Science.gov

Sample records for precision electron momentum

  1. Imaging molecular geometry with electron momentum spectroscopy.

    PubMed

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-22

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  2. Imaging molecular geometry with electron momentum spectroscopy

    PubMed Central

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-01-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future. PMID:28004794

  3. Imaging molecular geometry with electron momentum spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Enliang; Shan, Xu; Tian, Qiguo; Yang, Jing; Gong, Maomao; Tang, Yaguo; Niu, Shanshan; Chen, Xiangjun

    2016-12-01

    Electron momentum spectroscopy is a unique tool for imaging orbital-specific electron density of molecule in momentum space. However, the molecular geometry information is usually veiled due to the single-centered character of momentum space wavefunction of molecular orbital (MO). Here we demonstrate the retrieval of interatomic distances from the multicenter interference effect revealed in the ratios of electron momentum profiles between two MOs with symmetric and anti-symmetric characters. A very sensitive dependence of the oscillation period on interatomic distance is observed, which is used to determine F-F distance in CF4 and O-O distance in CO2 with sub-Ångström precision. Thus, using one spectrometer, and in one measurement, the electron density distributions of MOs and the molecular geometry information can be obtained simultaneously. Our approach provides a new robust tool for imaging molecules with high precision and has potential to apply to ultrafast imaging of molecular dynamics if combined with ultrashort electron pulses in the future.

  4. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  5. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  6. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  7. Angular momentum decomposition for an electron

    SciTech Connect

    Burkardt, Matthias; Hikmat, BC

    2009-04-01

    We calculate the orbital angular momentum of the 'quark' in the scalar diquark model as well as that of the electron in QED (to order {alpha}). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  8. Angular Momentum Decomposition for an Electron

    SciTech Connect

    Burkardt, Matthias; BC, Hikmat

    2009-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  9. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  10. Relativistic Electron Wave Packets Carrying Angular Momentum.

    PubMed

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-17

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  11. Plasma electron hole kinematics. I. Momentum conservation

    SciTech Connect

    Hutchinson, I. H.; Zhou, C.

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  12. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  13. Precision measurement of longitudinal and transverse response functions of quasi-elastic electron scattering in the momentum transfer range 0.55GeV/c lte math| lte 0.9GeV/c

    SciTech Connect

    Huan Yao, Jefferson Lab Hall A Collaboration, E05-110 Collaboration

    2012-04-01

    In order to test the Coulomb sum rule in nuclei, a precision measurement of inclusive electron scattering cross sections in the quasi-elastic region was performed at Jefferson Lab. Incident electrons of energies ranging from 0.4 GeV/c to 4 GeV/c scattered off {sup 4}He, {sup 12}C, {sup 56}Fe and {sup 208}Pb nuclei at four scattering angles (15deg., 60deg., 90deg., 120deg.) and scattered energies ranging from 0.1 GeV/c to 4 GeV/c. The Rosenbluth method with proper Coulomb corrections is used to extract the transverse and longitudinal response functions at three-momentum transfers 0.55 GeV/c {le} |q{yields}| {le} 1.0 GeV/c. The Coulomb Sum is determined in the same |q{yields}| range as mentioned above and will be compared to predictions. Analysis progress and preliminary results will be presented.

  14. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  15. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  16. New Precision Measurements of Deuteron Structure Function A(Q) at Low Momentum Transfer

    SciTech Connect

    Lee, Byungwuek

    2009-08-01

    Differences between previous measurements of low momentum transfer electron-deuteron elastic scattering prevent a clean determination of even the sign of the leading low momentum transfer relativistic corrections, or of the convergence of chiral perturbation theory. We have attempted to resolve this issue with a new high-precision measurement in Jefferson Lab Hall A. Elastic electron scattering was measured on targets of tantalum, carbon, hydrogen, and deuterium at beam energy of 685 MeV. The four-momentum transfer covered the range of 0.15 - 0.7 GeV. The experiment included a new beam calorimeter, to better calibrate the low beam currents used in the experiment, and new collimators to better define the spectrometer solid angles. We obtained cross sections of deuteron as ratios to hydrogen cross sections. A fit function of B(Q) world data is newly made and subtracted from cross sections to find values of A(Q).

  17. Electron vortices: Beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Lloyd, S. M.; Babiker, M.; Thirunavukkarasu, G.; Yuan, J.

    2017-07-01

    The recent prediction and subsequent creation of electron vortex beams in a number of laboratories occurred after almost 20 years had elapsed since the recognition of the physical significance and potential for applications of the orbital angular momentum carried by optical vortex beams. A rapid growth in interest in electron vortex beams followed, with swift theoretical and experimental developments. Much of the rapid progress can be attributed in part to the clear similarities between electron optics and photonics arising from the functional equivalence between the Helmholtz equations governing the free-space propagation of optical beams and the time-independent Schrödinger equation governing freely propagating electron vortex beams. There are, however, key differences in the properties of the two kinds of vortex beams. This review is primarily concerned with the electron type, with specific emphasis on the distinguishing vortex features: notably the spin, electric charge, current and magnetic moment, the spatial distribution, and the associated electric and magnetic fields. The physical consequences and potential applications of such properties are pointed out and analyzed, including nanoparticle manipulation and the mechanisms of orbital angular momentum transfer in the electron vortex interaction with matter.

  18. Momentum correlation of electron-hydrogen ionization

    NASA Astrophysics Data System (ADS)

    Sui-meng, Zhang; Zhang-jin, Chen

    1999-07-01

    Following the work of Berakdar, the momentum correlation in the three-body Coulomb continuum problem is considered by the introduction of effective Sommerfeld parameters for both symmetric and asymmetric geometry. The triple differential cross sections for electron impact ionization of atomic hydrogen at incident energies of 54.4 and 150eV in asymmetric geometry are calculated. Results are compared with the related measurements and the only existing theoretical results of the convergent close-coupling method. They are in good agreement with experiment, though some small quantitative discrepancies remain.

  19. Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers.

    PubMed

    Sawant, Ashwini; Choe, Mun Seok; Thumm, Manfred; Choi, EunMi

    2017-06-13

    The well-defined orbital angular momentum (OAM) of rotating cavity modes operating near the cutoff frequency excited by gyrating electrons in a high-power electron cyclotron maser (ECM)-a gyrotron-has been derived by photonic and electromagnetic wave approaches. A mode generator was built with a high-precision 3D printing technique to mimic the rotating gyrotron modes for precise low-power measurements and shows clear natural production of higher-order OAM modes. Cold-test measurements of higher-order OAM mode generation promise the realization towards wireless long-range communications using high-power ECMs.

  20. Momentum spectrometer for electron-electron coincidence studies on superconductors

    SciTech Connect

    Wallauer, Robert; Voss, Stefan; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schoeffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Schmidt-Boecking, Horst; Doerner, Reinhard; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt and others

    2012-10-15

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 {pi} solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  1. Momentum spectrometer for electron-electron coincidence studies on superconductors

    NASA Astrophysics Data System (ADS)

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  2. Momentum spectrometer for electron-electron coincidence studies on superconductors.

    PubMed

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  3. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  4. Precise momentum determination of the external COSY proton beam near 1930 MeV//c

    NASA Astrophysics Data System (ADS)

    Betigeri, M. G.; Bojowald, J.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Förtsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Hawash, M.; Igel, S.; Ilieva, I.; Jahn, R.; Jarczyk, L.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, B. J.; Lippert, G.; Machner, H.; Magiera, A.; Maier, R.; Nann, H.; Plendl, H. S.; Protic, D.; Razen, B.; von Rossen, P.; Roy, B.; Siudak, R.; Smyrski, J.; Strzałkowski, A.; Tsenov, R.; Zolnierczuk, P. A.; Zwoll, K.; GEM Collaboration

    1999-05-01

    We present a method to determine precisely the absolute momentum of the external proton beam from the Jülich Cooler Synchrotron COSY near 1930 MeV /c. In the pp → d π+ reaction at 1930.477 MeV /c incident beam momentum, the forward going pions ( θ c.m.=0° ) and the backward going deuterons ( θ c.m.=180° ) have the same laboratory momentum. Such coincident pion-deuteron events are detected in the focal plane of the magnetic spectrometer BIG KARL located at θ lab=0° . Using the nearly linear dependence of the difference between the measured pion and deuteron momenta as a function of the proton beam momentum, the absolute momentum of the external proton beam from COSY near 1930 MeV /c was determined with a precision of 5.2×10 -5.

  5. Electron vortex beams with high quanta of orbital angular momentum.

    PubMed

    McMorran, Benjamin J; Agrawal, Amit; Anderson, Ian M; Herzing, Andrew A; Lezec, Henri J; McClelland, Jabez J; Unguris, John

    2011-01-14

    Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.

  6. High precision momentum calibration of the magnetic spectrometers at MAMI for hypernuclear binding energy determination

    NASA Astrophysics Data System (ADS)

    Margaryan, A.; Annand, J. R. M.; Achenbach, P.; Ajvazyan, R.; Elbakyan, H.; Montgomery, R.; Nakamura, S. N.; Pochodzalla, J.; Schulz, F.; Toyama, Y.; Zhamkochyan, S.

    2017-02-01

    We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF) differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy δp / p ≤10-4 , which will be crucial for high precision determination of hypernuclear masses.

  7. Revealing Dissociative Electron Attachment Dynamics in Polyatomic Molecules Using Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Slaughter, Daniel

    2015-05-01

    Understanding electron-driven chemical reactions is important for improving a variety of technological applications such as materials processing and the important role they play in the radiation damage in bulk matter. Furthermore, dissociative electron attachment often exhibits site-selective bond cleavage, which holds promise for prediction and precise control of electron-driven chemical reactions. Recent dynamical studies of these reactions have demonstrated that an understanding of anion dissociation dynamics beyond simple one-dimensional models is crucial in interpreting the measured fragment angular distributions. We combine ion fragment momentum imaging experiments with electron attachment entrance amplitude calculations to interrogate the non-Born-Oppenheimer dynamics of dissociative electron attachment in polyatomic molecules. We will report recent experimental developments in molecules of technological interest including methanol, methane and uracil. Work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  8. Vibrational effects on valence electron momentum distributions of ethylene.

    PubMed

    Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko

    2012-09-21

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of ethylene (C(2)H(4)). The symmetric noncoplanar (e,2e) experiment has been conducted at an impact energy of 1.2 keV. Furthermore, a theoretical method of calculating electron momentum distributions for polyatomic molecules has been developed with vibrational effects being involved. It is shown from comparisons between experiment and theory that taking into account effects of the CH(2) asymmetric stretching and CH(2) rocking vibrational modes of C(2)H(4) is essential for a proper understanding of the electron momentum distribution of the 1b(3g) molecular orbital.

  9. Kinetic description of electron plasma waves with orbital angular momentum

    SciTech Connect

    Mendonca, J. T.

    2012-11-15

    We describe the kinetic theory of electron plasma waves with orbital angular momentum or twisted plasmons. The conditions for a twisted Landau resonance to exist are established, and this concept is introduced for the first time. Expressions for the kinetic dispersion relation and for the electron Landau damping are derived. The particular case of a Maxwellian plasma is examined in detail. The new contributions to wave dispersion and damping due the orbital angular momentum are discussed. It is shown that twisted plasmons can be excited by rotating electron beams.

  10. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    ERIC Educational Resources Information Center

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  11. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    ERIC Educational Resources Information Center

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  12. Young's Interference Experiment with Electron Beams Carrying Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuya; Saitoh, Koh; Tanaka, Nobuo; Tanimura, Shogo; Uchida, Masaya

    2013-03-01

    A Young's-type double-slit experiment using electron beams carrying orbital angular momentum (OAM) is demonstrated in a transmission electron microscope. Each of the slits is replaced by a grating mask with a fork dislocation, which generates electron beams with OAM as diffracted beams. Interference fringes produced by two diffracted electron beams with OAM appear at the observation screen. The interference fringe patterns exhibit dislocation features depending on the topological charges of the two electron beams. The experimental results clearly show the wave nature of the electron beams with OAM and gives potential applications in electron physics and quantum mechanics.

  13. Electron momentum distribution and electronic response of ceramic borides

    NASA Astrophysics Data System (ADS)

    Heda, N. L.; Meena, B. S.; Mund, H. S.; Sahariya, Jagrati; Kumar, Kishor; Ahuja, B. L.

    2017-03-01

    Isotropic Compton profiles of transition metal based ceramics TaB and VB have been measured using 137Cs (661.65 keV) γ-ray Compton spectrometer. The experimental momentum densities are compared with those deduced using linear combination of atomic orbitals (LCAO) with Hartree-Fock (HF), density functional theory (DFT) with Wu-Cohen generalized gradient approximation (WCGGA) and also the hybridization of HF and DFT (namely B3PW and PBE0) schemes. It is found that LCAO-DFT-WCGGA scheme based profiles give an overall better agreement with the experimental data, for both the borides. In addition, we have computed the Mulliken's population (MP) charge transfer data, energy bands, density of states and Fermi surface topology of both the borides using full potential-linearized augmented plane wave (FP-LAPW) and LCAO methods with DFT-WCGGA scheme. Cross-overs of Fermi level by the energy bands corresponding to B-2p and valence d-states of transition metals lead to metallic character in both the compounds. Equal-valence-electron-density profiles and MP analysis suggest more ionic character of VB than that of TaB.

  14. Momentum-space properties from coordinate-space electron density

    SciTech Connect

    Harbola, Manoj K.; Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.

    2005-05-22

    Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s{sup 1} 2s{sup 1} singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

  15. Electron momentum densities near Dirac cones: Anisotropic Umklapp scattering and momentum broadening.

    PubMed

    Hiraoka, N; Nomura, T

    2017-04-03

    The relationship between electron momentum densities (EMDs) and a band gap is clarified in momentum space. The interference between wavefunctions via reciprocal lattice vectors, making a band gap in momentum space, causes the scattering of electrons from the first Brillouin zone to the other zones, so-called Umklapp scattering. This leads to the broadening of EMDs. A sharp drop of the EMD in the limit of a zero gap becomes broadened as the gap opens. The broadening is given by a simple quantity, E g /v F , where E g is the gap magnitude and v F the Fermi velocity. As the ideal case to see such an effect, we investigate the EMDs in graphene and graphite. They are basically semimetals, and their EMDs have a hexagonal shape enclosed in the first Brillouin zone. Since the gap is zero at Dirac points, a sharp drop exists at the corners (K/K' points) while the broadening becomes significant away from K/K's, showing the smoothest fall at the centers of the edges (M's). In fact, this unique topology mimics a general variation of the EMDs across the metal-insulator transition in condensed matters. Such an anisotropic broadening effect is indeed observed by momentum-density-based experiments e.g. x-ray Compton scattering.

  16. Origins and demonstrations of electrons with orbital angular momentum.

    PubMed

    McMorran, Benjamin J; Agrawal, Amit; Ercius, Peter A; Grillo, Vincenzo; Herzing, Andrew A; Harvey, Tyler R; Linck, Martin; Pierce, Jordan S

    2017-02-28

    The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices.This article is part of the themed issue 'Optical orbital angular momentum'.

  17. Origins and demonstrations of electrons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    McMorran, Benjamin J.; Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.

    2017-02-01

    The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue 'Optical orbital angular momentum'.

  18. Efficient sorting of free electron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    McMorran, Benjamin J.; Harvey, Tyler R.; Lavery, Martin P. J.

    2017-02-01

    We propose a method for sorting electrons by orbital angular momentum (OAM). Several methods now exist to prepare electron wavefunctions in OAM states, but no technique has been developed for efficient, parallel measurement of pure and mixed electron OAM states. The proposed technique draws inspiration from the recent demonstration of the sorting of OAM through modal transformation. We show that the same transformation can be performed on electrons with electrostatic optical elements. Specifically, we show that a charged needle and an array of electrodes perform the transformation and phase correction necessary to sort OAM states. This device may enable the analysis of the spatial mode distribution of inelastically scattered electrons.

  19. Precision measurement of the muon momentum in pion decay at rest

    NASA Astrophysics Data System (ADS)

    Abela, R.; Daum, M.; Eaton, G. H.; Frosch, R.; Jost, B.; Kettle, P.-R.; Steiner, E.

    1984-10-01

    A new series of precision measurements of the muon momentum pμ+ in the decay π-->μ+vμ at rest have been made using a magnetic spectrometer. The result is pμ+=(29.79139 +/- 0.00083) MeV/c. The consequences of this value for the rest masses of the muon neutrino and of the charged pion are discussed.

  20. Transfer of optical orbital angular momentum to a bound electron

    NASA Astrophysics Data System (ADS)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  1. Transfer of optical orbital angular momentum to a bound electron

    PubMed Central

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-01-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light–matter interaction and pave the way for its application and observation in other systems. PMID:27694805

  2. Transfer of optical orbital angular momentum to a bound electron.

    PubMed

    Schmiegelow, Christian T; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G; Schmidt-Kaler, Ferdinand

    2016-10-03

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  3. High precision phase-shifting electron holography

    PubMed

    Yamamoto; Kawajiri; Tanji; Hibino; Hirayama

    2000-01-01

    Today's information-oriented society requires high density and high quality magnetic recording media. The quantitative observation of fine magnetic structures by electron holography is greatly anticipated in the development of such new recording materials. However, the magnetic fields around particles <50 nm have not been observed, because the fields are too weak to observe in the usual way. Here we present a highly precise phase measurement technique: improved phase-shifting electron holography. Using this method, the electric field around a charged polystyrene latex particle (100 nm in diameter) and the magnetic field around iron particles (30 nm in diameter) are observed precisely. A precision of the reconstructed phase image of 2pi/300 rad is achieved in the image of the latex particle.

  4. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

    NASA Astrophysics Data System (ADS)

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E.; Padgett, Miles J.; Boyd, Robert W.; Karimi, Ebrahim

    2016-10-01

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  5. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam.

    PubMed

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E; Padgett, Miles J; Boyd, Robert W; Karimi, Ebrahim

    2016-10-07

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  6. Is the angular momentum of an electron conserved in a uniform magnetic field?

    PubMed

    Greenshields, Colin R; Stamps, Robert L; Franke-Arnold, Sonja; Barnett, Stephen M

    2014-12-12

    We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.

  7. Momentum Transport in Electron-Dominated Spherical Torus Plasmas

    SciTech Connect

    Kaye, S. M.; Solomon, W.; Bell, R. E.; LeBlanc, B. P.; Levinton, F.; Menard, J.; Rewoldt, G.; Sabbagh, S.; Wang, W.; Yuh, H.

    2009-02-24

    The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km/s and ExB shearing rates up to 1 MHz. This level of ExB shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g., ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n=3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low-k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities up to 40 m/s and perturbative momentum diffusivities of up to 4 m2/s, which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low-k turbulence drives the inward momentum pinch. Thus, in Spherical Tori (STs), while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low-k turbulence that exists.

  8. Measuring the orbital angular momentum spectrum of an electron beam

    PubMed Central

    Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim

    2017-01-01

    Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248

  9. Measuring the orbital angular momentum spectrum of an electron beam

    NASA Astrophysics Data System (ADS)

    Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim

    2017-05-01

    Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between -10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy.

  10. Measuring the orbital angular momentum spectrum of an electron beam.

    PubMed

    Grillo, Vincenzo; Tavabi, Amir H; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E; Boyd, Robert W; Lavery, Martin P J; Padgett, Miles J; Karimi, Ebrahim

    2017-05-24

    Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between -10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy.

  11. Ion Momentum Imaging of Dissociative Electron Attachment to Small Molecules

    NASA Astrophysics Data System (ADS)

    Fogle, Michael

    2015-09-01

    In recent years, low energy dissociative electron attachment (DEA) interactions have been of interest to varying biological and technological applications. To study the dynamics resulting from DEA, we used an ion-momentum imaging apparatus based on the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique in which a molecular beam is crossed by a pulsed electron beam. The beam interaction takes place in a 4 π pulsed electrostatic spectrometer that collects the anion fragments resulting from DEA. The molecular beam is formed by a supersonic expansion which results in a well-localized and cold target. Using this apparatus we have investigated the DEA dynamics for several small molecules: CO2 at the 4 eV shape resonance and the 8 eV Feshbach resonance; N2O at the 2.3 eV shape resonance; HCCH at the 3 eV shape resonance; and CF4 near the 7 eV resonance. An overview of these experimental ion-momentum results will be compared to ab initio electronic structure and fixed-nuclei scattering calculations to gauge the resulting dynamics driven by DEA. In many cases, conical intersections play a pivotal role in driving the dynamics. Some of these systems exhibit non-axial recoil conditions indicative of a bending dynamics in the transitory negative ion state while others exhibit a direct axial recoil dissociation without any bending. This work is supported by the National Science Foundation under Contract NSF-PHYS1404366.

  12. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    NASA Astrophysics Data System (ADS)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  13. Momentum space analysis of the electronic structure of biphenyl

    NASA Astrophysics Data System (ADS)

    Morini, F.; Shojaei, S. H. Reza; Deleuze, M. S.

    2014-11-01

    The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS.

  14. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets.

    PubMed

    Burrows, Malcolm; Cullen, Darron A; Dorosenko, Marina; Sutton, Gregory P

    2015-03-16

    Flightless animals have evolved diverse mechanisms to control their movements in air, whether falling with gravity or propelling against it. Many insects jump as a primary mode of locomotion and must therefore precisely control the large torques generated during takeoff. For example, to minimize spin (angular momentum of the body) at takeoff, plant-sucking bugs apply large equal and opposite torques from two propulsive legs [1]. Interacting gear wheels have evolved in some to give precise synchronization of these legs [2, 3]. Once airborne, as a result of either jumping or falling, further adjustments may be needed to control trajectory and orient the body for landing. Tails are used by geckos to control pitch [4, 5] and by Anolis lizards to alter direction [6, 7]. When falling, cats rotate their body [8], while aphids [9] and ants [10, 11] manipulate wind resistance against their legs and thorax. Falling is always downward, but targeted jumping must achieve many possible desired trajectories. We show that when making targeted jumps, juvenile wingless mantises first rotated their abdomen about the thorax to adjust the center of mass and thus regulate spin at takeoff. Once airborne, they then smoothly and sequentially transferred angular momentum in four stages between the jointed abdomen, the two raptorial front legs, and the two propulsive hind legs to produce a controlled jump with a precise landing. Experimentally impairing abdominal movements reduced the overall rotation so that the mantis either failed to grasp the target or crashed into it head first.

  15. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  16. Electron Scattering From a High-Momentum Neutron in Deuterium

    SciTech Connect

    Klimenko, Alexei

    2004-05-01

    The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 105 events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F2n. S was extracted for different values of W*, backward proton momenta ps and momentum transfer Q2. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(thetapq) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F2n was studied in the region cos(thetapq) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is far

  17. Role of Coulomb focusing on the electron transverse momentum of Above-Threshold Ionization.

    PubMed

    Huang, Cheng; Liao, Qing; Zhou, Yueming; Lu, Peixiang

    2010-06-21

    We have investigated the 2D photoelectron momentum spectra for ATI of atoms exposed to linearly polarized pulses by quantum mechanical calculations. By comparing the 2D momentum spectra for the long-range and short-range Coulomb potentials, the focusing of the electron transverse momentum by the long-range interaction is clearly revealed. Analysis indicates that the Coulomb attraction of the parent core to the returning electron is responsible for the focusing of the electron transverse momentum. Moreover, the strong dependence of the focusing of the electron transverse momentum on the laser wavelength and intensity is discussed.

  18. Vibrational effects on the electron momentum distributions of valence orbitals of formamide.

    PubMed

    Miao, Y R; Deng, J K; Ning, C G

    2012-03-28

    The ionization energy spectra and electron momentum distributions of formamide were investigated using the high-resolution electron momentum spectrometer in combination with high level calculations. The observed ionization energy spectra and electron momentum distributions were interpreted using symmetry adapted cluster-configuration interaction theory, outer valence Green function, and DFT-B3LYP methods. The ordering of 10a(') and 2a(") orbitals of formamide was assigned unambiguously by comparing the experimental electron momentum distributions with the corresponding theoretical results, i.e., 10a(') has a lower binding energy. In addition, it was found that the low-frequency wagging vibration of the amino group at room temperature has noticeable effects on the electron momentum distributions. The equilibrium-nuclear-positions-approximation, which was widely used in electron momentum spectroscopy, is not accurate for formamide molecule. The calculations based on the thermal average can evidently improve the agreement with the experimental momentum distributions.

  19. Vibrational effects on the electron momentum distributions of valence orbitals of formamide

    NASA Astrophysics Data System (ADS)

    Miao, Y. R.; Deng, J. K.; Ning, C. G.

    2012-03-01

    The ionization energy spectra and electron momentum distributions of formamide were investigated using the high-resolution electron momentum spectrometer in combination with high level calculations. The observed ionization energy spectra and electron momentum distributions were interpreted using symmetry adapted cluster-configuration interaction theory, outer valence Green function, and DFT-B3LYP methods. The ordering of 10a' and 2a″ orbitals of formamide was assigned unambiguously by comparing the experimental electron momentum distributions with the corresponding theoretical results, i.e., 10a' has a lower binding energy. In addition, it was found that the low-frequency wagging vibration of the amino group at room temperature has noticeable effects on the electron momentum distributions. The equilibrium-nuclear-positions-approximation, which was widely used in electron momentum spectroscopy, is not accurate for formamide molecule. The calculations based on the thermal average can evidently improve the agreement with the experimental momentum distributions.

  20. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  1. Application of Ion and Electron Momentum Imaging to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Cocke, C. L.

    2000-06-01

    COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic

  2. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  3. Role of momentum and velocity for radiating electrons

    NASA Astrophysics Data System (ADS)

    Capdessus, Rémi; Noble, Adam; McKenna, Paul; Jaroszynski, Dino A.

    2016-02-01

    Radiation reaction remains one of the most fascinating open questions in electrodynamics. The development of multi-petawatt laser facilities capable of reaching extreme intensities has lent this topic a new urgency, and it is now more important than ever to properly understand it. Two models of radiation reaction, due to Landau and Lifshitz and due to Sokolov, have gained prominence, but there has been little work exploring the relation between the two. We show that in the Sokolov theory, electromagnetic fields induce a Lorentz transformation between momentum and velocity, which eliminates some of the counterintuitive results of Landau-Lifshitz. In particular, the Lorentz boost in a constant electric field causes the particle to lose electrostatic potential energy more rapidly than it otherwise would, explaining the longstanding mystery of how an electron can radiate while experiencing no radiation reaction force. These ideas are illustrated in examples of relevance to astrophysics and laser-particle interactions, where radiation reaction effects are particularly prominent.

  4. Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

    SciTech Connect

    Pan, Jie

    2012-01-01

    The goal of the Q-weak experiment is to make a measurement of the proton's weak charge QWp = 1 - 4 sin2W2(θWprecision test of the Standard Model (SM) prediction on the running of sin2WWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.

  5. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...

    2017-06-22

    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less

  6. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Pace, D. C.; Eidietis, N. W.; Brennan, D. P.; Granetz, R. S.; Hollmann, E. M.; Liu, C.; Lvovskiy, A.; Moyer, R. A.; Shiraki, D.

    2017-06-01

    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.

  7. Position, spin, and orbital angular momentum of a relativistic electron

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Dennis, Mark R.; Nori, Franco

    2017-08-01

    Motivated by recent interest in relativistic electron vortex states, we revisit the spin and orbital angular momentum properties of Dirac electrons. These are uniquely determined by the choice of the position operator for a relativistic electron. We consider two main approaches discussed in the literature: (i) the projection of operators onto the positive-energy subspace, which removes the Zitterbewegung effects and correctly describes spin-orbit interaction effects, and (ii) the use of Newton-Wigner-Foldy-Wouthuysen operators based on the inverse Foldy-Wouthuysen transformation. We argue that the first approach [previously described in application to Dirac vortex beams in K. Y. Bliokh et al., Phys. Rev. Lett. 107, 174802 (2011), 10.1103/PhysRevLett.107.174802] has a more natural physical interpretation, including spin-orbit interactions and a nonsingular zero-mass limit, than the second one [S. M. Barnett, Phys. Rev. Lett. 118, 114802 (2017), 10.1103/PhysRevLett.118.114802].

  8. Polarization radiation of vortex electrons with large orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ivanov, Igor P.; Karlovets, Dmitry V.

    2013-10-01

    Vortex electrons—freely propagating electrons whose wave functions have helical wave fronts—could become a novel tool in the physics of electromagnetic radiation. They carry a nonzero intrinsic orbital angular momentum (OAM) ℓ with respect to the propagation axis and, for ℓ≫1, a large OAM-induced magnetic moment μ≈ℓμB (μB is the Bohr magneton), which influences the radiation of electromagnetic waves. Here, we consider in detail the OAM-induced effects caused by such electrons in two forms of polarization radiation, namely, in Cherenkov radiation and transition radiation. Thanks to the large ℓ, we can neglect quantum or spin-induced effects, which are of the order of ℏω/Ee≪1, but retain the magnetic moment contribution ℓℏω/Ee≲1, which makes the quasiclassical approach to polarization radiation applicable. We discuss the magnetic moment contribution to polarization radiation, which has never been experimentally observed, and study how its visibility depends on the kinematical parameters and the medium permittivity. In particular, it is shown that this contribution can, in principle, be detected in azimuthally nonsymmetrical problems, for example when vortex electrons obliquely cross a metallic screen (transition radiation) or move near it (diffraction radiation). We predict a left-right angular asymmetry of the transition radiation (in the plane where the charge radiation distributions would stay symmetric), which appears due to an effective interference between the charge radiation field and the magnetic moment contribution. Numerical values of this asymmetry for vortex electrons with Ee=300 keV and ℓ=100-1000 are 0.1%-1%, and we argue that this effect could be detected with existing technology. The finite conductivity of the target and frequency dispersion play crucial roles in these predictions.

  9. Precision and efficiency of the radio electronic systems of aircraft

    NASA Astrophysics Data System (ADS)

    Savin, Sergei K.

    The theoretical and practical aspects of the estimation of the precision of the radio electronic systems of aircraft are discussed. In particular, mathematical models for monitoring the performance of radio electronic systems are described, as are methods for evaluating the accuracy of such systems. A method is proposed for evaluating the overall efficiency of radio electronic systems from their performance and precision characteristics.

  10. Interconnections between atomic-electron density and electron-momentum density: Leading and tail corrections

    NASA Astrophysics Data System (ADS)

    Gadre, Shridhar R.; Chakravorty, Subhas J.

    1986-02-01

    The Burkhardt-Konya-Coulson-March (BKCM) procedure developed by Gadre and Pathak for direct and reverse transformations between atomic-electron density and electron-momentum density has been modified. The modification is based on a work by Allan and March suggesting the use of a square of the Fourier transform of √ρ(r) for obtaining electron-momentum density at small as well as large p values. The new procedure [grafted-BKCM (G-BKCM)] involves an amalgamation of these procedures: the Allan-March procedure being grafted onto the BKCM method for low and high p values. The G-BKCM method has been tested out in direct as well as reverse directions and is seen to lead to extremely good estimates of atomic properties in the conjugate space.

  11. Momentum-Dependent Lifetime Broadening of Electron Energy Loss Spectra: A Self-Consistent Coupled-Plasmon Model.

    PubMed

    Bourke, J D; Chantler, C T

    2015-02-05

    The complex dielectric function and associated energy loss spectrum of a condensed matter system is a fundamental material parameter that determines both the optical and electronic scattering behavior of the medium. The common representation of the electron energy loss function (ELF) is interpreted as the susceptibility of a system to a single- or bulk-electron (plasmon) excitation at a given energy and momentum and is commonly derived as a summation of noninteracting free-electron resonances with forms constrained by adherence to some externally determined optical standard. This work introduces a new causally constrained momentum-dependent broadening theory, permitting a more physical representation of optical and electronic resonances that agrees more closely with both optical attenuation and electron scattering data. We demonstrate how the momentum dependence of excitation resonances may be constrained uniquely by utilizing a coupled-plasmon model, in which high-energy excitations are able to relax into lower-energy excitations within the medium. This enables a robust and fully self-consistent theory with no free or fitted parameters that reveals additional physical insight not present in previous work. The new developments are applied to the scattering behavior of solid molybdenum and aluminum. We find that plasmon and single-electron lifetimes are significantly affected by the presence of alternate excitation channels and show for molybdenum that agreement with high-precision electron inelastic mean free path data is dramatically improved for energies above 20 eV.

  12. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  13. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state.

    PubMed

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  14. Development of an (e,2e) electron momentum spectroscopy apparatus using an ultrashort pulsed electron gun

    SciTech Connect

    Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M.

    2013-06-15

    An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.

  15. Angular Momentum of Twisted Radiation from an Electron in Spiral Motion

    NASA Astrophysics Data System (ADS)

    Katoh, M.; Fujimoto, M.; Kawaguchi, H.; Tsuchiya, K.; Ohmi, K.; Kaneyasu, T.; Taira, Y.; Hosaka, M.; Mochihashi, A.; Takashima, Y.

    2017-03-01

    We theoretically demonstrate for the first time that a single free electron in circular or spiral motion emits twisted photons carrying well-defined orbital angular momentum along the axis of the electron circulation, in adding to spin angular momentum. We show that, when the electron velocity is relativistic, the radiation field contains harmonic components and the photons of l th harmonic carry l ℏ total angular momentum for each. This work indicates that twisted photons are naturally emitted by free electrons and are more ubiquitous in laboratories and in nature than ever thought.

  16. Angular Momentum of Twisted Radiation from an Electron in Spiral Motion.

    PubMed

    Katoh, M; Fujimoto, M; Kawaguchi, H; Tsuchiya, K; Ohmi, K; Kaneyasu, T; Taira, Y; Hosaka, M; Mochihashi, A; Takashima, Y

    2017-03-03

    We theoretically demonstrate for the first time that a single free electron in circular or spiral motion emits twisted photons carrying well-defined orbital angular momentum along the axis of the electron circulation, in adding to spin angular momentum. We show that, when the electron velocity is relativistic, the radiation field contains harmonic components and the photons of lth harmonic carry lℏ total angular momentum for each. This work indicates that twisted photons are naturally emitted by free electrons and are more ubiquitous in laboratories and in nature than ever thought.

  17. Ring-puckering effects on electron momentum distributions of valence orbitals of oxetane.

    PubMed

    Yang, Jing; Shan, Xu; Zhang, Zhe; Tang, Yaguo; Zhao, Minfu; Chen, XiangJun

    2014-12-18

    The binding energy spectra and electron momentum distributions for the outer-valence molecular orbitals of oxetane have been measured utilizing (e, 2e) electron momentum spectrometer with non-coplanar asymmetric geometry at the impact energy of 2500 eV. The experimental momentum distributions were compared with the density functional theory calculations employing B3LYP hybrid functional with aug-cc-pVTZ basis set. It was found that the calculation at planar geometry (C2v) completely fails to interpret the large "turn-up" at low momentum region in electron momentum distribution of the highest occupied molecular orbital (HOMO) 3b1, while the calculations considering the thermal abundances of planar (C2v) and bent (Cs) conformers or the thermally populated vibrational states of ring-puckering motion have significantly improved the agreement. The results indicate that the ring-puckering motion of oxetane has a strong effect on the electron density distribution of HOMO.

  18. Influence of molecular vibrations on the valence electron momentum distributions of adamantane

    NASA Astrophysics Data System (ADS)

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2017-03-01

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions of the outer valence orbitals of adamantane (C10H16). The symmetric noncoplanar (e, 2e) experiment has been carried out at an incident electron energy of 1.2 keV. Furthermore, theoretical calculations of the electron momentum distributions with vibrational effects being involved have been performed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of the complex nature of the vibrational structure of this large molecule, both approaches provide overall quantitative insights into the results of the experiment. Comparisons between experiment and theory have shown that ground state nuclear dynamics appreciably affects the momentum profiles of the 7t2, {2t1 + 3e}, and {5t2 + 5a1} orbitals. It has been demonstrated that changes in the momentum profiles are mainly due to the vibrational motions associated with the CH bonds.

