine the range. This should be expected to much greater control and consistency of throwing variables by athletes who use system and could even lead to an evolution of new throwing techniques.
Metabolic gene regulation in a dynamically changing environment.
Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff
2008-08-28
Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.
2014-01-01
Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210
NASA Astrophysics Data System (ADS)
Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.
2017-12-01
Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and multichannel explorations were carried out in the marine environment and the accuracy of the modeling system was verified by comparatively analyzing the exploration data and the numerical modeling data acquired.
Haslem, Derrick S.; Van Norman, S. Burke; Fulde, Gail; Knighton, Andrew J.; Belnap, Tom; Butler, Allison M.; Rhagunath, Sharanya; Newman, David; Gilbert, Heather; Tudor, Brian P.; Lin, Karen; Stone, Gary R.; Loughmiller, David L.; Mishra, Pravin J.; Srivastava, Rajendu; Ford, James M.; Nadauld, Lincoln D.
2017-01-01
Purpose: The advent of genomic diagnostic technologies such as next-generation sequencing has recently enabled the use of genomic information to guide targeted treatment in patients with cancer, an approach known as precision medicine. However, clinical outcomes, including survival and the cost of health care associated with precision cancer medicine, have been challenging to measure and remain largely unreported. Patients and Methods: We conducted a matched cohort study of 72 patients with metastatic cancer of diverse subtypes in the setting of a large, integrated health care delivery system. We analyzed the outcomes of 36 patients who received genomic testing and targeted therapy (precision cancer medicine) between July 1, 2013, and January 31, 2015, compared with 36 historical control patients who received standard chemotherapy (n = 29) or best supportive care (n = 7). Results: The average progression-free survival was 22.9 weeks for the precision medicine group and 12.0 weeks for the control group (P = .002) with a hazard ratio of 0.47 (95% CI, 0.29 to 0.75) when matching on age, sex, histologic diagnosis, and previous lines of treatment. In a subset analysis of patients who received all care within the Intermountain Healthcare system (n = 44), per patient charges per week were $4,665 in the precision treatment group and $5,000 in the control group (P = .126). Conclusion: These findings suggest that precision cancer medicine may improve survival for patients with refractory cancer without increasing health care costs. Although the results of this study warrant further validation, this precision medicine approach may be a viable option for patients with advanced cancer. PMID:27601506
Haslem, Derrick S; Van Norman, S Burke; Fulde, Gail; Knighton, Andrew J; Belnap, Tom; Butler, Allison M; Rhagunath, Sharanya; Newman, David; Gilbert, Heather; Tudor, Brian P; Lin, Karen; Stone, Gary R; Loughmiller, David L; Mishra, Pravin J; Srivastava, Rajendu; Ford, James M; Nadauld, Lincoln D
2017-02-01
The advent of genomic diagnostic technologies such as next-generation sequencing has recently enabled the use of genomic information to guide targeted treatment in patients with cancer, an approach known as precision medicine. However, clinical outcomes, including survival and the cost of health care associated with precision cancer medicine, have been challenging to measure and remain largely unreported. We conducted a matched cohort study of 72 patients with metastatic cancer of diverse subtypes in the setting of a large, integrated health care delivery system. We analyzed the outcomes of 36 patients who received genomic testing and targeted therapy (precision cancer medicine) between July 1, 2013, and January 31, 2015, compared with 36 historical control patients who received standard chemotherapy (n = 29) or best supportive care (n = 7). The average progression-free survival was 22.9 weeks for the precision medicine group and 12.0 weeks for the control group ( P = .002) with a hazard ratio of 0.47 (95% CI, 0.29 to 0.75) when matching on age, sex, histologic diagnosis, and previous lines of treatment. In a subset analysis of patients who received all care within the Intermountain Healthcare system (n = 44), per patient charges per week were $4,665 in the precision treatment group and $5,000 in the control group ( P = .126). These findings suggest that precision cancer medicine may improve survival for patients with refractory cancer without increasing health care costs. Although the results of this study warrant further validation, this precision medicine approach may be a viable option for patients with advanced cancer.
NASA Astrophysics Data System (ADS)
Wray, J. D.