  19. Generation of angular-momentum-dominated electron beams from a photoinjector

    NASA Astrophysics Data System (ADS)

    Sun, Y.-E.; Piot, P.; Kim, K.-J.; Barov, N.; Lidia, S.; Santucci, J.; Tikhoplav, R.; Wennerberg, J.

    2004-12-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g., electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g., possible electron injectors for light sources and linear colliders). In this paper we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  20. Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization.

    PubMed

    Tian, Justin; Wang, Xu; Eberly, J H

    2017-05-26

    The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.

  1. Vibrational Effects on Electron Momentum Distributions of Outer-Valence Orbitals of Oxetane.

    PubMed

    Tang, Yaguo; Shan, Xu; Yang, Jing; Niu, Shanshan; Zhang, Zhe; Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko; Chen, Xiangjun

    2016-09-01

    Vibrational effects on electron momentum distributions (EMDs) of outer-valence orbitals of oxetane are computed with a comprehensive consideration of all vibrational modes. It is found that vibrational motions influence EMDs of all outer-valence orbitals noticeably. The agreement between theoretical and experimental momentum profiles of the first five orbitals is greatly improved when including molecular vibrations in the calculation. In particular, the large turn-up at low momentum in the experimental momentum profile of the 3b1 orbital is well interpreted by vibrational effects, indicating that, besides the low-frequency ring-puckering mode, C-H stretching motion also plays a significant role in affecting EMDs of outer-valence orbitals of oxetane. The case of oxetane exhibits the significance of checking vibrational effects when performing electron momentum spectroscopy measurements.

  2. Toroidal angular momentum balance during rotation changes induced by electron heating modulation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Idomura, Yasuhiro

    2017-08-01

    An electron heating modulation numerical experiment based on a global full-f gyrokinetic model shows that transitions from ion temperature gradient driven (ITG) turbulence to trapped electron mode (TEM) turbulence induced by electron heating generate density peaking and rotation changes. Toroidal angular momentum balance during the rotation changes is revealed by direct observation of toroidal angular momentum conservation, in which in addition to ion turbulent stress, ion neoclassical stress, radial currents, and toroidal field stress of ions and electrons are important. Toroidal torque flipping between ITG and TEM phases is found to be related to reversal of the ion radial current, which indicates the coupling of particle and momentum transport channels. The ion and electron radial currents are balanced to satisfy the ambipolar condition, and the electron radial current is cancelled by the electron toroidal field stress, which indirectly affects toroidal torque.

  3. Momentum spectra for single and double electron ionization of He in relativistic collisions

    NASA Astrophysics Data System (ADS)

    Wood, C. J.; Olson, R. E.; Schmitt, W.; Moshammer, R.; Ullrich, J.

    1997-11-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons.

  4. Electron momentum spectroscopy of H+ 2 in the presence of laser radiation*

    NASA Astrophysics Data System (ADS)

    Bulychev, Andrew A.; Kouzakov, Konstantin A.

    2017-02-01

    Theoretical analysis of laser-assisted electron impact ionization of a hydrogen molecular ion H+ 2 at high impact energy and large momentum transfer is carried out. The laser-field effects on the incoming and outgoing electrons are taken into account using the Volkov functions. The field-dressing of the target electron is treated with a quasistatic state approach. Calculations for laser radiation with frequency ω = 1.55 eV and intensity I = 5 × 1011 W/cm2 exhibit strong laser influence on the molecular bond oscillation in laser-assisted electron momentum distributions.

  5. Recoil Momentum Spectroscopy Study of Electron Capture from He by 10 MeV Hydrogenlike Fluorine

    NASA Astrophysics Data System (ADS)

    Saleh, L.; Winecki, S.; Stöckli, M.; Cocke, C. L.; Richard, P.; Ullrich, J.; Moshammer, R.

    1996-05-01

    We have used recoil momentum spectroscopy (COLTRIMS (J. Ullrich, et al., Comm. At. Mol. Phys. \\underline30), 285 (1994).) to determine final state momentum distributions in the single electron capture from He by 10 MeV F^8+ ions. A momentum resolution below 0.15 a.u. was obtained. The longitidunal momentum resolution is sufficient to allow the separation of final state populations of the L, M and higher states, and to identify excitation of the residual He^+ ion. This probability of this excitation is large in the capture process. Transverse momentum distributions were used to extract transverse cross sections (angular distributions) for different final states. Comparison of the data to theoretical expectations will be presented.

  6. Vibrational effects on valence electron momentum distributions of CH2F2.

    PubMed

    Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko

    2014-12-28

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of difluoromethane (CH2F2). The symmetric noncoplanar (e,2e) experiment has been performed at an incident electron energy of 1.2 keV. Furthermore, a theoretical calculation of the electron momentum distributions of the CH2F2 molecule has been carried out with vibrational effects being involved. It is shown from comparisons between experiment and theory that it is essential to take into account influences of the CH2 asymmetric stretching and CH2 rocking vibrational modes for a proper understanding of the electron momentum distribution of the 2b1 orbital having the CH-bonding character. The results of CH2F2and additional theoretical calculations for (CH3)2O and H2CO molecules strongly suggest that vibrational effects on electron momentum distributions tend to be appreciable for non-total symmetry molecular orbitals delocalized over some equivalent CH-bond sites.

  7. Vibrational effects on valence electron momentum distributions of CH{sub 2}F{sub 2}

    SciTech Connect

    Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko

    2014-12-28

    We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of difluoromethane (CH{sub 2}F{sub 2}). The symmetric noncoplanar (e,2e) experiment has been performed at an incident electron energy of 1.2 keV. Furthermore, a theoretical calculation of the electron momentum distributions of the CH{sub 2}F{sub 2} molecule has been carried out with vibrational effects being involved. It is shown from comparisons between experiment and theory that it is essential to take into account influences of the CH{sub 2} asymmetric stretching and CH{sub 2} rocking vibrational modes for a proper understanding of the electron momentum distribution of the 2b{sub 1} orbital having the CH-bonding character. The results of CH{sub 2}F{sub 2}and additional theoretical calculations for (CH{sub 3}){sub 2}O and H{sub 2}CO molecules strongly suggest that vibrational effects on electron momentum distributions tend to be appreciable for non-total symmetry molecular orbitals delocalized over some equivalent CH-bond sites.

  8. Production of high-angular-momentum electron beams in laser-plasma interactions.

    PubMed

    Ju, L B; Zhou, C T; Huang, T W; Jiang, K; Zhang, H; Wu, S Z; Qiao, B; Ruan, S C

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time t_{a} when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude a_{L}, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude a_{L}^{2} for a fixed parameter of n_{e}/n_{c}a_{L}. These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  9. Production of high-angular-momentum electron beams in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Ju, L. B.; Zhou, C. T.; Huang, T. W.; Jiang, K.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.

    2017-05-01

    It was shown that in the interactions of ultra-intense circularly polarized laser pulse with the near-critical plasmas, the angular momentum can be transferred efficiently from the laser beam to electrons through the resonance acceleration process. The transferred angular momentum increases almost linearly with the acceleration time ta when the electrons are resonantly accelerated by the laser field. In addition, it is shown analytically that the averaged angular momentum of electrons is proportional to the laser amplitude aL, and the total angular momentum of the accelerated electron beam is proportional to the square of the laser amplitude aL2 for a fixed parameter of n/encaL . These results are verified by three-dimensional particle-in-cell simulations. This regime provides an efficient and compact alternative for the production of high angular momentum electron beams, which may have many potential applications in condensed-matter spectroscopy, new electron microscopes, and bright x-ray vortex generation.

  10. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect

    Paschke, Kent D,

    2013-11-01

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  11. Calculating electron momentum densities and Compton profiles using the linear tetrahedron method.

    PubMed

    Ernsting, D; Billington, D; Haynes, T D; Millichamp, T E; Taylor, J W; Duffy, J A; Giblin, S R; Dewhurst, J K; Dugdale, S B

    2014-12-10

    A method for computing electron momentum densities and Compton profiles from ab initio calculations is presented. Reciprocal space is divided into optimally-shaped tetrahedra for interpolation, and the linear tetrahedron method is used to obtain the momentum density and its projections such as Compton profiles. Results are presented and evaluated against experimental data for Be, Cu, Ni, Fe3Pt, and YBa2Cu4O8, demonstrating the accuracy of our method in a wide variety of crystal structures.

  12. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  13. On the local representation of the electronic momentum operator in atomic systems

    NASA Astrophysics Data System (ADS)

    Bohórquez, Hugo J.; Boyd, Russell J.

    2008-07-01

    The local quantum theory is applied to the study of the momentum operator in atomic systems. Consequently, a quantum-based local momentum expression in terms of the single-electron density is determined. The limiting values of this function correctly obey two fundamental theorems: Kato's cusp condition and the Hoffmann-Ostenhof and Hoffmann-Ostenhof exponential decay. The local momentum also depicts the electron shell structure in atoms as given by its local maxima and inflection points. The integration of the electron density in a shell gives electron populations that are in agreement with the ones expected from the Periodic Table of the elements. The shell structure obtained is in agreement with the higher level of theory computations, which include the Kohn-Sham kinetic energy density. The average of the local kinetic energy associated with the local momentum is the Weizsäcker kinetic energy. In conclusion, the local representation of the momentum operator provides relevant information about the electronic properties of the atom at any distance from the nucleus.

  14. Effect of orbital angular momentum on electron acoustic waves in double-Kappa plasma

    NASA Astrophysics Data System (ADS)

    Rehman, Aman-ur; Shan, S. Ali; Hamza, M. Yousaf; Lee, J. K.

    2017-02-01

    Kinetic theory of electron acoustic waves (EAWs) in the presence of wave angular momentum has been derived to study the effect of wave angular momentum on the propagation of EAWs in a non-Maxwellian plasma. Both types of electrons (hot and cool) are modeled as Kappa-distributed velocity distribution functions. The theory is also applied to Saturn's magnetosphere where these kinds of distribution functions are commonly found. It is seen that the presence of wave angular momentum in the model has a significant effect on the existence of the regions where EAWs are weakly damped. The effect of wave angular momentum on EAWs is studied by defining a parameter η = k/(lqθ), which is the ratio of the planar wave number to the azimuthal wave number. The wave is purely planar if η→∞. The weakly damped region of EAWs depends strongly on this parameter in addition to other parameters such as hot electron spectral index κh, cool electron spectral index κc, the fraction of hot electrons, and hot to cool electrons temperature ratio. The results also show the effect of η on the propagation of EAWs in various regions of Saturn's magnetosphere.

  15. Selective detection of angular-momentum-polarized Auger electrons by atomic stereography.

    PubMed

    Matsui, Fumihiko; Fujita, Masayoshi; Ohta, Takuya; Maejima, Naoyuki; Matsui, Hirosuke; Nishikawa, Hiroaki; Matsushita, Tomohiro; Daimon, Hiroshi

    2015-01-09

    When a core level is excited by circularly polarized light, the angular momentum of light is transferred to the emitted photoelectron, which can be confirmed by the parallax shift of the forward focusing peak (FFP) direction in a stereograph of atomic arrangement. No angular momentum has been believed to be transferred to normal Auger electrons resulting from the decay process filling core hole after photoelectron ejection. We succeeded in detecting a non-negligible circular dichroism contrast in a normal Auger electron diffraction from a nonmagnetic Cu(001) surface far off from the absorption threshold. Moreover, we detected angular-momentum-polarized Cu L(3)M(4,5)M(4,5) Auger electrons at the L(3) absorption threshold, where the excited core electron is trapped at the conduction band. From the kinetic energy dependence of the Auger electron FFP parallax shift, we found that the angular momentum is transferred to the Auger electron most effectively in the case of the (1)S(0) two-hole creation.

  16. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.

    2016-10-01

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one's ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.

  17. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    SciTech Connect

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W. -S.; Shen, Z. -X.; Ghiringhelli, G.; Braicovich, L.

    2016-10-25

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.

  18. A multiparameter data acquisition system based on universal serial bus interface for electron momentum spectrometer

    SciTech Connect

    Ning, C.G.; Deng, J.K.; Su, G.L.; Zhou, H.; Ren, X.G.

    2004-09-01

    A versatile multiparameter data acquisition system based on universal serial bus (USB) interface was designed and has been used on the electron momentum spectromenter. Digitized data were first buffered in a FIFO memory in an event-by-event mode with a check bit, and then transferred to computer through the USB interface. USB interface combined with a microcontroller unit provides much flexibility for data acquisition and experimental controls. The operation performance of the system is demonstrated in the measurement of electron momentum spectra of CH{sub 2}F{sub 2} molecules.

  19. A multiparameter data acquisition system based on universal serial bus interface for electron momentum spectrometer

    NASA Astrophysics Data System (ADS)

    Ning, C. G.; Deng, J. K.; Su, G. L.; Zhou, H.; Ren, X. G.

    2004-09-01

    A versatile multiparameter data acquisition system based on universal serial bus (USB) interface was designed and has been used on the electron momentum spectromenter. Digitized data were first buffered in a FIFO memory in an event-by-event mode with a check bit, and then transferred to computer through the USB interface. USB interface combined with a microcontroller unit provides much flexibility for data acquisition and experimental controls. The operation performance of the system is demonstrated in the measurement of electron momentum spectra of CH2F2 molecules.

  20. Tuning the tunneling probability between low-dimensional electron systems by momentum matching

    SciTech Connect

    Zhou, Daming; Beckel, Andreas; Geller, Martin; Lorke, Axel; Ludwig, Arne; Wieck, Andreas D.

    2015-06-15

    We demonstrate the possibility to tune the tunneling probability between an array of self- assembled quantum dots and a two-dimensional electron gas (2DEG) by changing the energy imbalance between the dot states and the 2DEG. Contrary to the expectation from Fowler-Nordheim tunneling, the tunneling rate decreases with increasing injection energy. This can be explained by an increasing momentum mismatch between the dot states and the Fermi-circle in the 2DEG. Our findings demonstrate momentum matching as a useful mechanism (in addition to energy conservation, density of states, and transmission probability) to electrically control the charge transfer between quantum dots and an electron reservoir.

  1. Bloch oscillations for large momentum transfer and high precision in an ytterbium Bose-Einstein condensate interferometer

    NASA Astrophysics Data System (ADS)

    Plotkin-Swing, Benjamin; McAlpine, Katherine; Gochnauer, Daniel; Saxberg, Brendan; Gupta, Subhadeep

    2016-05-01

    The narrow momentum and position spread of a Bose-Einstein condensate (BEC) can help improve atom interferometric measurements. In earlier work, we demonstrated a contrast interferometer with ytterbium (Yb) BECs. Here, we report progress towards implementing a second generation Yb BEC interferometer with the goal of measuring h/m, where h is Planck's constant and m is the mass of a Yb atom, in order to determine the fine structure constant α. The use of the non-magnetic Yb atom and the symmetric geometry of the interferometer make the measurement immune to several error sources. We have produced Yb BECs in a new apparatus, and are currently installing and testing the laser pulse atom-optics needed for the interferometry sequence. The precision of our measurement scales with N2, where 2N is the number of photon recoils separating the interfering momentum states in the interferometer. We will discuss our progress towards realizing Bloch oscillations (BO) pulses for large N. Using an extension of our previous analysis2, we will also discuss the role of diffraction phases in our interferometer due to the BO pulses. This work is supported by the NSF.

  2. Unoccupied electronic structure and momentum-dependent scattering dynamics in Pb/Si(557) nanowire arrays

    NASA Astrophysics Data System (ADS)

    Syed, A. Samad; Trontl, V. Mikšić; Ligges, M.; Sakong, S.; Kratzer, P.; Lükermann, D.; Zhou, P.; Avigo, I.; Pfnür, H.; Tegenkamp, C.; Bovensiepen, U.

    2015-10-01

    The unoccupied electronic structure of quasi-one-dimensional reconstructions of Pb atoms on a Si(557) surface is investigated by means of femtosecond time- and angle-resolved two-photon photoemission. Two distinct unoccupied electronic states are observed at E -EF=3.55 and 3.30 eV, respectively. Density functional theory calculations reveal that these states are spatially located predominantly on the lead wires and that they are energetically degenerated with an energy window of reduced electronic density of states in Si. We further find momentum-averaged lifetimes of 24 and 35 fs of these two states, respectively. The photoemission yield and the population dynamics depend on the electron momentum component perpendicular to the steps of the Si substrate, and the momentum-dependent dynamics cannot be described by means of rate equations. We conclude that momentum- and direction-dependent dephasing of the electronic excitations, likely caused by elastic scattering at the step edges on the vicinal surface, modifies the excited-state population dynamics in this system.

  3. Ion-momentum imaging of dissociative attachment of electrons to molecules

    NASA Astrophysics Data System (ADS)

    Slaughter, D. S.; Belkacem, A.; McCurdy, C. W.; Rescigno, T. N.; Haxton, D. J.

    2016-11-01

    We present an overview of experiments and theory relevant to dissociative electron attachment studied by momentum imaging. We describe several key examples of characteristic transient anion dynamics in the form of small polyatomic electron-molecule systems. In each of these examples the so-called axial recoil approximation is found to break down due to correlation of the electronic and nuclear degrees of freedom of the transient anion. Guided by anion fragment momentum measurements and predictions of the electron scattering attachment probability in the molecular frame, we demonstrate that accurate predictions of the dissociation dynamics can be achieved without a detailed investigation of the surface topology of the relevant electronic states or the fragment trajectories on those surfaces.

  4. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect

    Paschke, K. D.

    2013-11-07

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable A{sub PV} - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  5. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  6. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  7. Electron Momentum Spectroscopy Investigation of Molecular Conformations of Ethanol Considering Vibrational Effects.

    PubMed

    Tang, Yaguo; Shan, Xu; Niu, Shanshan; Liu, Zhaohui; Wang, Enliang; Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko; Chen, Xiangjun

    2017-01-12

    The interpretation of experimental electron momentum distributions (EMDs) of ethanol, one of the simplest molecules having conformers, has confused researchers for years. High-level calculations of Dyson orbital EMDs by thermally averaging the gauche and trans conformers as well as molecular dynamical simulations failed to quantitatively reproduce the experiments for some of the outer valence orbitals. In this work, the valence shell electron binding energy spectrum and EMDs of ethanol are revisited by the high-sensitivity electron momentum spectrometer employing symmetric noncoplanar geometry at an incident energy of 1200 eV plus binding energy, together with a detailed analysis of the influence of vibrational motions on the EMDs for the two conformers employing a harmonic analytical quantum mechanical (HAQM) approach by taking into account all of the vibrational modes. The significant discrepancies between theories and experiments in previous works have now been interpreted quantitatively, indicating that the vibrational effect plays a significant role in reproducing the experimental results, not only through the low-frequency OH and CH3 torsion modes but also through other high-frequency ones. Rational explanation of experimental momentum profiles provides solid evidence that the trans conformer is slightly more stable than the gauche conformer, in accordance with thermodynamic predictions and other experiments. The case of ethanol demonstrates the significance of considering vibrational effects when performing a conformational study on flexible molecules using electron momentum spectroscopy.

  8. Momentum imaging studies of electron and ion dynamics in a strong laser field

    NASA Astrophysics Data System (ADS)

    Maharjan, Chakra Man

    An underlying goal of studying atomic or molecular dynamics with short laser pulses is to reach a time scale short enough to study the evolution of the system in the time domain. In this thesis, the strong field ionization of atoms and molecules has been investigated with the highly resolved technique known as cold target recoil momentum spectroscopy (COLTRIMS). The thesis can be divided into two parts: single and double ionization. In the first part, we studied the momentum vectors of low energy electrons generated by short laser pulses of wavelengths varying from 400 to 800 nm with atomic and molecular targets with intensities in the tunneling region. Most of the structures observed in the momentum spectra of atomic and molecular targets can be explained as due to above-threshold ionization, and Freeman resonances. The most significant structure in our observed spectra is the angular structure in the lowest part of the momentum image, and this is attributed to the diffraction pattern evolved by tunneling electrons. Surprisingly, we observed that the structure produced by the electrons from high Rydberg states is independent of the internal structure of the target atom and molecules. The same work is extended to aligned molecules. The basic idea of this part of the work is to see whether the angular distribution of electrons from aligned molecules resembles the orbital structures of the molecules. The rotational revival structure was used to align the molecules. We observed pronounced energy and angular structures of the momentum images which show a dependence on the alignment of the molecule. The last part of this work mainly focuses on double ionization, i.e. the removal of two electrons from the target atoms sequentially by a short laser pulse. Measuring the complete momentum vector of Ar2+ and Ne2+, we demonstrate that these can be used to extract the angular correlation between two electrons sequentially released in the circularly polarized pulse. We

  9. Precision spectroscopic measurements in few-electron ions

    SciTech Connect

    Dunford, R.W.; Berry, H.G.; Church, D.A.; Dinneen, T.P.; Hass, M.; Liu, C.J.; Berrah-Mansour, N.; Pardo, R.C.; Raphaelian, M.L.A.; Young, L.; Zabransky, B.J. ); Curtis, L.J. . Dept. of Physics and Astronomy)

    1990-01-01

    We describe recent precision experiments in few-electron ions including measurements of the lifetimes of two-photon-emitting levels in Ni{sup 26+} and Ni{sup 27+}, a measurement of the lifetime of the 2{sup 3}S{sub 1} level in Br{sup 33+} and measurements of the 2{sup 3}S{sub 1} {yields} 2{sup 3}{sub 0,1,2} transition energies in B{sup 3+}. 13 refs., 4 figs.

  10. Observation of the Interference Effect in Vibrationally Resolved Electron Momentum Spectroscopy of H2

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Shan, Xu; Wang, Tian; Wang, Enliang; Chen, Xiangjun

    2014-01-01

    We report the first measurement on vibrationally resolved electron momentum spectroscopy of H2 by using a high-resolution (e, 2e) spectrometer. The vibrational-specific experimental momentum profiles have been obtained and shown to be in agreement with calculations of (e, 2e) ionization cross sections taking into account the vibrational wave functions. Distinct deviations from Franck-Condon predictions have been observed in vibrational ratios of cross sections, which can readily be ascribed to the Young-type two-center interference. Unlike previous (e, 2e) work, the present observation of an interference effect does not rely on the comparison with the one-center atomic cross section.

  11. Rotation drive and momentum transport with electron cyclotron heating in tokamak plasmas.

    PubMed

    Yoshida, M; Sakamoto, Y; Takenaga, H; Ide, S; Oyama, N; Kobayashi, T; Kamada, Y

    2009-08-07

    The role of electron cyclotron resonance heating (ECRH) on the toroidal rotation velocity profile has been investigated in the JT-60U tokamak device by separating the effects of the change in momentum transport, the intrinsic rotation by pressure gradient, and the intrinsic rotation by ECRH. It is found that ECRH increases the toroidal momentum diffusivity and the convection velocity. It is also found that ECRH drives the codirection (co) intrinsic rotation inside the EC deposition radius and the counterdirection (ctr) intrinsic rotation outside the EC deposition radius. This ctr rotation starts from the EC deposition radius and propagates to the edge region.

  12. Assessment of delocalized and localized molecular orbitals through electron momentum spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Cheung, Ling-Fung; Ning, Chuan-Gang

    2014-06-01

    Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled “Is it time to retire the hybrid atomic orbital?” [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H2O are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results.

  13. Plasma density gradient injection of low absolute momentum spread electron bunches

    SciTech Connect

    Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, Cs.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P.

    2007-12-22

    Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV/c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefield accelerator injector to produce stable beams with 0.2 MeV/c-class momentum spread at high energies.

  14. Two-photon exchange correction in elastic unpolarized electron-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, O.; Vanderhaeghen, M.

    2016-01-01

    We evaluate the two-photon exchange (TPE) correction to the unpolarized elastic electron-proton scattering at small momentum transfer Q2 . We account for the inelastic intermediate states approximating the double virtual Compton scattering by the unpolarized forward virtual Compton scattering. The unpolarized proton structure functions are used as input for the numerical evaluation of the inelastic contribution. Our calculation reproduces the leading terms in the Q2 expansion of the TPE correction and goes beyond this approximation by keeping the full Q2 dependence of the proton structure functions. In the range of small momentum transfer, our result is in good agreement with the empirical TPE fit to existing data.

  15. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  16. A novel system for measurement of the transverse electron momentum distribution from photocathodes.

    PubMed

    Feng, J; Nasiatka, J; Wan, W; Vecchione, T; Padmore, H A

    2015-01-01

    The transverse momentum of electrons produced by a photocathode contributes significantly to the performance of several different types of accelerator-based light sources, such as Free Electron Lasers, as well as systems designed for ultrafast electron diffraction and dynamic transmission electron microscopy. Minimization of the transverse emittance from photocathodes is the subject of intensive research, and therefore measurement of this parameter is of great importance. Here, we describe a simple system that offers real time measurements of transverse emittance and can be easily integrated into the photocathode fabrication process.

  17. Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.

    PubMed

    Ji, Xiangdong; Yuan, Feng; Zhao, Yong

    2017-05-12

    Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.

  18. Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; Yuan, Feng; Zhao, Yong

    2017-05-01

    Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin (ϕq-ϕΔ) , where ϕΔ and ϕq are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.

  19. Photon-electron-ion momentum transfer in high intensityIR laser pulse ionization

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Chelkowski, Szczefan; Corkum, Paul

    2016-05-01

    Photon momentum sharing between electrons and parent ions in high intensityIR multiphoton ionization requires going beyond the traditional perturbative dipole approximation. Using numerical solutions of the 2-D TDSE(Time dependent Schroedinger equation) for one electron atom models, we show that the radiation pressure on photoelectrons is sensitive to the ionization mechanism, either direct or by recollision. A complex electron-ion response is obtained due to the interplay between the Lorentz force and Coulomb attraction of the ion.The influence of the photon momentum sharing is shown to be discernible in IR high intensity atomic and/or molecular holographic patterns thus suggesting a new research subject in IR strong field physics.

  20. Photoelectron and electron momentum spectroscopy of tetrahydrofuran from a molecular dynamical perspective.

    PubMed

    Shojaei, S H Reza; Morini, Filippo; Deleuze, Michael S

    2013-03-07

    The results of experimental studies of the valence electronic structure of tetrahydrofuran employing He I photoelectron spectroscopy as well as Electron Momentum Spectroscopy (EMS) have been reinterpreted on the basis of Molecular Dynamical simulations employing the classical MM3 force field and large-scale quantum mechanical simulations employing Born-Oppenheimer Molecular Dynamics in conjunction with the dispersion corrected ωB97XD exchange-correlation functional. Analysis of the produced atomic trajectories demonstrates the importance of thermal deviations from the lowest energy path for pseudorotation, in the form of considerable variations of the ring-puckering amplitude. These deviations are found to have a significant influence on several outer-valence electron momentum distributions, as well as on the He I photoelectron spectrum.

  1. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    SciTech Connect

    Vasilyev, D.; Kirschner, J.

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  2. Development of time-resolved electron momentum spectroscopy: a tool for visualizing the motion of electrons during a chemical reaction

    NASA Astrophysics Data System (ADS)

    Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M.

    2014-04-01

    An electron momentum spectroscopy (EMS) apparatus has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of picoseconds. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, a preliminary time-resolved EMS study on the photodissociation dynamics of acetone at 195 nm is presented.

  3. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption.

    PubMed

    Chelkowski, Szczepan; Bandrauk, André D; Corkum, Paul B

    2014-12-31

    We investigate photon-momentum sharing between an electron and an ion following different photoionization regimes. We find very different partitioning of the photon momentum in one-photon ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the electron acquires a momentum that is much greater than the single photon momentum ℏω/c [up to (8/5) ℏω/c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum corresponding to the photons absorbed above the field-free ionization threshold plus a momentum corresponding to a fraction (3/10) of the ionization potential Ip. In both cases, due to the smallness of the electron-ion mass ratio, the ion takes nearly the entire momentum of all absorbed N photons (via the electron-ion center of mass). Additionally, the ion takes, as a recoil, the photoelectron momentum resulting from mutual electron-ion interaction in the electromagnetic field. Consequently, the momentum partitioning of the photofragments is very different in both regimes. This suggests that there is a rich, unexplored physics to be studied between these two limits which can be generated with current ultrafast laser technology.

  4. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  5. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

    PubMed Central

    Huang, Han; Wei, Dacheng; Sun, Jiatao; Wong, Swee Liang; Feng, Yuan Ping; Neto, A. H. Castro; Wee, Andrew Thye Shen

    2012-01-01

    Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, 14- and 21-AGNRs, on Ag(111) as well as their spatially resolved width-dependent electronic structures. STM/STS measurements reveal their associated electron scattering patterns and the energy gaps over 1 eV. The mechanism to form such AGNRs is addressed based on the observed intermediate products. Our results provide new insights into the local properties of AGNRs, and have implications for the understanding of their electrical properties and potential applications. PMID:23248746

  6. High precision variational calculations of few-electron atoms

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy

    2015-05-01

    High precision calculations of energy levels and other properties of small atoms and ions have been a subject of fruitful interplay between the experiment and theory. However, most calculation of spectroscopic accuracy, until recently, have been possible only for two- and three-electron systems. In this talk I will report on progress toward performing high accuracy calculations of larger atomic systems (up to four-six electrons). The results of benchmark quality are attainable with the use of variational expansions in terms of all-particle explicitly correlated Gaussians, whose nonlinear variational parameters are extensively optimized. I will demonstrate what level of accuracy is available today for few-electron atoms and discuss the issues that must be overcome in order to extend the capability of the method to even larger systems. This work has been supported by the Ministry of Education and Science of Kazakhstan.

  7. Precision of multi-frequency electronic apex locators.

    PubMed

    George, Roy

    2016-09-01

    Data sourcesCochrane Central Register of Controlled Trials, Medline, Embase and Scopus databases.Study selectionStudies that reported the precision of electronic apex locators (EALs) in locating the apical constriction (AC) in primary root canal treatment of human teeth compared with a histologic evaluation of the AC were considered.Data extraction and synthesisData were extracted and quality assessed independently by two reviewers.ResultsTen studies were included, reporting on 1105 EAL measurements. Seven studies were considered to be at high risk of bias and three at low risk. Four different EALs were evaluated; Root ZX (J Morita, Tokyo, Japan), Justy II (Hager & Werken GmbH & Co, Duisburg, Germany), Endy 5000 (Loser Co, Leverkusen, Germany) and Endox (Lysis Co, Milan, Italy). Three EALs, Root ZX, Justy II and Endy 5000 were more accurate than the Endox in determining the distance between the file tip and the apical constriction. Pulp status was only available for 194 (17.55%) of the measurements. The status of the pulp (vital or necrotic) had no significant effect on precision.ConclusionsThe precision of electronic working length measurement depends on the device used and the type of irrigation and is not influenced by the status of the pulp tissue.

  8. Three-Dimensional Momentum Imaging of Electron Wave Packet Interference in Few-Cycle Laser Pulses

    SciTech Connect

    Gopal, R.; Simeonidis, K.; Moshammer, R.; Ergler, Th.; Duerr, M.; Kurka, M.; Kuehnel, K.-U.; Tschuch, S.; Schroeter, C.-D.; Bauer, D.; Ullrich, J.; Rudenko, A.; Herrwerth, O.; Uphues, Th.; Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Lezius, M.; Kling, M. F.

    2009-07-31

    Using a reaction microscope, three-dimensional (3D) electron (and ion) momentum (P) spectra have been recorded for carrier-envelope-phase (CEP) stabilized few-cycle (approx5 fs), intense (approx4x10{sup 14} W/cm{sup 2}) laser pulses (740 nm) impinging on He. Preferential emission of low-energy electrons (E{sub e}<15 eV) to either hemisphere is observed as a function of the CEP. Clear interference patterns emerge in P space at CEPs with maximum asymmetry, interpreted as attosecond interferences of rescattered and directly emitted electron wave packets by means of a simple model.

  9. Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping.

    PubMed

    Graus, M; Grimm, M; Metzger, C; Dauth, M; Tusche, C; Kirschner, J; Kümmel, S; Schöll, A; Reinert, F

    2016-04-08

    Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.

  10. Study of the photoelectron and electron momentum spectra of cyclopentene using benchmark Dyson orbital theories.

    PubMed

    Huang, Yan R; Ning, Chuan G; Deng, Jing K; Deleuze, Michael S

    2008-05-07

    A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.

  11. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  12. Etching with atomic precision by using low electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Monroy, G. A.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2017-07-01

    There has been a steady increase in sub-nm precision requirement for many critical plasma etching processes in the semiconductor industry. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in conventional radio-frequency (RF) plasma processing systems, even during layer-by-layer or ‘atomic layer’ etch. To meet these increasingly stringent requirements, it is necessary to have an accurate control over ion energy and ion/radical composition during plasma processing. In this work, a new plasma etch system designed to facilitate atomic precision plasma processing is presented. An electron sheet beam parallel to the substrate surface is used to produce a plasma in this system. This plasma has a significantly lower electron temperature T e ~ 0.3 eV and ion energy E i  <  3 eV (without applied bias) compared to inductively and capacitively coupled RF plasmas. Electron beam plasmas also have a higher ion-to-radical ratio compared to RF plasmas, so this plasma etch system employs an independent radical source for accurate control over relative ion and radical concentrations. A low frequency RF bias capability that allows control of ion energy in the 2-50 eV range is another important component of this plasma etch system. The results of etching of a variety of materials and structures in this low-electron temperature plasma system are presented in this study: (1) layer-by-layer etching of p-Si at E i ~ 25-50 eV using electrical and gas cycling is demonstrated; (2) continuous etching of epi-grown µ-Si in Cl2-based plasmas is performed, showing that surface damage can be minimized by keeping E i  <  10 eV. Also presented are the results of molecular dynamics modeling of atomic precision etching at low E i.

  13. Study on Momentum Density of Electrons and Fermi Surface in Niobium by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Kubota, Takeshi; Kondo, Hitoshi; Watanabe, Kazuhiro; Murakami, Yasukazu; Cho, Yang-Koo; Tanigawa, Shoichiro; Kawano, Takao; Bahng, Gun-Woong

    1990-12-01

    The three dimensional electron-positron momentum density in niobium has been reconstructed from measurements of two dimensional angular correlation of positron annihilation radiations (2D-ACAR) followed by the image reconstruction technique based on a direct Fourier transformation. We determined the position of the Fermi surface sheets; \\varGamma-centered hole octahedron, multiply connected jungle-gym arms and N-centered hole ellipsoids. The Fermi surface topology is in good agreement with the theory.

  14. Asymptotic expansions of the electron momentum densities of the atoms from hydrogen through lawrencium

    SciTech Connect

    Thakkar, A.J.; Wonfor, A.L.; Pedersen, W.A.

    1987-07-15

    The first three coefficients in each of the small p Maclaurin and large p asymptotic expansions of the spherically averaged electron momentum densities of the ground states of the 103 neutral atoms from hydrogen through lawrencium, 73 atomic cations and 41 atomic anions are calculated from nonrelativistic self-consistent-field wave functions. These coefficients should be useful in the analysis of experimental Compton profiles. An analysis of the periodic behavior of these coefficients is given.

  15. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; ...

    2016-10-25

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less

  16. Momentum of superconducting electrons and the explanation of the Meissner effect

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2017-01-01

    Momentum and energy conservation are fundamental tenets of physics, which valid physical theories have to satisfy. In the reversible transformation between superconducting and normal phases in the presence of a magnetic field, the mechanical momentum of the supercurrent has to be transferred to the body as a whole and vice versa, the kinetic energy of the supercurrent stays in the electronic degrees of freedom, and no energy is dissipated nor entropy is generated in the process. We argue on general grounds that to explain these processes it is necessary that the electromagnetic field mediates the transfer of momentum between electrons and the body as a whole, and this requires that when the phase boundary between normal and superconducting phases is displaced, a flow and counterflow of charge occurs in a direction perpendicular to the phase boundary. This flow and counterflow does not occur according to the conventional BCS-London theory of superconductivity, therefore we argue that within BCS-London theory the Meissner transition is a "forbidden transition." Furthermore, to explain the phase transformation in a way that is consistent with the experimental observations, requires that (i) the wave function and charge distribution of superconducting electrons near the phase boundary extend into the normal phase, and (ii) that the charge carriers in the normal state have holelike character. The conventional theory of superconductivity does not have these physical elements, the theory of hole superconductivity does.

  17. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    DOE PAGES

    Haefner, A.; Gunter, D.; Plimley, B.; ...

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method withmore » electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.« less

  18. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    SciTech Connect

    Haefner, A.; Gunter, D.; Plimley, B.; Pavlovsky, R.; Vetter, K.

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method with electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.

  19. Radial Electron Momentum Densities of Colloidal CdSe Nanocrystals Determined by Positron Beam Analysis

    SciTech Connect

    Denison, A B; Meulenberg, R; Eijt, S W H; Van Veen, A; Mijnarends, P E; Barbiellini, B; Bansil, A; Fischer, C; Weber, M H; Lynn, K G

    2003-07-31

    We present depth-resolved positron 2D angular correlation of annihilation radiation (2DACAR) experiments on CdSe quantum dots in the diameter range from 2.5 to 6 nm, deposited as micrometer thin layers. The average radial distribution of the valence electron momentum density (EMD) of CdSe quantum dots has been extracted, which reveals a systematic dependence upon particle size. The quantum confinement related changes and their size scaling observable at the Jones zone momentum of {approx}0.8 a.u. seem to agree with the previous coincidence Doppler study. In addition, the average radial EMD shows an increase in the low-momentum range (<0.6 a.u.) and a reduction in the high-momentum range (>1.6 a.u.) with respect to that measured on a bulk CdSe single crystal. Possible origins of these are described. First-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method were performed to gain a better insight.

  20. Electron Momentum Spectroscopy and Its Applications to Molecules of Biological Interest

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2007-11-01

    Energy and wave function are the heart and soul of Schrödinger quantum mechanics. Electron momentum spectroscopy (EMS) so far provides the most stringent test for quantum mechanical models (theory, basis sets and the combination of both) through observables such as binding energy spectra and Dyson orbital momentum distributions. The capability of EMS to measure Dyson orbitals of a molecule as momentum distributions provides a unique opportunity to assess the models of quantum mechanics based on orbitals, rather than on energy dominated (mostly isotropic) properties. Recently, the author introduced a technique called dual space analysis (DSA), which is based on EMS and quantum mechanics to analyze orbital based information in the more familiar position space as well as the less familiar momentum space. In this article, the development of EMS and DSA is reviewed through the applications to molecules of biological interest such as amino acids, nucleic acid bases and recently nucleosides. The emphasis is the applications of DSA to study isomerization processes and chemical bonding mechanisms of these molecules.

  1. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    SciTech Connect

    Peng Liangyou; Tan Fang; Gong Qihuang; Pronin, Evgeny A.; Starace, Anthony F.

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.

  2. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  3. Measuring the momentum distribution of the unpaired spin electrons in ferromagnets using synchrotron radiation

    SciTech Connect

    Mills, D.M.

    1988-12-01

    The dominant term in the x-ray Compton cross-section of an electron is the interaction of the photon and the electron's charge. Platzman and Tsoar many years ago pointed out that there is also an interaction between an x-ray and the electron's spin and in principle this interaction can give information on the momentum distribution of the unpaired spin electrons in the solid. Unfortunately, the spin sensitive term is not only small compared to the charge term, but in addition couples to the photons in first order only with that components of the x-ray beam that is circularly polarized. A lack of intense sources of circularly polarized x-rays combined with the relative small size of the spin sensitive term makes measurements of the momentum distributions of unpaired spin electrons difficult, resulting in little experiment progress initially made in spin or magnetic Compton scattering. In the past several years, interest in spin sensitive Compton scattering has been revived due in large part to the availability of intense beams of high energy photons from synchrotron radiation sources. The radiation from storage ring sources has well defined polarization states; highly linearly polarized in the orbital plane and elliptically polarized above and below the plane of the orbit of the circulating particles. The high flux and unique polarization properties of synchrotron radiation sources have greatly facilitated measurements of the momentum distributions of the unpaired spin electrons in ferromagnetic solids. Recent results of the work of several groups will be presented, along with some thoughts on the impact that the next generation of storage rings, such as the Advanced Photon Source, and insertion devices specifically designed to produce circularly polarized x-ray beams will have on the field of magnetic Compton scattering. 21 refs., 6 figs.

  4. Momentum resolved tunneling study of interaction effects in 1D electron systems

    NASA Astrophysics Data System (ADS)

    Barak, Gilad

    The physics of electrons confined to one dimension (1D) is qualitatively different from higher dimensional cases. Electron-electron interactions in 1D have a unique influence on the system properties; leading to a collective behavior and rendering the Fermi liquid theory inapplicable. In this work we study several manifestations of the exceptional properties of 1D electron systems. Studying low energy excitations, we confirm the existence of fractionally-charged modes in the wires, as predicted by Luttinger liquid theory. Furthermore, when energetic particles are injected into the wire we find strong disparity between relaxation properties of electrons and holes. This result is explained through energy and momentum conservation considerations, but requires accounting for dispersion nonlinearity, and provides a unique experimental manifestation of interacting electrons beyond the Luttinger liquid limit. Quantum Hall effect edge states provide another manifestation of quasi-1D current carrying states. The spatial charge and spin structure of these edge states is determined by a competition between the confinement potential and the e-e interaction, which leads to nontrivial 'edge reconstruction' arrangements. Qualitatively similar effects are expected for non-chiral 1D conductors under perpendicular magnetic fields. We find that under strong perpendicular magnetic fields a spin polarized strip is created in the cross section of the wire, demonstrating a theoretically predicted but so far unobserved form of charge reconstruction. Furthermore, we find a new form of charge reconstruction, in which Coulomb interactions lead to a close alignment of Fermi points of different 1D modes. A Hartree-Fock calculation is used to explain these measurements. Our experimental approach is based on momentum-resolved tunneling between two parallel quantum wires, one of which is situated at the edge of a populated two dimensional electron gas. The system is fabricated using cleaved

  5. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    SciTech Connect

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; S. Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; R. Mohring; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-05-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c){sup 2}. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q{sup 2} the deuteron charge form factors G{sub C} and G{sub Q}. They are in good agreement with relativistic calculations and disagree with pQCD predictions.

  6. Evidence of Momentum Conservation at a Nonepitaxial Metal/Semiconductor Interface Using Ballistic Electron Emission Microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.

    1996-01-01

    Ballistic-Electron-Emission Microscopy (BEEM) spectroscopy has been performed on Au/Si(111) structures as a function of Au thickness and temperature. At 77 K a direct signature of parallel momentum conservation at the Au/Si interface is observed in the BEEM spectra. The variation in spectral shape with both Au thickness and temperature places restrictions on allowable values of inelastic and elastic mean-free paths in the metal, and also requires the presence of multiple electron passes within the Au layer. An independent indication of multiple reflections is directly observed in the attenuation of BEEM current with Au thickness.

  7. Linear momentum transfer effects in molecular dissociation produced by electron impact.

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Pearl, J. C.; Mumma, M. J.

    1972-01-01

    In this study of molecular dissociation produced by electron impact, diatomic systems and polyatomic molecules are considered, and attention is given to the effects of thermal motion and of momentum transfer in the collision process. A procedure is described which makes it possible to 'construct' both the laboratory angular distribution and velocity distribution of the atomic fragments (or, alternatively, the time-of-flight distribution). The calculation assumes that s-wave electron scattering predominates, i.e., that excitation occurs near threshold. The computational procedure may also be reversed to allow construction of possible molecular models to fit given experimental angular and velocity distribution data.

  8. Electron momentum spectroscopy of norbornadiene at the benchmark ADC(3) level.

    PubMed

    Morini, Filippo; Hajgató, Balázs; Deleuze, Michael S

    2010-09-02

    An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of norbornadiene is presented, on the ground of accurate calculations of valence one-electron and shake-up ionization energies and of the related Dyson orbitals, using one-particle Green's function (1p-GF) theory in conjunction with the so-called third-order algebraic diagrammatic construction scheme [ADC(3)]. Comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and measurements employing electron momentum spectroscopy, taking into account the contamination of inner- and outer-valence spectral bands by numerous shake-up states. Four relatively intense shake-up lines at 12.1, 16.4, 17.6, and 17.8 eV are found to yield recognizable spectral fingerprints in the EMS experiments. Valence bands at electron binding energies larger than 20 eV are subject to a complete breakdown of the orbital picture of ionization.

  9. Correlation effects in momentum space for the electronic shells in Be

    NASA Astrophysics Data System (ADS)

    Mobbs, R. J.; Banyard, K. E.

    1983-05-01

    Our previous partitioning technique for analyzing correlation effects within the individual electronic shells of Be in position space has been applied here to a corresponding examination in momentum space. Comparability with the results in position space was ensured by considering the same configuration-interaction (CI) wave functions and Hartree-Fock (HF) description as before; the functions were transformed into momentum space by applying the standard Dirac procedure. By analogy with position space, Coloumb shifts Δf(p12) vs p12 were derived for the K(1S), L(1S), KL(1S), and KL(3S) shells in Be. Selected one- and two-particle momentum expectation values are also reported along with various radial and angular correlation coefficients. The opposing effects of radial and angular correlation in momentum space for Be gave a K-shell Coulomb shift which, being small, suggested a rough balance between these correlation components. For the L shell, however, the large excess of angular correlation produced a ``shift'' which, relative to the K shell, was of considerable magnitude. Thus, when forming the sum total Coulomb shift for the whole atom, the L-shell component virtually masked all contributions arising from the other shells. This is in direct contrast with position space where the intershell effects in Be produced some detailed structure in the total Coulomb hole Δf(r12) vs r12. The characteristics of the momentum curves for the various shells are rationalized and their relationship with the corresponding results in position space is discussed.

  10. Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mafakheri, E.; Tavabi, A. H.; Lu, P.-H.; Balboni, R.; Venturi, F.; Menozzi, C.; Gazzadi, G. C.; Frabboni, S.; Sit, A.; Dunin-Borkowski, R. E.; Karimi, E.; Grillo, V.

    2017-02-01

    Free electron beams that carry high values of orbital angular momentum (OAM) possess large magnetic moments along the propagation direction. This makes them an ideal probe for measuring the electronic and magnetic properties of materials, as well as for fundamental experiments in magnetism. However, their generation requires the use of complex diffractive elements, which usually take the form of nano-fabricated holograms. Here, we show how the limitations of the current fabrication of such holograms can be overcome by using electron beam lithography. We demonstrate experimentally the realization of an electron vortex beam with the largest OAM value that has yet been reported to the first diffraction order (L = 1000 ℏ), paving the way for even more demanding demonstrations and applications of electron beam shaping.

  11. Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    SciTech Connect

    I. Passchier; L.D. van Buuren; D. Szczerba; R. Alarcon; Th.S. Bauer; D. Boersma; J.F.J. van den Brand; H.J. Bulten; R. Ent; M. Ferro-Luzzi; M. Harvey; P. Heimberg; D.W. Higinbotham; S. Klous; H. Kolster; J. Lang; B.L. Militsyn; D. Nikolenko; G.J.L. Nooren; B.E. Norum; H.R. Poolman; I. Rachek; M.C. Simani; E. Six; H. de Vries; K. Wang; Z.-L. Zhou

    2002-02-25

    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter A{sub ed}{sup V} was measured for the 2{rvec H}({rvec e},e{prime}p)n reaction for missing momenta up to 350 MeV/c at a four-momentum transfer squared of 0.21 (GeV/c){sup 2}. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.

  12. Geometric phase and fractional orbital-angular-momentum states in electron vortex beams

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Pratul; Basu, Banasri; Chowdhury, Debashree

    2017-01-01

    We study here fractional orbital-angular-momentum (OAM) states in electron vortex beams (EVBs) from the perspective of the geometric phase. We consider the skyrmionic model of an electron, where it is depicted as a scalar electron orbiting around the vortex line, which gives rise to the spin degrees of freedom. The geometric phase acquired by the scalar electron orbiting the vortex line induces the spin-orbit interaction. This leads to the fractional OAM states when we have a nonquantized monopole charge associated with the corresponding geometric phase. This involves a tilted vortex in EVBs. The monopole charge undergoes renormalization-group flow, which incorporates a length scale dependence making the fractional OAM states unstable upon propagation. It is pointed out that when EVBs move in an external magnetic field, the Gouy phase associated with the Laguerre-Gaussian modes modifies the geometric phase factor and a proper choice of the radial index helps to have a stable fractional OAM state.

  13. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    SciTech Connect

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  14. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: an analytical versus a molecular dynamical approach.

    PubMed

    Morini, Filippo; Deleuze, Michael S; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A1 symmetry on the 9a1 momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  15. Precise study of the Z/γ* boson transverse momentum distribution in pp collisions using a novel technique.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Ćwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-03-25

    Using 7.3 fb⁻¹ of pp collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable φ(η)*, which probes the same physical effects as the Z/γ* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the φ(η)* distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.

  16. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  17. The use of electron scattering for studying atomic momentum distributions: the case of graphite and diamond.

    PubMed

    Vos, M; Moreh, R; Tokési, K

    2011-07-14

    The momentum distributions of C atoms in polycrystalline diamond (produced by chemical vapor deposition) and in highly oriented pyrolitic graphite (HOPG) are studied by scattering of 40 keV electrons at 135°. By measuring the Doppler broadening of the energy of the elastically scattered electrons, we resolve a Compton profile of the motion of the C atoms. The aim of the present work is to resolve long-standing disagreements between the calculated kinetic energies of carbon atoms in HOPG and in diamond films and the measured ones, obtained both by neutron Compton scattering (NCS) and by nuclear resonance photon scattering (NRPS). The anisotropy of the momentum distribution in HOPG was measured by rotating the HOPG sample relative to the electron beam. The obtained kinetic energies for the motion component along, and perpendicular to, the graphite planes were somewhat higher than those obtained from the most recent NCS data of HOPG. Monte Carlo simulations indicate that multiple scattering adds about 2% to the obtained kinetic energies. The presence of different isotopes in carbon affects the measurement at a 1% level. After correcting for these contributions, the kinetic energies are 3%-6% larger than the most recent NCS results for HOPG, but 15%-25% smaller than the NRPS results. For diamond, the corrected direction-averaged kinetic energy is ≈ 6% larger than the calculated value. This compares favorably to the ≈25% discrepancy between theory and both the NCS and NRPS results for diamond.

  18. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  19. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    SciTech Connect

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  20. Multiphoton stimulated bremsstrahlung for broad (in the momentum representation) electron wave packets in an ultrashort laser pulse field

    SciTech Connect

    Burenkov, I. A.; Tikhonova, O. V.

    2010-06-15

    We consider features of absorption and emission of external laser field quanta by a broad (in the momentum representation) electron wave packet during its scattering from a potential center. Various scattering modes for the electron wave packet in a high-intensity laser field are analyzed using perturbation theory of potential energy. It is found that the absorption of laser field energy by an electron is substantially more effective as compared to the case of a plane wave. The important role of a number of interference effects associated with the large width of the initial electron momentum distribution is demonstrated.

  1. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  2. Spin-dependent electron momentum density in the Ni2MnSn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Deb, Aniruddha; Hiraoka, N.; Itou, M.; Sakurai, Y.; Onodera, M.; Sakai, N.

    2001-05-01

    The spin-dependent electron momentum distribution in Ni2MnSn Heusler alloy single crystals was studied using 270 keV circularly polarized synchrotron radiation, through magnetic Compton profile measurements, on the high energy inelastic scattering beamline at SPring-8. The experiments were carried out for the three principal crystallographic directions [100], [110], and [111] at 10 K. The results show that the conduction electrons have a negative spin polarization of 0.34μB the 3d spin moment on the nickel site was found to be negligible. A band structure calculation was performed including a hyperfine field study using the full potential linearized augmented plane wave (FLAPW) method, with the generalized gradient approximation (GGA) for the electronic exchange and correlation. The spin moment on the Mn site at 10 K was observed as 4.39μB. The spin-dependent Compton profiles for the [100], [110], and [111] directions reported here show anisotropy in the momentum density, which is in good agreement with the FLAPW-GGA results, based on a ferromagnetic ground state. The hyperfine fields calculated were compared with previously calculated hyperfine field of Cu2MnAl and Co2FeGa Heusler alloys. From the comparison it is seen that the value of Hval (valence contribution to the hyperfine field) is roughly proportional to the spin polarization (ms) of the s electrons at the X (Ni,Cu,Co) and Y (Mn of Ni2MnSn and Cu2MnAl, Fe of Co2FeGa) atom positions.

  3. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    SciTech Connect

    Kinyanjui, M. K. Kaiser, U.; Benner, G.; Pavia, G.; Boucher, F.; Habermeier, H.-U.; Keimer, B.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presented approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.

  4. Momentum and Doping Dependence of Spin Excitations in Electron-Doped Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Jing, Pengfei; Zhao, Huaisong; Kuang, Lülin; Lan, Yu; Feng, Shiping

    2017-01-01

    Superconductivity in copper oxides emerges on doping holes or electrons into their Mott-insulating parent compounds. The spin excitations are thought to be the mediating glue for the pairing in superconductivity. Here the momentum and doping dependence of the dynamical spin response in the electron-doped cuprate superconductors is studied based on the kinetic-energy-driven superconducting mechanism. It is shown that the dispersion of the low-energy spin excitations changes strongly upon electron doping; however, the hour-glass-shaped dispersion of the low-energy spin excitations appeared in the hole-doped case is absent on the electron-doped side due to the electron-hole asymmetry. In particular, the commensurate resonance appears in the superconducting state with the resonance energy that correlates with the dome-shaped doping dependence of the superconducting gap. Moreover, the spectral weight and dispersion of the high-energy spin excitations in the superconducting state are comparable with those in the corresponding normal state, indicating that the high-energy spin excitations do not play an important part in the pair formation.

  5. New constraints for low-momentum electronic excitations in condensed matter: fundamental consequences from classical and quantum dielectric theory.

    PubMed

    Chantler, C T; Bourke, J D

    2015-11-18

    We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.

  6. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Ervasti, Mikko M.; Siro, Topi; Harju, Ari

    2014-01-01

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique, and compact expression for the momentum density. The natural geminals can be used to define and to determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of the results of positron annihilation experiments.

  7. Dyson orbitals of N2O: electron momentum spectroscopy and symmetry adapted cluster-configuration interaction calculations.

    PubMed

    Miao, Y R; Ning, C G; Liu, K; Deng, J K

    2011-05-28

    Electron momentum spectroscopy and symmetry adapted cluster-configuration interaction (SAC-CI) theory were combined to study electron correlation effects in nitrous oxide molecule (N(2)O). The SAC-CI General-R method accurately reproduced the experimental ionization spectrum. This bench-marked method was also introduced for calculating the momentum distributions of N(2)O Dyson orbitals. Several calculated momentum distributions with different theoretical methods were compared with the high resolution experimental results. In the outer-valence region, Hartree-Fock (HF), density functional theory (DFT), and SAC-CI theory can well describe the experimental momentum distributions. SAC-CI presented a best performance among them. In the inner-valence region, HF and DFT cannot work well due to the severe breaking of the molecular orbital picture, while SAC-CI still produced an excellent description of experimental momentum profiles because it can accurately take into account electron correlations. Moreover, the thermally averaged calculation showed that the geometrical changes induced by the vibration at room temperature have no noticeable effects on momentum distribution of valence orbitals of N(2)O.

  8. Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider

    SciTech Connect

    M. Anselmino, H. Avakian, D. Boer, F. Bradamante, M. Burkardt, J.P. Chen, E. Cisbani, M. Contalbrigo, D. Crabb, D. Dutta, L. Gamberg, H. Gao, D. Hasch, J. Huang, M. Huang, Z. Kang, C. Keppel, G. Laskaris, Z-T. Liang, M.X. Liu, N. Makins, R.D. Mckeown, A. Metz, Z-E. Meziani, B. Musch, J-C. Peng, A. Prokudin, X. Qian, Y. Qiang, J.W. Qiu, P. Rossi, P. Schweitzer, J. Soffer, V. Sulkosky, Y. Wang, B. Xiao, Q. Ye, Q-J. Ye, F. Yuan, X. Zhan, Y. Zhang, W. Zheng, J. Zhou

    2011-03-01

    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (`D) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.

  9. Ion-momentum imaging of resonant dissociative-electron-attachment dynamics in methanol

    NASA Astrophysics Data System (ADS)

    Slaughter, D. S.; Haxton, D. J.; Adaniya, H.; Weber, T.; Rescigno, T. N.; McCurdy, C. W.; Belkacem, A.

    2013-05-01

    A combined experimental and theoretical investigation of the dissociative-electron-attachment (DEA) dynamics in methanol are presented for the Feshbach resonance at 6.5-eV incident electron energy. Highly differential laboratory-frame momentum distributions have been measured for each fragmentation channel using a DEA reaction microscope. These measurements are combined with calculations of the molecular-frame electron attachment probability in order to investigate the dynamics of the dissociating methanol transient negative anion. In contrast to previous comparisons between water and methanol [Curtis and Walker, J. Chem. Soc., Faraday Trans.JCFTEV0956-500010.1039/ft9928802805 88, 2805 (1992); Prabhudesai, Nandi, Kelkar, and Krishnakumar, J. Chem. Phys.JCPSA60021-960610.1063/1.2899330 128, 154309 (2008)], we find subtle differences in the dissociation dynamics of the two fragment channels that are direct evidence of planar symmetry-breaking of warm methanol in its electronic ground state. We also find that the DEA fragmentation does not strictly follow the axial recoil approximation and we describe the dynamics that enable an accurate prediction of the fragment angular distributions.

  10. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking.

    PubMed

    Fujita, K; Kim, Chung Koo; Lee, Inhee; Lee, Jinho; Hamidian, M H; Firmo, I A; Mukhopadhyay, S; Eisaki, H; Uchida, S; Lawler, M J; Kim, E-A; Davis, J C

    2014-05-09

    The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q = 0 (intra-unit-cell) and Q ≠ 0 (density-wave) broken-symmetry states, simultaneously with the coherent k-space topology, for Bi₂Sr₂CaCu₂O(8+δ) samples spanning the phase diagram 0.06 ≤ p ≤ 0.23. We show that the electronic symmetry-breaking tendencies weaken with increasing p and disappear close to a critical doping p(c) = 0.19. Concomitantly, the coherent k-space topology undergoes an abrupt transition, from arcs to closed contours, at the same p(c). These data reveal that the k-space topology transformation in cuprates is linked intimately with the disappearance of the electronic symmetry breaking at a concealed critical point.

  11. Topography of molecular scalar fields. II. An appraisal of the hierarchy principle for electron momentum densities

    NASA Astrophysics Data System (ADS)

    Balanarayan, P.; Gadre, Shridhar R.

    2005-04-01

    The previously observed hierarchy principle for nondegenerate critical points (CPs) of the electron momentum density (EMD) of molecules [Kulkarni, Gadre, and Pathak, Phys. Rev. A. 45, 4399 (1992)] is verified at a reliable level of theory. Application of Morse inequalities and the Poincaré-Hopf relation to EMD leads to some rigorous results viz (i) for total number of CPs, NCP=3,7,11,15,… there must be either a (3,+3) or a (3,-1) CP at the center of symmetry, (ii) for NCP=1,5,9,13,… there must be either a (3,-3) or a (3,+1) CP at the center of symmetry. A single directional maximum on every ray, starting from p =0 has been observed for all the test molecules and is suggested as a working topographical principle in p space. This working principle is shown to satisfy the sufficiency condition for the hierarchy principle.

  12. Electron interaction with the spin angular momentum of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    O’Connell, R. F.

    2017-02-01

    We give a simple derivation and expansion of a recently proposed new relativistic interaction between the electron and the spin angular momentum of the electromagnetic field in quantum electrodynamics (QED). Our derivation is based on the work of Møller, who pointed out that, in special relativity, a particle with spin must always have a finite extension. After generalizing Møller’s classical result to include both rotation and quantum effects, we show that it leads to a new contribution to the energy, which is the special relativistic interaction term. In addition, we show that all relativistic terms involving spin terms arising from the Dirac equation may be obtained by this method.

  13. Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia

    2008-12-01

    Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (^{2}H,^{3}He, ^{4}He, ^{9}Be,^{12}C, ^{63}Cu, and ^{197}Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function ν W_2^A and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of ν W_2^A in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response ({y<0}), where some scaling violations arising from FSIs are observed.

  14. Interference effects on (e, 2e) electron momentum profiles: a comparative study for CCl4 and CF4*

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Katafuchi, Keisuke; Yamazaki, Masakazu; Takahashi, Masahiko

    2016-12-01

    Interference effects on electron momentum density distributions have been studied using electron momentum spectroscopy (EMS) for the three outermost orbitals of CCl4, which are constructed from the Cl 3p nonbonding atomic orbitals. The EMS experiment was conducted in the symmetric noncoplanar geometry at an incident electron energy of 2.0 keV. Interference pattern has then been obtained by dividing the experimental data by distorted-wave-Born-approximation cross section for an isolated Cl 3p atomic orbital. A comparison with the result of our earlier study on CF4 [N. Watanabe, X.-J. Chen, M. Takahashi, Phys. Rev. Lett. 108, 173201 (2012)] has demonstrated that the period of the interference pattern reflects the internuclear distance between the constituent halogen atoms. Furthermore, the present result strongly suggests that distorted-wave effects lead to partial destruction of the interference for CCl4 at large momentum.

  15. Unveiling orbital angular momentum and acceleration of light beams and electron beams

    NASA Astrophysics Data System (ADS)

    Arie, Ady

    Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science

  16. Photo-electron momentum distribution and electron localization studies from laser-induced atomic and molecular dissociations

    NASA Astrophysics Data System (ADS)

    Ray, Dipanwita

    The broad objective of ultrafast strong-field studies is to be able to measure and control atomic and molecular dynamics on a femtosecond timescale. This thesis work has two major themes: (1) Study of high-energy photoelectron distributions from atomic targets. (2) Electron localization control in atomic and molecular reactions using shaped laser pulses. The first section focuses on the study of photoelectron diffraction patterns of simple atomic targets to understand the target structure. We measure the full vector momentum spectra of high energy photoelectrons from atomic targets (Xe, Ar and Kr) generated by intense laser pulses. The target dependence of the angular distribution of the highest energy photoelectrons as predicted by Quantitative Rescattering Theory (QRS) is explored. More recent developments show target structure information can be retrieved from photoelectrons over a range of energies, from 4Up up to 10Up, independent of the peak intensity at which the photoelectron spectra have been measured. Controlling the fragmentation pathways by manipulating the pulse shape is another major theme of ultrafast science today. In the second section we study the asymmetry of electron (and ion) emission from atoms (and molecules) by interaction with asymmetric pulses formed by the superposition of two colors (800 & 400 nm). Xe electron momentum spectra obtained as a function of the two-color phase exhibit a pronounced asymmetry. Using QRS theory we can analyze this asymmetric yield of the high energy photoelectrons to determine accurately the laser peak intensity and the absolute phase of the two-color electric field. This can be used as a standard pulse calibration method for all two-color studies. Experiments showing strong left-right asymmetry in D+ ion yield from D2 molecules using two-color pulses is also investigated. The asymmetry effect is found to be very ion-energy dependent.

  17. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    NASA Astrophysics Data System (ADS)

    Juchtmans, Roeland; Verbeeck, Jo

    2015-10-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.

  18. Momentum-resolved hot electron dynamics at the 2 H -MoS2 surface

    NASA Astrophysics Data System (ADS)

    Hein, P.; Stange, A.; Hanff, K.; Yang, L. X.; Rohde, G.; Rossnagel, K.; Bauer, M.

    2016-11-01

    Time- and angle-resolved photoelectron spectroscopy (trARPES) is employed to study hot electron dynamics in the conduction band of photoexcited 2 H -MoS2. Momentum-dependent rise times of up to 150 fs after near-ultraviolet photoexcitation and decay times of the order of several-hundred fs allow us to locate areas of light absorption in the conduction-band energy landscape as well as to track the relaxation of hot electrons into the lowest-energy states. The conduction-band minima are finally depopulated within ≈1 ps, although a residual population remains up to the maximum investigated pump-probe delay of 15 ps. The presence of the fast depopulation channel differs from the results of experiments of bulk MoS2 performed with all-optical methods. It conforms, however, with recent findings for monolayer MoS2. We attribute this similarity to defect and surface states being of considerable relevance for the near-surface electron dynamics of bulk MoS2, as probed in a trARPES experiment.

  19. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  20. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  1. Electron bunch timing with femtosecond precision in a superconducting free-electron laser.

    PubMed

    Löhl, F; Arsov, V; Felber, M; Hacker, K; Jalmuzna, W; Lorbeer, B; Ludwig, F; Matthiesen, K-H; Schlarb, H; Schmidt, B; Schmüser, P; Schulz, S; Szewinski, J; Winter, A; Zemella, J

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  2. A study of the turn-up effect in the electron momentum spectroscopy

    NASA Astrophysics Data System (ADS)

    Dal Cappello, C.; Menas, F.; Houamer, S.; Popov, Yu V.; Roy, A. C.

    2015-10-01

    Recently, a number of electron momentum spectroscopy measurements for the ionization of atoms and molecules have shown that the triple differential cross section (TDCS) has an unexpected higher intensity in a low momentum regime (Brunger M J, Braidwood S W, Mc Carthy I E and Weigold E 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L597, Hollebone B P, Neville J J, Zheng Y, Brion C E, Wang Y and Davidson E R 1995 Chem. Phys. 196 13, Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L223, Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201, Deng J K, et al 2001 J. Chem. Phys. 114 882, Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704). This surprising result is now called the turn-up effect. Our aim is to investigate such an effect by studying the case of the ionization of atomic hydrogen in an excited state using the 3C model (Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265) which is able to describe all the measured results of the single ionization of atomic hydrogen in its ground state for an incident energy beyond 200 eV. A comparison is also made of the findings of the present method with those of the plane wave impulse approximation and distorted wave models.

  3. Configuring Electronic States in an Atomically Precise Array of Quantum Boxes.

    PubMed

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Piquero-Zulaica, Ignacio; Nowakowski, Jan; Kawai, Shigeki; Wäckerlin, Christian; Matena, Manfred; Nijs, Thomas; Fatayer, Shadi; Popova, Olha; Ahsan, Aisha; Mousavi, S Fatemeh; Ivas, Toni; Meyer, Ernst; Stöhr, Meike; Ortega, J Enrique; Björk, Jonas; Gade, Lutz H; Lobo-Checa, Jorge; Jung, Thomas A

    2016-07-01

    A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

  4. A study of electron momentum density distribution in Al2O3 ceramic

    NASA Astrophysics Data System (ADS)

    Vyas, V.; Kumar, R.; Mishra, M. C.; Sharma, G.; Sharma, B. K.

    2011-08-01

    A study of electron momentum density distribution in α-Al2O3 ceramic using Compton spectroscopy is presented in this work. Measurements have been carried out using 59.54 keV gamma-rays emanating from an Am241 source. Calculations have been performed on the basis of the ab-initio linear combination of atomic orbitals (LCAO) method embodied in the CRYSTAL code. The correlation scheme proposed by Perdew-Burke-Ernzerhof was adopted. The exchange was treated following the Becke scheme. The Hartree-Fock and hybrid schemes were also applied to the compound. All the schemes yielded results that are in good agreement with the measurements. The agreement with experiment is, however, better with the hybrid B3LYP (Lee-Yang-Parr) scheme. Ionic model calculations for a number of configurations of (Al+x)2(O-2x/3)3 (2.75<=x<=3 in steps of 0.125) were also performed utilizing free atom profiles. The ionic model suggests transfer of 2.875 electrons from the valence sp state of Al to the p state of O.

  5. Improvement of the precision of lattice parameter determination by nano-beam electron diffraction.

    PubMed

    Saitoh, Koh; Nakahara, Hirotaka; Tanaka, Nobuo

    2013-01-01

    A highly precise determination of lattice parameters using higher-order Laue zone (HOLZ) reflections observed in nano-beam electron diffraction is presented. The introduction of more than 40 HOLZ reflections, whose positions are corrected by considering the aberration of the electron optics and are determined with an accuracy of 0.04 nm⁻¹, allows us to achieve a remarkable high precision of a 0.02% error, which is four times higher than the precision without HOLZ reflections.

  6. Precision electron flow measurements in a disk transmission line.

    SciTech Connect

    Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

    2008-01-01

    An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

  7. Mixed-precision evaluation of two-electron integrals by Rys quadrature

    NASA Astrophysics Data System (ADS)

    Asadchev, Andrey; Gordon, Mark S.

    2012-08-01

    A mixed precision implementation of two-electron integrals is demonstrated to have two benefits: (a) computations can be performed reliably in 32-bit precision on architectures for which 32-bit precision is significantly faster than 64-bit precision (e.g. graphical processing units), and (b) numerical results that match those using higher than 64-bit precision can be recovered without a significant penalty associated with performing the entire computation in higher precision. A justification is presented for using mixed precision in the Rys two-electron integral quadrature algorithm, together with timings and numerical results using a variety of floating-point types. The code discussed here presents a systematic way to control the accuracy of the Rys algorithm, regardless of the types and numbers of integrals.

  8. Breakdown of the Strong-Field Approximation for Transverse Electron Momentum Distributions in Strong-Field Ionization

    NASA Astrophysics Data System (ADS)

    Sang, Robert; Calvert, J. E.; Goodall, S.; Wang, X.; Xu, H.; Palmer, A. J.; Ivanov, I. A.; Kheifets, A. S.; Kielpinski, D.; Litvinyuk, I. V.

    2015-05-01

    We investigated the transverse electron momentum distributions for the strong field ionization of atoms by laser pulses with varying ellipticity. We investigated two ionization regimes; tunelling and over the barrier ionization regimes. The over the barrier regime was accessed by using neon atoms in excited atomic metastable states and is the first such strong-field experiment to use such an atomic species. We will show that the transverse momentum distributions evolve in qualitatively different when the ellipticity of the driving laser pulses is varied. email: R.Sang@griffith.edu.au

  9. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  10. Precision Electron Beam Polarimetry in Hall C at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Gaskell, David

    2013-10-01

    The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.

  11. Precise polarization measurements via detection of compton scattered electrons

    SciTech Connect

    Tvaskis, Vladas; Dutta, Dipangkar; Gaskell, David J.; Narayan, Amrendra

    2014-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam off a proton target. One of the dominant experimental systematic uncertainties in Qweak will result from determining the beam polarization. A new Compton polarimeter was installed in the fall of 2010 to provide a non-invasive and continuous monitoring of the electron beam polarization in Hall C at Jefferson Lab. The Compton-scattered electrons are detected in four planes of diamond micro-strip detectors. We have achieved the design goals of <1% statistical uncertainty per hour and expect to achieve <1% systematic uncertainty.

  12. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Shie, C.-S.; Chen, C. H.; Breitwieser, R.; Pai, W. W.; Guo, G. Y.; Chu, M.-W.

    2015-01-01

    The π-plasmon dispersion in graphene was scrutinized by momentum-resolved electron energy-loss spectroscopy with an improved momentum q resolution and was found to display the square root of the q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast to previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q -dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the π plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the π plasmon and the two-dimensional Dirac plasmon is demonstrated, clarifying the common notion about correlating the linearly dispersed Dirac cones with the linear dispersion of the π plasmon previously reported.

  13. Asymmetries in the momentum distributions of electrons stripped by a XUV chirped pulse in the presence of a laser field.

    PubMed

    Bonanno, G; Bivona, S; Burlon, R; Leone, C

    2012-09-24

    The ionization of hydrogen by a chirped XUV pulse in the presence of a few cycle infrared laser pulse has been investigated. The electron momentum distribution has been obtained by treating the interaction of the atom with the XUV radiation at the first order of the time-dependent perturbation theory and describing the emitted electron through the Coulomb-Volkov wavefunction. The results of the calculations agree with the ones found by solving numerically the time-dependent Schrödinger equation. It has been found that depending on the delay between the pulses the combined effect of the XUV chirp and of the steering action on the infrared field brings about asymmetries in the electron momentum distribution. These asymmetries may give information on both the chirp and the XUV pulse duration.