2003-05-01
The robotic observatory telescope must point precisely on the target object, and then track autonomously to a fraction of the FWHM of the system PSF for durations of ten to twenty minutes or more. It must retain this precision while continuing to function at rates approaching thousands of observations per night for all its years of useful life. These stringent requirements raise new challenges unique to robotic telescope systems design. Critical design considerations are driven by the applicability of the above requirements to all systems of the robotic observatory, including telescope and instrument systems, telescope-dome enclosure systems, combined electrical and electronics systems, environmental (e.g. seeing) control systems and integrated computer control software systems. Traditional telescope design considerations include the effects of differential thermal strain, elastic flexure, plastic flexure and slack or backlash with respect to focal stability, optical alignment and angular pointing and tracking precision. Robotic observatory design must holistically encapsulate these traditional considerations within the overall objective of maximized long-term sustainable precision performance. This overall objective is accomplished through combining appropriate mechanical and dynamical system characteristics with a full-time real-time telescope mount model feedback computer control system. Important design considerations include: identifying and reducing quasi-zero-backlash; increasing size to increase precision; directly encoding axis shaft rotation; pointing and tracking operation via real-time feedback between precision mount model and axis mounted encoders; use of monolithic construction whenever appropriate for sustainable mechanical integrity; accelerating dome motion to eliminate repetitive shock; ducting internal telescope air to outside dome; and the principal design criteria: maximizing elastic repeatability while minimizing slack, plastic deformation and hysteresis to facilitate long-term repeatably precise pointing and tracking performance.
Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.
He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun
2018-03-14
Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.
Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.
van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347
Decision Facilitator for Launch Operations using Intelligent Agents
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2005-01-01
Launch operations require millions of micro-decisions which contribute to the macro decision of 'Go/No-Go' for a launch. Knowledge workers"(such as managers and technical professionals) need information in a timely precise manner as it can greatly affect mission success. The intelligent agent (web search agent) uses the words of a hypertext markup language document which is connected through the internet. The intelligent agent's actions are to determine if its goal of seeking a website containing a specified target (e.g., keyword or phrase), has been met. There are few parameters that should be defined for the keyword search like "Go" and "No-Go". Instead of visiting launch and range decision making servers individually, the decision facilitator constantly connects to all servers, accumulating decisions so the final decision can be decided in a timely manner. The facilitator agent uses the singleton design pattern, which ensures that only a single instance of the facilitator agent exists at one time. Negotiations could proceed between many agents resulting in a final decision. This paper describes details of intelligent agents and their interaction to derive an unified decision support system.
Dark field imaging system for size characterization of magnetic micromarkers
NASA Astrophysics Data System (ADS)
Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.
2017-05-01
In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.
Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures
NASA Astrophysics Data System (ADS)
Byun, Myunghwan
The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic devices, nanotechnology and biotechnology, etc.
Opto-mechanical system design of test system for near-infrared and visible target
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Zhu, Guodong; Wang, Yuchao
2014-12-01
Guidance precision is the key indexes of the guided weapon shooting. The factors of guidance precision including: information processing precision, control system accuracy, laser irradiation accuracy and so on. The laser irradiation precision is an important factor. This paper aimed at the demand of the precision test of laser irradiator,and developed the laser precision test system. The system consists of modified cassegrain system, the wide range CCD camera, tracking turntable and industrial PC, and makes visible light and near infrared target imaging at the same time with a Near IR camera. Through the analysis of the design results, when it exposures the target of 1000 meters that the system measurement precision is43mm, fully meet the needs of the laser precision test.