  14. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  15. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  16. Study of the molecular structure, ionization spectrum, and electronic wave function of 1,3-butadiene using electron momentum spectroscopy and benchmark Dyson orbital theories

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Knippenberg, S.

    2006-09-01

    The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within ˜0.2eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense π-2 π*+1 satellite at ˜13.1eV in the ionization spectrum of the s-trans conformer.

  17. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    SciTech Connect

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.; Dowek, D.; Trcera, N.

    2013-10-15

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS{sub 2}.

  18. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    NASA Astrophysics Data System (ADS)

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Dowek, D.; Trcera, N.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.

    2013-10-01

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS2.

  19. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  20. Electronic solar compass for high precision orientation on any planet

    NASA Astrophysics Data System (ADS)

    Flora, F.; Bollanti, S.; De Meis, D.; Di Lazzaro, P.; Gallerano, G. P.; Mezi, L.; Murra, D.; Torre, A.; Vicca, D.

    2016-07-01

    A compact, fully automatic electronic solar compass has been developed at the ENEA Frascati Laboratories. The compass is inspired to ``camera obscura'' sundials like those inside churches. Sun ephemerides are calculated using an approximate but effective analytical solution of Kepler's laws, where the Earth (or other planets) orbit main parameters are introduced. The instrument is light, cheap and it has an accuracy better than 1 arcmin. Some examples of application of the device as well as the possibility to use it on Mars are presented.

  1. Effects on axial momentum spread on the electron-ion two-stream instability in high-intensity ion beams

    SciTech Connect

    R. Davidso; H. Qin

    2000-06-15

    Use is made of the Vlasov-Maxwell equations to describe the electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating through a stationary population of (unwanted) background electrons. The ion beam is treated as continuous in the z-direction, and the electrons are electrostatically confined in the transverse direction by the space-charge potential produced by the excession charge. The analysis is carried out for arbitrary beam intensity, consistent with transverse confinement of the beam particles, and arbitrary fractional charge neutralization by the background electrons. For the case of overlapping step-function ion and electron density profiles, corresponding to monoenergetic electrons and ions in the transverse direction, detailed stability properties are calculated, including the important effects of an axial momentum spread, over a wide range of system parameters for dipole perturbations with azimuthal mode number l=1. The two-stream instability growth rate is found to increase with increasing beam intensity, increasing fractional charge neutralization, and decreasing proximity of the conducting wall. It is shown that Landau damping associated with a modest axial momentum spread of the beam ions and background electrons has a strong stabilizing influence on the instability.

  2. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  3. Precise MS light-quark masses from lattice QCD in the regularization invariant symmetric momentum-subtraction scheme

    SciTech Connect

    Gorbahn, Martin; Jaeger, Sebastian

    2010-12-01

    We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scale dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.

  4. First-principles calculations of momentum distributions of annihilating electron-positron pairs in defects in UO2

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Bertolus, Marjorie

    2017-01-01

    We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.

  5. Partonic calculation of the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer

    SciTech Connect

    Y. C. Chen; A. Afanasev; S. J. Brodsky; C. E. Carlson; Marc Vanderhaeghen

    2004-03-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.

  6. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjie; Thirunavukkarasu, G.; Babiker, M.; Yuan, Jun

    2017-09-01

    A general orbital-angular-momentum (OAM) mode selection principle is put forward involving the rotationally symmetric superposition of chiral states. This principle is not only capable of explaining the operation of vortex generating elements such as spiral zone plate holograms, but more importantly, it enables the systematic and flexible generation of structured OAM waves in general. This is demonstrated both experimentally and theoretically in the context of electron vortex beams using rotationally symmetric binary amplitude chiral sieve masks.

  7. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams.

    PubMed

    Yang, Yuanjie; Thirunavukkarasu, G; Babiker, M; Yuan, Jun

    2017-09-01

    A general orbital-angular-momentum (OAM) mode selection principle is put forward involving the rotationally symmetric superposition of chiral states. This principle is not only capable of explaining the operation of vortex generating elements such as spiral zone plate holograms, but more importantly, it enables the systematic and flexible generation of structured OAM waves in general. This is demonstrated both experimentally and theoretically in the context of electron vortex beams using rotationally symmetric binary amplitude chiral sieve masks.

  8. A Century-Old Question: Does a Crookes Paddle Wheel Cathode Ray Tube Demonstrate that Electrons Carry Momentum?

    NASA Astrophysics Data System (ADS)

    Humphrey, T. E.; Calisa, Vaishnavi

    2014-03-01

    In 1879, in the midst of the debate between English and continental scientists about the nature of cathode rays, William Crookes conducted an experiment in which a small mill or "paddle wheel" was pushed along tracks inside a cathode ray tube (CRT) (similar to that shown in Fig. 1) when connected to a high-voltage induction coil. Crookes attributed the motion of the wheel to momentum transfer from the cathode rays (electrons) to the wheel, and interpreted the experiment as providing evidence that cathode rays were particles. In 1903 Thomson discounted Crookes' interpretation by calculating that the rate of momentum transfer (which he estimated at no more than 2×10-3 dyn, equivalent to 2×10-8 N) would be far too small to account for the observed motion of the wheel,2 instead attributing the motion to the radiometric effect. The misconception was not laid to rest, however, and despite an effort in 1961 to draw attention to Thomson's original work and so remove the error from textbooks,3 the notion that a Crookes paddle wheel CRT demonstrates that electrons carry momentum continues to be taught in high school physics courses4 and wheel. We then measured the actual acceleration of the wheel in the CRT by video analysis of its motion and determined the moment of inertia of the wheel along with its mass and dimensions. We could then compare the force, which really acts on the wheel to produce the observed motion to the maximum impulsive force that is supplied by the electrons. Our measurements yield a maximum impulsive force due to the electrons [ F e l = ( 1.1 ± 0.3 ) × 10 - 8 N ], which is within a factor of two of Thomson's estimate, and which is more than two orders of magnitude smaller than the force that is responsible for the observed acceleration of the paddle wheel [ F W = ( 6 ± 2 ) × 10 - 6 N ]. This means that the rotation of the wheel is certainly not due to transferred momentum from the electron beam, and the results of the experiment should not be

  9. Nucleon momentum distributions and elastic electron scattering from 19F, 25Mg, 27Al, and 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Al-Rahmani, A.

    2016-04-01

    The nucleon momentum distributions and elastic electron scattering form factors of the ground state for some odd 2 s-1 d shell nuclei, such as 19F, 25Mg, 27Al, and 29Si, have been investigated using the coherent density fluctuation model and expressed in terms of the fluctuation function (weight function) | f( x)|2. The fluctuation function has been related to the nucleon density distribution of the nuclei and determined from the theory. The property of the long-tail manner at high-momentum region of the nucleon momentum distribution has been obtained by theoretical fluctuation function. The calculated form factors F( q) of all nuclei under study are in very good agreement with those of experimental data throughout all values of momentum transfer q. It is concluded that the contributions of the quadrupole form factor F C2( q) in 25Mg and 27Al nuclei, which are characterized by the undeformed 2 s-1 d shell model, are necessary for getting a remarkable agreement between the theoretical and experimental form factors.

  10. Ab initio calculations of the electron momentum distribution function for ordered and disordered warm dense matter (WDM)

    NASA Astrophysics Data System (ADS)

    Klevak, E.; Mattern, B. A.; Kas, J. J.; Rehr, J. J.; Seidler, G. T.

    2014-03-01

    We report new calculations of the electron momentum distribution n(p) for ordered and disordered materials of interest for warm dense matter research. The central role of the electron-ion interaction and the need to orthogonalize the valence-electron and core-electron wave functions has often been ignored in the interpretation of x-ray Thomson scattering studies of WDM.[2] This has led to substantial uncertainty in the inferred temperatures and ionization states in laser-shock generated dense plasmas. Real space Green's function calculations as a function of density and disorder are used to evaluate the possibility of a broadly applicable universal rescaling of the free-electron n(p) by an effective volume and effective temperature to approximate the effects of valence-core orthogonalization. Supported in part by DOE BES Grant DEFG03-97ER45623 (EK, JJR, JJK) and DOE-BES DE-SC0002194(BAM and GTS).

  11. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  12. Progress in (e, 2e) electron momentum spectroscopy: from the static to the time-resolved regime

    NASA Astrophysics Data System (ADS)

    Takahashi, Masahiko

    2015-09-01

    Electron momentum spectroscopy (EMS) is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions, where the collision kinematics can be described by electron Compton scattering that most nearly corresponds to the collision of two free electrons with the residual ion acting as a spectator. The remarkable feature of this technique is its ability to measure momentum distributions of each electron bound in matter or to look at molecular orbitals in momentum space. We have been exploring atomic and molecular science using EMS, such as 3D orbital imaging for a stable gaseous molecule [Takahashi et al., PRL 2005], observation of the giant resonance phenomenon in the 2nd order projectile-target interactions [Takahashi et al., PRL 2007], and determination of spatial orientation of the constituent atomic orbitals in molecular orbitals [Watanabe et al., PRL 2012]. Recently, we have started to direct our efforts also towards expanding frontiers of EMS, through development of time-resolved EMS (TR-EMS) that employs ultrashort laser (120 fs) and electron (1 ps) pulses in a pump-probe scheme [Yamazaki et al., RSI 2013]. In spite of the low data statistics as well as of the limited time-resolution due to velocity mismatch, our experimental results on the deuterated acetone molecule in its second excited singlet state with a lifetime of 13.5 ps [Yamazaki et al., PRL 2015] have represented the first time that EMS measurements of short lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space. With further technical development, TR-EMS could eventually enable one to take a series of snapshots of molecular orbitals changing rapidly during chemical reaction, thereby making it possible to exploit a new area for studies of ultrafast molecular dynamics as well as the nature of molecular excited states; it is electrons that bind atoms into molecules, and chemical reactions are all

  13. Generating Optical Orbital Angular Momentum in a High-Gain Free-Electron Laser at the First Harmonic

    SciTech Connect

    Hemsing, E.; Marinelli, A.; Rosenzweig, J. B.

    2011-04-22

    A scheme to generate intense coherent light that carries orbital angular momentum (OAM) at the fundamental wavelength of an x-ray free-electron laser (FEL) is described. The OAM light is emitted as the dominant mode of the system until saturation provided that the helical microbunching imposed on the electron beam is larger than the shot-noise bunching that leads to self-amplified emission. Operating at the fundamental, this scheme is more efficient than alternate schemes that rely on harmonic emission, and can be applied to x-ray FELs without using external optical mode conversion elements.

  14. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    ERIC Educational Resources Information Center

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  15. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    ERIC Educational Resources Information Center

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  16. Hi-G electronic gated camera for precision trajectory analysis

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.

    1997-12-01

    It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for

  17. Precision shape modification of nanodevices with a low-energy electron beam

    DOEpatents

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  18. Development of time-resolved (e, 2e) electron momentum spectroscopy: a tool for visualizing the motion of electrons during a chemical reaction

    NASA Astrophysics Data System (ADS)

    Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M.

    2014-04-01

    We report the instrumental design and technical details of an (e, 2e) electron momentum spectroscopy (EMS) apparatus, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of one picosecond. EMS data for the neutral Ar atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics. The results are discussed mainly in terms of signal intensity.

  19. Differential, integral, and momentum-transfer cross sections for elastic electron scattering by neon - 5 to 100 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.

    1984-01-01

    Relative elastic-scattering differential cross sections were measured in the 5-100-eV impact energy and 10-145 deg angular ranges. Normalization of these cross sections was achieved by utilizing accurate total electron-scattering cross sections. A phase-shift analysis of the angular distributions in terms of real phase shifts has been carried out. From the differential cross sections, momentum-transfer cross sections were obtained and the values of the critical energy and angle were established (associated with the lowest value of the differential cross section) as 62.5 + or - 2.5 eV and 101.7 deg + or - 1.5 deg, respectively. The present phase shifts, the critical parameters, and differential, integral, and momentum-transfer cross sections are compared to previous experimental and theoretical results. The error associated with the present data is about 10 percent.

  20. Differential, integral, and momentum-transfer cross sections for elastic electron scattering by neon - 5 to 100 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.

    1984-01-01

    Relative elastic-scattering differential cross sections were measured in the 5-100-eV impact energy and 10-145 deg angular ranges. Normalization of these cross sections was achieved by utilizing accurate total electron-scattering cross sections. A phase-shift analysis of the angular distributions in terms of real phase shifts has been carried out. From the differential cross sections, momentum-transfer cross sections were obtained and the values of the critical energy and angle were established (associated with the lowest value of the differential cross section) as 62.5 + or - 2.5 eV and 101.7 deg + or - 1.5 deg, respectively. The present phase shifts, the critical parameters, and differential, integral, and momentum-transfer cross sections are compared to previous experimental and theoretical results. The error associated with the present data is about 10 percent.

  1. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    SciTech Connect

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; B. Poelker; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-03-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy.

  2. Band- and momentum-dependent electron dynamics in superconducting Ba(Fe1-xCox)2As2 as seen via electronic Raman scattering

    SciTech Connect

    Muschler, B.

    2010-02-24

    We present details of carrier properties in high quality Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} single crystals obtained from electronic Raman scattering. The experiments indicate a strong band and momentum anisotropy of the electron dynamics above and below the superconducting transition highlighting the importance of complex band-dependent interactions. The presence of low energy spectral weight deep in the superconducting state suggests a gap with accidental nodes which may be lifted by doping and/or impurity scattering. When combined with other measurements, our observation of band and momentum dependent carrier dynamics indicate that the iron arsenides may have several competing superconducting ground states.

  3. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction

    SciTech Connect

    Rouviere, Jean-Luc Martin, Yannick; Denneulin, Thibaud; Cooper, David

    2013-12-09

    NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10{sup −4} is obtained with a probe size approaching 1 nm in diameter.

  4. Nonsequential Double Ionization of Atoms in Strong Laser Field: Identifying the Mechanisms behind the Correlated-Electron Momentum Spectra

    NASA Astrophysics Data System (ADS)

    Ye, Difa; Fu, Libin; Liu, Jie

    Within the strong-field physics community, there has been increasing interest on nonsequential double ionization (NSDI) induced by electron-electron (e-e) correlation. A large variety of novel phenomena has been revealed in experiments during the past decades. However, the theoretical understanding and interpretation of this process is still far from being complete. The most accurate simulation, i.e. the exact solution of the time-dependent Schrödinger equation (TDSE) for two electrons in a laser field is computationally expensive. In order to overcome the difficulty, we proposed a feasible semiclassical model, in which we treat the tunneling ionization of the outmost electron quantum mechanically according to the ADK theory, sample the inner electron from microcanonical distribution and then evolve the two electrons with Newton's equations. With this model, we have successfully explained various NSDI phenomena, including the excessive DI yield, the energy spectra and angular distribution of photoelectrons. Very recently, it is adopted to reveal the physical mechanisms behind the fingerlike structure in the correlated electron momentum spectra, the unexpected correlation-anticorrelation transition close to the recollision threshold, and the anomalous NSDI of alkaline-earth-metal atoms in circularly polarized field. The obvious advantage of our model is that it gives time-resolved insights into the complex dynamics of NSDI, from the turn-on of the laser field to the final escape of the electrons, thus allowing us to disentangle and thoroughly analyze the underlying physical mechanisms.

  5. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2016-05-12

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

  6. π-Plasmon Dispersion in Free-Standing Monolayer Graphene Investigated by Momentum-Resolved Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Breitwieser, R.; Chen, C. H.; Pai, W. W.; Guo, G. Y.; Chu, M. W.

    2014-08-01

    The {\\pi}-plasmon dispersion in graphene was scrutinized by momentum(q)-resolved electron energy-loss spectroscopy with an improved q resolution and found to display the square root of q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast with previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q-dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the {\\pi} plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the {\\pi} plasmon and the two-dimensional Dirac plasmon was demonstrated, clarifying the common notion on correlating the linearly-dispersed Dirac cones to the linear dispersion of the {\\pi} plasmon previously reported.

  7. Application of Momentum Transfer Theory for Ion and Electron Transport in Pure Gases and in Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Jovanović, J. V.; Vrhovac, S. B.

    2004-12-01

    In this paper we have presented two applications of Momentum Transfer Theory (MTT), which were both aimed at obtaining reliable data for modeling of non-equilibrium plasma. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar++Ar collisions bay making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne++Ne integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Application of Blanc's Law for drift velocities of electrons and ions in gas mixtures at arbitrary reduced electric field strenghts E/n0 was studied theoretically and by numerical examples. Corrections for Blanc's Law that include effects of inelastic collisions were derived. In addition we have derived the common mean energy procedure that was proposed by Chiflikian in a general case both for ions and electrons. Both corrected common E/n0 and common mean energy procedures provide excellent results even for electrons at moderate E/n0 where application of Blanc's Law was regarded as impossible. In mixtures of two gases that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the Blanc's Law procedure was able to give excellent predictions.

  8. Application of Momentum Transfer Theory for Ion and Electron Transport in Pure Gases and in Gas Mixtures

    SciTech Connect

    Jovanovic, J.V.; Vrhovac, S. B.

    2004-12-01

    In this paper we have presented two applications of Momentum Transfer Theory (MTT), which were both aimed at obtaining reliable data for modeling of non-equilibrium plasma. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar++Ar collisions bay making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne++Ne integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Application of Blanc's Law for drift velocities of electrons and ions in gas mixtures at arbitrary reduced electric field strengths E/n0 was studied theoretically and by numerical examples. Corrections for Blanc's Law that include effects of inelastic collisions were derived. In addition we have derived the common mean energy procedure that was proposed by Chiflikian in a general case both for ions and electrons. Both corrected common E/n0 and common mean energy procedures provide excellent results even for electrons at moderate E/n0 where application of Blanc's Law was regarded as impossible. In mixtures of two gases that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the Blanc's Law procedure was able to give excellent predictions.

  9. Laser-sub-cycle two-dimensional electron-momentum mapping using orthogonal two-color fields

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Xinhua; Roither, Stefan; Kartashov, Daniil; Wang, YanLan; Wang, ChuanLiang; Schöffler, Markus; Shafir, Dror; Corkum, Paul B.; Baltuška, Andrius; Ivanov, Igor; Kheifets, Anatoli; Liu, XiaoJun; Staudte, André; Kitzler, Markus

    2014-12-01

    We study laser-sub-cycle control over electron trajectories concomitantly in space and time using orthogonally polarized two-color laser fields. We compare experimental photoelectron spectra of neon recorded by coincidence momentum imaging with photoelectron spectra obtained by semiclassical and numerical solutions of the time-dependent Schrödinger equation. We find that a resolution of a quarter optical cycle in the photoelectron trajectories can be achieved. It is shown that depending on their sub-cycle birth time the trajectories of photoelectrons are affected differently by the ion's Coulomb field.

  10. Signatures of Molecular Orbital Structure in Lateral Electron Momentum Distributions from Strong-Field Ionization

    NASA Astrophysics Data System (ADS)

    Petersen, Ingo; Henkel, Jost; Lein, Manfred

    2015-03-01

    Strong-field ionization of aligned diatomic and polyatomic molecules such as O2, N2, C2H4, and others in circularly polarized laser fields is investigated theoretically. By calculating the emission-angle-resolved lateral width of the momentum distribution perpendicular to the polarization plane, we show that nodal planes in molecular orbitals are directly imprinted on the angular dependence of the width. We demonstrate that orbital symmetries can be distinguished with the information obtained by observing the lateral width in addition to the angular distributions.

  11. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts.

    PubMed

    Yankovich, Andrew B; Berkels, Benjamin; Dahmen, W; Binev, P; Sanchez, S I; Bradley, S A; Li, Ao; Szlufarska, Izabela; Voyles, Paul M

    2014-06-11

    Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behaviour. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-corrected Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a (111)/(111) corner towards the particle centre and expansion of a flat (111) facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional atomic structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions.

  12. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors

    NASA Astrophysics Data System (ADS)

    Narayan, A.; Jones, D.; Cornejo, J. C.; Dalton, M. M.; Deconinck, W.; Dutta, D.; Gaskell, D.; Martin, J. W.; Paschke, K. D.; Tvaskis, V.; Asaturyan, A.; Benesch, J.; Cates, G.; Cavness, B. S.; Dillon-Townes, L. A.; Hays, G.; Ihloff, E.; Jones, R.; King, P. M.; Kowalski, S.; Kurchaninov, L.; Lee, L.; McCreary, A.; McDonald, M.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Nelyubin, V.; Page, S.; Ramsay, W. D.; Solvignon, P.; Storey, D.; Tobias, A.; Urban, E.; Vidal, C.; Waidyawansa, B.; Wang, P.; Zhamkotchyan, S.

    2016-01-01

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O (1 GeV ) , continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180 -μ A , 1.16-GeV electron beam was measured with a statistical precision of <1 % per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty <0.4 %, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. It demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.

  13. Precision electron-beam polarimetry at 1 GeV using diamond microstrip detectors

    DOE PAGES

    Narayan, A.; Jones, D.; Cornejo, J. C.; ...

    2016-02-16

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O(1 GeV), continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180–μA, 1.16-GeVmore » electron beam was measured with a statistical precision of <1% per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty < 0.4%, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. As a result, it demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.« less

  14. Engineering, Trade, and Technical Cluster. Task Analyses. Drafting and Design Technology, Precision Machining Technology, Electronics Technology.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Developed in Virginia, this publication contains task analysis guides to support selected tech prep programs that prepare students for careers in the engineering, trade, and technical cluster. Three occupations are profiled: drafting and design technology, precision machining technology, and electronics technology. Each guide contains the…

  15. Electron and recoil ion momentum imaging with a magneto-optically trapped target

    SciTech Connect

    Hubele, R.; Schuricke, M.; Goullon, J.; Lindenblatt, H.; Ferreira, N.; Laforge, A.; Brühl, E.; Globig, D.; Misra, D.; Sell, M.; Song, Z.; Wang, X.; Zhang, S.; Jesus, V. L. B. de; Kelkar, A.; Schneider, K.; Schulz, M.; Fischer, D.

    2015-03-15

    A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT (∼2 mK) allows for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li 2{sup 2}P{sub 3/2} state was demonstrated providing an atomic polarization of close to 100%. While first experimental results were reported earlier, in this work, we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in 266 nm laser pulses and in collisions with projectile ions.

  16. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    NASA Astrophysics Data System (ADS)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  17. Optical gating and streaking of free electrons with sub-optical cycle precision

    PubMed Central

    Kozák, M.; McNeur, J.; Leedle, K. J.; Deng, H.; Schönenberger, N.; Ruehl, A.; Hartl, I.; Harris, J. S.; Byer, R. L.; Hommelhoff, P.

    2017-01-01

    The temporal resolution of ultrafast electron diffraction and microscopy experiments is currently limited by the available experimental techniques for the generation and characterization of electron bunches with single femtosecond or attosecond durations. Here, we present proof of principle experiments of an optical gating concept for free electrons via direct time-domain visualization of the sub-optical cycle energy and transverse momentum structure imprinted on the electron beam. We demonstrate a temporal resolution of 1.2±0.3 fs. The scheme is based on the synchronous interaction between electrons and the near-field mode of a dielectric nano-grating excited by a femtosecond laser pulse with an optical period duration of 6.5 fs. The sub-optical cycle resolution demonstrated here is promising for use in laser-driven streak cameras for attosecond temporal characterization of bunched particle beams as well as time-resolved experiments with free-electron beams. PMID:28120930

  18. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    PubMed Central

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  19. Multistage ab initio quantum wavepacket dynamics for electronic structure and dynamics in open systems: momentum representation, coupled electron-nuclear dynamics, and external fields.

    PubMed

    Pacheco, Alexander B; Iyengar, Srinivasan S

    2011-02-21

    We recently proposed a multistage ab initio wavepacket dynamics (MS-AIWD) treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. In this method, the full donor-bridge-acceptor open system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. In this manner, the electronic coupling between the bridge molecule and surrounding electrodes is accounted. Here, we extend MS-AIWD to include the dynamics of open-electronic systems in conjunction with (a) simultaneous treatment of nuclear dynamics and (b) external electromagnetic fields. This generalization is benchmarked through an analysis of wavepackets propagated on a potential modeled on an Al(27) - C(7) - Al(27) nanowire. The wavepacket results are inspected in the momentum representation and the dependence of momentum of the wavepacket as well as its transmission probabilities on the magnitude of external bias are analyzed.

  20. Multistage ab initio quantum wavepacket dynamics for electronic structure and dynamics in open systems: Momentum representation, coupled electron-nuclear dynamics, and external fields

    NASA Astrophysics Data System (ADS)

    Pacheco, Alexander B.; Iyengar, Srinivasan S.

    2011-02-01

    We recently proposed a multistage ab initio wavepacket dynamics (MS-AIWD) treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. In this method, the full donor-bridge-acceptor open system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. In this manner, the electronic coupling between the bridge molecule and surrounding electrodes is accounted. Here, we extend MS-AIWD to include the dynamics of open-electronic systems in conjunction with (a) simultaneous treatment of nuclear dynamics and (b) external electromagnetic fields. This generalization is benchmarked through an analysis of wavepackets propagated on a potential modeled on an Al27 - C7 - Al27 nanowire. The wavepacket results are inspected in the momentum representation and the dependence of momentum of the wavepacket as well as its transmission probabilities on the magnitude of external bias are analyzed.

  1. On the exchange of orbital angular momentum between twisted photons and atomic electrons

    NASA Astrophysics Data System (ADS)

    Davis, Basil S.; Kaplan, L.; McGuire, J. H.

    2013-03-01

    We obtain an expression for the matrix element for scattering of a twisted (Laguerre-Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of eiℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range zR, which characterizes the collimation length of the twisted photon beam.

  2. Precise study of the $Z/\\gamma^*$ boson transverse momentum distribution in $p\\bar{p}$ collisions using a novel technique

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF /Nijmegen U.

    2010-10-01

    Using 7.3 fb{sup -1} of p{bar p} collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable {phi}*{sub {eta}}, which probes the same physical effects as the Z/{gamma}* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the {phi}*{sub {eta}} distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.

  3. Effects of the Magnetic Flux and of the Electron Momentum on the Transmission Amplitude in the Aharonov-Bohm Interferometer

    NASA Astrophysics Data System (ADS)

    Amaresh Kumar, M. V.; Sahoo, Debendranath

    A characterization of the two-terminal open-ring Aharonov-Bohm interferometer is made by analyzing the phase space plots in the complex transmission amplitude plane. Two types of plots are considered: type 1 plot uses the magnetic flux as the variable parameter and type 2 plot which uses the electron momentum as the variable parameter. In type 1 plot, the trajectory closes upon itself only when the ratio R of the arm lengths (of the interferometer) is a rational fraction, and the shape and the type of the generated flower-like pattern is sensitive to the electron momentum. For momenta corresponding to discrete eigenstates of the perfect ring (i.e., the ring without the leads), the trajectory passes through the origin a certain fixed number of times before closing upon itself, whereas for arbitrary momenta it never passes through the origin. Although the transmission coefficient is periodic in the flux with the elementary flux quantum as the basic period, the phenomenon of electron transmission is shown not to be so when analyzed via the present technique. The periodicity is seen to spread over several flux units whenever R is a rational fraction whereas there is absolutely no periodicity present when R is an irrational number. In type 2 plot, closed trajectories passing through the origin a number of times are seen for R being a rational fraction. The case R = 1 (i.e., a symmetric ring) with zero flux is rather pathological — it presents a closed loop surrounding the origin. For irrational R values, the trajectories never close.

  4. -Omic and Electronic Health Record Big Data Analytics for Precision Medicine.

    PubMed

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D; Venugopalan, Janani; Hoffman, Ryan; Wang, May D

    2017-02-01

    Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of healthcare. In this paper, we present -omic and EHR data characteristics, associated challenges, and data analytics including data preprocessing, mining, and modeling. To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Big data analytics is able to address -omic and EHR data challenges for paradigm shift toward precision medicine. Big data analytics makes sense of -omic and EHR data to improve healthcare outcome. It has long lasting societal impact.

  5. Advanced Big Data Analytics for -Omic Data and Electronic Health Records: Toward Precision Medicine.

    PubMed

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala; Venugopalan, Janani; Hoffman, Ryan; Wang, May D

    2016-10-10

    Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Big data analytics is able to address -omic and EHR data challenges for paradigm shift towards precision medicine. Big data analytics makes sense of -omic and EHR data to improve healthcare outcome. It has long lasting societal impact.

  6. Electronic spectra of GdF reanalyzed by decomposing state functions according to f-shell angular momentum

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2011-04-01

    The electronic structure of the GdF molecule was studied by means of four-component relativistic configuration interaction (CI) calculations [S. Yamamoto, H. Tatewaki, and T. Saue, J. Chem. Phys. 129, 244505 (2008), 10.1063/1.3039794]. To analyze the electronic spectra more accurately, the CI wave function is decomposed according to the angular momentum (Ωf) generated from the (4f)7 electrons. The weight of a specified Ωf is referred to as the "f-shell Omega component weight." This Ωf plays a crucial role in classifying the strong electronic transitions from the upper states (0.7 eV-3.0 eV) to the lower states (˜0.55 eV). For these transitions, the upper and lower states have almost identical Ωf weights. This appears to be a necessary condition for a transition to be strong. The same condition is expected to hold for other lanthanide linear molecules. A point charge model is also studied, acting as a simplified model of GdF; it successfully reproduces the spectra of GdF, justifying studies based on ligand field theory.

  7. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  8. Green's function and Dyson orbital studies of the electronic structure of cage compounds and flexible molecules: A confrontation of many-body quantum mechanics with electron momentum, photo-electron and penning ionization electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Knippenberg, Stefan

    Electron Momentum Spectroscopy (EMS) has emerged in recent years as a powerful experimental technique for studying the valence electronic structure of molecules and solids. With such experiments, orbital Momentum Distributions (MDs) are reconstructed from an angular analysis of electron impact ionization energies in the limit of the binary encounter, the Born (sudden) and the plane wave impulse approximations. In this thesis, the possibilities and limitations of ubiquitous orbital depictions (Hartree-Fock, Kohn-Sham and Dyson orbitals) are emphasized through theoretical studies of EMS experiments on two extreme cases: rigid cage compounds and conformationally versatile molecules. These EMS studies employ benchmark Green's Function (GF) calculations of valence one-electron and shake-up ionization spectra, as well as spherically averaged MDs derived from the related Dyson orbitals. Shortcomings of empirical analyses of EMS experiments based on Kohn-Sham orbitals and the related eigen-energies are comparatively discussed. Our work demonstrates that, owing to recent advances in energy and momentum resolution, EMS is now at a stage to very finely image the influence of the molecular conformation on orbital topologies, or changes in the effective topology of orbitals at varying distances from the molecular center. GF and Dyson orbital calculations are advocated in particular in order to safely identify complications such as distorted wave effects, vibronic coupling, nuclear dynamics, or a breakdown of the standard orbital picture of ionization. As an example, ionization experiments at large enough electron binding energies seem to result into an ultrafast intramolecular Coulomb decay and fragmentation of norbornane. On the experimental side, our work also advocates accurate enough determination of the absolute temperature in ionization experiments of all kind.

  9. Project 8: Precision Electron Specroscopy to Measure the Mass of the Neutrino

    SciTech Connect

    VanDevender, Brent A.; Asner, David M.; Bahr, Matthew; Bradley, Rich; Doeleman, Sheperd; Jones, Anthony M.; Fernandes, Justin L.; Formaggio, Joseph; Furse, Daniel; Kelly, James F.; Kofron, J.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Monreal, Ben; Oblath, Noah; Patterson, Ryan B.; Rogers, Alan E.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Thummler, Thomas

    2013-10-21

    The Project 8 Collaboration is exploring a new technique for the spectroscopy of medium-energy electrons (* 1 – 100 keV) with the ultimate goal of measuring the effective mass of the electron antineutrino by the tritium endpoint method. Our method is based on the detection of microwave-frequency cyclotron radiation emitted by magnetically trapped electrons. The immediate goal of Project 8 is to demonstrate the utility of this technique for a tritium endpoint experiment through a high-precision measurement of the conversion electron spectrum of 83mKr. We present concepts for detecting this cyclotron radiation, focusing on a guided wave design currently being implemented in a prototype apparatus at the University of Washington.

  10. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors.

    PubMed

    Inosov, D S; Fink, J; Kordyuk, A A; Borisenko, S V; Zabolotnyy, V B; Schuster, R; Knupfer, M; Büchner, B; Follath, R; Dürr, H A; Eberhardt, W; Hinkov, V; Keimer, B; Berger, H

    2007-12-07

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  11. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  12. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction.

    PubMed

    Mahr, Christoph; Müller-Caspary, Knut; Grieb, Tim; Schowalter, Marco; Mehrtens, Thorsten; Krause, Florian F; Zillmann, Dennis; Rosenauer, Andreas

    2015-11-01

    Measurement of lattice strain is important to characterize semiconductor nanostructures. As strain has large influence on the electronic band structure, methods for the measurement of strain with high precision, accuracy and spatial resolution in a large field of view are mandatory. In this paper we present a theoretical study of precision and accuracy of measurement of strain by convergent nano-beam electron diffraction. It is found that the accuracy of the evaluation suffers from halos in the diffraction pattern caused by a variation of strain within the area covered by the focussed electron beam. This effect, which is expected to be strong at sharp interfaces between materials with different lattice plane distances, will be discussed for convergent-beam electron diffraction patterns using a conventional probe and for patterns formed by a precessing electron beam. Furthermore, we discuss approaches to optimize the accuracy of strain measured at interfaces. The study is based on the evaluation of diffraction patterns simulated for different realistic structures that have been investigated experimentally in former publications. These simulations account for thermal diffuse scattering using the frozen-lattice approach and the modulation-transfer function of the image-recording system. The influence of Poisson noise is also investigated.

  13. Momentum-dependent multiple gaps in magnesium diboride probed by electron tunnelling spectroscopy.

    PubMed

    Chen, Ke; Dai, Wenqing; Zhuang, C G; Li, Qi; Carabello, Steve; Lambert, Joseph G; Mlack, Jerome T; Ramos, Roberto C; Xi, X X

    2012-01-10

    The energy gap is the most fundamental property of a superconductor. MgB(2), a superconductor discovered in 2001, exhibits two different superconducting gaps caused by the different electron-phonon interactions in two weakly interacting bands. Theoretical calculations predict that the gap values should also vary across the Fermi surface sheets of MgB(2). However, until now, no such variation has been observed. It has been suggested that two gap values were sufficient to describe real MgB(2) samples. Here we present an electron tunnelling spectroscopy study on MgB(2)/native oxide/Pb tunnel junctions that clearly shows a distribution of gap values, confirming the importance of the anisotropic electron-phonon interaction. The gap values, and their spreads found from the tunnel junction measurements, provide valuable experimental tests for various theoretical approaches to the multi-band superconductivity in MgB(2).

  14. Energy partitioning and electron momentum distributions in intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Magnusson, Joel; Gonoskov, Arkady; Marklund, Mattias

    2017-09-01

    Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA to laboratory astrophysics. Structures with the scale of the laser wavelength can significantly enhance energy absorption, which has been in the center of attention in recent studies. In this article, we demonstrate and assess the effect of the structures for widening the angular distribution of generated energetic electrons. We analyse the results of PIC simulations and reveal several aspects that can be important for the related applications.

  15. Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Folegati, P.; Makkonen, I.; Ferragut, R.; Puska, M. J.

    2007-02-01

    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu , Al-Mg-Cu , and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.

  16. Precision and Resolution on Tore-Supra Ece Electron Temperature Profile Measurements

    NASA Astrophysics Data System (ADS)

    Ségui, J. L.; Molina, D.; Goniche, M.

    2003-02-01

    A 16-channel heterodyne radiometer, 2 GHz spaced, is used on Tore-Supra to measure the electron cyclotron emission in the frequency range 78-110 GHz for the O mode and 94 -126 GHz for the Xmode. In the equatorial plane, a dual polarisation gaussian optics lens antenna, with a perpendicular line of sight (with respect to the magnetic field), gives ECE measurements with very low refraction and Doppler effects. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This improves time stability calibration and gives the potentiality of simultaneous O/X mode measurements in the 94 -110 Ghz RF band for polarisation studies. RF and IF filters reject the gyrotron frequency (118 Ghz) in order to perform temperature measurements during ECRH plasmas. A precise absolute spectral calibration is performed outside the vacuum vessel by using a 600°C black body, a digital signal averaging on the waveform generated by a mechanical chopper placed directly in front of it, and a simulation window without Fabry-Pérot effects. The calibration precision leads to ECE temperature profiles which are very consistent with Thomson scattering measurements and guarantees a good stability of the ECE profiles for small changes on the magnetic field (absolute precision +/-6%, relative precision between channels +/-3%). Post-pulse data processing takes routinely into account the total magnetic field (Bvacuum with ripple, Bpara, Bdia, Bpol, all with analytical formulations), the radial relativistic shift (analytical formulation is used), the refraction (cut-offs detection with safety margin to avoid strong refraction), the nonthermal ECE spectra during LHCD (using an electron density threshold criterion). These previous analytical formulations are compatible with real time processing. Relativistic radial broadening simulations show that it is useful to fulfil 32 channels (1GHz

  17. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    PubMed

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  18. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆

    PubMed Central

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  19. Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination

    NASA Astrophysics Data System (ADS)

    Welker, A.; Filianin, P.; Althubiti, N. A. S.; Atanasov, D.; Blaum, K.; Cocolios, T. E.; Eliseev, S.; Herfurth, F.; Kreim, S.; Lunney, D.; Manea, V.; Neidherr, D.; Novikov, Yu.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-07-01

    Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between 202Pb and 202Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value Q_{EC} = 38.8(43) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of 163Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in 202Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter.

  20. B (E2) strength ratio of one-phonon 2+ states of 94Zr from electron scattering at low momentum transfer

    NASA Astrophysics Data System (ADS)

    Scheikh Obeid, A.; Aslanidou, S.; Birkhan, J.; Krugmann, A.; von Neumann-Cosel, P.; Pietralla, N.; Poltoratska, I.; Ponomarev, V. Yu.

    2014-03-01

    Background: The B (E2) transition strength to the 22+ state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 21+ state from lifetime measurements with the Doppler-shift attenuation method using the (n,n'γ) reaction [Elhami et al., Phys. Rev. C 75, 011301(R) (2007), 10.1103/PhysRevC.75.011301]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B (E2) strengths for the transitions to the 21,2+ states of 94Zr with inelastic electron scattering. Method: The relative population of the 21,2+ states in the (e,e') reaction was measured at the S-DALINAC in a momentum transfer range q =0.17-0.51 fm-1 and analyzed in plane-wave Born approximation with the method described by Scheikh Obeid et al. [Phys. Rev. C 87, 014337 (2013), 10.1103/PhysRevC.87.014337]. Results: The extracted B (E2) strength ratio of 0.789(43) between the excitation of the 21+ and 22+ states of 94Zr is consistent with but more precise than the latest (n,n'γ) experiment. Using the B (E2) transition strength to the first excited state from the literature a value of 3.9(9) Weisskopf units is deduced for the B (E2;22+→01+) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,n'γ) results for the transition to the 22+ state in 94Zr.

  1. High precision high voltage divider and its application to electron beam ion traps

    SciTech Connect

    Chen, W. D.; Xiao, J.; Shen, Y.; Fu, Y. Q.; Meng, F. C.; Chen, C. Y.; Zou, Y.; Hutton, R.

    2008-12-15

    A high precision high voltage divider has been developed for the electron beam ion trap in Shanghai. The uncertainty caused by the temperature coefficient of resistance (TCR) and the voltage coefficient of resistance has been studied in detail and was minimized to the level of ppm (10{sup -6}) range. Once the TCR was matched between the resistors, the precision of the dividing ratio finally reached the ppm range also. We measured the delay of the divider caused by the capacitor introduced to minimize voltage ripple to be 2.35 ms. Finally we applied the divider to an experiment to measure resonant energies for some dielectronic recombination processes for highly charged xenon ions. The final energies include corrections for both space charge and fringe field effects are mostly under 0.03%.

  2. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function

    NASA Astrophysics Data System (ADS)

    Simon, Daniel T.; Kurup, Sindhulakshmi; Larsson, Karin C.; Hori, Ryusuke; Tybrandt, Klas; Goiny, Michel; Jager, Edwin W. H.; Berggren, Magnus; Canlon, Barbara; Richter-Dahlfors, Agneta

    2009-09-01

    Significant advances have been made in the understanding of the pathophysiology, molecular targets and therapies for the treatment of a variety of nervous-system disorders. Particular therapies involve electrical sensing and stimulation of neural activity, and significant effort has therefore been devoted to the refinement of neural electrodes. However, direct electrical interfacing suffers from some inherent problems, such as the inability to discriminate amongst cell types. Thus, there is a need for novel devices to specifically interface nerve cells. Here, we demonstrate an organic electronic device capable of precisely delivering neurotransmitters in vitro and in vivo. In converting electronic addressing into delivery of neurotransmitters, the device mimics the nerve synapse. Using the peripheral auditory system, we show that out of a diverse population of cells, the device can selectively stimulate nerve cells responding to a specific neurotransmitter. This is achieved by precise electronic control of electrophoretic migration through a polymer film. This mechanism provides several sought-after features for regulation of cell signalling: exact dosage determination through electrochemical relationships, minimally disruptive delivery due to lack of fluid flow, and on-off switching. This technology has great potential as a therapeutic platform and could help accelerate the development of therapeutic strategies for nervous-system disorders.

  3. Momentum-resolved electronic structure of the superconductor parent compound BaBiO3

    NASA Astrophysics Data System (ADS)

    Plumb, N. C.; Ristic, Z.; Park, J.; Wang, Z.; Matt, C. E.; Xu, N.; Lv, B. Q.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Wang, Y.; Johnston, S.; Mesot, J.; Shi, M.; Radovic, M.

    We use in situ angle-resolved photoemission to study thin films of BaBiO3, a parent compound of bismuthate superconductors with Tc up to 30 K. By simple electron counting, BaBiO3 should be metallic. However, in analogy with many unconventional and high-Tc superconductor families, it is instead insulating, and superconductivity emerges with doping. Our experiments reveal a folded band structure consistent with known BiO6 breathing distortions. However, charge ordering often thought to accompany the distortions is virtually nonexistent. The data combined with DFT calculations indicate that states near EF are primarily oxygen-derived. Hence BaBiO3 appears to be characterized by negative charge transfer energy. This can account for the seeming discrepancy between the atomic structure and ''missing'' charge order. It should also be relevant for understanding the doping evolution and superconductivity in bismuthates.

  4. Syringe Injectable Electronics: Precise Targeted Delivery with Quantitative Input/Output Connectivity.

    PubMed

    Hong, Guosong; Fu, Tian-Ming; Zhou, Tao; Schuhmann, Thomas G; Huang, Jinlin; Lieber, Charles M

    2015-10-14

    Syringe-injectable mesh electronics with tissue-like mechanical properties and open macroporous structures is an emerging powerful paradigm for mapping and modulating brain activity. Indeed, the ultraflexible macroporous structure has exhibited unprecedented minimal/noninvasiveness and the promotion of attractive interactions with neurons in chronic studies. These same structural features also pose new challenges and opportunities for precise targeted delivery in specific brain regions and quantitative input/output (I/O) connectivity needed for reliable electrical measurements. Here, we describe new results that address in a flexible manner both of these points. First, we have developed a controlled injection approach that maintains the extended mesh structure during the "blind" injection process, while also achieving targeted delivery with ca. 20 μm spatial precision. Optical and microcomputed tomography results from injections into tissue-like hydrogel, ex vivo brain tissue, and in vivo brains validate our basic approach and demonstrate its generality. Second, we present a general strategy to achieve up to 100% multichannel I/O connectivity using an automated conductive ink printing methodology to connect the mesh electronics and a flexible flat cable, which serves as the standard "plug-in" interface to measurement electronics. Studies of resistance versus printed line width were used to identify optimal conditions, and moreover, frequency-dependent noise measurements show that the flexible printing process yields values comparable to commercial flip-chip bonding technology. Our results address two key challenges faced by syringe-injectable electronics and thereby pave the way for facile in vivo applications of injectable mesh electronics as a general and powerful tool for long-term mapping and modulation of brain activity in fundamental neuroscience through therapeutic biomedical studies.

  5. Precision analysis of electron energy spectrum and angular distribution of neutron β- decay with polarized neutron and electron

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-05-01

    We give a precision analysis of the correlation coefficients of the electron energy spectrum and angular distribution of the β- decay and radiative β- decay of the neutron with polarized neutron and electron to order 10-3. The calculation of correlation coefficients is carried out within the standard model, with contributions of order 10-3 caused by the weak magnetism and proton recoil taken to next-to-leading order in the large proton mass expansion, and with radiative corrections of order α /π ˜10-3 calculated to leading order in the large proton mass expansion. The obtained results can be used for the planning of experiments on the search for contributions of order 10-4 of interactions beyond the standard model.

  6. A rack-mounted precision waveguide-below-cutoff attenuator with an absolute electronic readout

    NASA Technical Reports Server (NTRS)

    Cook, C. C.

    1974-01-01

    A coaxial precision waveguide-below-cutoff attenuator is described which uses an absolute (unambiguous) electronic digital readout of displacement in inches in addition to the usual gear driven mechanical counter-dial readout in decibels. The attenuator is rack-mountable and has the input and output RF connectors in a fixed position. The attenuation rate for 55, 50, and 30 MHz operation is given along with a discussion of sources of errors. In addition, information is included to aid the user in making adjustments on the attenuator should it be damaged or disassembled for any reason.

  7. 5 MeV Mott polarimeter for rapid precise electron beam polarization measurements

    SciTech Connect

    Price, J.S.; Poelker, B.M.; Sinclair, C.K.

    1997-11-01

    Low energy (E{sub k} = 100 keV) Mott scattering polarimeters are ill-suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections; measured rates scale to 1 kHz/{mu}A with a 1 {mu}m thick gold target foil.

  8. Correlated Cryo-fluorescence and Cryo-electron Microscopy with High Spatial Precision and Improved Sensitivity

    PubMed Central

    Schorb, Martin; Briggs, John A. G.

    2017-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. PMID:24275379

  9. Development of multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masakazu; Hosono, Masaki; Tang, Yaguo; Takahashi, Masahiko

    2017-06-01

    We have developed multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule. It combines the features of both a spherical electron energy analyzer and a large-area position sensitive detector, thereby having an ability to cover almost completely the azimuthal angle range available for quasi-elastic electron Rutherford backscattering at an angle of 135°. Details and performance of the apparatus are reported, together with experimental results measured for Xe and CH4 at an incident electron energy of 2 keV. In particular, it is shown that the instrumental sensitivity is remarkably high, which has increased the signal count rate by nearly three orders of magnitude compared to existing setups. This technical progress would be useful for advancing atomic momentum spectroscopy studies.

  10. Development of multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule.

    PubMed

    Yamazaki, Masakazu; Hosono, Masaki; Tang, Yaguo; Takahashi, Masahiko

    2017-06-01

    We have developed multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule. It combines the features of both a spherical electron energy analyzer and a large-area position sensitive detector, thereby having an ability to cover almost completely the azimuthal angle range available for quasi-elastic electron Rutherford backscattering at an angle of 135°. Details and performance of the apparatus are reported, together with experimental results measured for Xe and CH4 at an incident electron energy of 2 keV. In particular, it is shown that the instrumental sensitivity is remarkably high, which has increased the signal count rate by nearly three orders of magnitude compared to existing setups. This technical progress would be useful for advancing atomic momentum spectroscopy studies.

  11. Energetic, spatial, and momentum character of the electronic structure at a buried interface: The two-dimensional electron gas between two metal oxides

    NASA Astrophysics Data System (ADS)

    Nemšák, S.; Conti, G.; Gray, A. X.; Palsson, G. K.; Conlon, C.; Eiteneer, D.; Keqi, A.; Rattanachata, A.; Saw, A. Y.; Bostwick, A.; Moreschini, L.; Rotenberg, E.; Strocov, V. N.; Kobayashi, M.; Schmitt, T.; Stolte, W.; Ueda, S.; Kobayashi, K.; Gloskovskii, A.; Drube, W.; Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Borek, S.; Minar, J.; Braun, J.; Ebert, H.; Plucinski, L.; Kortright, J. B.; Schneider, C. M.; Balents, L.; de Groot, F. M. F.; Stemmer, S.; Fadley, C. S.

    2016-06-01

    The interfaces between two condensed phases often exhibit emergent physical properties that can lead to new physics and novel device applications and are the subject of intense study in many disciplines. We here apply experimental and theoretical techniques to the characterization of one such interesting interface system: the two-dimensional electron gas (2DEG) formed in multilayers consisting of SrTi O3 (STO) and GdTi O3 (GTO). This system has been the subject of multiple studies recently and shown to exhibit very high carrier charge densities and ferromagnetic effects, among other intriguing properties. We have studied a 2DEG-forming multilayer of the form [6unit cells (u .c .) STO /3 u .c .of GTO ] 20 using a unique array of photoemission techniques including soft and hard x-ray excitation, soft x-ray angle-resolved photoemission, core-level spectroscopy, resonant excitation, and standing-wave effects, as well as theoretical calculations of the electronic structure at several levels and of the actual photoemission process. Standing-wave measurements below and above a strong resonance have been exploited as a powerful method for studying the 2DEG depth distribution. We have thus characterized the spatial and momentum properties of this 2DEG in detail, determining via depth-distribution measurements that it is spread throughout the 6 u.c. layer of STO and measuring the momentum dispersion of its states. The experimental results are supported in several ways by theory, leading to a much more complete picture of the nature of this 2DEG and suggesting that oxygen vacancies are not the origin of it. Similar multitechnique photoemission studies of such states at buried interfaces, combined with comparable theory, will be a very fruitful future approach for exploring and modifying the fascinating world of buried-interface physics and chemistry.

  12. Generation and Amplification of Coherent Radiation with Optical Orbital Angular Momentum in a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik Willard

    The object of this work is to examine how coherent light that carries orbital angular momentum (OAM) can be generated and amplified in a single pass, high-gain free-electron laser (FEL) at the fundamental operating frequency. This concept unites two rapidly expanding, but at present largely non-overlapping fields of study: high-order OAM light modes, which interact in new ways with matter, and FELs, in which a relativistically energetic electron beam emits coherent, ultra high-brightness, highly frequency-tunable light. The ability to generate OAM light in an FEL enables new regimes of laser interaction physics to be explored at wavelengths down to hard x-rays. The theoretical portion of this dissertation attempts to provide a new predictive mathematical framework. It builds on existing work, and describes the three-dimensional electromagnetic field of the high-gain FEL as a sum of OAM modes such that the amplification properties of individual modes can be characterized. The effects of uncorrelated energy spread, longitudinal space charge, energy detuning, and transverse emittance in the electron beam are included, as is the diffraction of the laser light. Theoretical predictions are corroborated by detailed numerical Genesis 1.3 simulations. When the theory is extended to frequency harmonics, a novel interaction is uncovered that generates a helical electron beam density distribution. These predictions are also supported by numerical Tredi simulations. This type of highly correlated structure is shown to naturally emit OAM light, and forms the basis of a new high-gain, high-mode generation (HGHMG) scheme proposed in its entirety here. The experimental section examines the helical microbunching concept in a proof-of-principle experiment dubbed HELIX, performed at the UCLA Neptune laboratory. We present detailed measurement of the coherent transition radiation emitted by the 12.5 MeV electron beam that is microbunched in a second harmonic interaction with an input

  13. Root ZX Electronic Foramen Locator: An Ex Vivo Study of Its Three Models' Precision and Reproducibility.

    PubMed

    Aguiar, Bernardo Almeida; Reinaldo, Rafael Santos; Frota, Luciana Maria Arcanjo; do Vale, Mônica Sampaio; de Vasconcelos, Bruno Carvalho

    2017-01-01

    Although Root ZX is considered the gold standard electronic foramen locator (EFL), two variations of this device were launched, however without different operating mechanisms. This investigation aims to evaluate the precision of Root ZX (RZX), Root ZX II (RII), and Root ZX Mini (RM) EFLs. After access cavity preparation, 32 mandibular single rooted human premolars had their real length measured with the aid of a #15 K-type manual file under magnification (25x). Electronic measurements were performed by the devices in an alternate order until the apical foramen was reached (0.0). Each measurement was performed with adjusted file to the real length of the teeth and verified with a digital caliper. The accuracy of the EFLs was 68.8% (RZX), 65.8% (RII), and 68.8% (RM), considering ±0.5 mm as a margin of tolerance. The mean errors of the devices were 0.37 ± 0.25 mm (RZX), 0.41 ± 0.34 mm (RII), and 0.32 ± 0.28 mm (RM). ANOVA and Tukey test were applied to analyze the obtained data, which showed that there were no statistically significant differences among the locators (P > .05). It can be concluded that the three tested devices demonstrated precise measurements of the real length of the canal without performance differences among them.

  14. Root ZX Electronic Foramen Locator: An Ex Vivo Study of Its Three Models' Precision and Reproducibility

    PubMed Central

    Reinaldo, Rafael Santos; Frota, Luciana Maria Arcanjo; do Vale, Mônica Sampaio

    2017-01-01

    Although Root ZX is considered the gold standard electronic foramen locator (EFL), two variations of this device were launched, however without different operating mechanisms. This investigation aims to evaluate the precision of Root ZX (RZX), Root ZX II (RII), and Root ZX Mini (RM) EFLs. After access cavity preparation, 32 mandibular single rooted human premolars had their real length measured with the aid of a #15 K-type manual file under magnification (25x). Electronic measurements were performed by the devices in an alternate order until the apical foramen was reached (0.0). Each measurement was performed with adjusted file to the real length of the teeth and verified with a digital caliper. The accuracy of the EFLs was 68.8% (RZX), 65.8% (RII), and 68.8% (RM), considering ±0.5 mm as a margin of tolerance. The mean errors of the devices were 0.37 ± 0.25 mm (RZX), 0.41 ± 0.34 mm (RII), and 0.32 ± 0.28 mm (RM). ANOVA and Tukey test were applied to analyze the obtained data, which showed that there were no statistically significant differences among the locators (P > .05). It can be concluded that the three tested devices demonstrated precise measurements of the real length of the canal without performance differences among them. PMID:28367215

  15. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    PubMed Central

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-01-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials. PMID:28272404

  16. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  17. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  18. High precision electronic charge density determination for L10-ordered γ-TiAl by quantitative convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Kulovits, Andreas; Wang, Guofeng; Wiezorek, Jörg

    2012-12-01

    Low order structure and Debye-Waller (DW) factors for tetragonal L10-ordered γ-TiAl were measured simultaneously using quantitative convergent beam electron diffraction. The high precision and accuracy (largest error <0.5%) measurements allowed the construction of charge density difference maps from full sets of structure and DW factors, suitable for validation of first principles density functional theory (DFT) calculation results. Comparison of the experimentally determined charge density distribution with theoretical DFT predictions shows excellent qualitative agreement in this study. The three-dimensional charge density representations indicate a large electron charge localisation centred about the tetrahedral site at ¼, ¼, ¼, which is coordinated by two Ti atoms at 0, 0, 0 and ½, ½, 0 and two Al atoms at ½, 0, ½ and 0, ½, ½, respectively. Compared to experimental data, the DFT calculations based on full-potential linearised augmented plane wave (LAPW) method (implemented in WIEN2K) were found to quantitatively overestimate charge density between Ti-Ti second nearest neighbour atoms. Moreover, the results from the DFT method based on the projector-augmented wave (PAW) method and a plane wave basis set (implemented in VASP) were found to differ appreciably from both the experimental and LAPW-DFT results, implying that the PAW approach may not accurately describe the bonding in the intermetallic systems with 3 d electrons, such as γ-TiAl.

  19. High precision two-dimensional strain mapping in semiconductor devices using nanobeam electron diffraction in the transmission electron microscope

    SciTech Connect

    Baumann, Frieder H.

    2014-06-30

    A classical method used to characterize the strain in modern semiconductor devices is nanobeam diffraction (NBD) in the transmission electron microscope. One challenge for this method lies in the fact that the smaller the beam becomes, the more difficult it becomes to analyze the resulting diffraction spot pattern. We show that a carefully designed fitting algorithm enables us to reduce the sampling area for the diffraction patterns on the camera chip dramatically (∼1/16) compared to traditional settings without significant loss of precision. The resulting lower magnification of the spot pattern permits the presence of an annular dark field detector, which in turn makes the recording of images for drift correction during NBD acquisition possible. Thus, the reduced sampling size allows acquisition of drift corrected NBD 2D strain maps of up to 3000 pixels while maintaining a precision of better than 0.07%. As an example, we show NBD strain maps of a modern field effect transistor (FET) device. A special filtering feature used in the analysis makes it is possible to measure strain in silicon devices even in the presence of other crystalline materials covering the probed area, which is important for the characterization of the next generation of devices (Fin-FETs).

  20. Momentum fractionation on superstrata

    SciTech Connect

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  1. Momentum fractionation on superstrata

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; ...

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less

  2. Precision measurement of timing RPC gas mixtures with laser-beam induced electrons

    NASA Astrophysics Data System (ADS)

    Naumann, L.; Siebold, M.; Kaspar, M.; Kämpfer, B.; Kotte, R.; Laso Garcia, A.; Löser, M.; Schramm, U.; Wüstenfeld, J.

    2014-10-01

    The main goals of a new test facility at Helmholtz-Zentrum Dresden-Rossendorf are precision measurements of the electron drift velocity and the Townsend coefficient of gases at atmospheric pressure in the strongest ever used homogenous electrical fields and the search for new RPC gas mixtures to substitute the climate harmful Freon. Picosecond UV laser pulses were focused into a sub-millimeter gas gap to initialize a defined tiny charge. These gaps are formed by electrodes of low-resistive ceramics or high-resistive float glass. The charge multiplication occurs in a strong homogeneous electric field of up to 100 kV/cm. Electron-ion pairs were generated in a cylindrical micro-volume by multi-photon ionization. The laser-pulse repetition rate ranges from 1 Hz to a few kHz. The RPC time resolution has been measured for different gases. First results of the Townsend coefficient at 100 kV/cm show a strong disagreement between the present measurement and Magboltz simulations for the typical timing RPC gas mixture C2F4H2/SF6/i-C4H10, while the measured electron drift velocities are in a good agreement with the model predictions.

  3. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams

    SciTech Connect

    Hemsing, E.; Dunning, M.; Garcia, B.; Hast, C.; Raubenheimer, T.; Stupakov, G.; Xiang, D.

    2016-06-06

    The production of coherent radiation at ever shorter wavelengths has been a long-standing challenge since the invention of lasers1, 2 and the subsequent demonstration of frequency doubling3. Modern X-ray free-electron lasers (FELs) use relativistic electrons to produce intense X-ray pulses on few-femtosecond timescales4, 5, 6. However, the shot noise that seeds the amplification produces pulses with a noisy spectrum and limited temporal coherence. To produce stable transform-limited pulses, a seeding scheme called echo-enabled harmonic generation (EEHG) has been proposed7, 8, which harnesses the highly nonlinear phase mixing of the celebrated echo phenomenon9 to generate coherent harmonic density modulations in the electron beam with conventional lasers. Here, we report on a demonstration of EEHG up to the 75th harmonic, where 32 nm light is produced from a 2,400 nm laser. We also demonstrate that individual harmonic amplitudes are controlled by simple adjustment of the phase mixing. Results show the potential of laser-based manipulations to achieve precise control over the coherent spectrum in future X-ray FELs for new science10, 11.

  4. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Garcia, B.; Hast, C.; Raubenheimer, T.; Stupakov, G.; Xiang, D.

    2016-08-01

    The production of coherent radiation at ever shorter wavelengths has been a long-standing challenge since the invention of lasers and the subsequent demonstration of frequency doubling. Modern X-ray free-electron lasers (FELs) use relativistic electrons to produce intense X-ray pulses on few-femtosecond timescales. However, the shot noise that seeds the amplification produces pulses with a noisy spectrum and limited temporal coherence. To produce stable transform-limited pulses, a seeding scheme called echo-enabled harmonic generation (EEHG) has been proposed, which harnesses the highly nonlinear phase mixing of the celebrated echo phenomenon to generate coherent harmonic density modulations in the electron beam with conventional lasers. Here, we report on a demonstration of EEHG up to the 75th harmonic, where 32 nm light is produced from a 2,400 nm laser. We also demonstrate that individual harmonic amplitudes are controlled by simple adjustment of the phase mixing. Results show the potential of laser-based manipulations to achieve precise control over the coherent spectrum in future X-ray FELs for new science.

  5. Assessing the precision of strain measurements using electron backscatter diffraction--part 1: detector assessment.

    PubMed

    Britton, T B; Jiang, J; Clough, R; Tarleton, E; Kirkland, A I; Wilkinson, A J

    2013-12-01

    We analyse the link between precision of pattern shift measurements and the resolution of the measurement of elastic strain and lattice rotation using high resolution electron backscatter diffraction (HR-EBSD). This study combines analysis of high quality experimentally obtained diffraction patterns from single crystal silicon; high quality dynamical simulations using Bloch wave theory; quantitative measurements of the detector Modulation Transfer Function (MTF) and a numerical model. We have found that increases in exposure time, when 1×1 binning is selected, are the primary reason for the observed increase in sensitivity at greater than 2×2 binning and therefore use of software integration and high bit depth images enables a significant increase in strain resolution. This has been confirmed using simulated diffraction patterns which provide evidence that the ultimate theoretical resolution of the cross correlation based EBSD strain measurement technique with a 1000×1000 pixel image could be as low as 4.2×10(-7) in strain based on a shift precision of 0.001 pixels. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y

    2013-02-21

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R

  7. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.

    2013-02-01

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R

  8. An attempt at a product vibrational analysis of a photo-induced chemical reaction by means of time-resolved (e, 2e) electron momentum spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamazaki, M.; Nakazawa, H.; Zhu, C. Y.; Takahashi, M.

    2015-09-01

    We report on a new attempt at an analysis of the vibrational state distributions in the products of a photo-induced chemical reaction. The experiment was performed by using time- resolved electron momentum spectroscopy (TR-EMS) for the products produced by the three- body photodissociation dynamics of the deuterated acetone molecule at 195 nm. It has been found from a comparison between the experiment and associated theoretical calculations that future TR-EMS measurements with improved statistics could be useful for the vibrational analysis of reaction products, in cases when effects of molecular vibration on their electron momentum densities are large enough so as to be noticeable in the binding energy spectra.

  9. A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Tongyu; Ding, Baogang; Li, Yonggao; Zhou, Yan; Yin, Zejie

    2017-07-01

    The precision of plasma electron density and Faraday rotation angle measurement is a key indicator for far-infrared laser interferometer/polarimeter plasma diagnosis. To improve the precision, a new multi-channel high signal-to-noise ratio HCOOH interferometer/polarimeter has been developed on the HL-2A tokamak. It has a higher level requirement for phase demodulation precision. This paper introduces an improved real-time fast Fourier transform algorithm based on the field programmable gate array, which significantly improves the precision. We also apply a real-time error monitoring module (REMM) and a stable error inhibiting module (SEIM) for precision control to deal with the weak signal. We test the interferometer/polarimeter system with this improved precision control method in plasma discharge experiments and simulation experiments. The experimental results confirm that the plasma electron density precision is better than 1/3600 fringe and the Faraday rotation angle measurement precision is better than 1/900 fringe, while the temporal resolution is 80 ns. This performance can fully meet the requirements of HL-2A.

  10. Optical angular momentum and atoms.

    PubMed

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'.

  11. Optical angular momentum and atoms

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, Sonja

    2017-02-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue 'Optical orbital angular momentum'.

  12. Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy.

    PubMed

    Kimoto, Koji; Asaka, Toru; Yu, Xiuzhen; Nagai, Takuro; Matsui, Yoshio; Ishizuka, Kazuo

    2010-06-01

    We report a local crystal structure analysis with a high precision of several picometers on the basis of scanning transmission electron microscopy (STEM). Advanced annular dark-field (ADF) imaging has been demonstrated using software-based experimental and data-processing techniques, such as the improvement of signal-to-noise ratio, the reduction of image distortion, the quantification of experimental parameters (e.g., thickness and defocus) and the resolution enhancement by maximum-entropy deconvolution. The accuracy in the atom position measurement depends on the validity of the incoherent imaging approximation, in which an ADF image is described as the convolution between the incident probe profile and scattering objects. Although the qualitative interpretation of ADF image contrast is possible for a wide range of specimen thicknesses, the direct observation of a crystal structure with deep-sub-angstrom accuracy requires a thin specimen (e.g., 10nm), as well as observation of the structure image by conventional high-resolution transmission electron microscopy. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Implementation of Electronic Consent at a Biobank: An Opportunity for Precision Medicine Research

    PubMed Central

    Boutin, Natalie T.; Mathieu, Kathleen; Hoffnagle, Alison G.; Allen, Nicole L.; Castro, Victor M.; Morash, Megan; O’Rourke, P. Pearl; Hohmann, Elizabeth L.; Herring, Neil; Bry, Lynn; Slaugenhaupt, Susan A.; Karlson, Elizabeth W.; Weiss, Scott T.; Smoller, Jordan W.

    2016-01-01

    The purpose of this study is to characterize the potential benefits and challenges of electronic informed consent (eIC) as a strategy for rapidly expanding the reach of large biobanks while reducing costs and potentially enhancing participant engagement. The Partners HealthCare Biobank (Partners Biobank) implemented eIC tools and processes to complement traditional recruitment strategies in June 2014. Since then, the Partners Biobank has rigorously collected and tracked a variety of metrics relating to this novel recruitment method. From June 2014 through January 2016, the Partners Biobank sent email invitations to 184,387 patients at Massachusetts General Hospital and Brigham and Women’s Hospital. During the same time period, 7078 patients provided their consent via eIC. The rate of consent of emailed patients was 3.5%, and the rate of consent of patients who log into the eIC website at Partners Biobank was 30%. Banking of biospecimens linked to electronic health records has become a critical element of genomic research and a foundation for the NIH’s Precision Medicine Initiative (PMI). eIC is a feasible and potentially game-changing strategy for these large research studies that depend on patient recruitment. PMID:27294961

  14. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    SciTech Connect

    Erokhin, A. N.; Zol’nikova, N. N.; Erokhin, N. S.

    2016-01-15

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.

  15. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  16. Precise Directed Assembly of Nanoparticles for Electronic, Optical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Cihan

    Assembly of nano building blocks offers a versatile route to the creation of complex 1, 2 and 3-dimensional homogenous or hybrid nanostructures with unique properties to be used in many applications including electronics, optics, energy, and biotechnology. Bottom-up directed assembly of nanoparticles has been recently considered as one of the best approaches to manufacture such functional and novel nanostructures. However, current directed assembly techniques have not been shown to make nanostructures homogeneous or hybrid materials with nanoscale precision at a high yield. This is mainly due to the lack of fundamental understanding of the forces driving the assembly of nanoparticles into organized nanostructures on surfaces and the difficulties in precisely controlling these forces to enable the repeatable and reliable assembly of various types of organic or inorganic nanoparticles. We experimentally and numerically investigated the fundamental mechanism of the electrophoretic directed assembly for different sizes and types of nanoparticles. The results showed that unlike large (such as 500nm) Polysterene Latex (PSL) particles, the electrophoretic assembly of 50nm and smaller PSL particles is significantly influenced by the Brownian diffusion. This results in random and low yield assembly for the smaller nanoparticles. In order to overcome the Brownian diffusion-limited assembly of 50nm or smaller particles, the electrophoretic velocity of the particles must be increased. This can be accomplished by increasing the electrophoretic force, which is a function of particle surface charge and applied voltage. The surface charge of the PSL particles is greatly influenced by the pH of the solution. At high pH values (pH 10.1 or above), the nanoparticles attain higher charge, which increases the electrophoretic force. Consequently, the Brownian diffusion can also be overcome by increasing the pH of the solution. Overcoming the Brownian motion at low pH values (<10

  17. Implementation of analytical gradients and of a mixed real and momentum space DVR method for excess electron systems described by a self-consistent polarization model

    NASA Astrophysics Data System (ADS)

    Choi, Tae Hoon; Vazhappilly, Tijo; Jordan, Kenneth D.

    2017-10-01

    This work presents two extensions of our self-consistent polarization model for treating non-valence excess electron systems. The first extension is the implementation of analytical gradients, and the second extension is the implementation of a mixed real space plus momentum space approach combined with fast Fourier transforms to reduce the computational time compared to a purely real space discrete variable representation approach. The performance of the new algorithms is assessed in calculations of the excess electron states of various size water clusters and of the non-valence correlation-bound anion of the C240 fullerene.

  18. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  19. High precision measurements of the mass, intrinsic width, momentum spectrum and the branching fractions of Λc(2880)+ decay modes in the BABAR experiment

    NASA Astrophysics Data System (ADS)

    Zain, Samya Bano

    2006-04-01

    This dissertation reports an acurate measurement of the mass, intrinsic width and momentum spectra of the charmed baryon Λc(2880) + along with the first measurements on the relative branching fractions of the Λc(2880)+ decaying resonantly and non-resonantly to the Λc(2286) +pi+pi- mode. This analysis was performed using a data sample of approximately 230 fb-1 (integrated luminosity) collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. We measure the mass of the Λ c(2880)+ to be 2.8809 +/- 0.0004 (stat.) GeV/c2 and the intrinsic width to be 5.8 +/- 1.7 (stat. MeV. We also measure the relative branching fraction for each of the non-resonant and resonant decays of the Λc(2880) + → Λc(2286)+pipi final states, relative to all modes of Λc(2880) + → Λc(2286)+pipi. The relative branching fraction for the non-resonant decay mode Λ c(2880)+ → Λc(2286) +pi+pi- relative to (Λ c(2880)+ → Λc(2286) +pi+pi-)allmodes is evaluated to be 0.385 +/- 0.087 (stat.) +0.044-0.074 (syst.), wheras the relative branching fraction for the non-resonant decay modes sumc(2455)0pi +, sumc(2520)0pi +, sumc(2455)++pi - and sumc(2520)++pi - are measured to be 0.119 +/- 0.024 (stat.) +0.026-0.014 (syst.), 0.141 +/- 0.038 (stat.) +0.020-0.013 (syst.), 0.206 +/- 0.033 (stat.) +0.026-0.013 (syst.) and 0.149 +/- 0.039 (stat.) +0.023-0.015 (syst.) respectively. Comparison to previous experiments are also given.

  20. Precision analog signal processor for beam position measurements in electron storage rings

    SciTech Connect

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM.

  1. Reaction/Momentum Wheel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    CTA Space Systems, Inc. has been licensed to sell commercially a reaction/momentum wheel originally developed for NASA's scientific satellites. NASA originally identified a need for the wheel in its Small Explorer program. The Submillimeter Wave Astronomy Satellite required extremely low jitter and a reaction/momentum wheel with a torque greater than any comparably sized commercially available wheel to keep the instrument pointed at celestial objects to a high degree of precision. After development, a market assessment by Research Triangle Institute was completed, showing commercial potential for the flywheel technology. A license was granted to CTA in the fall of 1996. The company currently uses the technology in its complete spacecraft fabrication services and has built over 10 reaction/momentum wheels for commercial, scientific, and military customers.

  2. A new electron-ion coincidence 3D momentum-imaging method and its application in probing strong field dynamics of 2-phenylethyl-N, N-dimethylamine.

    PubMed

    Fan, Lin; Lee, Suk Kyoung; Tu, Yi-Jung; Mignolet, Benoît; Couch, David; Dorney, Kevin; Nguyen, Quynh; Wooldridge, Laura; Murnane, Margaret; Remacle, Françoise; Bernhard Schlegel, H; Li, Wen

    2017-07-07

    We report the development of a new three-dimensional (3D) momentum-imaging setup based on conventional velocity map imaging to achieve the coincidence measurement of photoelectrons and photo-ions. This setup uses only one imaging detector (microchannel plates (MCP)/phosphor screen) but the voltages on electrodes are pulsed to push both electrons and ions toward the same detector. The ion-electron coincidence is achieved using two cameras to capture images of ions and electrons separately. The time-of-flight of ions and electrons are read out from MCP using a digitizer. We demonstrate this new system by studying the dissociative single and double ionization of PENNA (2-phenylethyl-N,N-dimethylamine). We further show that the camera-based 3D imaging system can operate at 10 kHz repetition rate.