Gao, Tao; Scholl, Brian J.; McCarthy, Gregory
2012-01-01
Certain motion patterns can cause even simple geometric shapes to be perceived as animate. Viewing such displays evokes strong activation in temporoparietal cortex, including areas in and near the (predominantly right) posterior superior temporal sulcus (pSTS). These brain regions are sensitive to socially relevant information, but the nature of the social information represented in pSTS is unclear. For example, previous studies have been unable to explore the perception of shifting intentions, beyond animacy. This is due in part to the ubiquitous use of complex displays that combine several types of social information, with little ability to control lower-level visual cues. Here we address this challenge by manipulating intentionality with parametric precision while holding cues to animacy constant. Human subjects were exposed to a “wavering wolf” display, in which one item (the ‘wolf’) chased continuously, but its goal (i.e. the sheep) frequently switched among other shapes. By contrasting this with three other control displays, we find that the wolf’s changing intentions gave rise to strong selective activation in the right pSTS, compared with (1) a wolf that chases with a single unchanging intention; (2) very similar patterns of motion (and motion change) that are not perceived as goal-directed; and (3) abrupt onsets and offsets of moving objects. These results demonstrate in an especially well controlled manner that right pSTS is involved in social perception, beyond physical properties such as motion energy and salience. More importantly, these results demonstrate for the first time that this region represents perceived intentions, beyond animacy. PMID:23055497
Movement Precision and Amplitude as Separate Factors in the Control of Movement.
ERIC Educational Resources Information Center
Kerr, Robert
The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…
Surface Control of Actuated Hybrid Space Mirrors
2010-10-01
precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal
12 CFR 1807.104 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... means any entity that Controls, is Controlled by, or is under common Control with, an entity; (c...) Control means: (1) Ownership, control, or power to vote 25 percent or more of the outstanding shares of... other persons; (2) Control in any manner over the election of a majority of the directors, trustees, or...
12 CFR 1807.104 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means any entity that Controls, is Controlled by, or is under common Control with, an entity; (c...) Control means: (1) Ownership, control, or power to vote 25 percent or more of the outstanding shares of... other persons; (2) Control in any manner over the election of a majority of the directors, trustees, or...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
NASA Astrophysics Data System (ADS)
Ye, Dong; Sun, Zhaowei; Wu, Shunan
2012-08-01
The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.
Safa, Alireza; Abdolmalaki, Reza Yazdanpanah; Shafiee, Saeed; Sadeghi, Behzad
2018-06-01
In the field of nanotechnology, there is a growing demand to provide precision control and manipulation of devices with the ability to interact with complex and unstructured environments at micro/nano-scale. As a result, ultrahigh-precision positioning stages have been turned into a key requirement of nanotechnology. In this paper, linear piezoelectric ceramic motors (LPCMs) are adopted to drive micro/nanopositioning stages since they have the ability to achieve high precision in addition to being versatile to be implemented over a wide range of applications. In the establishment of a control scheme for such manipulation systems, the presence of friction, parameter uncertainties, and external disturbances prevent the systems from providing the desired positioning accuracy. The work in this paper focuses on the development of a control framework that addresses these issues as it uses the nonsingular terminal sliding mode technique for the precise position tracking problem of an LPCM-driven positioning stage with friction, uncertain parameters, and external disturbances. The developed control algorithm exhibits the following two attractive features. First, upper bounds of system uncertainties/perturbations are adaptively estimated in the proposed controller; thus, prior knowledge about uncertainty/disturbance bounds is not necessary. Second, the discontinuous signum function is transferred to the time derivative of the control input and the continuous control signal is obtained after integration; consequently, the chattering phenomenon, which presents a major handicap to the implementation of conventional sliding mode control in real applications, is alleviated without deteriorating the robustness of the system. The stability of the controlled system is analyzed, and the convergence of the position tracking error to zero is analytically proven. The proposed control strategy is experimentally validated and compared to the existing control approaches. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2012-01-01
This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.
NASA Astrophysics Data System (ADS)
Wang, Y.; Hu, X.; Yang, X.; Xie, G.
2018-04-01
The image quality of the surveying camera will affect the stereoscopic positioning accuracy of the remote sensing satellite. The key factors closely related to the image quality are Modulation Transfer Function(MTF),Signal to Noise Ratio(SNR) and Quantization Bits(QB). In "Mapping Satellite-1" image as the background, research the effect of positioning precision about the image quality in no ground controlled conditions, and evaluate the quantitative relationship with the positioning precision. At last verify the validity of the experimental results by simulating three factors of the degraded data on orbit, and counting the number of matching points, the mismatch rate, and the matching residuals of the degraded data. The reason for the variety of the positioning precision was analyzed.