  3. A new electron-ion coincidence 3D momentum-imaging method and its application in probing strong field dynamics of 2-phenylethyl-N, N-dimethylamine

    NASA Astrophysics Data System (ADS)

    Fan, Lin; Lee, Suk Kyoung; Tu, Yi-Jung; Mignolet, Benoît; Couch, David; Dorney, Kevin; Nguyen, Quynh; Wooldridge, Laura; Murnane, Margaret; Remacle, Françoise; Bernhard Schlegel, H.; Li, Wen

    2017-07-01

    We report the development of a new three-dimensional (3D) momentum-imaging setup based on conventional velocity map imaging to achieve the coincidence measurement of photoelectrons and photo-ions. This setup uses only one imaging detector (microchannel plates (MCP)/phosphor screen) but the voltages on electrodes are pulsed to push both electrons and ions toward the same detector. The ion-electron coincidence is achieved using two cameras to capture images of ions and electrons separately. The time-of-flight of ions and electrons are read out from MCP using a digitizer. We demonstrate this new system by studying the dissociative single and double ionization of PENNA (2-phenylethyl-N,N-dimethylamine). We further show that the camera-based 3D imaging system can operate at 10 kHz repetition rate.

  4. Momentum spectra of electrons rescattered from rare-gas targets following their extraction by one- and two-color femtosecond laser pulses

    SciTech Connect

    Ray, D.; Chen Zhangjin; De, S.; Cao, W.; Le, A. T.; Lin, C. D.; Cocke, C. L.; Litvinyuk, I. V.; Kling, M. F.

    2011-01-15

    We have used velocity-map imaging to measure the three-dimensional momenta of electrons rescattered from Xe and Ar following the liberation of the electrons from these atoms by 45 fs, 800 nm intense laser pulses. Strong structure in the rescattering region is observed in both angle and energy, and is interpreted in terms of quantitative rescattering (QRS) theory. Momentum images have also been taken with two-color (800 nm + 400 nm) pulses on Xe targets. A strong dependence of the spectra on the relative phase of the two colors is observed in the rescattering region. Interpretation of the phase dependence using both QRS theory and a full solution to the time-dependent Schroedinger equation shows that the rescattered electrons provide a much more robust method for determining the relative phase of the two colors than do the direct electrons.

  5. Momentum Corrections for the CLAS E5 Data Set

    NASA Astrophysics Data System (ADS)

    Burrell, Robert

    2005-04-01

    The Thomas Jefferson National Accelerator Facility located in Newport News, Virginia, is home to the CLAS (CEBAF Large Acceptance Spectrometer) detector, which measures scattered particles from high-energy collisions of an electron beam and a nuclear target. Initial measurement of the momentum of charged particles is done by reconstructing tracks using several different detecting elements and a toroidal magnetic field. To improve the accuracy and precision of these momentum measurements for the electron and proton, we have applied the following algorithm. (1) Establish a known standard using the neutron peak in the ep->e^'^+X reaction and applying the missing mass technique. (2) Calculate the curvature, qB/pm, event by event where qq is particle charge, B is the ratio of torus magnet current to 3860A, and pm is the reconstructed particle momentum. (3) Calculate the curvature again using the particle momentum pc derived from only the polar angle of the track. This angle is measured with high precision. (4) Plot the difference between these two curvatures δ(qB/p) versus qB/pc and fit the results to a line. (5) Use these fit results to calculate a new corrected momentum and use it to calculate the missing mass in Step 1. We will present the results of this procedure for the E5 running period at a beam energy of 2.56 GeV on a deuterium target.

  6. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  7. Arbitrary Angular Momentum Electron Repulsion Integrals with Graphical Processing Units: Application to the Resolution of Identity Hartree-Fock Method.

    PubMed

    Kalinowski, Jaroslaw; Wennmohs, Frank; Neese, Frank

    2017-07-11

    A resolution of identity based implementation of the Hartree-Fock method on graphical processing units (GPUs) is presented that is capable of handling basis functions with arbitrary angular momentum. For practical reasons, only functions up to (ff|f) angular momentum are presently calculated on the GPU, thus leaving the calculation of higher angular momenta integrals on the CPU of the hybrid CPU-GPU environment. Speedups of up to a factor of 30 are demonstrated relative to state-of-the-art serial and parallel CPU implementations. Benchmark calculations with over 3500 contracted basis functions (def2-SVP or def2-TZVP basis sets) are reported. The presented implementation supports all devices with OpenCL support and is capable of utilizing multiple GPU cards over either MPI or OpenCL itself.

  8. A study of effective atomic number and electron density of gel dosimeters and human tissues for scattering of gamma rays: momentum transfer, energy and scattering angle dependence.

    PubMed

    Kurudirek, Murat

    2016-11-01

    The objective of this work was to study water- and tissue-equivalent properties of some gel dosimeters, human tissues and water, for scattering of photons using the effective atomic number (Z eff). The Rayleigh to Compton scattering ratio (R/C) was used to obtain Z eff and electron density (N e ) of gel dosimeters, human tissues and water considering a 10(-2)-10(9) momentum transfer, q (Å(-1)). In the present work, a logarithmic interpolation procedure was used to estimate R/C as well as Z eff of the chosen materials in a wide scattering angle (1°-180°) and energy range (0.001-100 MeV). The Z eff of the chosen materials was found to increase as momentum transfer increases, for q > ~1 Å(-1). At fixed scattering angle and energy, Z eff of the material first increases and then becomes constant for high momentum transfers (q ≥ 3 Å(-1)), which indicates that Z eff is almost independent of energy and scattering angle for the chosen materials. Based on the Z eff data and the continuous momentum transfer range (10(-2)-10(9) Å(-1)), MAGIC, PAGAT and soft tissue were found to be water-equivalent materials, since their differences (%) relative to water are significantly low (≤3.2 % for MAGIC up to 10(3) Å(-1), ≤2.9 % for PAGAT up to 10(9) Å(-1), and ≤3.8 % for soft tissue up to 10(9) Å(-1)), while the Fricke gel was not found to be water equivalent. PAGAT was found to be a soft tissue-equivalent material in the entire momentum transfer range (<4.3 %), while MAGAT has shown to be tissue equivalent for brain (≤8.1 % up to 10 Å(-1)) and lung (<8.2 % up to 10 Å(-1)) tissues. The Fricke gel dosimeter has shown to be adipose tissue equivalent for most of the momentum range considered (<10 %).

  9. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  10. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  11. Energy-averaged electron-ion momentum transport cross section in the Born approximation and Debye-Hückel potential: Comparison with the cut-off theory

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.; Bourham, Mohamed A.; Doster, J. Michael

    2000-04-01

    An exact analytical expression for the energy-averaged electron-ion momentum transport cross section in the Born approximation and Debye-Hückel exponentially screened potential has been derived and compared with the formulae given by other authors. A quantitative comparison between cut-off theory and quantum mechanical perturbation theory has been presented. Based on results from the Born approximation and Spitzer's formula, a new approximate formula for the quantum Coulomb logarithm has been derived and shown to be more accurate than previous expressions.

  12. Energy-averaged electron-ion momentum transport cross section in the Born Approximation and Debye-Hückel potential: Comparison with the cut-off theory

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.; Bourham, Mohamed A.; Doster, J. Michael

    2000-02-01

    An exact analytical expression for the energy-averaged electron-ion momentum transport cross section in the Born approximation and Debye-Hückel exponentially screened potential has been derived and compared with the formulae given by other authors. A quantitative comparison between cut-off theory and quantum mechanical perturbation theory has been presented. Based on results from the Born approximation and Spitzer's formula, a new approximate formula for the quantum Coulomb logarithm has been derived and shown to be more accurate than previous expressions.

  13. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  14. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  15. Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  16. Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  17. Energy- and momentum-resolved exchange and spin-orbit interaction in cobalt film by spin-polarized two-electron spectroscopy.

    PubMed

    Samarin, S; Artamonov, O M; Sergeant, A D; Stamps, R; Williams, J F

    2006-09-01

    Spontaneous ordering of electronic spins in ferromagnetic materials is one of the best known and most studied examples of quantum correlations. Exchange correlations are responsible for long range spin order and the spin-orbit interaction (SOI) can create preferred crystalline directions for the spins, i.e., magnetic anisotropy. Presented experimental data illustrate how novel spin-polarized two-electron spectroscopy in-reflection mode allows observation of the localization of spin-dependent interactions in energy-momentum space. Comparison of spin-orbit asymmetries in spectra of Co film and clean W(110) may indicate the presence of interface specific proximity effects providing important clues to the formation of preferred orientations for the magnetic moment of the Co film. These results may help to understand the microscopic origin of interface magnetic anisotropy.

  18. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  19. Precision Magnetometry and Systematic Effects in the Nab Experiment

    NASA Astrophysics Data System (ADS)

    Fry, Jason; Nab Collaboration

    2017-01-01

    The Nab experiment will determine the electron-neutrino correlation parameter a with a precision of δa / a =10-3 and the Fierz interference term b to δb = 3 ×10-3 in unpolarized neutron β decay. A long asymmetric spectrometer is optimized to achieve fast proton momentum longitudinalization and the required narrow proton momentum response function. A reliable relation of the measured proton TOF to a requires detailed knowledge of the effective proton pathlength, which imposes requirements on the precision of the magnetic fields in the Nab spectrometer. The Nab magnetometry goals, associated systematics, and some initial results will be discussed.

  20. c-Axis projected electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect

    Bansil, A.; Mijnarends, P.E.; Smedskjaer, L.C.

    1990-11-01

    The authors present the theoretical c-axis projected electron-positron momentum density N{sub 2{gamma}}(P{sub x},p{sub y}) in YBa{sub 2}Cu{sub 3}O{sub 7} based on the local density approximation (LDA) framework along various lines in momentum space. The calculations use the Korringa-Kohn-Rostoker (KKR) band structure formalism. The anisotropic distribution defined by taking cuts through the calculated spectra along different lines in the (p{sub x},p{sub y}) plane possesses complex structures which arise from both Fermi surface effects and the anisotropy of the smoothly varying underlying background from filled bands; the maximum size of the anisotropy is about 10% of N{sub 2{gamma}}(0,0). The theoretically predicted N{sub 2{gamma}}(p{sub x},{sub y}) distribution is compared with the measured 2D-ACAR spectrum. The considerations suggest that in interpreting the 2D-ACAR data on YBa{sub 2}Cu{sub 3}O{sub 7} in terms of a band theory LDA picture, a substantial, largely isotropic, background should be subtracted from both the 2D-ACAR`s and the associated LCW-folded spectra.

  1. Direct momentum-resolved observation of one-dimensional confinement of externally doped electrons within a single subnanometer-scale wire.

    PubMed

    Song, Inkyung; Oh, Dong-Hwa; Shin, Ha-Chul; Ahn, Sung-Joon; Moon, Youngkwon; Woo, Sun-Hee; Choi, Hyoung Joon; Park, Chong-Yun; Ahn, Joung Real

    2015-01-14

    Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of nanowire-based devices. The fundamental issue at the subnanometer scale is whether angle-resolved photoemission spectroscopy (ARPES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometer-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while the overall structure of the wires was maintained. Only one type of gold subnanowire could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.

  2. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments

    DOE PAGES

    Minakata, Hisakazu; Parke, Stephen J.

    2013-06-04

    Precision measurement of the leptonic CP violating phase δ will suffer from the, then surviving, large uncertainty of sin2θ23 of 10–20% in the experimentally interesting region near maximal mixing of θ23. We advocate a new method for determination of both θ23 and δ at the same time using only the νe and ν̄e appearance channels and show that sin2θ23 can be determined automatically with much higher accuracy, approximately a factor of six, than sinδ. In this method, we identify a new degeneracy for the simultaneous determination of θ23 and δ, the θ23 intrinsic degeneracy, which must be resolved in ordermore » to achieve precision measurement of these two parameters. Spectral information around the vacuum oscillation maxima is shown to be the best way to resolve this degeneracy.« less

  3. Bond Formation and Bond Scission Dynamics in Polyatomic Molecules Revealed by Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Slaughter, Daniel; Trevisan, Cynthia; Weyland, Marvin; Dorn, Alexander; Douguet, Nicolas; Orel, Ann; Adaniya, Hidehito; McCurdy, Bill; Belkacem, Ali; Rescigno, Tom

    2016-05-01

    We present combined experimental and theoretical studies of dissociative electron attachment (DEA) dynamics in methane and ammonia. DEA in each of these systems proceeds through electronic Feshbach resonances, where a valence electron is excited and captured with the incident electron in the lowest unoccupied orbital. In methane, one triply-degenerate resonance undergoes Jahn-Teller splitting through molecular distortions, leading to four observed final states, each having a 2-body and a 3-body dissociation with anionic products H- and CH2-and neutrals CH3, CH2, H2 or H. In ammonia, one resonance leads to H- + NH2 and NH2-+ H, the latter resulting from non-adiabatic charge transfer. A higher energy resonance leads directly to H- + NH2* and indirectly to NH2-+ H. We examine the dynamics of the transient anion in each of these processes. work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  4. Polarization of the angular momentum of electrons in calculations of the electronic structure of the NiO/sub 6//sup 10 -/ cluster by the X. cap alpha. -scattered-wave method

    SciTech Connect

    Gagarin, S.G.; Teterin, Yu.A.; Plekhanov, Yu.V.

    1986-05-01

    The x-ray photoelectron spectra of the core 2p/sub 1/2/, 2p/sub 3/2/, 3s/sub 1/2/, 3p/sub 1/2/, and 3/p/sub 3/2/ electrons of nickel in the oxide NiO and in an aluminum - nickel catalyst have been discussed on the basis of the results of a self-consistent calculation of the electronic states of the NiO/sub 6//sup 10 -/ cluster in the spin-polarized variation of the X..cap alpha..-scattered-wave method with complete consideration of the relativistic properties of the core electrons in the angular-momentum-polarized variant. Partial consideration of the relativistic properties of the valence-band electrons (consideration of the Darwin terms and the dependence of the mass on the velocity during the averaging of the wave functions and the density with respect to the angular momentum) does not alter the basic conclusions of the work.

  5. Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO2 thin films

    DOE PAGES

    Wang, Zhiming; Zhong, Z.; Walker, S. McKeown; ...

    2017-03-10

    Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities that aremore » confined within a few TiO2 layers below the surface. Subsequent in situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. Furthermore, this causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.« less

  6. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Guo, Yi-Qing; Hu, Hong-Bo

    2016-01-01

    The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ = Φe- -Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary. Supported by Natural Sciences Foundation of China (11135010)

  7. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    NASA Astrophysics Data System (ADS)

    Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.

    2017-01-01

    Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo

  8. Precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions

    SciTech Connect

    Frey, R.E.; SLD Collaboration

    1994-03-01

    A precise measurement of the left-right cross section asymmetry (A{sub LR}) for Z boson production by e{sup +}e{sup {minus}} collisions has been attained at the Slac Linear Collider with the SLD detector. We describe this measurement for the 1993 data run, emphasizing the significant improvements in polarized beam operation which took place for this run, where the luminosity-weighted electron beam polarization averaged 62.6 {plus_minus} 1.2 %. Preliminary 1993 results for A{sub LR} are presented. When combined with the (less precise) 1992 result, the preliminary result for the effective weak mixing angle is sin{sup 2} {theta}{sub W {sup eff}} = 0.2290 {plus_minus} 0.0010.

  9. Precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions

    SciTech Connect

    Frey, R.E.

    1994-12-01

    A precise measurement of the left-right cross section asymmetry (A{sub LR}) for Z boson production by e{sup +}e{sup {minus}} collisions has been attained at the SLAC Linear Collider with the SLD detector. The author describes this measurement for the 1993 data run, emphasizing the significant improvements in polarized beam operation which took place for this run, where the luminosity-weighted electron beam polarization averaged 62.6 {+-} 1.2%. Preliminary 1993 results for A{sub LR} are presented. When combined with the (less precise) 1992 result, the preliminary result for the effective weak mixing angle is sin{sup 2}{theta}{sub W}{sup eff} = 0.2290 {+-} 0.0010.

  10. Precision radiotherapy for cancer of the pancreas: technique and results. [Photons and electrons

    SciTech Connect

    Dobelbower, R.R. Jr.; Borgelt, B.B.; Strubler, K.A.; Kutcher, G.J.; Suntharalingam, N.

    1980-09-01

    Forty patients with locally extensive, unresectable adenocarcinoma of the pancreas received precision high dose (PHD) radiation therapy with a 45 MeV betatron. PHD radiotherapy was generally well tolerated. During treatment, only 7 patients experienced significant nausea, vomiting, diarrhea or anorexia. Late gastrointestinal radiation reactions were observed in 7 patients. Twelve patients received adjuvant chemotherapy. The projected survival of patients with unresectable pancreatic cancer treated with PHD radiotherapy is comparable to that of patients with resectable disease operated on for cure. The projected one year survival rate is 49%.

  11. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE PAGES

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.; ...

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  12. Precision control of the electron longitudinal bunch shape using an emittance exchange beamline

    DOE PAGES

    Ha, Gwanghui; Cho, Moo-Hyun; Namkung, W.; ...

    2017-03-09

    We report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shape ismore » limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  13. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    NASA Astrophysics Data System (ADS)

    Ha, G.; Cho, M. H.; Namkung, W.; Power, J. G.; Doran, D. S.; Wisniewski, E. E.; Conde, M.; Gai, W.; Liu, W.; Whiteford, C.; Gao, Q.; Kim, K.-J.; Zholents, A.; Sun, Y.-E.; Jing, C.; Piot, P.

    2017-03-01

    We report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch's horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shape is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.

  14. Quantum fluctuations and coherence in high-precision single-electron capture.

    PubMed

    Kashcheyevs, Vyacheslavs; Timoshenko, Janis

    2012-11-21

    The phase of a single quantum state is undefined unless the history of its creation provides a reference point. Thus, quantum interference may seem hardly relevant for the design of deterministic single-electron sources which strive to isolate individual charge carriers quickly and completely. We provide a counterexample by analyzing the nonadiabatic separation of a localized quantum state from a Fermi sea due to a closing tunnel barrier. We identify the relevant energy scales and suggest ways to separate the contributions of quantum nonadiabatic excitation and back tunneling to the rare noncapture events. In the optimal regime of balanced decay and nonadiabaticity, our simple electron trap turns into a single-lead Landau-Zener back tunneling interferometer, revealing the dynamical phase accumulated between the particle capture and leakage. The predicted "quantum beats in back tunneling" may turn the error of a single-electron source into a valuable signal revealing essentially nonadiabatic energy scales of a dynamic quantum dot.

  15. Electron-Hole Transitions in Multiply Charged Ions for Precision Laser Spectroscopy and Searching for Variations in {alpha}

    SciTech Connect

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2011-05-27

    We consider transitions of electron holes (vacancies in otherwise filled shells of atomic systems) in multiply charged ions that, due to level crossing of the holes, have frequencies within the range of optical atomic clocks. Strong E1 transitions provide options for laser cooling and trapping, while narrow transitions can be used for high-precision spectroscopy and tests of fundamental physics. We show that hole transitions can have extremely high sensitivity to {alpha} variation and propose candidate transitions that have much larger {alpha} sensitivities than any previously seen in atomic systems.

  16. Research on some factors which influence the aperture of precision micro hole in electronical discharge machining

    NASA Astrophysics Data System (ADS)

    Wang, Min; Ma, Gangjian; Liu, Jianyong

    2017-06-01

    The factors which influence the size of the hole during the process of machining precision micro hole are studied in this paper. Through the way that using the same diameter of electrode wire to process large number of micro hole on different materials and different thickness, the processing time, electrode wire loss and pore size was written down. The law of the factors which influence the size of the micro hole is found by analysing the data. It can help to select the appropriate electrical processing parameters to ensure the quality of the aperture during actual operation process. And these are usually ensured by repeated testing and multiple measurements. This research get great help for improving processing efficiency. The study is of great guiding significance to the actual production.

  17. MSWAVEF: Momentum-Space Wavefunctions

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2017-01-01

    MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.

  18. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    SciTech Connect

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  19. High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction.

    PubMed

    Cooper, David; Bernier, Nicolas; Rouvière, Jean-Luc; Wang, Yun-Yu; Weng, Weihao; Madan, Anita; Mochizuki, Shogo; Jagannathan, Hemanth

    2017-05-29

    Precession electron diffraction has been used to systematically measure the deformation in Si/SiGe blanket films and patterned finFET test structures grown on silicon-on-insulator type wafers. Deformation maps have been obtained with a spatial resolution of 2.0 nm and a precision of ±0.025%. The measured deformation by precession diffraction for the blanket films has been validated by comparison to energy dispersive x-ray spectrometry, X-Ray diffraction, and finite element simulations. We show that although the blanket films remain biaxially strained, the patterned fin structures are fully relaxed in the crystallographic planes that have been investigated. We demonstrate that precession diffraction is a viable deformation mapping technique that can be used to provide useful studies of state-of-the-art electronic devices.

  20. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  1. Precise measurement method for ionospheric total electron content using signals from GPS satellites

    NASA Technical Reports Server (NTRS)

    Imae, Michito; Kiuchi, Hitoshi; Kaneko, Akihiro; Hama, Shinichi; Miki, Chihiro

    1990-01-01

    A GPS codeless receiver called GTR-2 was for measuring total electron content (TEC) along the line of sight to the GPS satellite by using the cross correlation amplitude of the received P-code signals carried by L1(1575.42 MHz) and L2(1227.6 MHz). This equipment has the performance of uncertainty in the measurement of TEC of about 2 X 10(exp 16) electrons/sq m when a 10 dBi gain antenna was used. To increase the measurement performance, an upper version of GTR-2 called GTR-3 is planned which uses the phase information of the continuous signals obtained by making a cross correlation or multiplication of the received L1 and L2 P-code signals. By using the difference of these measured phases values, the ionospheric delay with the ambiguities of the periods of L1+L2 and L1-L2 signals can be estimated.

  2. Towards a precise modelling of transport processes in planetary ionospheres: photoelectrons, magnetospheric electrons and protons

    NASA Astrophysics Data System (ADS)

    Simon, Cyril

    Numerical simulations of planetary ionospheres (Earth, Mars, Venus and Titan) using Boltzmann's kinetic formalism have proved their efficiency in interpreting multi-instrumental data sets. We present now the last evolution of the Trans-* codes family, called Trans4, which takes simultaneously into account photoionisation and electron/proton precipitation effects. The kinetic transport is coupled to a fluid model, which yields electron and ion densities, temperatures, velocities and heating fluxes, directly comparable to incoherent scatter radar measurements. We describe the physics of the model in detail, from chemical inputs to collisions and magnetic mirroring. As an example, a multi-instrumental (ground-based and satellite) data set at high latitudes on Earth is studied, which shows the applicability and the interest of such a code while dealing with complex solar-planetary events. Perspectives on the other planets (Mars, Venus, Titan) are discussed, as well as future extensions (cosmic rays, radiative transfer, polarisation).

  3. Accessing electronic and vibronic quanta and their coherent interactions in atomically precise nanostructures

    NASA Astrophysics Data System (ADS)

    Zeltzer, Gabriel

    In condensed matter systems the spatial limit is given by the fundamental atomic and molecular interactions. Controlling matter at these length scales hold promise in both fundamental scientific research as well as applications in nanotechnology and related fields such as electronics, biochemistry and medicine. Atomic and molecular manipulation on surfaces has opened a new realm of possibilities where materials can be engineered at the spatial limit and artificial structures can be constructed with a bottom-up approach, one building block at a time. This thesis describes nanostructures assembled from CO molecules on Cu(111) using a custom-built low-temperature ultra-high vacuum (UHV) scanning tunneling microscope (STM). The design and performance of the atom-manipulation apparatus that has enabled these experiments is presented. The control of electronic and vibronic states is demonstrated in several coherent quantum geometries and interactions between these two degrees of freedom are investigated. This work has revealed a virtual vibron process where non-local vibrons are synthesized and focused using a two-dimensional electron gas as a propagation medium and molecular oscillators as a source. Analysis of higher order harmonic modes of quartz tuning fork sensors is presented in the context of high frequency optical homodyne interferometric detection of subnanometer oscillatory motion. Further developments which could expand upon the work presented herein, in which STM may be combined with quantum force sensing through the use of quartz tuning forks, are suggested.

  4. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    PubMed

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  5. Precise convective cooling simulation of electronic equipment under various g-conditions

    NASA Astrophysics Data System (ADS)

    Adam, Johannes; Stuempel, Dieter; Rath, Michael

    1991-12-01

    Using the thermohydraulic code 'THEBES' a three dimensional flow analysis of a Spacelab rack under forced convection and a combined convective, conductive and radiative analysis of a closed electronic box under various g conditions are presented. The capabilities and features of THEBES are described. The motivation to extend the thermal analysis cycle for better treatment of fluid flow and solid to air heat transfer is discussed. It is proposed to include THEBES in a thermal analysis toolsat and present a concept for integration of THEBES with ESABASE.

  6. Precision electronics for a system of custom MCPs in the TORCH Time of Flight detector

    NASA Astrophysics Data System (ADS)

    Gao, R.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; Van Dijk, M.

    2017-03-01

    The TORCH detector will provide charged particle pi/K/p identification up to 10 GeV/c, combining Time-of-Flight and Cherenkov techniques to achieve a timing resolution of 70 ps for single photons. Based on a scalable design, a Time-of-Flight electronics readout system has been developed to instrument a novel customized 512-channel Micro Channel Plate (MCP) device. A Gigabit Ethernet-based readout scheme that operates the TORCH demonstration unit consisting of ten such MCPs will be reported. The trigger and clock distribution will also be discussed.

  7. Momentum-Resolved Electronic Structure of the High-Tc Superconductor Parent Compound BaBiO3

    NASA Astrophysics Data System (ADS)

    Plumb, N. C.; Gawryluk, D. J.; Wang, Y.; Ristić, Z.; Park, J.; Lv, B. Q.; Wang, Z.; Matt, C. E.; Xu, N.; Shang, T.; Conder, K.; Mesot, J.; Johnston, S.; Shi, M.; Radović, M.

    2016-07-01

    We investigate the band structure of BaBiO3 , an insulating parent compound of doped high-Tc superconductors, using in situ angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO6 breathing distortions. Though the distortions are often thought to coincide with Bi3 +/Bi5 + charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6 s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2 p orbitals.

  8. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  9. Research on precision-calibration techniques for selected area electron diffraction patterns of pyrocarbon.

    PubMed

    Qi, Lehua; Li, Miaoling; Li, Hejun; Xu, Guozhong; Wang, Chuang

    2009-04-01

    The key techniques for determining orientation angle (OA) and interlayer space (d002) of pyrocarbon were investigated by analyzing selected area electron diffraction (SAED) patterns. A series of algorithms, which mainly include the five-point center-determined technique, the integral factor for the ellipse detection, the background subtraction operation and the Gaussian multipeak fitting algorithm, were designed for intensity sampling, data correction, and data fitting. The contribution ratio of the reflection intensity to the average d002 was considered. The algorithms were programmed and applied to evaluate SAED patterns of pyrocarbon in C/C composites by chemical vapor infiltration. Results showed that the proposed techniques can be effectively used to measure various SAED patterns, with a beam stop image or not, of pyrocarbon. The azimuthal intensities along the (002) arcs essentially obey the Gaussian distribution, although this is not obvious for the lower textural pyrocarbon. It is necessary for accurate OA to use the Gaussian multipeak fitting algorithm.

  10. Precision Cosmology

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  11. Infrared rovibrational spectroscopy of OH–C{sub 2}H{sub 2} in {sup 4}He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    SciTech Connect

    Douberly, Gary E. Liang, Tao; Raston, Paul L.; Marshall, Mark D.

    2015-04-07

    The T-shaped OH–C{sub 2}H{sub 2} complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled {sup 2}B{sub 1} (A″) and {sup 2}B{sub 2} (A′) electronic states is determined spectroscopically to be 216 cm{sup −1} in helium droplets, which is 13 cm{sup −1} larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated {sup 2}Π{sub 3/2} OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm{sup −1}. This observation can be accounted for quantitatively by assuming the energetic separation between {sup 2}Π{sub 3/2} and {sup 2}Π{sub 1/2} manifolds is increased by ≈40 cm{sup −1} upon helium solvation.

  12. High-precision electronic structure studies of thermoelectrics: Bi_2Te_3

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Freeman, A. J.; Geller, C. B.

    2004-03-01

    The heavy-atom, narrow-bandgap semiconductor Bi_2Te3 is of centralcommercial importance for thermoelectric cooling. Detailed ab initio screened exchange(R. Asahi, W. Mannstadt, A.J. Freeman, Phys. Rev. B, 59), 7486 (1999) (sX-LDA) electronic structure calculations have been performed for Bi_2Te3 within the full-potential linearized augmented plane wave (FLAPW)footnote Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864(1981) method, accounting for spin-orbit coupling self-consistently. An indirect bandgap of 0.155 eV is found for a conduction band (CB) minimum on the mirror plane containing the trigonal and bisectric axes, thus confirming the experimental(H. Köhler, Phys. Status. Solidi, 73), 95 (1976); 74, 591 (1976) and earlier theoretical(S. Youn, A.J. Freeman, Phys. Rev. B, 63), 085112 (2001) observations of sixfold-degenerate CB and VB extrema in doped Bi_2Te_3. The predicted sX-LDA bandgap value is <5% of the zero temperature-extrapolated experimental value(B.M. Golts'man, et.al., Thermoelectric Semiconductor Materials Based on Bi_2Te_3, English trans., US Nat. Tech. Info Center (1973).) (0.162 eV). These values compare with a predicted LDA bandgap^3 (on the mirror plane) of 0.045 eV. The carrier density dependence of the effective mass tensor and the Seebeck coefficient are explored using our accurate quasiparticle band structure.

  13. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  14. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.

    PubMed

    Han, Kyu Seok; Kalode, Pranav Y; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-03-07

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.

  15. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    PubMed

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.

  16. Precision timing and interlocks systems for FEL (free-electron laser) heating experiments on MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Petersen, D.E. )

    1989-09-20

    A new precision timing system has been installed on the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL). The purpose of the system is to synchronize the tokamak's plasma discharge with a 140-GHz, 2-GW microwave pulse generated by a free-electron laser (FEL). The installation involved modifying the existing sequencer system and adding Digital delay generators, three in-house-designed CAMAC modules and other components. The system controls placement of the 30-ns FEL pulse during the MTX plasma discharge. It also provides precision triggers for the microwave plasma diagnostics. These triggers are distributed over 100-Mbit/s fiber-optic links. The MTX interlock system has been expanded to provide personnel safety during FEL experiments, to protect the FEL and related equipment, and to control the path of the FEL beam starting from the FEL's output, through the beam transport system, and into the tokamak. This paper describes how the existing MTX timing and interlocks systems were upgraded to accommodate these new FEL experiments. 4 refs., 4 figs.

  17. High-Precision Calibration of Electron Beam Energy from the Hefei Light Source Using Spin Resonant Depolarization

    NASA Astrophysics Data System (ADS)

    Lan, Jie-Qin; Xu, Hong-Liang

    2014-12-01

    The electron beam energy at the Hefei Light Source (HLS) in the National Synchrotron Radiation Laboratory is highly precisely calibrated by using the method of spin resonant depolarization for the first time. The spin tune and the beam energy are determined by sweeping the frequency of a radial rf stripline oscillating magnetic field to artificially excite a spin resonance and depolarize the beam. The resonance signal is recognized by observing the sudden change of the Touschek loss counting rate of the beam. The possible systematic errors of the experiment are presented and the accuracy of the calibrated energy is shown to be about 10-4. A series of measurements show that the energy stability of the machine is of the order of 9 × 10-3.

  18. Treatment of cancer of the pancreas by precision high dose (PHD) external photon beam and intraoperative electron beam therapy (IOEBT)

    SciTech Connect

    Dobelbower, R.R. Jr.; Howard, J.M.; Bagne, F.R.; Eltaki, A.; Merrick, H.W. III

    1989-01-01

    Twenty-five patients with a diagnosis of unresectable adenocarcinoma of the pancreas were explored in the Clement O. Miniger (COMROC) IOEBT operating amphitheater at the Medical College of Ohio. Seventeen were treated with IOEBT (20-30 Gy, 15 or 18 meV electrons) PHD external beam radiation therapy (40-60 Gy, 1.8 Gy per fraction) plus appropriate operative biliary and gastrointestinal bypass procedures. No intraoperative complications were observed. Two patients died of causes that may have been treatment-related. Two patients developed abdominocutaneous fistulae. Pain was ameliorated in eleven of twelve patients. Jaundice was relieved in all patients. Four of ten patients with weight loss showed a reversal of that trend. Patient survival was not significantly different from that of patients treated with high-dose precision therapy alone.

  19. Nuclear spin transitions in the kHz range in Rydberg matter clusters give precise values of the internal magnetic field from orbiting Rydberg electrons

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2009-03-01

    Clusters of the electronically excited condensed matter Rydberg matter (RM) are planar and sixfold symmetric with specific magic numbers N as shown by rotational spectroscopy of potassium K N clusters [L. Holmlid, Mol. Phys. 105 (2007) 933; L. Holmlid, J. Mol. Struct. 885 (2008) 122]. In radio frequency emission spectra from such clusters, features are observed that are due to the hyperfine interaction between the atomic nucleus 39K and two Rydberg electrons. These electrons exist in a doubly excited K atom at n″ = 5 or 6 in a "sleeping-top" type rotating cluster. Such low excited electrons were observed recently in optical intra-cavity experiments in K(RM), where the electrons in the conduction band are involved in the angular momentum conservation in the stimulated emission. Here we show that the agreement with the theoretical description of circular Rydberg states is excellent within ±0.2% in the magnetic field, invoking angular momentum conservation by electrons in the condensed phase. Sleeping-top clusters may form stacks of clusters, and it is likely that such stacks are the emitting entities involved in the two nuclear spin series observed.

  20. Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Gray, A. X.; Minár, J.; Plucinski, L.; Huijben, M.; Bostwick, A.; Rotenberg, E.; Yang, S.-H.; Braun, J.; Winkelmann, A.; Conti, G.; Eiteneer, D.; Rattanachata, A.; Greer, A. A.; Ciston, J.; Ophus, C.; Rijnders, G.; Blank, D. H. A.; Doennig, D.; Pentcheva, R.; Kortright, J. B.; Schneider, C. M.; Ebert, H.; Fadley, C. S.

    2013-10-01

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for the study of electronic structure, but it lacks a direct ability to study buried interfaces between two materials. We address this limitation by combining ARPES with soft X-ray standing-wave (SW) excitation (SWARPES), in which the SW profile is scanned through the depth of the sample. We have studied the buried interface in a prototypical magnetic tunnel junction La0.7Sr0.3MnO3/SrTiO3. Depth-and momentum-resolved maps of Mn 3d eg and t2g states from the central, bulk-like and interface-like regions of La0.7Sr0.3MnO3 exhibit distinctly different behavior consistent with a change in the Mn bonding at the interface. We compare the experimental results to state-of-the-art density-functional and one-step photoemission theory, with encouraging agreement that suggests wide future applications of this technique.

  1. Single and double electron capture from He by Ar{sup 16+} studied using cold-target recoil-ion momentum spectroscopy

    SciTech Connect

    Abdallah, M.A.; Wolff, W.; Wolf, H.E.; Kamber, E.Y.; Stoeckli, M.; Cocke, C.L.