Super-Hubble de Sitter fluctuations and the dynamical RG
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Leblond, L.; Holman, R.; Shandera, S.
2010-03-01
Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.
NASA Astrophysics Data System (ADS)
Mohon, N.
A 'simulator' is defined as a machine which imitates the behavior of a real system in a very precise manner. The major components of a simulator and their interaction are outlined in brief form, taking into account the major components of an aircraft flight simulator. Particular attention is given to the visual display portion of the simulator, the basic components of the display, their interactions, and their characteristics. Real image displays are considered along with virtual image displays, and image generators. Attention is given to an advanced simulator for pilot training, a holographic pancake window, a scan laser image generator, the construction of an infrared target simulator, and the Apollo Command Module Simulator.
Lucid dreaming verified by volitional communication during REM sleep.
La Berge, S P; Nagel, L E; Dement, W C; Zarcone, V P
1981-06-01
The occurrence of lucid dreaming (dreaming while being conscious that one is dreaming) has been verified for 5 selected subjects who signaled that they knew they were dreaming while continuing to dream during unequivocal REM sleep. The signals consisted of particular dream actions having observable concomitants and were performed in accordance with pre-sleep agreement. The ability of proficient lucid dreamers to signal in this manner makes possible a new approach to dream research--such subjects, while lucid, could carry out diverse dream experiments marking the exact time of particular dream events, allowing derivation of of precise psychophysiological correlations and methodical testing of hypotheses.
Well-balanced Schemes for Gravitationally Stratified Media
NASA Astrophysics Data System (ADS)
Käppeli, R.; Mishra, S.
2015-10-01
We present a well-balanced scheme for the Euler equations with gravitation. The scheme is capable of maintaining exactly (up to machine precision) a discrete hydrostatic equilibrium without any assumption on a thermodynamic variable such as specific entropy or temperature. The well-balanced scheme is based on a local hydrostatic pressure reconstruction. Moreover, it is computationally efficient and can be incorporated into any existing algorithm in a straightforward manner. The presented scheme improves over standard ones especially when flows close to a hydrostatic equilibrium have to be simulated. The performance of the well-balanced scheme is demonstrated on an astrophysically relevant application: a toy model for core-collapse supernovae.
Precision pointing and control of flexible spacecraft
NASA Technical Reports Server (NTRS)
Bantell, M. H., Jr.
1987-01-01
The problem and long term objectives for the precision pointing and control of flexible spacecraft are given. The four basic objectives are stated in terms of two principle tasks. Under Task 1, robust low order controllers, improved structural modeling methods for control applications and identification methods for structural dynamics are being developed. Under Task 2, a lab test experiment for verification of control laws and system identification algorithms is being developed. For Task 1, work has focused on robust low order controller design and some initial considerations for structural modeling in control applications. For Task 2, work has focused on experiment design and fabrication, along with sensor selection and initial digital controller implementation. Conclusions are given.
An accelerated exposure and testing apparatus for building joint sealants
NASA Astrophysics Data System (ADS)
White, C. C.; Hunston, D. L.; Tan, K. T.; Hettenhouser, J.; Garver, J. D.
2013-09-01
The design, fabrication, and implementation of a computer-controlled exposure and testing apparatus for building joint sealants are described in this paper. This apparatus is unique in its ability to independently control and monitor temperature, relative humidity, ultraviolet (UV) radiation, and mechanical deformation. Each of these environmental factors can be controlled precisely over a wide range of conditions during periods of a month or more. Moreover, as controlled mechanical deformations can be generated, in situ mechanical characterization tests can be performed without removing specimens from the chamber. Temperature and humidity were controlled during our experiments via a precision temperature regulator and proportional mixing of dry and moisture-saturated air; while highly uniform UV radiation was attained by attaching the chamber to an integrating sphere-based radiation source. A computer-controlled stepper motor and a transmission system were used to provide precise movement control. The reliability and effectiveness of the apparatus were demonstrated on a model sealant material. The results clearly show that this apparatus provides an excellent platform to study the long-term durability of building joint sealants.