    1998-10-01

    Single and double electron capture from He targets by Ar{sup 16+} ions have been studied at projectile velocities from 0.3 to 1.5 a.u. Cold-target recoil-ion momentum spectroscopy was used to record the energy gain and scattering angle simultaneously. For single capture, the reaction window is found to spread in width approximately as the square root of the projectile velocity and to shift slightly toward smaller energy-gain values as the velocity increases. The angular distributions center at the half Coulomb angle over most of the velocity range covered, but differ in shape from multichannel Landau-Zener model results. For double capture, transfer ionization dominates and feeds primarily n-symmetric states, where {ital n} is the principal quantum number. True double capture feeds mainly n-asymmetric states. The angular distributions for double capture lie outside the half Coulomb angle, indicating the importance of two-step processes in populating doubly excited states. {copyright} {ital 1998} {ital The American Physical Society}

  2. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    SciTech Connect

    Costa, Romarly F. da; Oliveira, Eliane M. de; Lima, Marco A. P.; Bettega, Márcio H. F.; Varella, Márcio T. do N.; Jones, Darryl B.; Brunger, Michael J.; Blanco, Francisco; Colmenares, Rafael; and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  3. Angular-momentum evolution in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  4. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  5. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. Copyright © 2016, American Association for the Advancement of Science.

  6. Momentum Analysis for Metasurfaces

    NASA Astrophysics Data System (ADS)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2017-07-01

    Utilizing discrete phase distribution to fit continuous phase distribution has been a primary routine for designing metasurfaces. In the existing method, the validation of the discrete designs is guaranteed only by using the subwavelength condition of unit cells, which is insufficient—especially for arbitrary phase distribution. Herein, we propose an analytical method to design metasurfaces by estimating the width of the source in a unit cell. Also, by calculating field patterns in both real and momentum space, we provide four guidelines for directing future applications of metasurfaces, such as an arbitrary multifocal lens with the same strength of each focus, a convex-concave double lens, and a lens with a large numerical aperture that can precisely prevent undesired diffraction orders. In addition to metalenses, this methodology can provide a wide platform for designing tailored and multifunctional metasurfaces in the future, especially large-area ones in practical applications.

  7. Combining 2 nm Spatial Resolution and 0.02% Precision for Deformation Mapping of Semiconductor Specimens in a Transmission Electron Microscope by Precession Electron Diffraction.

    PubMed

    Cooper, David; Bernier, Nicolas; Rouvière, Jean-Luc

    2015-08-12

    Precession electron diffraction has been used to provide accurate deformation maps of a device structure showing that this technique can provide a spatial resolution of better than 2 nm and a precision of better than 0.02%. The deformation maps have been fitted to simulations that account for thin specimen relaxation. By combining the experimental deformation maps and simulations, we have been able to separate the effects of the stressor and recessed sources and drains and show that the Si3N4 stressor increases the in-plane deformation in the silicon channel from 0.92 to 1.52 ± 0.02%. In addition, the stress in the deposited Si3N4 film has been calculated from the simulations, which is an important parameter for device design.

  8. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    SciTech Connect

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-18

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  9. Transverse momentum at work in high-energy scattering experiments

    NASA Astrophysics Data System (ADS)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  10. Selective insertion of oxygen and selenium into an electron-precise paramagnetic selenium-manganese carbonyl cluster [Se(6)Mn(6)(CO)(18)](4-).

    PubMed

    Shieh, Minghuey; Ho, Chia-Hua; Sheu, Wen-Shyan; Chen, Horng-Wen

    2010-03-31

    The facile synthesis of a novel electron-precise paramagnetic hexamanganese carbonyl selenide cluster [Se(6)Mn(6)(CO)(18)](4-) (1) was discovered, which demonstrates contrasting reactivity toward O(2) and Se(8) under markedly mild conditions to afford the O- and Se-inserted clusters [Se(6)Mn(6)(CO)(18)(O)](4-) (2) and [Se(10)Mn(6)(CO)(18)](4-) (3), respectively. Clusters 1-3 represent the first examples of electron-precise paramagnetic main-group transition metal carbonyl clusters, and their formation and bonding properties are further elucidated by theoretical calculations.

  11. Orbital imaging and assessment of different orbital models for the valence shell of methanol. Comparison of electron momentum spectroscopy measurements with near-Hartree-Fock limit, MRSD-CI, localized valence bond and density functional theory

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Zheng, Y.; Brion, C. E.; Shi, Z.; Wolfe, Saul; Davidson, E. R.

    1999-06-01

    The momentum distributions of the valence orbitals of methanol have been studied by electron momentum spectroscopy (EMS) and Hartree-Fock (HF), multi-reference singles and doubles configuration interaction (MRSD-CI), localized valence bond (VB) and density functional theory (DFT) calculations. The experiment was performed using a multichannel EMS spectrometer at a total energy of 1200 eV plus the binding energy. Binding-energy spectra measured in the energy range of 6-47 eV are presented for the azimuthal angles φ=0° and φ=8°. Synthetic binding-energy spectra from Green's function and HF calculations for the azimuthal angles φ=0° and φ=8° in the 6-47 eV energy region are also compared to experiment. In the inner valence region strong splitting of the 4a' and 3a' ionization is observed due to final-state electron correlation effects. The measured momentum profiles are compared with HF calculations at the level of the target HF approximation using basis sets ranging from simple (STO-3G) to large (110-GTO and Trun-pV5Z). DFT calculations at the level of the target Kohn-Sham approximation employing the local density approximation or hybrid functional methods and the large Trun-pV5Z basis set are also compared to experiment. The effects of electron correlation and relaxation are also investigated in the outer valence region by MRSD-CI calculations of the full ion-neutral overlap amplitude using the 110-G(CI) basis set. The shapes of all momentum profiles are well predicted by higher level theory. Some small discrepancy still exists between all theoretical treatments and experiment in the low-momentum region for the HOMO 2a″ orbital. MRSD-CI or DFT (i.e. correlated) methods are needed to adequately describe the shape of the 7a' and (6a'+1a″) momentum profiles. The s-type character in the 5a' momentum profile is underestimated by HF theory and overemphasized by density functional theory (DFT). The 110-G(CI) calculation best predicts the shape for the 5a

  12. The Orbital Angular Momentum Sum Rule

    NASA Astrophysics Data System (ADS)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  13. Precision muon tracking detectors and read-out electronics for operation at very high background rates at future colliders

    NASA Astrophysics Data System (ADS)

    Kortner, O.; Kroha, H.; Nowak, S.; Richter, R.; Schmidt-Sommerfeld, K.; Schwegler, Ph.

    2016-07-01

    The experience of the ATLAS MDT muon spectrometer shows that drift-tube chambers provide highly reliable precision muon tracking over large areas. The ATLAS muon chambers are exposed to unprecedentedly high background of photons and neutrons induced by the proton collisions. Still higher background rates are expected at future high-energy and high-luminosity colliders beyond HL-LHC. Therefore, drift-tube detectors with 15 mm tube diameter (30 mm in ATLAS), optimised for high rate operation, have been developed for such conditions. Several such full-scale sMDT chambers have been constructed with unprecedentedly high sense wire positioning accuracy of better than 10 μm. The chamber design and assembly methods have been optimised for large-scale production, reducing considerably cost and construction time while maintaining the high mechanical accuracy and reliability. Tests at the Gamma Irradiation Facility at CERN showed that the rate capability of sMDT chambers is improved by more than an order of magnitude compared to the MDT chambers. By using read-out electronics optimised for high counting rates, the rate capability can be further increased.

  14. Quadrupole, octopole, and hexadecapole electric moments of Σ, Π, Δ, and Φ electronic states: Cylindrically asymmetric charge density distributions in linear molecules with nonzero electronic angular momentum

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    2007-08-01

    The number of independent components, n, of traceless electric 2l-multipole moments is determined for C∞v molecules in Σ ±, Π, Δ, and Φ electronic states (Λ=0,1,2,3). Each 2l pole is defined by a rank-l irreducible tensor with (2l+1) components Pm(l) proportional to the solid spherical harmonic rlYml(θ,φ). Here we focus our attention on 2l poles with l =2,3,4 (quadrupole Θ, octopole Ω, and hexadecapole Φ). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Λ. For Σ±(Λ=0) states, all 2l poles have one independent parameter (n=1). For spatially degenerate states—Π, Δ, and Φ (Λ=1,2,3)—the general rule reads n =1 for l <2∣Λ∣ (when the 2l-pole rank lies below 2∣Λ∣) but n =2 for higher 2l poles with l ⩾2∣Λ∣. The second nonzero term is the off-diagonal matrix element ⟨ψ+Λ∣P∣m∣=2Λ(l)∣ψ-Λ⟩. Thus, a Π(Λ =1) state has one dipole (μz) but two independent 2l poles for l ⩾2—starting with the quadrupole [Θzz,(Θxx-Θyy)]. A Δ(Λ =2) state has n =1 for 2(1,2,3) poles (μz,Θzz,Ωzzz) but n =2 for higher 2(l⩾4) poles—from the hexadecapole Φ up. For Φ(Λ =3) states, it holds that n =1 for 21 to 25 poles but n =2 for all 2(l⩾6) poles. In short, what is usually stated in the literature—that n =1 for all possible 2l poles of linear molecules—only applies to Σ± states. For degenerate states with n =2, all Cartesian 2l-pole components (l⩾2∣Λ∣) can be expressed as linear combinations of two irreducible multipoles, Pm=0(l ) and P∣m∣=2Λ(l) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Θ, Ω, and Φ moments calculated for Λ =0-3 states of selected diatomics (in parentheses): XΣ+2(CN ), XΠ2(NO ), aΠu3(C2), XΔ2(NiH ), XΔ3(TiO ), XΦ3(CoF ), and XΦ4(TiF ). States of Π symmetry are most affected by the deviation from axial symmetry.

  15. Electron microscopy with high accuracy and precision at atomic resolution: In-situ observation of a dielectric crystal under electric field

    NASA Astrophysics Data System (ADS)

    Sato, Yukio; Gondo, Takashi; Miyazaki, Hiroya; Teranishi, Ryo; Kaneko, Kenji

    2017-08-01

    Measuring atomic positions in-situ under an external electric field can provide important insights into the structure-property relationship of electronic materials. In this paper, we demonstrate picometer level accuracy and precision of atomic positions in single-crystalline SrTiO3 under an electric field through annular dark-field scanning transmission electron microscopy. By carrying out electrical biasing in-situ electron microscopy at the atomic scale, the lattice constant was measured with a precision of 9.0 pm under an electric field of ±0.57 kV/cm. In addition, the Ti position in the SrTiO3 unit cell was measured with an accuracy of 20.0 pm at a confidence level of greater than 93%. This opens up a possibility of characterizing functional electronic devices at atomic resolution under operative conditions.

  16. Precision measurement of 0.5 GeV-3 TeV electrons and positrons using the AMS Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Kounine, A.; Weng, Z.; Xu, W.; Zhang, C.

    2017-10-01

    The Alpha Magnetic Spectrometer, AMS, is successfully collecting data on the International Space Station since its installation on May 19, 2011. One of the main objectives of AMS is the precision measurement of high energy cosmic ray electrons and positrons. The key detector for this measurement is the Electromagnetic Calorimeter. Reconstruction of electrons and positrons in the calorimeter uses a 3-dimensional shower parametrization, which accounts for the detector specifics: finite size of the calorimeter, non-uniform efficiency of the signal collection, and saturation effects due to the electronics and due to high energy density in the active calorimeter elements. This technique provides AMS with a precision energy measurement of electrons and positrons up to several TeV as well as an excellent rejection of the proton background.

  17. How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images?

    PubMed

    Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S

    2017-10-01

    In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  19. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  20. Assessment of nicotine concentration in electronic nicotine delivery system (ENDS) liquids and precision of dosing to aerosol.

    PubMed

    Kosmider, Leon; Sobczak, Andrzej; Szołtysek-Bołdys, Izabela; Prokopowicz, Adam; Skórka, Agnieszka; Abdulafeez, Oluyadi; Koszowski, Bartosz

    2015-01-01

    Global use of electronic nicotine delivery systems (ENDS; also called electronic cigarettes, e-cigarettes) has increased dramatically in recent years. However, due to the limited safety studies and growing concerns on the potential toxicity from long term use of ENDS, many national and international governments have employed regulatory measures to curtail its use. One of the most significant challenges regulators of ENDS encounter is the lack of quality standards to assess ENDS, e-liquid (solution used with ENDS which contain nicotine--a highly toxic and addictive substance), and amount of nicotine delivery to aerosol during ENDS use. Aims of the study were to (1) measure and compare nicotine concentration in e-liquids to values reported by manufacturers on packaging labels; (2) assess the precision of nicotine delivery from tank during aerosol formation. Methods: Nine popular Polish e-liquids (based on the market share data from October 2014) were purchased for the study. The labelled nicotine concentration for the selected e-liquids ranged between 11-25 mg/mL. All e-liquids were aerosolized in the laboratory using a smoking simulation machine (Palaczbot). Each e-liquid was aerosolized in a series of 6 consecutive bouts. A single bout consisted of 15 puffs with the following puff topography: 65 mL puff volume, 2.8 sec. puff duration, and 19 sec. interpuff interval. A total of 90 puffs were generated from each e-liquid. Nicotine content in the e-liquids and the aerosol generated were determined by gas chromatography with thermionic sensitive detection (GC-TSD). For seven of nine analyzed e-liquids, the difference between measured and manufacturer labeled nicotine concentration was less than 10%. Nicotine dose in aerosol per bout ranged between 0.77-1.49 mg (equivalent to one-half the nicotine a smoker inhales from a single combustible cigarette). Our analysis showed the high consistency between the labeled and measured nicotine concentration for popular on the

  1. Electron reconstruction and electroweak processes as tools to achieve precision measurements at a hadron collider: From CDF to CMS

    SciTech Connect

    Giolo-Nicollerat, Anne-Sylvie

    2004-01-01

    Precision measurements are an important aspect of hadron colliders physics program. This thesis describes a method, together with a first application, of how to achieve and use precision measurements at the LHC. The idea is to use refernce processes to control the detector systematics and to constrain the theoretical predictions.

  2. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  3. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  4. Why do a precision measurement of delta m(atm)**2 in the electron-neutrino and anti-electron-neutrino disappearance channel?

    SciTech Connect

    Nunokawa, H; Parke, Stephen J; Zukanovich Funchal, R

    2005-07-01

    We discuss why high precision measurements of {delta}m{sub atm}{sup 2} in the {nu}{sub e}/{bar {nu}}{sub e} disappearance channels would be desirable in conjunction with the {delta}m{sub atms}{sup 2} high precision measurements that will be performed in the {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance channels by long baseline experiments such as T2K and NOvA. We show that if these measurements can achieve the challenging precision of about 0.5%, it will be possible to determine the mass hierarchy of the neutrino sector without the need of matter effects.

  5. Accuracy and precision of thickness determination from position-averaged convergent beam electron diffraction patterns using a single-parameter metric.

    PubMed

    Pollock, J A; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2017-10-01

    Position-averaged convergent beam electron diffraction patterns are formed by averaging the transmission diffraction pattern while scanning an atomically-fine electron probe across a sample. Visual comparison between experimental and simulated patterns is increasingly being used for sample thickness determination. We explore automating the comparison via a simple sum square difference metric. The thickness determination is shown to be accurate (i.e. the best-guess deduced thickness generally concurs with the true thickness), though factors such as noise, mistilt and inelastic scattering reduce the precision (i.e. increase the uncertainty range). Notably, the precision tends to be higher for smaller probe-forming aperture angles. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of bottom versus charm as a function of transverse momentum with electron-hadron correlations in p + p collisions at square root of s = 200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Citron, Z; Cleven, C R; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gadrat, S; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kapustinsky, J; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, S H; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, K B; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Liebing, P; Liska, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niita, T; Norman, B E; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Okada, H; Okada, K; Oka, M; Omiwade, O O; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roach, D; Roche, G; Rolnick, S D; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ruzicka, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Sakata, H; Samsonov, V; Sato, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Veicht, A; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wei, F; Wessels, J; White, S N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2009-08-21

    The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|<0.35 in p+p collisions at square root of s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2electrons from bottom to that from charm is presented. The ratio is determined using partial D/D-->e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in pT. A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mub.

  7. Do waves carrying orbital angular momentum possess azimuthal linear momentum?

    PubMed

    Speirits, Fiona C; Barnett, Stephen M

    2013-09-06

    All beams are a superposition of plane waves, which carry linear momentum in the direction of propagation with no net azimuthal component. However, plane waves incident on a hologram can produce a vortex beam carrying orbital angular momentum that seems to require an azimuthal linear momentum, which presents a paradox. We resolve this by showing that the azimuthal momentum is not a true linear momentum but the azimuthal momentum density is a true component of the linear momentum density.

  8. New sum rules relating the 1-body momentum distribution of the homogeneous electron gas to the Kimball-Overhauser 2-body wave functions (geminals) of its pair density

    NASA Astrophysics Data System (ADS)

    Ziesche, P.; Pernal, K.; Tasnádi, F.

    2003-09-01

    Recently, new sum rules for the scattering phase shifts of the pair-density geminals (being 2-body-wave functions which parametrize the pair density together with an appropriately chosen occupancy) have been derived from the normalization of the pair density [P. Ziesche, Phys. Rev. B 67, 233102 (2003)]. Here, we present a generalization of these sum rules, which allows one in principle to calculate the momentum distribution from these geminals and their phase shifts. These contraction sum rules contain the afore mentioned (Friedel-like) normalization sum rules as special cases.

  9. Angular momentum radio

    NASA Astrophysics Data System (ADS)

    Thidé, B.; Tamburini, F.; Then, H.; Someda, C. G.; Mari, Elletra; Parisi, G.; Spinello, F.; Romanato, Fra

    2014-02-01

    Wireless communication amounts to encoding information onto physical observables carried by electromagnetic (EM) fields, radiating them into surrounding space, and detecting them remotely by an appropriate sensor connected to an informationdecoding receiver. Each observable is second order in the fields and fulfills a conservation law. In present-day radio only the EM linear momentum observable is fully exploited. A fundamental physical limitation of this observable, which represents the translational degrees of freedom of the charges (typically an oscillating current along a linear antenna) and the fields, is that it is single-mode. This means that a linear-momentum radio communication link comprising one transmitting and one receiving antenna, known as a single-input-single-output (SISO) link, can provide only one transmission channel per frequency (and polarization). In contrast, angular momentum, which represents the rotational degrees of freedom, is multi-mode, allowing an angular-momentum SISO link to accommodate an arbitrary number of independent transmission channels on one and the same frequency (and polarization). We describe the physical properties of EM angular momentum and how they can be exploited, discuss real-world experiments, and outline how the capacity of angular momentum links may be further enhanced by employing multi-port techniques, i.e., the angular momentum counterpart of linear-momentum multiple-input-multiple-output (MIMO).

  10. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  11. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  12. Accelerating momentum for change!

    PubMed

    Wenzel, S; Panetta, J

    1995-05-01

    As we develop strategies to compete globally, we are challenged with integrating our resources to execute these strategies effectively. Many companies are in the midst of dramatic shifts in corporate cultures, giving more responsibility to employees while raising expectations for their performance. The extent of these changes is far reaching and brings significant challenges to both employees and corporations. This article is a continuation of the evolution (over five years) of a corrective action/continuous improvement process implemented at Exide Electronics. It discusses organizational structures, including steering committees, corrective action teams, task teams, and work cells. Specific expectations, goals, and results of the teams are presented, along with ground rules for functioning within the organization. After structuring the organization and coordinating the resources effectively, the next challenge is accelerating momentum for change. The presentation also discusses the evolutionary process required to make a culture focused on change, including ongoing communication and feedback, constant evaluation and direction of the process, and measuring and paying for performance.

  13. A Very Fast and Angular Momentum Conserving Tree Code

    NASA Astrophysics Data System (ADS)

    Marcello, Dominic C.

    2017-09-01

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  14. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    SciTech Connect

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  15. Precisely-controlled fabrication of single ZnO nanoemitter arrays and their possible application in low energy parallel electron beam exposure.

    PubMed

    He, H; She, J C; Huang, Y F; Deng, S Z; Xu, N S

    2012-03-21

    Precisely-controlled fabrication of single ZnO nanoemitter arrays and their possible application in low energy parallel electron beam exposure are reported. A well defined polymethyl methacrylate (PMMA) nanohole template was employed for local solution-phase growth of single ZnO nanoemitter arrays. Chlorine plasma etching for surface smoothing and pulsed-laser illumination in nitrogen for nitrogen doping were performed, which can significantly enhance the electron emission and improve the emitter-to-emitter uniformity in performance. Mechanisms responsible for the field emission enhancing effect are proposed. Low voltage (368 V) e-beam exposure was performed by using a ZnO nanoemitter array and a periodical hole pattern (0.72-1.26 μm in diameter) was produced on a thin (25 nm) PMMA. The work demonstrates the feasibility of utilizing single ZnO nano-field emitter arrays for low voltage parallel electron beam lithography.

  16. Inner-shell multiple ionization of polyatomic molecules with an intense x-ray free-electron laser studied by coincident ion momentum imaging

    NASA Astrophysics Data System (ADS)

    Erk, B.; Rolles, D.; Foucar, L.; Rudek, B.; Epp, S. W.; Cryle, M.; Bostedt, C.; Schorb, S.; Bozek, J.; Rouzee, A.; Hundertmark, A.; Marchenko, T.; Simon, M.; Filsinger, F.; Christensen, L.; De, S.; Trippel, S.; Küpper, J.; Stapelfeldt, H.; Wada, S.; Ueda, K.; Swiggers, M.; Messerschmidt, M.; Schröter, C. D.; Moshammer, R.; Schlichting, I.; Ullrich, J.; Rudenko, A.

    2013-08-01

    The ionization and fragmentation of two selenium containing hydrocarbon molecules, methylselenol (CH3SeH) and ethylselenol (C2H5SeH), by intense (>1017 W cm-2) 5 fs x-ray pulses with photon energies of 1.7 and 2 keV has been studied by means of coincident ion momentum spectroscopy. Measuring charge states and ion kinetic energies, we find signatures of charge redistribution within the molecular environment. Furthermore, by analyzing fragment ion angular correlations, we can determine the laboratory-frame orientation of individual molecules and thus investigate the fragmentation dynamics in the molecular frame. This allows distinguishing protons originating from different molecular sites along with identifying the reaction channels that lead to their emission.

  17. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Positronium annihilation in silica aerogel studied by a positron age-momentum correlation technique

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Ni; Zhang, Lan-Zhi; Wang, Bao-Yi; Yu, Run-Sheng; Zhang, Zhi-Ming; Li, Dao-Wu; Wei, Long

    2009-01-01

    A high-performance positron age-momentum correlation (AMOC) spectrometer was newly developed. The counting rate is increased up to 200 cps much larger than the value 20 cps reported by other international groups. And at the same time, the time resolution still keeps at the international level of 220 ps. Furthermore, positronium (Ps) annihilation in silica aerogel was investigated by AMOC, which indicates: (1) Ps annihilation between the grains dominantly undergoes pick-off process and spin conversion from o-Ps to p-Ps; (2) Annealing below 400 °C changes the grain surface conditions, i. e. the desorption of hydrogen and the decrease of the defect centers concentration.

  18. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments

    SciTech Connect

    Minakata, Hisakazu; Parke, Stephen J.

    2013-06-04

    Precision measurement of the leptonic CP violating phase δ will suffer from the, then surviving, large uncertainty of sin2θ23 of 10–20% in the experimentally interesting region near maximal mixing of θ23. We advocate a new method for determination of both θ23 and δ at the same time using only the νe and ν̄e appearance channels and show that sin2θ23 can be determined automatically with much higher accuracy, approximately a factor of six, than sinδ. In this method, we identify a new degeneracy for the simultaneous determination of θ23 and δ, the θ23 intrinsic degeneracy, which must be resolved in order to achieve precision measurement of these two parameters. Spectral information around the vacuum oscillation maxima is shown to be the best way to resolve this degeneracy.

  19. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pennycook, Stephen J

    2014-01-01

    Materials properties, such as optical and electronic response, can be greatly enhanced by isolated single dopants. Determining the full three-dimensional single-dopant defect structure and spatial distribution is therefore critical to understanding and adequately tuning functional properties. Combining quantitative Z-contrast scanning transmission electron microscopy images with image simulations, we show the direct determination of the atomic-scale depth location of an optically active, single atom Ce dopant embedded within wurtzite-type AlN. The method represents a powerful new tool for reconstructing three-dimensional information from a single, two-dimensional image.

  20. Low-cost, high-precision propagation delay measurement of 12-fibre MPO cables for the CMS DT electronics upgrade

    NASA Astrophysics Data System (ADS)

    Navarro-Tobar, Á.; Fernández-Bedoya, C.; Redondo, I.

    2013-02-01

    CMS DT electronics upgrade involves laying down 3500 optical links from the CMS experimental cavern to the service cavern, whose lengths must be matched to minimize skew, so that the present upstream electronics can be reused at an initial stage. In order to assess the cables' compliance, a high resolution and cost-effective system has been developed to measure the length uniformity of these fibres. Transit-time oscillation method has been implemented with matched MTP 12-channel fibre optic transmitter and receiver and a Spartan-6 FPGA. After proper corrections and averaging, millimetre-range accuracy has been achieved.

  1. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  2. Momentum sharing in imbalanced Fermi systems

    SciTech Connect

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  3. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  4. A wavelet-based Projector Augmented-Wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set

    NASA Astrophysics Data System (ADS)

    Rangel, T.; Caliste, D.; Genovese, L.; Torrent, M.

    2016-11-01

    We present a Projector Augmented-Wave (PAW) method based on a wavelet basis set. We implemented our wavelet-PAW method as a PAW library in the ABINIT package [http://www.abinit.org] and into BigDFT [http://www.bigdft.org]. We test our implementation in prototypical systems to illustrate the potential usage of our code. By using the wavelet-PAW method, we can simulate charged and special boundary condition systems with frozen-core all-electron precision. Furthermore, our work paves the way to large-scale and potentially order- N simulations within a PAW method.

  5. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current.

    PubMed

    Yano, Keisuke; Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  6. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory.

    PubMed

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D

    2017-07-12

    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  7. Momentum dependence of the electron-phonon coupling and self-energy effects in superconducting YBa2Cu3O7 within the local density approximation.

    PubMed

    Heid, Rolf; Bohnen, Klaus-Peter; Zeyher, Roland; Manske, Dirk

    2008-04-04

    Using the local density approximation and a realistic phonon spectrum we determine the momentum and frequency dependence of alpha(2)F(k,omega) in YBa(2)Cu(3)O(7) for the bonding, antibonding, and chain band. The resulting self-energy Sigma is rather small near the Fermi surface. For instance, for the antibonding band the maximum of ReSigma as a function of frequency is about 7 meV at the nodal point in the normal state and the ratio of bare and renormalized Fermi velocities is 1.18. These values are a factor of 3-5 too small compared to the experiment showing that only a small part of Sigma can be attributed to phonons. Furthermore, the frequency dependence of the renormalization factor Z(k,omega) is smooth and has no anomalies at the observed kink frequencies which means that phonons cannot produce well-pronounced kinks in stoichiometric YBa(2)Cu()3)O(7), at least, within the local density approximation.

  8. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  9. Precision measurements of spectral phases in femtosecond spectroscopy and application to doubly degenerate electronic dynamics in silicon naphthalocyanine

    NASA Astrophysics Data System (ADS)

    Ferro, Allison Albrecht

    Femtosecond lasers have been used to reveal the timescales for important physical processes including the primary steps of vision and photosynthesis. It is demonstrated here that spectral interferometry has the accuracy necessary to distinguish phase shifts from time delays for femtosecond pulses. This distinction opens up access to new levels of information and has consequences for experimental practice, coherent control, phase-locked pulse pair experiments, and the theory of femtosecond nonlinear spectroscopy. In particular, the distinction makes optical two-dimensional (2D) Fourier transform spectroscopy possible. A complete measurement of the femtosecond linear free induction decay in a dye solution is also demonstrated using spectral interferometry. For weak pulses, it is shown that Beer's law predicts the amplitude change and appropriate dispersion relations can be used to calculate the spectral phase change. The results indicate that the rotating wave approximation used in nonlinear spectroscopy can fail at the 6% level for molecular spectra with widths 15% of the center frequency. The doubly degenerate electronic dynamics of silicon 2,3- naphthalocyanine bis(trihexylsilyloxide) (C84H102N8O 2Si3) were investigated using transient grating signals, pump-probe polarization anisotropy measurements, and 2D electronic spectra. The signals displayed weak vibrational quantum beats and a resolvable sub 100 fs initial anisotropy decay. The pump-probe anisotropy disagreed with current theory and led to a reformulation of the theory which explicitly includes ground state depopulation, excited state emission, and excited state absorption. Jahn-Teller electronic reorientation is proposed as a likely mechanism for the anisotropy decay. A model for the electronic reorientation and vibrational motion in silicon naphthalocyanine was constructed. Calculations of the nonlinear signals using the model reproduced the quantum beats and the anisotropy decay outside the pulse

  10. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    SciTech Connect

    Kabir, Al Amin

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  11. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy

    PubMed Central

    Dukes, Madeline J.; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Jerome, W. Gray; de Jonge, Niels

    2011-01-01

    Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3 nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under the electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. PMID:21440635

  12. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy.

    PubMed

    Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels

    2011-06-01

    Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The Angular Momentum Dichotomy

    NASA Astrophysics Data System (ADS)

    Teklu, Adelheid; Remus, Rhea-Silvia; Dolag, Klaus; Burkert, Andreas

    2015-02-01

    In the context of the formation of spiral galaxies the evolution and distribution of the angular momentum of dark matter halos have been discussed for more than 20 years, especially the idea that the specific angular momentum of the halo can be estimated from the specific angular momentum of its disk (e.g. Fall & Efstathiou (1980), Fall (1983) and Mo et al. (1998)). We use a new set of hydrodynamic cosmological simulations called Magneticum Pathfinder which allow us to split the galaxies into spheroidal and disk galaxies via the circularity parameter ɛ, as commonly used (e.g. Scannapieco et al. (2008)). Here, we focus on the dimensionless spin parameter λ = J |E|1/2 / (G M5/2) (Peebles 1969, 1971), which is a measure of the rotation of the total halo and can be fitted by a lognormal distribution, e.g. Mo et al. (1998). The spin parameter allows one to compare the relative angular momentum of halos across different masses and different times. Fig. 1 reveals a dichotomy in the distribution of λ at all redshifts when the galaxies are split into spheroids (dashed) and disk galaxies (dash-dotted). The disk galaxies preferentially live in halos with slightly larger spin parameter compared to spheroidal galaxies. Thus, we see that the λ of the whole halo reflects the morphology of its central galaxy. For more details and a larger study of the angular momentum properties of disk and spheroidal galaxies, see Teklu et al. (in prep.).

  14. Transverse momentum and centrality dependence of high-ptnon-photonic electron suppression in Au+Au collisions at $\\sqrt{s_{NN}}$= 200 GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-07-11

    The STAR collaboration at RHIC reports measurements of theinclusive yield of non-photonic electrons, which arise dominantly fromsemi-leptonic decays of heavy flavor mesons, over a broad range oftransverse momenta (1.2electron yieldexhibits unexpectedly large suppression in central AuAu collisions athigh pt, suggesting substantial heavy quark energy loss at RHIC. Thecentrality and \\pt dependences of the suppression provide constraints ontheoretical models of suppression.

  15. Design and dosimetry characteristics of a commercial applicator system for intra-operative electron beam therapy utilizing ELEKTA Precise accelerator.

    PubMed

    Nevelsky, Alexander; Bernstein, Zvi; Bar-Deroma, Raquel; Kuten, Abraham; Orion, Itzhak

    2010-07-19

    The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane-parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient.

  16. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  17. Losing forward momentum holographically

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Koushik; Herzog, Christopher P.

    2014-06-01

    We present a numerical scheme for solving Einstein’s Equations in the presence of a negative cosmological constant and an event horizon with planar topology. Our scheme allows for the introduction of a particular metric source at the conformal boundary. Such a spacetime has a dual holographic description in terms of a strongly interacting quantum field theory at nonzero temperature. By introducing a sinusoidal static metric source that breaks translation invariance, we study momentum relaxation in the field theory. In the long wavelength limit, our results are consistent with the fluid-gravity correspondence and relativistic hydrodynamics. In the small amplitude limit, our results are consistent with the memory function prediction for the momentum relaxation rate. Our numerical scheme allows us to study momentum relaxation outside these two limits as well.

  18. Searching for momentum enhancement in hypervelocity impacts

    SciTech Connect

    Stradling, G.L.; Idzorek, G.C.; Keaton, P.W.; Studebaker, J.K. ); Blossom, A.A.H. ); Collopy, M.T.; Curling, H.L. Jr. ); Bergeson, S.D. )

    1990-01-01

    In conjunction with the Los Alamos National Laboratory hypervelocity microparticle impact (HMI) team effort to produce higher impact velocities and to understand the physics of crater formation and momentum transfer, the authors have implemented a low noise microphone as a momentum detector on both the 6 MV Van de Graaff and 85 KV test stand' particle accelerators. Calculations are presented showing that the impulse response of a circular membrane. When used as a momentum impulse detector, the microphone theoretically may detect impulses as small as 8.8 {times} 10{sup {minus}15} N s. Sensitivity of the microphone in this application is limited by the noise threshold of the electronic amplifiers and the ambient microphinic vibration of the system. Calculations lead the authors to anticipate detection of particles over the full range of the Van de Graaff acceleration capability and up to 7 km/s on the test stand. They present momentum enhancement data in the velocity range between 10 km/s and 20 km/s. Preliminary work is presented on momentum impulse calibration of the microphone using laser-pulse photon momentum as an impulse source.

  19. Optical orbital angular momentum.

    PubMed

    Barnett, Stephen M; Babiker, Mohamed; Padgett, Miles J

    2017-02-28

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next.This article is part of the themed issue 'Optical orbital angular momentum'.

  20. Unveiling Angular Momentum

    NASA Astrophysics Data System (ADS)

    Robinson, Stephen

    2015-03-01

    Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.

  1. Optical orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  2. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  3. Transverse momentum and centrality dependence of high-pT nonphotonic electron suppression in Au+Au collisions at sqrt[s NN]=200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D; Hollis, R; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-05-11

    The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2electron yield exhibits an unexpectedly large suppression in central Au+Au collisions at high p(T), suggesting substantial heavy-quark energy loss at RHIC. The centrality and p(T) dependences of the suppression provide constraints on theoretical models of suppression.

  4. Development of laser-based scanning µ-ARPES system with ultimate energy and momentum resolutions.

    PubMed

    Iwasawa, Hideaki; Schwier, Eike F; Arita, Masashi; Ino, Akihiro; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro; Shimada, Kenya

    2017-11-01

    We have developed a laser-based scanning angle-resolved photoemission spectroscopy system (µ-ARPES) equipped with a high precision 6-axis control system, realizing not only high-resolution photoemission spectroscopy in energy and momentum, but also spatial resolution of a µm scale. This enables our µ-ARPES system to probe fine details of intrinsic electronic states near the Fermi level such as the superconducting gaps and lifetime broadening. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

  6. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  7. Precision Measurement.

    ERIC Educational Resources Information Center

    Radius, Marcie; And Others

    The manual provides information for precision measurement (counting of movements per minute of a chosen activity) of achievement in special education students. Initial sections give guidelines for the teacher, parent, and student to follow for various methods of charting behavior. It is explained that precision measurement is a way to measure the…

  8. Non-free-electron momentum- and thickness-dependent evolution of quantum well states in the Cu/Co/Cu (001) system

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli; Wu, Y. Z.; An, J. M.; van Hove, M. A.; Canning, A.; Wang, L. W.; Qiu, Z. Q.

    2006-02-01

    We present systematic k‖ -dependent measurements of the Fermi surface and underlying band structure of quantum well states in Cu/Co/Cu(001) . Compared to bands from normal emission, we find a complicated evolution of “split” quantum well states as a function of the thicknesses of both the copper overlayer and the cobalt barrier layer. Self-consistent calculations show that the penetration of the quantum well states into the cobalt barrier layer is significant and leads to the observed very non-free-electron behavior of these states.

  9. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  10. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  11. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  12. Nanomechanical effects of light unveil photons momentum in medium

    PubMed Central

    Verma, Gopal; Chaudhary, Komal; Singh, Kamal P.

    2017-01-01

    Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski’s momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium. PMID:28198468

  13. Nanomechanical effects of light unveil photons momentum in medium.

    PubMed

    Verma, Gopal; Chaudhary, Komal; Singh, Kamal P

    2017-02-15

    Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski's momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium.

  14. Nanomechanical effects of light unveil photons momentum in medium

    NASA Astrophysics Data System (ADS)

    Verma, Gopal; Chaudhary, Komal; Singh, Kamal P.

    2017-02-01

    Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski’s momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium.

  15. Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    PubMed Central

    Xia, Q. Z.; Ye, D. F.; Fu, L. B.; Han, X. Y.; Liu, J.

    2015-01-01

    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a “V”-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at an extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements. PMID:26081971

  16. Precision Medicine

    PubMed Central

    Cholerton, Brenna; Larson, Eric B.; Quinn, Joseph F.; Zabetian, Cyrus P.; Mata, Ignacio F.; Keene, C. Dirk; Flanagan, Margaret; Crane, Paul K.; Grabowski, Thomas J.; Montine, Kathleen S.; Montine, Thomas J.

    2017-01-01

    Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease. PMID:26724389

  17. Momentum-resolved view of mixed 2D and nonbulklike 3D electronic structure of the surface state on SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    Plumb, N. C.; Salluzzo, M.; Razzoli, E.; Mansson, M.; Krempasky, J.; Matt, C. E.; Schmitt, T.; Shi, M.; Mesot, J.; Patthey, L.; Radovic, M.

    2014-03-01

    The recent discovery of a metallic surface state on SrTiO3 may open a route to simplified low-dimensional oxide-based conductors, as well as give new insights into interfacial phenomena in heterostructures such as LaAlO3/SrTiO3. Our recent angle-resolved photoemission spectroscopy (ARPES) study demonstrates that not only quasi-2D but also non-bulklike 3D Fermi surface components make up the surface state. Like their more 2D counterparts, the size and character of the 3D components are fixed with respect to a broad range of sample preparations. As seen in previous studies, the surface state can be ``prepared'' by photon irradiation under UHV conditions. An extremely high fraction of the surface valence states are affected by this process, especially in relation to the stability of oxygen core level intensity during the same exposure, which points to a key role of electronic/structural changes that spread over the surface as the metal emerges.

  18. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers.

    PubMed

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  19. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  20. Analysis techniques for momentum transport

    SciTech Connect

    Scott, S.D.

    1991-08-01

    This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)

  1. Quantum Heuristics of Angular Momentum

    ERIC Educational Resources Information Center

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  2. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  3. Electromagnetic momentum conservation in media

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Ellingsen, Simen Å.

    2011-03-01

    That static electric and magnetic fields can store momentum may be perplexing, but is necessary to ensure total conservation of momentum. Simple situations in which such field momentum is transferred to nearby bodies and point charges have often been considered for pedagogical purposes, normally assuming vacuum surroundings. If dielectric media are involved, however, the analysis becomes more delicate, not least since one encounters the electromagnetic energy-momentum problem in matter, the 'Abraham-Minkowski enigma', of what the momentum is of a photon in matter. We analyze the momentum balance in three nontrivial examples obeying azimuthal symmetry, showing how the momentum conservation is satisfied as the magnetic field decays and momentum is transferred to bodies present. In the last of the examples, that of point charge outside a dielectric sphere in an infinite magnetic field, we find that not all of the field momentum is transferred to the nearby bodies; a part of the momentum appears to vanish as momentum flux towards infinity. We discuss this and other surprising observations which can be attributed to the assumption of magnetic fields of infinite extent. We emphasize how formal arguments of conserved quantities cannot determine which energy-momentum tensor is more "correct", and each of our conservation checks may be performed equally well in the Minkowski or Abraham framework.

  4. Electromagnetic momentum conservation in media

    SciTech Connect

    Brevik, Iver; Ellingsen, Simen A.

    2011-03-15

    That static electric and magnetic fields can store momentum may be perplexing, but is necessary to ensure total conservation of momentum. Simple situations in which such field momentum is transferred to nearby bodies and point charges have often been considered for pedagogical purposes, normally assuming vacuum surroundings. If dielectric media are involved, however, the analysis becomes more delicate, not least since one encounters the electromagnetic energy-momentum problem in matter, the 'Abraham-Minkowski enigma', of what the momentum is of a photon in matter. We analyze the momentum balance in three nontrivial examples obeying azimuthal symmetry, showing how the momentum conservation is satisfied as the magnetic field decays and momentum is transferred to bodies present. In the last of the examples, that of point charge outside a dielectric sphere in an infinite magnetic field, we find that not all of the field momentum is transferred to the nearby bodies; a part of the momentum appears to vanish as momentum flux towards infinity. We discuss this and other surprising observations which can be attributed to the assumption of magnetic fields of infinite extent. We emphasize how formal arguments of conserved quantities cannot determine which energy-momentum tensor is more 'correct', and each of our conservation checks may be performed equally well in the Minkowski or Abraham framework.

  5. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    . P. Szczepaniak and J. T. Londergan -- High energy break-up of few-nucleon systems / M. Sargsian -- Photodisintegration of the deuteron, and [symbol]He / R. Gilman -- A review of the few-body form factors / G. G. Petratos -- Nucleon form factor measurements and interpretation / C. F. Perdrisat -- Implications of G[symbol](Q[symbol])/G[symbol](Q[symbol]) / S. Dubnicka and A. Z. Dubnickova -- High Q[symbol] large acceptance G[symbol]/G[symbol] measurements using polarization transfer / L. Pentchev, C. F. Perdrisat and B. Wojtsekhowski -- A precise measurement of the neutron magnetic form factor G[symbol] in the few-GeV[symbol] region / G. P. Gilfoyle et al. (the CLAS collaboration) -- Magnetic form factor of the neutron up to 8 (GeV/c)[symbol] / B. Quinn -- Timelike form factors / K. K. Seth -- Polarization phenomena in e[symbol]e[symbol] [symbol] pp¯ revisited / A. Z. Dubnickova and S. Dubnicka -- Light-cone sum rules for form factors of the N[symbol] transition at Q[symbol] = 0 / J. Rohrwild -- Exclusive electroproduction of [symbol] mesons / A. N. Villano (for the JLab E01-002 collaboration) -- Exclusive electroproduction of [symbol] mesons in the S[symbol](1535) resonance region at high momentum transfer / M. M. Dalton (for the JLab E01-002 collaboration) -- Two-photon exchange in electron-proton elastic scattering: theory update / A. V. Afanasev -- Two-photon exchange contributions to elastic ep scattering in the non-local field formalism / P. Jain, S. D. Joglekar and S. Mitra -- Beyond the born approximation: a precise comparison of positron-proton and electron-proton elastic scattering in CLAS / J. Lachniet et al. -- Meson form factors in the space-like region / D. Gaskell -- Pion-nucleon distribution amplitudes / A. Peters -- [symbol] scattering in the 1/N[symbol] expansion / H. J. Kwee -- [symbol] annihilations into quasi-two-body final states at 10.58 GeV / Kai Yi -- Transition distribution amplitudes / J. P. Lansberg, B. Pire and L. Szymanowski -- Novel QCD

  6. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  7. Compact expressions for spherically averaged position and momentum densities

    NASA Astrophysics Data System (ADS)

    Crittenden, Deborah L.; Bernard, Yves A.

    2009-08-01

    Compact expressions for spherically averaged position and momentum density integrals are given in terms of spherical Bessel functions (jn) and modified spherical Bessel functions (in), respectively. All integrals required for ab initio calculations involving s, p, d, and f-type Gaussian functions are tabulated, highlighting a neat isomorphism between position and momentum space formulae. Spherically averaged position and momentum densities are calculated for a set of molecules comprising the ten-electron isoelectronic series (Ne-CH4) and the eighteen-electron series (Ar-SiH4, F2-C2H6).

  8. The Use of Micro-Computed Tomography to Determine the Accuracy of 2 Electronic Apex Locators and Anatomic Variations Affecting Their Precision.

    PubMed

    Piasecki, Lucila; Carneiro, Everdan; da Silva Neto, Ulisses Xavier; Westphalen, Vânia Portela Ditzel; Brandão, Christian Giampietro; Gambarini, Gianluca; Azim, Adham A

    2016-08-01

    The aim of this study was to compare the accuracy of 2 electronic apex locators (EALs), Apex ID (SybronEndo, Glendora, CA) and Root ZX (J. Morita, Tokyo, Japan), by means of micro-computed tomographic (micro-CT) imaging and to determine anatomic variations that may affect their accuracy. The root canal length (RCL) and working length (WL) of 33 single-rooted premolars were measured using a visual method, 3-dimensional micro-CT reconstructions, and 2 different EALs. Two different measurements were recorded for each EAL: at the "APEX/0.0" mark and at the "0.5" mark. The WL was determined using 2 different methods: method 1: at the "0.5 mark" of the apex locator and method 2: subtracting 0.5 mm from the "APEX/0.0" mark. The precision of measurements was compared with those recorded by micro-CT imaging. Apical foramen (AF) position and diameter, apical constriction (AC) diameter, distance between the AC and the AF, and the presence/absence of accessory canals were recorded from the micro-CT scans, and their correlation to the accuracy of EALs was determined. There was no statistically significant difference in the RCL measurements by any of the different methods. There was a statistically significant difference in the WL recorded by micro-CT imaging compared with those by the visual method and at the "APEX/0.0 mark" - 0.5 mm (P = .031). There was no difference in the measurements acquired by any of the EALs. The "APEX/0.0 mark" - 0.5 mm was less accurate than the "0.5" mark. However, the results were not statistically significant (P > .05). The position of the AF and the AC-AF distance affected the accuracy of the RCL (P = .003) and the "0.5" mark (P = .013). Root ZX and Apex ID are equally precise in determining the RCL and WL. The "0.5" mark can be used to determine the WL with high precision. Some anatomic variations may influence the accuracy of EALs. Published by Elsevier Inc.

  9. Precision metrology.

    PubMed

    Jiang, X; Whitehouse, D J

    2012-08-28

    This article is a summary of the Satellite Meeting, which followed on from the Discussion Meeting at the Royal Society on 'Ultra-precision engineering: from physics to manufacture', held at the Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire, UK. The meeting was restricted to 18 invited experts in various aspects of precision metrology from academics from the UK and Sweden, Government Institutes from the UK and Germany and global aerospace industries. It examined and identified metrology problem areas that are, or may be, limiting future developments in precision engineering and, in particular, metrology. The Satellite Meeting was intended to produce a vision that will inspire academia and industry to address the solutions of those open-ended problems identified. The discussion covered three areas, namely the function of engineering parts, their measurement and their manufacture, as well as their interactions.

  10. Two-proton radioactivity and three-body decay. V. Improved momentum distributions

    NASA Astrophysics Data System (ADS)

    Grigorenko, L. V.; Egorova, I. A.; Zhukov, M. V.; Charity, R. J.; Miernik, K.

    2010-07-01

    Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 103 fm. However, the precision of modern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the “exactly” solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of screening by atomic electrons. We compare theoretical results with available experimental data.

  11. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  12. Optical orbital angular momentum

    PubMed Central

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  13. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  14. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  15. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  16. Energy and Momentum Transfer from Saturn's Magnetosphere to Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.; Bell, J. M.

    2014-12-01

    Knowing the energy and momentum flowing into Titan's atmosphere is critical to understanding the structure and dynamics of that atmosphere. The goal of this research will be to develop a deeper understanding of energy and momentum transfer from Saturn's magnetosphere into the neutral atmosphere of Titan. A hybrid particle code is used to examine the energy and momentum transferred to Titans atmosphere by ion precipitation and electron currents. The code includes models representing Titan's ion-neutral ionospheric chemistry, Hall and Pederson conductivities, ion-neutral collisions and atmospheric densities and winds from the TGITM atmospheric code. Energy and momentum maps will be created showing the energy and momentum transferred to the neutral atmosphere as functions of latitude, longitude and altitude.

  17. The importance of high-precision hadronic calorimetry to physics

    NASA Astrophysics Data System (ADS)

    Hauptman, John

    2016-11-01

    The reconstruction and high-precision measurement of the four-vectors of W and Z decays to quarks, which constitute nearly 70% of their decay branching fractions, are critical to a high efficiency and high quality experiment. Furthermore, it is crucial that the energy resolution, and consequently the resolution on the invariant mass of the two fragmenting quarks, is comparable to the energy-momentum resolution on the other particles of the standard model, in particular, electrons, photons, and muons, at energies around 100 GeV. I show that this “unification of resolutions” on all particles of the standard model is now in sight, and will lead to excellent physics at an electron-positron collider.

  18. Momentum Deposition in Curvilinear Coordinates

    SciTech Connect

    Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton

    2015-08-03

    The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.

  19. Partonic Transverse Momentum Distributions

    SciTech Connect

    Rossi, Patrizia

    2010-08-04

    In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.

  20. Why momentum width matters for atom interferometry with Bragg pulses

    NASA Astrophysics Data System (ADS)

    Szigeti, S. S.; Debs, J. E.; Hope, J. J.; Robins, N. P.; Close, J. D.

    2012-02-01

    We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these momentum width effects, and precisely compute how mirror efficiencies and interferometer phase sensitivities vary as functions of Bragg order and source type. Our results and methodology allow for an efficient optimization of Bragg pulses and the comparison of different atomic sources, and will help in the design of large momentum transfer Bragg mirrors and beamsplitters for use in atom-based inertial sensors.

  1. The mass and angular momentum of reconstructed metric perturbations

    NASA Astrophysics Data System (ADS)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  2. Force As A Momentum Current

    SciTech Connect

    Munera, Hector A.

    2010-07-28

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  3. Force As A Momentum Current

    NASA Astrophysics Data System (ADS)

    Múnera, Héctor A.

    2010-07-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  4. Angular Momentum in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    We study the ``angular momentum catastrophe" in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009) model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001), and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the ``angular momentum catastrophe" can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  5. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  6. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi; Collaboration: PRad Collaboration

    2013-11-07

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  7. Precision medicine in cardiology.

    PubMed

    Antman, Elliott M; Loscalzo, Joseph

    2016-10-01

    The cardiovascular research and clinical communities are ideally positioned to address the epidemic of noncommunicable causes of death, as well as advance our understanding of human health and disease, through the development and implementation of precision medicine. New tools will be needed for describing the cardiovascular health status of individuals and populations, including 'omic' data, exposome and social determinants of health, the microbiome, behaviours and motivations, patient-generated data, and the array of data in electronic medical records. Cardiovascular specialists can build on their experience and use precision medicine to facilitate discovery science and improve the efficiency of clinical research, with the goal of providing more precise information to improve the health of individuals and populations. Overcoming the barriers to implementing precision medicine will require addressing a range of technical and sociopolitical issues. Health care under precision medicine will become a more integrated, dynamic system, in which patients are no longer a passive entity on whom measurements are made, but instead are central stakeholders who contribute data and participate actively in shared decision-making. Many traditionally defined diseases have common mechanisms; therefore, elimination of a siloed approach to medicine will ultimately pave the path to the creation of a universal precision medicine environment.

  8. Optical Momentum, Spin, and Angular Momentum in Dispersive Media

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-08-01

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector kp>ω /c , and a transverse spin, which can change its sign depending on the frequency ω .

  9. Optical Momentum, Spin, and Angular Momentum in Dispersive Media.

    PubMed

    Bliokh, Konstantin Y; Bekshaev, Aleksandr Y; Nori, Franco

    2017-08-18

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector k_{p}>ω/c, and a transverse spin, which can change its sign depending on the frequency ω.

  10. Spherical-complex-optical-potential (SCOP) model for electron-monosilane (SiH4) collisions at 30-400 eV: Total (elastic+absorption), momentum transfer, and differential cross sections

    NASA Astrophysics Data System (ADS)

    Jain, Ashok

    1987-02-01

    We report nonempirical quantum mechanical calculations on the total (elastic+absorption), momentum transfer, and differential cross sections for e-SiH4 collisions at intermediate and high energies (30-400 eV). A parameter-free and energy-dependent spherical-complex-optical potential (SCOP) is evaluated for the e-SiH4 system. The real part of the SCOP consists of three local terms, namely static, exchange, and polarization. The static interaction is generated very accurately from near-Hartree-Fock one-center silane wave functions, while the exchange effects are accounted for in the free-electron-gas-exchange (FEGE) model. The polarization potential is evaluated ab initio in a parameter-free approximation of Jain and Thompson. The imaginary term of the total SCOP represents loss of flux due to inelastic channels via an energy-dependent absorption potential calculated from target electron density and short-range static-exchange force in the quasifree model with Pauli blocking [Staszewska et al.; J. Phys. B 16, L281 (1983)]. Two versions of this absorption potential are employed; one with an undistorted density and the other with a polarized density determined approximately from first order target wave functions. The later version is more successful when the final results are compared with experiment. The total SCOP is treated exactly in a partial-wave analysis using the variable-phase approach to yield complex phase shifts. Our final total cross sections compare very well with the only available measurements of Sueoka and Mori. However, below 50 eV, present total cross sections overestimate the experimental data within 10%. The effect of absorption potential is to reduce the elastic cross sections significantly; this reduction is more dramatic in case of the differential cross sections (DCS); for example, the reduced DCS are exposed to more pronounced structure. Interestingly, the e-SiH4 reduced DCS are very close in shape to the corresponding e-Ar cross sections

  11. Unveiling pseudospin and angular momentum in photonic graphene.

    PubMed

    Song, Daohong; Paltoglou, Vassilis; Liu, Sheng; Zhu, Yi; Gallardo, Daniel; Tang, Liqin; Xu, Jingjun; Ablowitz, Mark; Efremidis, Nikolaos K; Chen, Zhigang

    2015-02-17

    Pseudospin, an additional degree of freedom inherent in graphene, plays a key role in understanding many fundamental phenomena such as the anomalous quantum Hall effect, electron chirality and Klein paradox. Unlike the electron spin, the pseudospin was traditionally considered as an unmeasurable quantity, immune to Stern-Gerlach-type experiments. Recently, however, it has been suggested that graphene pseudospin is a real angular momentum that might manifest itself as an observable quantity, but so far direct tests of such a momentum remained unfruitful. Here, by selective excitation of two sublattices of an artificial photonic graphene, we demonstrate pseudospin-mediated vortex generation and topological charge flipping in otherwise uniform optical beams with Bloch momentum traversing through the Dirac points. Corroborated by numerical solutions of the linear massless Dirac-Weyl equation, we show that pseudospin can turn into orbital angular momentum completely, thus upholding the belief that pseudospin is not merely for theoretical elegance but rather physically measurable.

  12. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  13. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  14. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  15. Scattering and momentum space entanglement

    NASA Astrophysics Data System (ADS)

    Grignani, Gianluca; Semenoff, Gordon W.

    2017-09-01

    We derive a formula for the entanglement entropy of two regions in momentum space that is generated by the scattering of weakly interacting scalar particles. We discuss an example where weak interactions entangle momentum scales above and below an infrared cutoff.

  16. Emittance compensation studies of photoinjector beams with angular momentum

    SciTech Connect

    Lidia, Steven

    2003-05-19

    Beam dynamics studies on the FNPL photo injector that seek to optimize the transport of intense electron beams with large values of canonical angular momentum have been performed. These studies investigate the effect of solenoid emittance compensation on beams that evolve under the combined influence of intense space charge forces and large angular momentum. We present details of experimental measurements and supporting simulations of beam envelope evolution.

  17. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  18. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  19. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  20. Orbital angular momentum entanglement

    NASA Astrophysics Data System (ADS)

    Romero, Mary Jacquiline Romero

    Entanglement in higher dimensions is an attractive concept that is a challenge to realise experimentally. To this end, the entanglement of the orbital angular momentum (OAM) of photons holds promise. The OAM state-space is discrete and theoretically unbounded. In the work that follows, we investigate various aspects of OAM entanglement. We show how the correlations in OAM and its conjugate variable, angular position, are determined by phase- matching and the shape of the pump beam in spontaneous parametric down- conversion. We implement tests of quantum mechanics which have been previously done for other variables. We show the Einstein-Podolsky-Rosen paradox for OAM and angle, supporting the incompatibility of quantum mechanics with locality and realism. We demonstrate violations of Bell-type inequalities, thereby discounting local hidden variables for describing the correlations we observe. We show the Hardy paradox using OAM, again highlighting the nonlocal nature of quantum mechanics. We demonstrate violations of Leggett-type inequalities, thereby discounting nonlocal hidden variables for describing correlations. Lastly, we have looked into the entanglement of topological vortex structures formed from a special superposition of OAM modes and show violations of Bell-type inequalities confined to a finite, isolated volume.

  1. Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0 production

    DOE PAGES

    Aghasyan, M.; Avakian, H.; Rossi, P.; ...

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin Φh amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle Φh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  2. Precise measurements of beam spin asymmetries in semi-inclusive π0 production

    NASA Astrophysics Data System (ADS)

    Aghasyan, M.; Avakian, H.; Rossi, P.; De Sanctis, E.; Hasch, D.; Mirazita, M.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hanretty, C.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jawalkar, S. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Micherdzinska, A. M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  3. MBL Experiment in Angular Momentum

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2002-04-01

    Among the series of beautiful take-home experiments designed by A.P. French and J.G. King for MIT students, the one on angular momentum studies the loss and conservation of angular momentum using a small dc motor as generator. Here we describe a version of the experiment that increases its accuracy, enables students to perform detailed rotational dynamics calculations, and sharpens the ability to isolate the region where the collision occurs.

  4. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  5. The varieties of momentum-like experience.

    PubMed

    Hubbard, Timothy L

    2015-11-01

    Cognition and behavior exhibit biases consistent with future expectations, and some of these biases result in momentum-like effects and have been linked with the idea of momentum. These momentum-like effects include representational momentum, operational momentum, attentional momentum, behavioral momentum, and psychological momentum. Effects of numerous variables involving characteristics of the target, display, context, or observer on each momentum-like effect are considered, and similarities of different momentum-like effects are considered. It is suggested that representational momentum, operational momentum, and attentional momentum reflect similar or overlapping mechanisms based on a perceptual time-scale and extrapolation primarily across space, and that behavioral momentum and psychological momentum reflect similar or overlapping mechanisms based on a longer time-scale and extrapolation primarily across time. It is further suggested that all 5 forms of momentum-like effect could reflect a more general extrapolation mechanism that anticipates the future action, behavior, or outcome of a given target, person, or process. A list of properties characterizing momentum-like effects is proposed, and constraints and issues relevant to future models of momentum-like effects are discussed. (PsycINFO Database Record

  6. Momentum flux in breaking wavelets

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    1990-08-01

    A breaking wavelet is taken to consist of a roller and a trailing turbulent wake, both riding on an irrotational wave. The shear stress force on the separation streamline between the roller and the underlying flow is balanced mainly by the horizontal pressure force on the same streamline. The pressure force acts on the underlying flow and reduces wavelet momentum; the shear force generates the momentum deficit of the wake. In this manner, wavelet momentum is turned into shear flow momentum. In wind-driven wavelets the shear force of the wind aids roller formation: rollers form at a relatively low approach momentum from boundary layer fluid generated by surface shear. Breaking wavelets have been modeled by superimposing the surface disturbance generated by a roller on a sinusoidal wave. The phase relationship of the two components determines how much momentum is extracted from the wave. The models show the characteristic asymmetric, forward leaning shape of breakers. The wave under the roller is shortened, so that the steepness of the breaker is even greater than it would be on account of the roller's presence alone. Ahead of the roller's toe, capillary waves are generated. On short waves these are of easily visible amplitude and serve to identify the presence of a roller.

  7. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  8. Angular-momentum transfer due to postcollision interaction in atomic inner n s2 -shell photoionization

    NASA Astrophysics Data System (ADS)

    Gerchikov, L.; Guillemin, R.; Simon, M.; Sheinerman, S.

    2017-06-01

    A concrete mechanism of angular-momentum transfer in photoionization process is proposed for electron photoemission from deep inner atomic shells. It is demonstrated that the leading contribution to angular-momentum transfer is provided by postcollision interaction of the photoelectrons and Auger electrons. The standard theoretical approach to postcollision interaction has been considerably improved by taking into account angular-momentum transfer. The theory developed is applied to the photoionization of 1 s2 shell in Ar. Calculations show the noticeable influence of angular-momentum transfer on the photoelectron angular distribution.

  9. Measuring and optimizing the momentum aperture in a particle accelerator

    NASA Astrophysics Data System (ADS)

    Steier, C.; Robin, D.; Nadolski, L.; Decking, W.; Wu, Y.; Laskar, J.

    2002-05-01

    Particle motion in storage rings is confined by various aperture limits, the size of which restricts the performance of the ring in terms of injection efficiency, lifetime, etc. Intrabeam scattering makes particles sweep a large portion of the phase space, where their motion may eventually be resonantly or chaotically excited to large amplitudes leading to collision with the vacuum chamber. We report here the studies performed at the Advanced Light Source (ALS) on the on- and off-momentum particle motion that provides a good understanding of these limitations. Using off-momentum simulations and experiments together with frequency map analysis, we could precisely correlate beam loss areas with resonance locations. The very good agreement between simulations and experiments allowed us to provide guidance for avoiding these dangerous areas. This analysis results in predictive improvements of the momentum aperture, which actually led to a lifetime increase of 25% at the ALS for very high bunch charge.

  10. Measuring and optimizing the momentum aperture in a particle accelerator.

    PubMed

    Steier, C; Robin, D; Nadolski, L; Decking, W; Wu, Y; Laskar, J

    2002-05-01

    Particle motion in storage rings is confined by various aperture limits, the size of which restricts the performance of the ring in terms of injection efficiency, lifetime, etc. Intrabeam scattering makes particles sweep a large portion of the phase space, where their motion may eventually be resonantly or chaotically excited to large amplitudes leading to collision with the vacuum chamber. We report here the studies performed at the Advanced Light Source (ALS) on the on- and off-momentum particle motion that provides a good understanding of these limitations. Using off-momentum simulations and experiments together with frequency map analysis, we could precisely correlate beam loss areas with resonance locations. The very good agreement between simulations and experiments allowed us to provide guidance for avoiding these dangerous areas. This analysis results in predictive improvements of the momentum aperture, which actually led to a lifetime increase of 25% at the ALS for very high bunch charge.

  11. Scattering and diffraction described using the momentum representation.

    PubMed

    Wennerström, Håkan

    2014-03-01

    We present a unified analysis of the scattering and diffraction of neutrons and photons using momentum representation in a full quantum description. The scattering event is consistently seen as a transfer of momentum between the target and the probing particles. For an elastic scattering process the observed scattering pattern primarily provides information on the momentum distribution for the particles in the target that cause the scattering. Structural information then follows from the Fourier transform relation between momentum and positional state functions. This description is common to the scattering of neutrons, X-ray photons and photons of light. In the quantum description of the interaction between light and the electrons of the target the scattering of X-rays is dominated by the first order contribution from the vector potential squared. The interaction with the electron is local and there is a close analogy, evident from the explicit quantitative expressions, with the neutron scattering case where the nucleus-neutron interaction is fully local from a molecular perspective. For light scattering, on the other hand, the dominant contribution to the scattering comes from a second order term linear in the vector potential. Thus the scattering of light involves correlations between electrons at different positions giving a conceptual explanation of the qualitative difference between the scattering of high and low energy photons. However, at energies close to resonance conditions the scattering of high energy photons is also affected by the second order term which results in a so called anomalous X-ray scattering/diffraction. It is also shown that using the momentum representation the phenomenon of diffraction is a direct consequence of the fact that for a system with periodic symmetry like a crystal the momentum distribution is quantized, which follows from Bloch's theorem. The momentum transfer to a probing particle is then also quantized resulting in a

  12. Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Altinok, O.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Bagulya, A.; Ben Dhahbi, A.; Bertolin, A.; Besnier, M.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Cazes, A.; Chaussard, L.; Chernyavskiy, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; Dal Corso, F.; De Lellis, G.; del Amo Sanchez, P.; Déclais, Y.; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L. S.; Favier, J.; Ferber, T.; Fini, R. A.; Frekers, D.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Göllnitz, C.; Goldberg, J.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Hoshino, K.; Ieva, M.; Ishida, H.; Jakovcic, K.; Jollet, C.; Juget, F.; Kamiscioglu, M.; Kazuyama, K.; Kim, S. H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Kubota, H.; Lazzaro, C.; Lenkeit, J.; Lippi, I.; Ljubicic, A.; Longhin, A.; Loverre, P.; Lutter, G.; Malgin, A.; Mandrioli, G.; Manai, K.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Naumov, D.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Okateva, N.; Olshevskiy, A.; Paniccia, M.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pretzl, K.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roganova, T.; Rokujo, H.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schroeder, H.; Scotto Lavina, L.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Trabelsi, A.; Tran, T.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yakushev, V.; Yoon, C. S.; Yoshioka, T.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2012-01-01

    A new method of momentum measurement of charged particles through multiple Coulomb scattering (MCS) in the OPERA lead-emulsion target is presented. It is based on precise measurements of track angular deviations carried out thanks to the very high resolution of nuclear emulsions. The algorithm has been tested with Monte Carlo pions. The results are found to describe within the expected uncertainties the data obtained from test beams. We also present a comparison of muon momenta evaluated through MCS in the OPERA lead-emulsion target with those determined by the electronic detectors for neutrino-charged current interaction events. The two independent measurements agree within the experimental uncertainties, and the results validate the algorithm developed for the emulsion detector of OPERA.

  13. Positron Annihilation 3-D Momentum Spectrometry by Synchronous 2D-ACAR and DBAR

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry W.; Bonavita, Angelo M.; Williams, Christopher S.; Fagan-Kelly, Stefan B.; Jimenez, Stephen M.

    2015-05-01

    A positron annihilation spectroscopy system capable of determining 3D electron-positron (e--e+) momentum densities has been constructed and tested. In this technique two opposed HPGe strip detectors measure angular coincidence of annihilation radiation (ACAR) and Doppler broadening of annihilation radiation (DBAR) in coincidence to produce 3D momentum datasets in which the parallel momentum component obtained from the DBAR measurement can be selected for annihilation events that possess a particular perpendicular momentum component observed in the 2D ACAR spectrum. A true 3D momentum distribution can also be produced. Measurement of 3-D momentum spectra in oxide materials has been demonstrated including O-atom defects in 6H SiC and silver atom substitution in lithium tetraborate crystals. Integration of the 3-D momentum spectrometer with a slow positron beam for future surface resonant annihilation spectrometry measurements will be described. Sponsorship from Air Force Office of Scientific Research

  14. Large Momentum Beam Splitter Using Bloch Oscillations

    SciTech Connect

    Clade, Pierre; Guellati-Khelifa, Saieda; Nez, Francois; Biraben, Francois

    2009-06-19

    The sensitivity of an inertial sensor based on an atomic interferometer is proportional to the velocity separation of atoms in the two arms of the interferometer. In this Letter we describe how Bloch oscillations can be used to increase this separation and to create a large momentum transfer (LMT) beam splitter. We experimentally demonstrate a separation of 10 recoil velocities. Light shifts during the acceleration introduce phase fluctuations which can reduce the fringes contrast. We precisely calculate this effect and demonstrate that it can be significantly reduced by using a suitable combination of LMT pulses. We finally show that this method seems to be very promising to realize a LMT beam splitter with several tens of recoils and a very good efficiency.

  15. Determination of and compensation for wafer bow and warp in a scanning electron microscope requiring precise feature locating and variable tilt

    NASA Astrophysics Data System (ADS)

    Holmes, Duane C.

    1990-06-01

    Precise and accurate feature positioning in SEMs is becoming more critical. Moving the stage to a predetermined location must be done with accuracy and precision that put the feature ofinterest in the field ofview at a magnification high enough to detect orrecognize the same feature. Ifthis is notdone, some sort ofsearch, either automatic ormanual must be performed. This may not only be bothersome, but detrimental to inspection or measurement throughput performance. Ultra precise stages - for example, those using laser interferometers or linear encoders - are capable of positioning precisions, if not accuracies, to 0. 1 micron. In both optical and SEM systems where inspection is normal to the plane ofthe waler(cailed zero tilt), precise locating of features is possible without serious attention being paid to the bow or warp of a wafer. From the SEMI Standards Manuals, it is seen that a 200 mm wafer may have up to 65 microns of bow. In optical lithography tools and optical inspection or measurement systems, a vacuum chuck may alter or reduce the bow. However, in the vacuum chamber of the SEM this technique does not work. The bow or warp remains. The problem occurs in going to a particular numerical address whenthe waferis tilted, ifthat numerical address was determined at some different tilt -themost probable, of course, being zero iilt. Tilting of the wafer will cause the initially observed feature to move through an arc of "unknown" extent (unknown because it is a function of the bow and the bow is not known at that point). A 60 degree tilt of awafer with 40 microns of bow can cause about 35 microns oflaten.l displacement of a feature from where it would be expected for a wafer with no bow. The effect of this displacement on detectability is discussed. Actual displacement measurements on a 125 mm wafer ait plotted. These plots are compared with those derived from measurements made by optical and SEM systems specially set up to measure bow magnitudes. Bow

  16. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  17. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  18. Angular momentum desaturation for Skylab using gravity gradient torques

    NASA Technical Reports Server (NTRS)

    Kennel, H. F.

    1971-01-01

    An angular momentum desaturation method for momentum exchange devices of orbiting spacecraft is described. The specific application of the method is to the Skylab which contains three double-gimbaled control moment gyros for precise attitude control and maneuvering. It is assumed that the attitude reference is inertially fixed and that two of the vehicle principal moments of inertia are much larger than the third. Gravity gradient torques and resultant angular momentum accumulation are developed for small deviations from the reference. The assumed moment-of-inertia distribution allows desaturation about all axes with only two attitude angles each for the two axes with large moments of inertia. The necessary desaturation maneuvers can be decoupled for a special set of orbital coordinates. All maneuvers are made during the night portion of the orbit, and the percentage utilized for desaturation is selectable. Expressions for the attitude angle commands are developed assuming infinite vehicle rates. The effect of finite rates introduces an efficiency into the desaturation. Expressions for this efficiency are developed and means for compensation are treated. Arbitrary misalignments between geometric vehicle axes and principal moment-of-inertia axes are permissible. An angle bias about the sun line minimizes the angular momentum accumulation about the sun line projection into the orbital plane. Adaptive desaturation maneuver limiting consistent with the available maneuver momentum is included.

  19. On nonstable and stable population momentum.

    PubMed

    Espenshade, Thomas J; Olgiati, Analia S; Levin, Simon A

    2011-11-01

    This article decomposes total population momentum into two constituent and multiplicative parts: "nonstable" momentum and "stable" momentum. Nonstable momentum depends on deviations between a population's current age distribution and its implied stable age distribution. Stable momentum is a function of deviations between a population's implied stable and stationary age distributions. In general, the factorization of total momentum into the product of nonstable and stable momentum is a very good approximation. The factorization is exact, however, when the current age distribution is stable or when observed fertility is already at replacement. We provide numerical illustrations by calculating nonstable, stable, and total momentum for 176 countries, the world, and its major regions. In short, the article brings together disparate strands of the population momentum literature and shows how the various kinds of momentum fit together into a single unifying framework.

  20. On Nonstable and Stable Population Momentum

    PubMed Central

    Olgiati, Analia S.; Levin, Simon A.

    2014-01-01

    This article decomposes total population momentum into two constituent and multiplicative parts: “nonstable” momentum and “stable” momentum. Nonstable momentum depends on deviations between a population’s current age distribution and its implied stable age distribution. Stable momentum is a function of deviations between a population’s implied stable and stationary age distributions. In general, the factorization of total momentum into the product of nonstable and stable momentum is a very good approximation. The factorization is exact, however, when the current age distribution is stable or when observed fertility is already at replacement. We provide numerical illustrations by calculating nonstable, stable, and total momentum for 176 countries, the world, and its major regions. In short, the article brings together disparate strands of the population momentum literature and shows how the various kinds of momentum fit together into a single unifying framework. PMID:21948106